平成29年度(第46回) 九州臨床検査精度管理研究会 報 告

平成30年3月4日

九州大学 百年講堂·於

九州臨床検査精度管理研究会

九州臨床検査精度管理研究会

会 長 康 東天 九州大学大学院医学研究院臨床分子医学 教授

大分大学医学部循環器内科・臨床検査診断学講座 玾 事 高橋尚彦 教授

岡山昭彦 宮崎大学医学部内科学講座免疫感染病態学分野 松井啓隆 熊本大学大学院医学薬学研究部病熊情報解析学分野 教授

福岡大学医学部臨床検査医学講座 松永彰 教授

末岡榮三朗 佐賀大学医学部臨床検査医学講座

鹿児島大学大学院医歯学総合研究科血管代謝病態解析学 久留米大学医学部附属病院臨床検査部 教授 橋口照人 教授

中島 収

竹内正明 産業医科大学臨床検査・輸血部

長崎大学大学院医歯薬学総合研究科病態解析・診断学分野 柳原克紀 教授

前田士郎 琉球大学大学院医学研究科先進ゲノム検査医学講座 教授

南惣一郎 長崎大学病院検査部

研究会各部門委員会名簿

生化学部門

委員長 康東天

九州大学病院 解析委員 酒本美由紀 南惣一郎 長崎大学病院 渡邊久美子 長門記念病院 IJ 濱野貴磨

IJ 産業医科大学病院 川満紀子 早原千恵 井上賢二 久留米大学病院 比嘉幸枝 IJ

熊本大学病院 佐賀県立病院好生館 池田勝義 新開幸夫 吉田真紀 飯塚病院中央検査部 山内露子 11

福岡大学病院 山下孝明 守田政官 宫崎大学病院 生田幹博 IJ 山内 恵 琉球大学病院

光井 健 今里和義 IJ JCHO諫早総合病院

血清部門

委 員 長 橋口照人

解析委員 楢原真二 熊本保健科学大学 江頭弘一 久留米大学病院

坂本徳隆 福岡市民病院 宮内恵美 鹿児島大学病院

微生物部門

委 員 長 栁原克紀

長崎大学病院 解析委員 松田淳一 伊藤有紀 国立九州医療センター

> 森口美琴 川上洋子 国立熊本医療センター 熊本労災病院

上野民生 大分大学病院

第46回九州臨床検査精度管理研究会目 次

○緒言	3
○精度管理調査の概要	4
○調査項目一覧表	6
○各項目別解析	
〈免疫血清項目別解析〉	
イムノアッセイ	9
HBs抗原、HCV抗体、梅毒検査	30
輸血関連検査(不規則抗体)	3 6
〈生化学項目別解析〉	
目標値評価基準について	56
グルコース (GLU)	65
クレアチニン (CRTN)	78
尿酸 (UA)	89
尿素窒素(BUN)	100
総ビリルビン(T-BIL)	112
直接ビリルビン(D-BIL)	124
無機リン(I P)	
血清鉄(Fe)	140
カルシウム (Ca)	148
マグネシウム (Mg)	
ナトリウム (Na)	168
カリウム (K)	179
クロール (CL)	190
総蛋白(T P)	201
アルブミン (ALB)	211
総コレステロール (T-CHO)	221
HDL-コレステロール (HDL-C)	232
LDL-コレステロール(LDL-C)	246
中性脂肪(TG)	256
アルカリ性フォスファターゼ(ALP)	267
γーグルタミルトランスフェラーゼ(γーGT)	277
クレアチンキナーゼ (CK)	287
アスパラギン酸アミノトランスフェラーゼ (AST(GOT))	297
アラニンアミノトランスフェラーゼ (ALT(GPT))	307
アミラーゼ (AMY)	317
乳酸脱水素酵素(LD)	329
コリンエステラーゼ(CHE)	339
蛋白分画	348
CRP、免疫グロブリン、補体、リウマトイド因子(RF)	358

HbA1c	405
PT、APTT、Fib	411
尿検査	433
血算、白血球分類	441
統計データの見方	485
コード表(生化学)	486
結果データ 項目別統計表	495
(微生物項目別解析〉	
試料 2 5	519
試料 2 6	523
試料 2 7	529
試料28・29・30	534
微生物部門施設報告一覧	542
微生物部門教育講演	546
特別講演	548

平成29年度九州臨床検査精度管理研究会報告書の刊行にあたって

九州臨床検査精度管理研究会 会長 康 東天

平成 29 年度の精度管理の報告の解析結果をまとめた成果報告書を上梓することができました。本精度管理に参加していただいたすべての施設の関係者および解析に多くの時間と労力と注がれたすべての解析委員の方々にお礼を申し上げます。更にこの解析結果を踏まえた報告会を、平成 30 年 3 月 4 日 (日)に九州大学医学部百年講堂にて開催致します。数多くの関係者の参加をお待ちしております。

発送方法を変更したことが原因で試料が凍結するというトラブルが今年度もあり、多くの施設に大変ご迷惑をおかけしましたことをお詫び申し上げます。原因を解明し発送法のさらなる改善策を立て来年度にはこのような事象が起こらないよう細心の注意を払う所存です。

今年度も精度管理の解析にあたって、ドライケミストリーの評価法に関しては、ドライケミストリー測定値には別建ての評価を付加し、さらに新規に総合評価も別建てとしました。そのことにより、ドライケミストリーの方法論の違いを越えて、各検査施設内の測定そのものが一定の管理幅で精度よく行われているかを評価できるようにしています。こうした工夫によりドライケミストリーを採用している施設の施設評価もより適正に行えるようにしている外部精度管理は日本において九州臨床精度管理研究会のみです。このような取り組みは本外部精度管理が「研究会」であるからこそ出来ることであると考えています。今後も解析委員や施設の意見を踏まえてドライケミストリー評価の改善のみならず、新しい取り組みに努めていく所存です。

今後、参加施設数の増加や解析項目の拡大等を図り、さらに一層九州の臨床検査の精度 の向上に寄与していきたいと思っています、皆様のさらなるご協力をお願い申し上げます。

平成 30 年 1 月 26 日

第46回 精度管理調査の概要

I. 年間計画

平成29年	4月~	7月	生化学部門プール血清収集
	5月~	6月	各部門打ち合わせ各部門
	6月	1 目	参加募集事務局
	8月中	旬	日水製薬試料作製
	9月	5 目	事務局試料配布
		$6\sim1$ 6 \exists	試料測定参加施設
	1	6 目	回答締め切り
1	0月~	_	回答データ処理事務局
1	1月~	_	解析委員データ解析
1	2月		解析委員会生化学部門
平成30年	2月		発表会案内状発送事務局
	3月	4 目	研究発表会九州大学百年講堂

Ⅱ. 参加状況

県別	参加施設数
福岡県	217
佐賀県	7
長崎県	9
熊本県	4
大分県	4
宮崎県	4
鹿児島県	6
沖縄県	2
メーカー	2 1
計	274

施設別	参加施設数
大学病院	17
官公立病院	2 4
私立病院	174
医師会立検査センター	1 2
私立検査センター	2 6
メーカー	2 1
計	274

Ⅲ. 試料の作製

項目	試料数
生化学検査	3
CRP/免疫グロブリン/RF	3
ヘモグロビン	1
血算	2
HbA1c	2
尿	2
凝固検査	2
HB s 抗原/HC V抗体	2
梅毒	2
輸血/凝集判定	2
イムノアッセイ	2
微生物	5
計	2 8

試料1、2、3生化学検査用

- 1. 九州ロット L (福岡県臨床検査技師会提供)
- 2. 九州ロット M (福岡県臨床検査技師会提供)
- 3. 九州ロット H (福岡県臨床検査技師会提供)

試料6生化学検査用(蛋白分画用)

 γ - グロブリン分画異常プール血清を無菌分注した液状 品

試料8ヘモグロビン検査用

廃棄用保存血球の提供を福岡血液センターより受け調製 した。

試料9、10尿検査用

蓄尿より試料調整。

試料12、13、14 CRP/IgG/IgA/ C3/C4/RF

解析委員会で収集した血清をプールし、無菌分注した凍結品。

試料41、42 梅毒検査用(人プール血清)

試料43、44 HBs抗原/HCV抗体検査用 解析委員会で収集した血清より調製し、凍結乾燥した。

試料15~16イムノアッセイ検査用 解析委員会で収集した血清より調製し、凍結乾燥した。

試料21、22 輸血/凝集判定検査用 委員会で収集した血球より調整し、無菌分注した。

試料25、26、28、29、30 微生物検査用 菌株は解析委員会より提供されたものを調製し、凍結乾燥した。

試料27はフォトサーベイ資料

試料31、32凝固検査用 市販の管理血漿を使用した。

試料5、8HbA1c用

廃棄用保存MAP血球の提供を福岡血液センターより受け、調製した。

試料8、34血液算定用

廃棄用保存MAP血球の提供を福岡血液センターより受け、調製した。

◎調査項目一覧表(1)

									絀	半番号	1.				
調査項目	1	2	3	5	6	8	9	10	12	13	14	41	42	43	44
1:グルコース	*	*	*												
2:クレアチニン	*	*	*												
3:尿酸	*	*	*												
4:尿素窒素	*	*	*												
5:総ビリルビン	*	*	*												
6:直接ビリルビン	*	*	*												
7:無機リン	*	*	*												
8:鉄	*	*	*												
9:カルシウム	*	*	*												
10:マグネシウム	*	*	*												
11:ナトリウム	*	*	*												
12:カリウム	*	*	*												
13:クロール	*	*	*												
14:総蛋白	*	*	*												
15:アルブミン	*	*	*												
16:総コレステロール	*	*	*												
17:HDL-コレステロール	*	*	*												
18:LDL-コレステロール	*	*	*												
21:中性脂肪	*	*	*												
22:アルカリ性ホスファターセ・	*	*	*												
23: γ∕−GT	*	*	*												
24:AST(GOT)	*	*	*												
25:ALT(GPT)	*	*	*												
26:CK	*	*	*												
27:アミラーゼ	*	*	*												
28:LD	*	*	*												
30:コリンエステラーセ・	*	*	*												
31:蛋白分画	*				*										
32:HbA1c				*		*									
33:尿							*	*							
34:HBs抗原														*	*
35:HCV抗体														*	*
36:梅毒												*	*		
37:CRP									*	*	*				
38:IgG									*	*	*				
39:IgA									*	*	*				
40:IgM									*	*	*				
41:C3									*	*	*				
42:C4									*	*	*				
43:RF									*	*	*				

◎調査項目一覧表(2)

								料	番号					
調査項目	8	15	16	21	22	25	26	27	28	29	30	31	32	34
44:CEA		*	*											
46:AFP		*	*											
47CA19-9		*	*											
48:CA125		*	*											
49:PA		*	*											
50TSH		*	*											
51:FT3		*	*											
52:FT4		*	*											
53 インスリン		*	*											
54 <i>β</i> 2-Μ		*	*											
55:IgE		*	*											
56:フェリチン		*	*											
57:輸血				*	*									
58 分離同定						*	*	*						
59:感受性									*	*	*			
60PT												*	*	
61APTT												*	*	
62 フィブリノゲン												*	*	
63 血算	*													*

○各項目の測定試料は、*印の付いている番号の試料を測定して下さい。

[免疫血清項目]

項 目 別 解 析

イムノアッセイ

福岡市民病院 坂本 徳隆

本年度の調査も

腫瘍マーカー5項目

CEA

AFP

CA19-9

PSA

CA125

甲状腺関連3項目

TSH

FreeT3

FreeT4

ホルモン他として

インスリン

β 2-マイクログロブリン

IgE

フェリチンの4項目を調査対象とした.

調査試料は従来の凍結乾燥試料と 異なり、上記 12 項目共通の液状試料と した. これに伴い直接比較が困難と考 え項目毎の SD 等の経年比較は今年度 見送った.

解析は,報告された測定方法

1: FEIA 蛍光酵素免疫法

2:LAIA ラテックス比濁法

3: NIA 比ろう法

4:CLIA 化学発光免疫法

5: CLEIA 化学発光酵素免疫法

6: ECLIA 電気化学発光免疫法

7:LOCI 酵素誘導化学発光免疫法 1~7の分類及び分析機器コード,メー

カーコード, 試薬名等を参考に分類し

行った.

例年通り,各メーカーに参加いただき,メーカー報告値を目標値とし,生10%以内を"評価 S", $\pm 20\%$ 以内を"評価 A", $\pm 30\%$ 以内を"評価 B", $\pm 30\%$ 超過を"評価 C"とした。メーカーの報告値が無い分類に関しては,評価が出来ないため"評価ー"とした。また,項目毎のバイアスを表すために 3SD2 回除去後の平均値からの偏りを%で記載している。

1. 参加施設数

下表のとおり、12項目で101施 設、903項目の報告があった.

表 1 参加施設数推移

	項目	CEA	(CA19-	9 (CA12	5	FT3	1	ンスリ	ン	IgE	
年度			AFP		PSA		TSH		FT4		β MG	フェ	リチン
20	007	89	87	79	74		84	78	84	50	34	32	71
20	800	91	89	87	80		90	83	90	56	41	37	74
20	009	78	77	74	75		80	71	80	46	32	30	64
20	010	85	83	81	77		82	74	82	50	35	37	64
20	011	105	103	99	99		101	87	100	67	40	39	78
20	012	97	95	91	90	44	93	78	92	58	35	34	70
20	013	94	91	90	90	45	92	78	92	55	35	31	72
20	014	93	90	90	88	45	92	76	92	56	31	35	75
20	015	91	88	88	85	44	92	75	92	51	31	37	79
20	016	96	93	95	93	47	99	79	98	52	31	36	82
20	017	94	91	94	91	50	97	78	96	54	35	41	82

表 2 県別参加施設数 (前年比)

	大学 病院	公立 病院	一般 病院	検査所	試 薬 メーカー	合計
福岡県	7	10	39	8		64(-4)
佐賀県	1	1	3			5
長崎県	1	2	2	1		6
熊本県	1					1(-1)
大分県	2		2			4
宮崎県	1	1	1			3(-1)
鹿児島県	1	2		2		5(+1)
沖縄県	1					1(-1)
その他					12	12(-1)
計	15	16(+1)	47(-8)	11(+1)	12(-1)	101(-7)

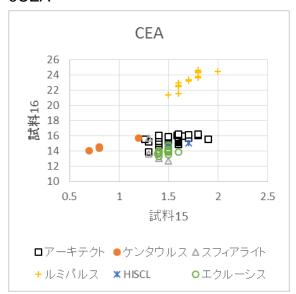
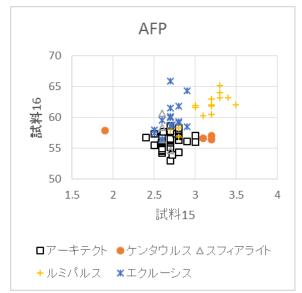

2. 使用されている方法

表 3 のとおり、FEIA は 19 件 2.1% LAIA は 82 件 9.1%、NIA は 1 件 0.1%、 CLIA は 384 件 42.6%、CLEIA は 211 件 23.4%、ECLIA は 199 件 22.1%、LOCI は 5 件 0.6%であった。昨年度と同様の傾 向と思われる。施設からの報告値に誤記入 と思われる値が有ったため、この表では総 数が 901 となっている。

表 3 採用方法

方法		メーカー・試薬	数	率
FEIA	19	東ソー	16	(1.8%)
	2.1%	イムノキャップ	3	(0.3%)
LAIA	82	栄研	11	(1.2%)
	9.1%	関東化学	1	(0.1%)
		極東	3	(0.3%)
		デンカ生研	32	(3.6%)
		LSI	3	(0.3%)
		和光	15	(1.7%)
		ニットーボー	16	(1.8%)
		BML	1	(0.1%)
NIA	1	シーメンス	1	(0.1%)
	0.1%			
CLIA	384	アーキテクト	337	(37.4%)
	42.6%	ケンタウルス	47	(5.2%)
CLEIA	211	シスメックス	26	(2.9%)
	23.4%	アクセス	2	(0.2%)
		イムライズ	4	(0.4%)
		ルミパルス	123	(13.7%)
		ビトロス	7	(0.8%)
		スフィアライト	36	(4.0%)
		アキュラシード	13	(1.4%)
ECLIA	199	エクルーシス	199	(22.1%)
	22.1%			
LOCI	5	フレックスC	5	(0.6%)
	0.6%			
計	901			

3CEA

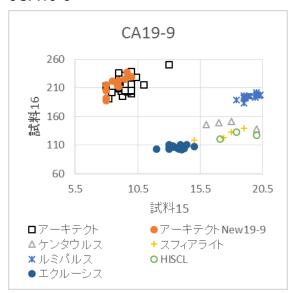

94 施設の回答を得た。ルミパルスがやや高値傾向であった。

CEA			試料1	5						
分類別達成度	S	А	В	С	-	S	Α	В	-	総計
HISCL	2					2				2
アーキテクト	30	11	1			39	3			42
アーキテクト アキュラシード エクルーシス ケンタウルス	1						1			1
エクルーシス	16	1				17				17
ケンタウルス	2			1		3				3
スフィアライト ルミパルス	3					3				3
ルミパルス	15	1				16				16
総計	69	13	1	1		80	4			84

CEA (ng/mL)	n		試料1	5	試料16					
n>2	n	平均	SD	CV(%)	平均	SD	CV(%)			
HISCL	3	1.57	0.115	7.4%	14.93	0.058	0.4%			
アーキテクト	43	1.55	0.130	8.4%	15.42	0.549	3.6%			
エクルーシス	18	1.45	0.062	4.2%	13.95	0.352	2.5%			
ケンタウルス	4	0.88	0.222	25.3%	14.65	0.733	5.0%			
スフィアライト	4	1.38	0.096	7.0%	13.23	0.450	3.4%			
ルミパルス	17	1.72	0.130	7.5%	23.35	1.017	4.4%			

低値試料のケンタウルスにて少しばらついているが、同一グループでは、概ね良好な評価結果と思われる。

4AFP

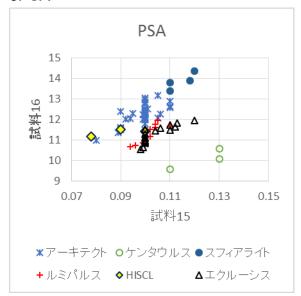

91 施設の回答を得た。ケンタウルスに一つ 異なる挙動を示した施設があった。

AFP			試料1	5			試	₽16		
分類別達成度	S	A	В	С	-	S	A	В	-	総計
HISCL	1					1				1
アーキテクト	39	4				43				43
アーキテクト アキュラシード エクルーシス ケンタウルス	1					1				1
エクルーシス	14					13	1			14
ケンタウルス	2			1		3				3
スフィアライト	3					3				3
ルミパルス	15	2				17				17
総計	75	6		1		81	1			82

AFP(ng/mL)			試料1	5	Ī	式料16	6		
n>2	n	平均	SD	CV(%)	平均	SD	CV(%)		
アーキテクト	44	2.71	0.12	4.5%	56.37	1.30	2.3%		
エクルーシス	15	2.71	0.12	4.5%	59.97	2.52	4.2%		
ケンタウルス	4	2.85	0.64	22.3%	56.98	0.67	1.2%		
スフィアライト	4	2.63	0.05	1.9%	57.53	2.62	4.6%		
ルミパルス	18	3.09	0.25	8.0%	61.09	2.33	3.8%		

概ね良好な評価結果と思われる。

5CA19-9

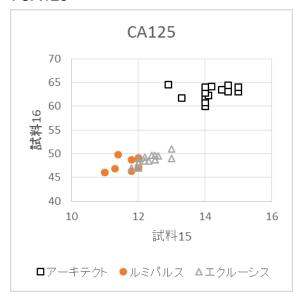

94 施設から回答を得た。例年どおり機種間差が大きな項目である。

CA19-9		i	试料1:	5						
分類別達成度	S	Α	В	С	-	S	Α	В	-	総計
HISCL	1	1				1	1			2
アーキテクト	26	4		1		25	6			31
アーキテクトNew19-9	7	4				8	3			11
アキュラシード エクルーシス ケンタウルス	1					1				1
エクルーシス	16	1				17				17
ケンタウルス	3					3				3
フファアラブト		2	1			1	2			3
ルミパルス	14					14				14
総計	68	12	1	1		70	12			82

CA19-9(U/mL)			試料1	5	試料16					
n>2	n	平均	SD	CV(%)	平均	SD	CV(%)			
HISCL	3	18.50	1.45	7.9%	126.93	6.30	5.0%			
アーキテクト	33	9.48	0.91	9.6%	218.50	14.06	6.4%			
アーキテクト New19-9	11	8.78	0.74	8.4%	214.79	15.15	7.1%			
エクルーシス	18	13.69	0.67	4.9%	105.94	2.76	2.6%			
ケンタウルス	4	17.75	1.71	9.6%	146.00	5.72	3.9%			
スフィアライト	4	17.35	1.70	9.8%	128.30	9.46	7.4%			
ルミパルス	15	19.46	0.57	2.9%	194.27	4.51	2.3%			

機種間差は小さくないが、同一機種では CV10%以内で有った。サーベイ期間中アーキテクトにて異なるタイプの試薬が流通していたが、さほど目立った差は無さそうであった。

6PSA

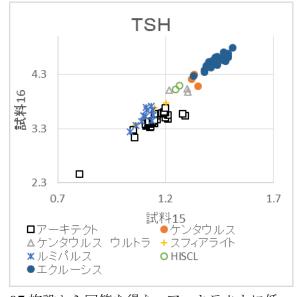

91 施設から回答を得た。ケンタウルスが少し離れた群として認められた。

PSA			1	试料1	5			試料	탁16		
分類別達成度	S		Α	В	С	-	S	А	В	-	総計
HISCL			1	1			2				2
アーキテクト	37	,	5			1	41	2			43
アキュラシード	1						1				1
アクセス エクルーシス ケンタウルス	1						1				1
エクルーシス	18	;					18				18
ケンタウルス	2						2				2
スフィアライト	3						3				3
ルミパルス	10)					10				10
総計	72		6	1		1	78	2			80

PSA(ng/mL)	_		試料15	j	試料16					
n>2	n	平均	SD	CV(%)	平均	SD	CV(%)			
HISCL	3	0.089	0.011	12.3%	11.365	0.178	1.6%			
アーキテクト	44	0.099	0.006	5.9%	12.144	0.545	4.5%			
エクルーシス	19	0.104	0.006	6.0%	11.269	0.402	3.6%			
ケンタウルス	3	0.123	0.012	9.4%	10.063	0.500	5.0%			
スフィアライト	4	0.115	0.005	4.6%	13.860	0.394	2.8%			
ルミパルス	11	0.101	0.004	4.3%	11.333	0.432	3.8%			

今年度、低値試料が 0.1ng/mL 程度であったため、低値の試料に対して、必要以上に厳しい評価になってしまった可能性が考えられた、有効数字などと考え合わせながら、今後の課題としたい。

7CA125

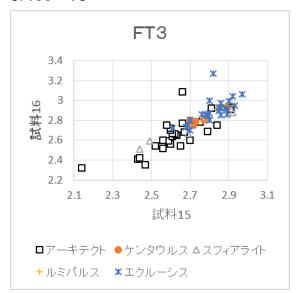

50 施設から回答を得た。従来と同じように アーキテクトと他のような分布となってい る。

CA125		試料15						試料16				
分類別達成度	S	А	В	С	-	S	А	В	-	総計		
アーキテクト エクルーシス ケンタウルス	8	9				17				17		
エクルーシス	15					15				15		
ケンタウルス	1					1				1		
スフィアライト	1					1				1		
ルミパルス	8					8				8		
総計	33	9				42				42		

CA125(U/mL) n			試料1	5	試料16				
n>2	"	平均	SD	CV(%)	平均	SD	CV(%)		
アーキテクト									
エクルーシス									
ルミパルス	9	11.59	0.42	3.6%	47.42	1.42	3.0%		

同一機種内での CV は5%以下で良好な収束と思われる。

8TSH

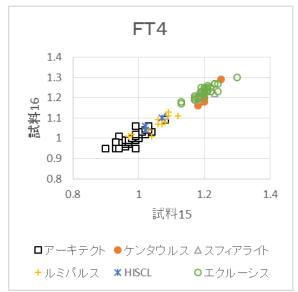

97 施設から回答を得た。アーキテクトに低値傾向を示した施設が有った。

TSH			試料1	5			試	탁16		
分類別達成度	S	А	В	С	-	S	А	В	-	総計
E-テスト		1					1			1
HISCL	1			1		2				2
アーキテクト エクルーシス	33	2	1			35		1		36
エクルーシス	29					29				29
ケンタウルス	2	1				3				3
ケンタウルス ウルトラ	2					2				2
スフィアライト	2	1				2	1			3
ルミパルス	10					10				10
総計	79	5	1	1		83	2	1		86

TSH(uU/mL)	n		試料15			試料1	6
n>2	"	平均	SD	CV(%)	平均	SD	CV(%)
HISCL	3	2.127	1.509	70.9%	4.09	0.06	1.6%
アーキテクト	37	1.149	0.078	6.7%	3.44	0.20	5.8%
エクルーシス	30	1.434	0.042	2.9%	4.54	0.11	2.5%
ケンタウルス	4	1.334	0.012	0.9%	4.22	0.10	2.4%
ケンタウルス ウルトラ	3	1.274	0.049	3.9%	4.01	0.03	0.7%
スフィアライト	4	1.127	0.063	5.6%	3.57	0.19	5.2%
ルミパルス	11	1.106	0.034	3.0%	3.53	0.15	4.2%

HISCL にグラフに示せないほど、低値側が 高い報告が有った。

9Free T3

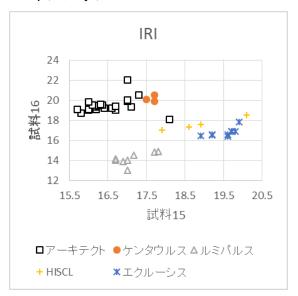

78 施設から回答を得た。

FT3			試料1	5			試	斗16		
分類別達成度	S	А	В	С	-	S	А	В	-	総計
E-テスト	1					1				1
HISCL	1					1				1
アーキテクト エクルーシス ケンタウルス	22	3	1			22	4			26
エクルーシス	26					25	1			26
ケンタウルス	5					5				5
スフィアライト	2	1				2	1			3
スフィアライト ルミパルス	6					6				6
総計	63	4	1			62	6			68

FT3(pg/mL)	n		試料15	i	試料16				
n>2	"	平均	SD	CV(%)	平均	SD	CV(%)		
アーキテクト	27	2.615	0.150	5.7%	2.648	0.176	6.6%		
エクルーシス	27	2.814	0.085	3.0%	2.890	0.120	4.2%		
ケンタウルス	6	2.757	0.069	2.5%	2.812	0.061	2.2%		
スフィアライト	4	2.635	0.219	8.3%	2.663	0.159	6.0%		
ルミパルス	7	2.824	0.079	2.8%	2.877	0.078	2.7%		

数施設離れた報告値が認められるが、概ね 良好な分布と思われる。

10Free T4

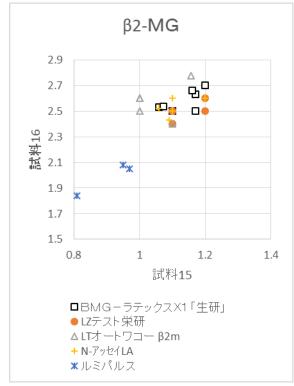

96 施設から報告を得た。試料間の濃度差が小さい為か、比較的まとまった分布となっている。

FT4			試料1	5						
分類別達成度	S	Α	В	С	-	S	А	В	-	総計
E-テスト		1					1			1
HISCL	2					2				2
アーキテクト エクルーシス ケンタウルス	35	1				36				36
エクルーシス	29					29				29
ケンタウルス	5					5				5
スフィアライト	3					3				3
ルミパルス	10					10				10
総計	84	2				85	1			86

FT4(ng/dL)	n		試料15	5		試料16	i
n>2	"	平均	SD	CV(%)	平均	SD	CV(%)
HISCL	3	1.037	0.029	2.8%	1.067	0.031	2.9%
アーキテクト	37	0.984	0.035	3.6%	0.999	0.036	3.6%
エクルーシス	30	1.199	0.033	2.7%	1.228	0.030	2.5%
ケンタウルス	6	1.202	0.025	2.1%	1.198	0.047	3.9%
スフィアライト	4	1.168	0.063	5.4%	1.185	0.052	4.4%
ルミパルス	11	1.054	0.046	4.4%	1.067	0.042	4.0%

全ての評価結果が "評価 S"、"評価 A" となり良好な結果が得られたと思われる。

11 インスリン

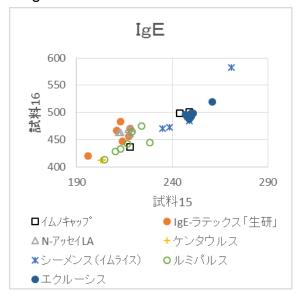

54 施設から報告を得た。

IRI			試料1	5						
分類別達成度	S	A	В	С	-		A	В	-	総計
E-テスト	1					S				1
HISCL	2	1				1				3
アーキテクト エクルーシス ケンタウルス	20	1					1			21
エクルーシス	8									8
ケンタウルス	2					8				2
スフィアライト ルミパルス	1									1
ルミパルス	8					1				8
総計	42	2				8	1			44

IRI (uU/mL)	n		試料15	0		試料16	5
n>2		平均	SD	CV(%)	平均	SD	CV(%)
HISCL	4	18.88	0.92	4.9%	17.60	0.65	3.7%
アーキテクト	22	16.52	0.57	3.4%	19.46	0.74	3.8%
エクルーシス	9	19.51	0.33	1.7%	16.79	0.43	2.6%
ケンタウルス	3	17.63	0.12	0.7%	20.17	0.31	1.5%
ルミパルス	9	17.07	0.42	2.4%	14.14	0.56	4.0%

ツインプロットで見るとまとまりが良くないが、評価結果は全てが"評価 S"、"評価 A" で機種間差由来の分布と思われる。

12 β 2-MG

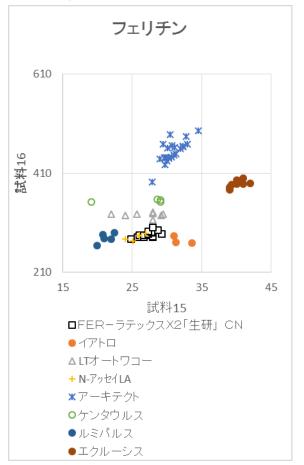

イムノアッセイでは最も少ないが 35 施設 の報告を得た。

B2MG		試料15 試料16								
分類別達成度	S	А	В	С	-	S	А	В	-	総計
BMG-ラテックスX1「生研」	8					8				8
LTオートワコー β2m	3	1				4				4
LZテスト栄研	7					7				7
N-Pyt/LA	5					5				5
ルミパルス		2					2			2
総計	23	3				24	2			26

β-2MG (mg/dL)	n		試料15		試料16				
n>2	"	平均	SD	CV(%)	平均	SD	CV(%)		
BMG-ラテックスX1「生研」	10	1.123	0.047	4.2%	2.555	0.077	3.0%		
LTオートワコー β2m	5	1.051	0.073	6.9%	2.575	0.139	5.4%		
LZテスト栄研	8	1.125	0.046	4.1%	2.475	0.071	2.9%		
N-P#t1LA	6	1.108	0.048	4.3%	2.525	0.066	2.6%		
ルミパルス	3	0.910	0.087	9.6%	1.990	0.131	6.6%		

全ての評価結果が "評価 S"、"評価 A" となり良好な結果が得られたと思われる。

13lgE


41 施設から報告を得た。例年通り幅広い分布となっている。

IgE		試料15 試料16								
分類別達成度	S	А	В	С	-	S	А	В	-	総計
IgE-ラテックス「生研」	5					4	1			5
LTオートワコー	1					1				1
N-アッセイLA	4					4				4
イムノキャップ					3				3	3
エクルーシス	6					6				6
ケンタウルス	2					2				2
シーメンス(イムライス)	2	1				2		1		3
ルミパルス	6					5	1			6
誤入力					1				1	1
総計	26	1			4	24	2	1	4	31

IgE(U/mL)	_		試料15			試料16		
n>2	n	平均	SD	CV(%)	平均	SD	CV(%)	
IgE-ラテックス「生研」	6	211.53	8.10	3.8%	457.33	22.06	4.8%	
N-アッセイLA	5	215.80	3.11	1.4%	465.54	3.72	0.8%	
イムノキャッフ°	3	237.00	16.64	7.0%	478.67	36.12	7.5%	
エクルーシス	7	250.83	4.69	1.9%	497.69	10.07	2.0%	
ケンタウルス	3	203.33	0.64	0.3%	412.60	0.50	0.1%	
シーメンス(イムライス)	4	248.38	16.21	6.5%	502.50	54.00	10.7%	
ルミパルス	7	216.51	8.12	3.7%	442.87	21.42	4.8%	

イムノキャップは、例年通りメーカーの参加がなかったため目標値未設定で評価できていない。

14 フェリチン

82 施設から報告を得た。

フェリチン			試料1:	5			試料	¥16		
分類別達成度	S	А	В	С	-	S	А	В	-	総計
FER-ラテックスX2「生研」 CN	12	1				13				13
HISCL	1					1				1
LTオートワコー	1	1	3	2		7				7
LZテスト栄研		1				1				1
N-Pyt/LA	4					4				4
アーキテクト	19	1				19	1			20
イアトロ					3				3	3
エクルーシス	9					9				9
ケンタウルス	2			1		3				3
スフィアライト	1					1				1
ランピア ラテックス		1				1				1
ルミパルス	4					4				4
総計	53	5	3	3	3	63	1		18	67

フェリチン(ng/mL)	_		試料1	5	l	試料16	
n>2	n	平均	SD	CV(%)	平均	SD	CV(%)
FER-ラテックスX2「生研」 CN	15	27.29	1.17	4.3%	286.35	6.26	2.2%
LTオートワコー	8	26.79	2.64	9.9%	325.68	4.50	1.4%
N-Pyt1LA	5	25.62	1.13	4.4%	280.82	6.18	2.2%
アーキテクト	21	30.84	1.54	5.0%	453.78	23.03	5.1%
イアトロ	3	31.97	1.42	4.4%	273.87	7.93	2.9%
エクルーシス	10	40.12	1.05	2.6%	387.95	7.98	2.1%
ケンタウルス	4	26.48	4.92	18.6%	354.20	2.34	0.7%
ルミパルス	5	21.24	0.96	4.5%	278.86	9.51	3.4%

生化学の汎用機を用いた LAIA 法が少なくない項目である。

LSI がメーカーとして参加がなかったため、 イアトロの評価が出来ていない、今後の参 加を働きかけたい。

LAIA 法を用いている施設はサーベイの報告時に、分析器のメーカー名ではなく、試薬の製造販売元の記載を促すようなアナウンスが必要と感じた。

15 おわりに

例年通りメーカー報告値を目標値とする評価を行った。 $\pm 20\%$ までは"評価 S"、"評価 A" としているが、やや緩い評価基準かもしれない、しかし試料の濃度によってはこれでも厳しく感じる場合もあると思われる。試料作製時の濃度調整も含めて今後の課題としたい。

調査結果の報告を Excel のファイルで行っているが、小数点以下の桁数の問題や誤記入の場合の対応法など、解決や啓発の必要な問題点も把握に努めたい。

AFP			測	官 値	評	価	バイ	アス	基準範	囲(男)	基準範	i囲(女)
施設CD	原理CD	分類	試料15	試料16	試料15	試料16	試料15%	試料16%	下限	上限	下限	上限
9029	1	E-テスト	2.8	56.2	-	-	0.3%	-3.1%		≦10		≦10
1094	4	アーキテクト	2.7	53.0	S	S	-3.3%	-8.6%	0.0	10.0		
1331	4	アーキテクト	2.72	53.96	S	S	-2.6%	-7.0%	0.00	10.00	0.00	10.00
1073 1038	4	アーキテクト アーキテクト	2.6 2.8	54.2 54.3	S S	S S	-6.9% 0.3%	-6.6% -6.4%	0 0.0	20 10.0	U	20
1382	4	アーキテクト	2.6	54.5	S	S	-6.9%	-6.1%	0.0	13.4		13.4
1031	4	アーキテクト	2.6	54.6	S	S	-6.9%	-5.9%	0	13.4		13.4
6008	4	アーキテクト	2.6	54.7	S	S	-6.9%	-5.7%	0.89	8.78		
1102	4	アーキテクト	2.6	55.0	S	S	-6.9%	-5.2%	0.4	10.0		
1310	4	アーキテクト	2.70	55.18	S	S	-3.3%	-4.9%	0.00	10.00	0.00	10.00
1315	4	アーキテクト	2.5	55.5	S	S	-10.5%	-4.3%		10.0		10.0
7007	4	アーキテクト	2.6	55.8	S	S	-6.9%	-3.8%	0	10	0	10
1101	4	アーキテクト	2.59	55.88	S	S	-7.2%	-3.7%		13.4		13.4
2002	4	アーキテクト	2.7	55.9	S	S	-3.3%	-3.6%	0	10		
1302	4	アーキテクト	3	56	Α	S	7.4%	-3.5%		10		10
1072	4	アーキテクト	2.9	56.1	Α	S	3.9%	-3.3%	0	9.9	0	9.9
1325	4	アーキテクト	2.6	56.1	S	S	-6.9%	-3.3%	_	10.0	_	10.0
1337	4	アーキテクト	2.7	56.2	S	S	-3.3%	-3.1%	0	13.4	0	13.4
1532	4	アーキテクト	2.6	56.2	S	S	-6.9%	-3.1%	0.0	20.0	0.0	20.0
7901	4	アーキテクト	2.7	56.2	S	S	-3.3%	-3.1%	10.0	10	10.0	
1002	4	アーキテクト	2.8	56.3	S	S	0.3%	-3.0%	0	10		
7011	4	アーキテクト アーキテクト	2.7 2.7	56.3 56.4	S S	S S	-3.3% -3.3%	-3.0% -2.8%	0.0 0	13.4 10		
1120 1529	4	アーキテクト	2.70	56.40	S	S	-3.3%	-2.8%	0.00	15.00	0.00	15.00
3056	4	アーキテクト	2.70	56.5	S	S	-3.3%	-2.6%	0.00	10.00	0.00	10
2006	4	アーキテクト	2.7	56.5	S	S	-3.3%	-2.6%	U	10.0	U	10
1035	4	アーキテクト	2.4	56.7	S	S	-14.0%	-2.3%		20		
1301	4	アーキテクト	2.6	56.9	S	S	-6.9%	-1.9%		10		
1352	4	アーキテクト	2.8	56.9	S	S	0.3%	-1.9%	0	13.3	0	13.3
1040	4	アーキテクト	3	57	A	S	7.4%	-1.7%	0	10	0	10
1329	4	アーキテクト	2.8	57.2	S	S	0.3%	-1.4%	0.9	8.8	0.9	8.8
1348	4	アーキテクト	2.8	57.3	S	S	0.3%	-1.2%	0.0	13.3		
1390	4	アーキテクト	2.5	57.4	S	S	-10.5%	-1.1%		13.4		13.4
5006	4	アーキテクト	2.77	57.4	S	S	-0.8%	-1.1%	0	<13.4	0	<13.4
1368	4	アーキテクト	2.8	57.5	S	S	0.3%	-0.9%	0	13.4	0	13.4
9027	4	アーキテクト	2.61	57.66	-	-	-6.5%	-0.6%				
1010	4	アーキテクト	2.7	57.8	S	S	-3.3%	-0.4%	0.0	10.0	0.0	10.0
1316	4	アーキテクト	2.8	57.8	S	S	0.3%	-0.4%	0.0	13.4	0.0	13.4
1403	4	アーキテクト	2.8	57.8	S	S	0.3%	-0.4%		13.4		13.4
1054	4	アーキテクト	2.8	57.9	S S	S S	0.3%	-0.2%	0.0	13.4	0.0	8.8
1004 1902	4	アーキテクト アーキテクト	2.8 2.8	58.0 58.0	S	S	0.3% 0.3%	0.0% 0.0%	0.0 0	8.8 10.0	0.0	8.8
1359	4	アーキテクト	2.8	58.3	S	S	0.3%	0.5%	U	13.4		13.4
1358	4	アーキテクト	2.7	58.6	S	S	-3.3%	1.0%		10		13.4
1015	4	アーキテクト	3	57	A	S	7.4%	-1.7%		20		
9050	4	ケンタウルス	3.2	56.4	-	-	14.6%	-2.8%		20		
3907	4	ケンタウルス	3.1	56.6	S	S	11.0%	-2.4%		8		
1911	4	ケンタウルス	3.2	57.0	S	S	14.6%	-1.7%	なし	10.0	なし	10.0
1305	4	ケンタウルス	1.9	57.9	С	S	-32.0%	-0.2%		10		10
1402	5	スフィアライト	2.7	54.6	S	S	-3.3%	-5.9%		≦10.0		
1013	5	スフィアライト	2.6	56.4	S	S	-6.9%	-2.8%		10.0		
1012	5	スフィアライト	2.6	58.4	S	S	-6.9%	0.7%		10.0		10.0
9023SL	5	スフィアライト	2.6	60.7	-	-	-6.9%	4.6%		10		10
1360	5	アキュラシード	2	57	S	S	-28.4%	-1.7%		10		10
9023AS	5	アキュラシード	2.2	59.3	-	-	-21.2%	2.2%				
1903	5	ルミパルス	2.8	56.8	S	S	0.3%	-2.1%		10.0		
1313	5	ルミパルス	2.7	58.0	A	S	-3.3%	0.0%	0.0	10.0	0.0	10.0
1300	5	ルミパルス	2.7	58.3	A	S	-3.3%	0.5%	0	10.0	0	10.0
1501	5 5	ルミバルス	2.8	58.3	S	S	0.3%	0.5%	0	10	0	10
1001 1514	5	ルミパルス ルミパルス	2.8 3.1	58.7 60.3	S S	S S	0.3% 11.0%	1.2% 3.9%		10.0 10		10
1058	5	ルミパルス	3.1	60.5	S	S	14.6%	4.3%	0.0	10.0	0.0	10.0
1512	5	ルミパルス	3.2	60.5	S	S	14.6%	4.3%	0.0	10.0	0.0	10.0
1901	5	ルミパルス	3.0	61.6	S	S	7.4%	6.2%	0.0	10.0	0.0	10.0
9037	5	ルミパルス	3.2	61.8	-	-	14.6%	6.5%				1
8004	5	ルミパルス	3.0	62.0	S	S	7.4%	6.9%	0	9		
6015	5	ルミパルス	3.2	62.1	S	S	14.6%	7.0%	0.0	10.0		
1356	5	ルミパルス	3.5	62.1	S	S	25.3%	7.0%	0	10	0	10
1519	5	ルミパルス	3.2	63.0	S	S	14.6%	8.6%		10.0		1
1024	5	ルミパルス	3.3	63.2	S	S	18.2%	8.9%	0	10.0	0	10.0
3055	5	ルミパルス	3.4	63.2	S	S	21.8%	8.9%	0	7.0	0	7.0
5005	5	ルミパルス	3.3	64.0	S	S	18.2%	10.3%	0.0	10.0	_	
5010	5	ルミパルス	3.3	65.2	S	S	18.2%	12.4%	0	10	0	10
9040	5	ビトロス	2.5	49.9	-	-	-10.5%	-14.0%		7.5		1
1541	5 5	HISCL	2.8	58.8	S	S -	0.3%	1.4%		10.0		1
9049 3022	6	HISCL エクルーミィフ	2.5 2.6	60.0 56.4	- S	S	-10.5% -6.9%	3.4% -2.8%		7.0		7.0
7001	6	エクルーシス エクルーシス	2.5	56.4 57.5	S	S	-0.9%	-2.8% -0.9%		7.0		7.0
1404	6	エクルーシス	2.5	58.0	S	S	-10.5%	0.0%		10.0以下		10.0以下
6016	6	エクルーシス	2.9	58.5	S	S	3.9%	0.0%	0	10.0以下	0	10.05
3048	6	エクルーシス	2.7	58.6	S	S	-3.3%	1.0%		7.0	_	7.0
9043-2	6	エクルーシス	2.72	58.8	-	-	-2.6%	1.4%				,
4002	6	エクルーシス	2.8	59.1	S	S	0.3%	1.9%		7.0		7.0
1506	6	エクルーシス	2.8	59.3	S	S	0.3%	2.2%		7		7
1505	6	エクルーシス	2.6	59.6	S	S	-6.9%	2.7%		7.0		
7002	6	エクルーシス	2.7	60.0	S	S	-3.3%	3.4%		6.9		1
2008	6	エクルーシス	2.7	60.2	S	S	-3.3%	3.8%		7.0		7.0
3001	6	エクルーシス	2.7	61.5	S	S	-3.3%	6.0%	0	10	0	10
1343	6	エクルーシス	2.8	61.8	S	S	0.3%	6.5%		6		
1006	6 6	エクルーシス	2.9	64.3	S	S	3.9%	10.8%	_	7.0	_	
1411		エクルーシス	2.7	65.9	S	Α	-3.3%	13.6%	0	7.0	0	7.0

 エクルーシス
 2.7
 65.9

 平均
 2.77
 58.01

 SD
 0.27
 2.79

 CV
 9.6%
 4.8%

 3SD2回除去後平均
 2.79
 58.02

 SD
 0.24
 2.80

 CV
 8.6%
 4.8%

B2MG			測気	它 値	評	価	バイ	アス	基準範	囲(男)	基準範	囲(女)
施設CD	原理CD	分類	試料15	試料16	試料15	試料16	試料15%	試料16%	下限	上限	下限	上限
9029	1	E-テスト	1.10	2.27	-	-	-0.2%	-9.7%	0.85	1.62	0.85	1.62
2008	2	BMG-ラテックスX1「生研」	1.1	2.5	S	S	-0.2%	-0.6%	0.0	2.2	0.0	2.2
1010	2	BMG-ラテックスX1「生研」	1.1	2.5	S	S	-0.2%	-0.6%	0.9	1.9	0.9	1.9
7001	2	BMG-ラテックスX1「生研」	1.1	2.5	S	S	-0.2%	-0.6%	0.5	2.0	0.5	2.0
9012	2	BMG-ラテックスX1「生研」	1.1	2.5	-	-	-0.2%	-0.6%		2		2
4002	2	BMG-ラテックスX1「生研」	1.17	2.5	S	S	6.2%	-0.6%	0.85	1.65		
7011	2	BMG-ラテックスX1「生研」	1.06	2.53	S	S	-3.8%	0.6%	0.8	1.8		
9043	2	BMG-ラテックスX1「生研」	1.07333	2.53333	-	-	-2.6%	0.8%				
1300	2	BMG-ラテックスX1「生研」	1.17	2.63	S	S	6.2%	4.6%	0	2.0	0	2.0
3001	2	BMG-ラテックスX1「生研」	1.16	2.66	S	S	5.3%	5.8%	0	2.4	0	2.4
3055	2	BMG-ラテックスX1「生研」	1.2	2.7	S	S	8.9%	7.4%	1	2		
1902	2	LZテスト栄研	1.1	2.4	S	S	-0.2%	-4.5%	0.9	1.9		
7901	2	LZテスト栄研	1.1	2.4	S	S	-0.2%	-4.5%	0.9	2.0	0.9	2.0
9046	2	LZテスト栄研	1.1	2.4	-	-	-0.2%	-4.5%	0.9	2.0	0.9	2.0
1094	2	LZテスト栄研	1.2	2.5	S	S	8.9%	-0.6%	0.0	2.0		
1901	2	LZテスト栄研	1.1	2.5	S	S	-0.2%	-0.6%	0.9	1.9	0.9	1.9
1903	2	LZテスト栄研	1.1	2.5	S	S	-0.2%	-0.6%	1.0	1.9		
3056	2	LZテスト栄研	1.1	2.5	S	S	-0.2%	-0.6%	0.9	1.9	0.9	1.9
2006	2	LZテスト栄研	1.2	2.6	S	S	8.9%	3.4%	1.0	1.9		
1352	2	LTオートワコー β2m	1.1	2.4	S	S	-0.2%	-4.5%	0.00	2.0	0.00	2.0
1368	2	LTオートワコー β2m	1	2.5	S	S	-9.3%	-0.6%	0.8	1.8	0.8	1.8
1505	2	LTオートワコー β2m	1	2.6	S	S	-9.3%	3.4%		2.0		
9023AA	2	LTオートワコー β2m	1.0	2.6	-	-	-9.3%	3.4%				
1355	2	LTオートワコー β2m	1.156	2.775	Α	S	4.9%	10.4%	0.85	1.62	0.85	1.62
9014	2	N-アッセイLA	1.09	2.43	-	-	-1.1%	-3.3%				
1329	2	N-Pyt1LA	1.1	2.5	S	S	-0.2%	-0.6%	0.5	2.0	0.5	2.0
1004	2	N-Pyt1LA	1.1	2.5	S	S	-0.2%	-0.6%	0	2.0	0	2.0
8004	2	N-アッセイLA	1.06	2.52	S	S	-3.8%	0.2%	0.00	2.00		
3048	2	N-アッセイLA	1.1	2.6	S	S	-0.2%	3.4%		2.0		2.0
1006	2	N-Pyt1LA	1.2	2.6	S	S	8.9%	3.4%		0.3		
9033	2	ランピア ラテックス	1.2	2.7	-	-	8.9%	7.4%		2.0		2.0
9023SL	5	スフィアライト	1.11	2.53	-	-	0.7%	0.6%	0.8	2.4	0.8	2.4
9037	5	ルミパルス	0.81	1.84	-	-	-26.5%	-26.8%				
3022	5	ルミパルス	0.97	2.05	Α	Α	-12.0%	-18.5%	0.68	1.65	0.68	1.65
7002	5	ルミパルス	0.95	2.08	Α	Α	-13.8%	-17.3%	0.68	1.65		

アンプリンス 0.95 2.08 平均 1.094 2.481 SD 0.081 0.183 CV 7.4% 7.4% 3SD2回除去後平均 1.102 2.514 SD 0.065 0.127 CV 5.9% 5.1%

1002 1	CA19-9	原理CD	/\#\\	測 3 試料15	定 値	評 試料15	価	バイ 試料15%	アス		囲(男)	基準範	囲(女)
1101						- 10	P八个子10 -			1, 100		1, 197	
1352 1						Α	Α						37.0
1310 4	1031	4	アーキテクト	9.3	195.9	S	Α	-29.5%	10.2%	0	37		
1532 4	1352	4	アーキテクト	10	200	S	Α	-24.2%	12.5%	0	36.9	0	36.9
1348 4	1310	4	アーキテクト	8.42	202.48	S	Α	-36.2%	13.9%	0.00	37.00	0.00	37.00
	1532	4	アーキテクト	9.7	203	S	Α	-26.5%	14.2%	0.0	37.0	0.0	37.0
		4											
1905 4 P - + P - P 9 9 20 5 5 28.0% 15.9% 0.0 37.0 0.0 37.0 1001 1003 4 P - + P - P 9 210 5 5 31.5% 17.0% 37.0 0.0 37.0 1003 37.0 1003 37.0 3	7CA19-9	4	アーキテクト	9.19	204.22		-	-30.3%					
1005 4	1368	4	アーキテクト	10	205	S	S	-24.2%	15.3%	0	37	0	37
1005	1050	4	アーキテクト	9.5	205.4	S	S	-28.0%	15.5%	0.0	37.0	0.0	37.0
1004	1054	4	アーキテクト	9	209	S	S	-31.8%	17.6%		37		
1338 4 P P P P 10 216 S S -16,06 20.9% 37 10 21 1332 4 P P P 10 216 S S -24,2% 21,3% 23,3% 0 37 0 37 1332 4 P P P P 13 21 21 21 21 21 21 21	1035	4	アーキテクト	9	211	S	S	-31.8%	18.7%		37		
6008 4 アーキアクト 9 219 S S 24-2% 21-5% 37 2002 4 アーキアクト 9 219 S S 31.8% 23.2% 0 37 0 37 130 130 4 アーキアクト 9 221 S S 5 31.8% 23.2% 0 37 0 37 130 130 4 アーキアクト 9 222 S S 5 31.8% 24.3% 0 37 0 37 130 130 4 アーキアクト 9 222 S S 5 31.8% 24.9% 0 37 0	1004	4	アーキテクト	8	213	Α	S	-39.4%	19.8%	0	37	0	37
1337 4 アーキアクト 9 219 S S 31.8% 23.2% 0 37 0 37	1358	4	アーキテクト	11	215	Α			20.9%		37		
2002 4	6008	4	アーキテクト	10	216	S		-24.2%	21.5%		37		
1315	1337	4	アーキテクト		219			-31.8%	23.2%	0	37	0	37
1102	2002		アーキテクト		219				23.2%	0			
3300 4 アーキアクト 9 222 S S 31,8% 24.9% 37.0 37	1315								23.4%		37.0		37.0
7901 4 アーキアクト 9 224 5 5 31.8% 24.9% 37.0 37.0 1100 4 アーキアクト 9 224 5 5 31.8% 26.0% 0 37 1100 4 アーキアクト 9 224 5 5 31.8% 26.0% 0 37 1100 4 アーキアクト 9 235 23 5 5 31.8% 26.0% 0 37 1100 120										0			
1094 4 アーキアクト 9 224 5 5 3-13.8% 26.0% 0 37 19027 4 アーキアクト 9 35 227.64 5 5 3-13.8% 26.0% 0 37 19027 4 アーキアクト 9 35 227.64 5 5 3-13.8% 26.0% 0 37 19028 19028 4 アーキアクト 9 33 227.64 5 5 3-13.8% 26.0% 37.0											37.0		37.0
1120 4 アーキアクト 93 225 5 5 31.8% 26.6% 0 37 1301 4 アーキアクト 93 227.64 5 - 25.1% 28.0% 37.0 0.0 37.1 1313 4 アーキアクト 10.4 28.2% 5 - 31.8% 28.2% 37.0 0.0 37.0 0.0 37.1 1325 4 アーキアクト 10.4 28.2% 5 - 31.8% 28.2% 0.0 37.0 0.0 37.1 1325 4 アーキアクト 10.4 28.2% 5 - 23.2% 31.0% 0.0 37.0 0.0									24.9%			37.0	
9927 4 アーキアト 9.35 227.64 1.0.4 228.9 3.7 3.7.0 3													
1301 4 アーキアクト 9 228 5 5 31.8% 28.7% 37.0 37.1 1329 4 アーキアクト 10.4 228.9 A 5 -21.2% 28.7% 37.0 37.0 37.1 1329 4 アーキアクト 10.0 234.8 5 5 -24.2% 31.0% 0 37.0 0 37.1 1302 4 7 -4 + アクト 10.0 234.8 5 5 -24.2% 31.0% 0 37.0 0 37.1 1302 4 7 -4 + アクト 10.0 234.8 5 5 -24.2% 33.10% 0 37.0 0 37.1 1002 4 7 -4 + アクト 10.0 237.8 5 5 -24.2% 33.10% 0 37.0 0 37.1 1002 4 7 -4 + アクト 13 250 C 5 -1.5% 40.6% 37.7 1002 4 7 -4 + アクト 9 218 5 5 -31.8% 22.6% 37.7 0 37.0 1015 4 7 -4 + アクト 9 218 5 5 -31.8% 22.6% 37.7 0 37.0 1015 4 7 -4 + アクト 9 218 5 5 -31.8% 22.6% 37.7 0 37.0 1011 4 7 -4 + アクト 9 218 5 5 -31.8% 22.6% 37.0 0 37.0 0 37.0 1011 4 7 -4 + アクト 9 218 5 5 -31.8% 22.6% 0 37.0 0 37.0 1011 4 7 -4 + アクト 9 218 5 5 -31.8% 22.6% 0 37.0 0 3						S	S			0	37		
1325		I									1		
1329													
1902 4													37.0
1302 4												0.0	37.0
1316 4										0			
2006 4		I						-					37.0
1002 4										0		0	37
1559 4 アーキアト 13 250 C S 1.5% 40.6% 37 7 7 7 7 7 7 7 7													
1015 4										0			
5006 4 アーキアクトNew19-9 8.0 188 A S -39.4% 5.7% 0 5.37 0 5.70		I											37
7011 4													
1073 4 アーキアクトNew19-9 8 205 A S -39.4% 15.3% O 37 O 37 107 O 37 O O O O O O O O O												0	≦37
1010													
1072		I								-		-	-
3056													
1403 4										0		0	37.0
1382													<37
7007 4													
1529										•			
1331 4													
1305 4										-		-	
1911		I								0.00		0.00	
3907 4 かシゲリルス 17 149 S 28.9% 16.2% 37 9050 4 かシゲリルス 18 151 -										451		451	
9050 4 からが見した 18 151 - 213% - 20.7% 36.4% 1.51%										なし		なし	37.0
9950-2		I									3/		
9023SL 5													
1402 5											27		27
1012 5													3/
1013													27
1360 5													3/
9023AS 5													27
1519 5											37		3/
1514 5											27.0		
1058 5													27
SO10 5	-									0.0		0.0	
1903 5												_	
1512 5										J		J	5/
3055 5										n		n	37.0
9037 5													37.0
1001 5										J	37.0	Ŭ	37.0
SOOS 5											37.0		
1501 5										0.0			
8004 5												0	37
1313 5													
1356 5												0.0	37.0
1901 5													37
9040 5													37
9049 5													
1541 5													
2009 5											37.0		
1343 6										0		0	37
2008 6													
3001 6 エクルーシス 13 103 S S -1.5% -42.1% 0 42 0 42 37.0 3													37
3022 6										0		0	42
9043-2 6													37.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-	-				1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						S	S				37.0		37.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							S						37.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						S	S						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6		14						0		0	37
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4002	6	エクルーシス	13	105			-1.5%	-40.9%		37		37
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						S	S						37
1038 6 エクルーシス 15 107 S S 13.7% -39.8% 0.0 37.0 1040 6 エクルーシス 14 107 S S 6.1% -39.8% 0 37 0 37 1411 6 エクルーシス 13.3 108.9 S S 0.8% -38.7% 0 37.0 0 37.0 1006 6 エクルーシス 13.9 110.2 S S 5.4% -38.0% 37 6016 6 エクルーシス 13.0 110.8 S S -1.5% -37.7% 0 37 0 37 7002 6 エクルーシス 14.4 111.1 S S 9.1% -37.5% 36.9							S						37以下
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						S	S			0.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							S					0	37
1006 6 エクルーシス 13.9 110.2 S S 5.4% -38.0% 37 6016 6 エクルーシス 13.0 110.8 S S -1.5% -37.7% 0 37 7002 6 エクルーシス 14.4 111.1 S S 9.1% -37.5% 36.9													37.0
6016 6 エクルーシス 13.0 110.8 S S -1.5% -37.7% 0 37 0 37 7002 6 エクルーシス 14.4 111.1 S S 9.1% -37.5% 36.9		6	エクルーシス	13.9	110.2			5.4%	-38.0%		37		
7002 6 エクルーシス 14.4 111.1 S S 9.1% -37.5% 36.9 36.9	6016	6	エクルーシス		110.8			-1.5%	-37.7%	0	37	0	37
1401 7 フレックスC 13.0 154.6 - - -1.5% -13.0% 0.0 37.0 0.0 37.			エクルーシス			S	S						
	1401	7	フレックスC	13.0	154.6			-1.5%	-13.0%	0.0	37.0	0.0	37.0

 フレックスC
 13.0
 154.6

 平均
 13.2
 177.8

 SD
 4.2
 47.7

 CV
 31.8%
 26.8%

 3SD2回除去後平均
 13.2
 177.8

 SD
 4.2
 47.7

 CV
 31.7%
 26.9%

CA125			測	定 値	評	価	バイ	アス	基準範	囲(男)	基準範	囲(女)
施設CD	原理CD	分類	試料15	試料16	試料15	試料16	試料15%	試料16%	下限	上限	下限	上限
9029	1	E-テスト	11	62	-	-	-13.6%	14.5%		≦35		≦35
7011	4	アーキテクト	14	60	S	S	10.0%	10.8%	0.0	35.0		
1529	4	アーキテクト	14.0	60.8	S	S	10.0%	12.2%	0.0	35.0	0.0	35.0
7007	4	アーキテクト	13.3	61.7	S	S	4.5%	13.9%			0	35
1902	4	アーキテクト	14	62	S	S	10.0%	14.5%	0	35.0		
1315	4	アーキテクト	14.1	62.3	S	S	10.7%	15.0%		35.0		35.0
1031	4	アーキテクト	14.0	62.8	S	S	10.0%	15.9%				
1301	4	アーキテクト	15	63	Α	S	17.8%	16.3%		35		
1337	4	アーキテクト	15	63	Α	S	17.8%	16.3%	0	34.9	0	34.9
1325	4	アーキテクト	14.7	63.1	Α	S	15.5%	16.5%		35.0		35.0
1532	4	アーキテクト	14.5	63.4	Α	S	13.9%	17.0%	0.0	35.0	0.0	35.0
1004	4	アーキテクト	14	64	S	S	10.0%	18.1%	0	35	0	35
1120	4	アーキテクト	15	64	Α	S	17.8%	18.1%	0	35	-	
6008	4	アーキテクト	15	64	Α	S	17.8%	18.1%		35		
2002	4	アーキテクト	15	64	A	S	17.8%	18.1%	0	35		
5006	4	アーキテクト	14.2	64.1	S	S	11.5%	18.3%	0	≤35	0	≤ 35
1094	4	アーキテクト	14.7	64.4	A	S	15.5%	18.9%	0.0	35.0	·	_33
9027	4	アーキテクト	12.9	64.5	-	-	1.3%	19.1%	0.0	33.0		
1015	4	アーキテクト	15	64	Α	S	17.8%	18.1%		35		
9050	4	ケンタウルス	12	51	-	-	-5.7%	-5.9%		33		
3907	4	ケンタウルス	12	52	S	S	-5.7%	-4.0%		35		
1012	5	スフィアライト	10	43	S	S	-21.5%	-20.6%		33		35
9023SL	5	スフィアライト	10	45	-	-	-21.5%	-16.9%		35		35 35
9023SL 9023AS	5	アキュラシード	10.7	52.3	_	_	-16.0%	-3.5%		33		33
1501	5	ルミパルス	11	46	S	S	-13.6%	-15.1%	0	35	0	35
8004	5	ルミパルス	11	46	S	S	-13.6%	-15.1%	0	33 34	U	33
1903	5	ルミパルス	11.8	46.3	S	S	-13.6% -7.3%	-15.1%	U	3 4 35.0		
1001	5	ルミパルス	11.3	46.9	S	S	-7.5%	-14.5%		35.0 35.0		
1901	5	ルミパルス	12	40.9	S	S	-11.2% -5.7%	-13.4%	0	35.0 35	0	35
	5		12	47	S	S	-5.7% -5.7%				0	
3055 1002	5	ルミパルス ルミパルス	11.8	48.7	S	S	-5.7% -7.3%	-13.2% -10.1%	0	35.0 35.0	U	35.0
9037	5			49.1	-	-	-7.3% -5.7%	-10.1% -9.4%	U	35.0		
	5	ルミパルス	12.0	_					_	20.0	0	20.0
1329 9049	5	ルミパルス HISCL	11.4 11.7	49.8 63.8	S -	S -	-10.5% -8.1%	-8.1% 17.8%	0	28.0	U	28.0
2008	6			47						35		25
	-	エクルーシス	12		S S	S	-5.7%	-13.2%	_		0	35
1300	6	エクルーシス	12	47	_	S	-5.7%	-13.2%	0	35	0	35
9043-2	6	エクルーシス	11.8	47.0	- S	-	-7.3% -5.7%	-13.2%		25.0		
1505	6	エクルーシス	12	48	_	S		-11.4%		35.0		
1343	6	エクルーシス	12	48	S	S	-5.7%	-11.4%		35	0	25
3001	6	エクルーシス	12	48	S	S	-5.7%	-11.4%	0	35	0	35
3022	6	エクルーシス	12.2	48.4	S	S	-4.2%	-10.7%		35.0		35.0
1404	6	エクルーシス	12.3	48.5	S	S	-3.4%	-10.5%		35以下		35以下
6016	6	エクルーシス	12.5	48.7	S	S	-1.8%	-10.1%	0	35	0	35
1038	6	エクルーシス	13	49	S	S	2.1%	-9.5%	0.0	35.0		
1506	6	エクルーシス	12	49	S	S	-5.7%	-9.5%		35		35
7001	6	エクルーシス	12.2	49.3	S	S	-4.2%	-9.0%		35.0		35.0
1006	6	エクルーシス	12.6	49.5	S	S	-1.0%	-8.6%		35		
1411	6	エクルーシス	12.4	49.6	S	S	-2.6%	-8.4%	0	35.0	0	35.0
7002	6	エクルーシス	12.5	49.6	S	S	-1.8%	-8.4%		34.9		
4002	6	エクルーシス	13	51	S	S	2.1%	-5.9%		35		35

 エクルーシス
 13
 51

 平均
 12.69
 53.97

 SD
 1.38
 7.46

 CV
 10.9%
 13.8%

 3SD2回除去後平均
 12.69
 53.97

 SD
 1.38
 7.46

 CV
 10.9%
 13.8%

CEA	per vell on	A) Altre	測 S			価		アス		囲(男)	基準範	
施設CD 9029	原理CD 1	<u>分類</u> E-テスト	試料15 1.8	<u>試料16</u> 17.7	試料15	試料16	試料15% 16.7%	試料16% 6.6%	下限	上限 ≤6	下限	上限 ≤6
1352	4	アーキテクト	1.3	13.9	A	A	-15.7%	-16.3%	0	4.9	0	4.9
1050	4	アーキテクト	1.5	14.1	S	A	-2.7%	-15.1%	0.0	5.0	0.0	5.0
6008	4	アーキテクト	1.5	14.6	S	S	-2.7%	-12.0%		5.0		
1315	4	アーキテクト	1.4	14.6	Α	S	-9.2%	-12.0%		5.0		5.0
1002	4	アーキテクト	1.5	14.7	S	S	-2.7%	-11.4%	0	5		
1102	4	アーキテクト	1.5	14.8	S	S	-2.7%	-10.8%		5.0		
1072	4	アーキテクト	1.5	14.9	S	S	-2.7%	-10.2%	0	5.0	0	5.0
1073	4	アーキテクト	1.6	14.9	S	S	3.8%	-10.2%	0	5.0	0	5.0
1031	4	アーキテクト	1.4	15.0	Α	S	-9.2%	-9.6%	0	5		
1403	4	アーキテクト	1.5	15.0	S	S	-2.7%	-9.6%		5.0		5.0
1359	4	アーキテクト	1.6	15.1	S	S	3.8%	-9.0%		5.0		5.0
1004	4	アーキテクト	1.5	15.2	S	S	-2.7%	-8.4%	0.0	5.0	0.0	5.0
1532	4	アーキテクト	1.3	15.2	A	S	-15.7%	-8.4%	0.0	5.0	0.0	5.0
1010	4	アーキテクト	1.6	15.3	S A	S S	3.8% -9.2%	-7.8% -7.8%	0.0	5.0 5.0	0.0	5.0
1348 2002	4	アーキテクト アーキテクト	1.4 1.5	15.3 15.3	S	S	-9.2% -2.7%	-7.8% -7.8%	0.00	5.0		
1325	4	アーキテクト	1.6	15.4	S	S	3.8%	-7.2%	U	5.0		5.0
1358	4	アーキテクト	1.6	15.4	S	S	3.8%	-7.2%		5.0		5.0
1390	4	アーキテクト	1.6	15.4	S	S	3.8%	-7.2%		5.0		5.0
7007	4	アーキテクト	1.6	15.4	S	S	3.8%	-7.2%	0	5	0	5
1337	4	アーキテクト	1.6	15.5	S	S	3.8%	-6.6%	0	5	0	5
7011	4	アーキテクト	1.9	15.5	Α	S	23.2%	-6.6%	0.0	5.0		
7901	4	アーキテクト	1.6	15.5	S	S	3.8%	-6.6%	5.0		5.0	
1310	4	アーキテクト	1.26	15.55	В	S	-18.3%	-6.3%	0.00	5.00	0.00	5.00
1301	4	アーキテクト	1.6	15.6	S	S	3.8%	-6.0%		5.0		
1529	4	アーキテクト	1.6	15.6	S	S	3.8%	-6.0%	0.0	5.0	0.0	5.0
1329	4	アーキテクト	1.5	15.7	S	S	-2.7%	-5.4%	0.0	5.0	0.0	5.0
1368	4	アーキテクト	1.6	15.7	S	S	3.8%	-5.4%	0	5	0	5
1382	4	アーキテクト	1.7	15.7	S	S	10.2%	-5.4%		5.0		5.0
2006	4	アーキテクト	1.6	15.7	S	S	3.8%	-5.4%		5.0		
1035		アーキテクト	1.4	15.7	A	S	-9.2%	-5.4%	0.0	5.0	0.0	F 0
1316	4	アーキテクト	1.6	15.8	S S	S S	3.8%	-4.8%	0.0	5.0	0.0	5.0
1094 1101	4	アーキテクト アーキテクト	1.5 1.64	15.9 15.97	S	S	-2.7% 6.4%	-4.2% -3.8%	0.0	5.0 5.0		5.0
1120	4	アーキテクト	1.4	16.0	A	S	-9.2%	-3.6%	0	5.0		3.0
1902	4	アーキテクト	1.8	16.0	Ä	S	16.7%	-3.6%	0	5.0		
9027	4	アーキテクト	1.59	16.05	-	-	3.1%	-3.3%		3.0		
1054	4	アーキテクト	1.6	16.1	S	S	3.8%	-3.0%		5		
1302	4	アーキテクト	1.6	16.1	S	S	3.8%	-3.0%		5.0		5.0
1331	4	アーキテクト	1.70	16.14	S	S	10.2%	-2.8%	0.00	5.00	0.00	5.00
3056	4	アーキテクト	1.8	16.2	Α	S	16.7%	-2.4%		<5.0		<5.0
5006	4	アーキテクト	1.6	16.2	S	S	3.8%	-2.4%	0	≦5	0	≦5
1015	4	アーキテクト	1.6	15.8	Α	Α	3.8%	-4.8%		5		
1911	4	ケンタウルス	0.7	14.0	S	S	-54.6%	-15.7%	なし	5.0	なし	5.0
9050	4	ケンタウルス	0.8	14.4	-	-	-48.1%	-13.3%				
3907	4	ケンタウルス	0.8	14.5	S	S	-48.1%	-12.7%		5		
1305	4	ケンタウルス	1.2	15.7	С	S	-22.2%	-5.4%		5		5
1013	5	スフィアライト	1.3	12.7	S	S	-15.7%	-23.5%		5.0		
1402	5	スフィアライト	1.5	13.0	S	S	-2.7%	-21.7%		≦5.0		- 0
1012	5	スフィアライト	1.4	13.6	S	S	-9.2%	-18.1%		5.0		5.0
9023SL	5 5	スフィアライト	1.3	13.6	-	-	-15.7% -28.7%	-18.1% 11.4%		5		5
9023AS 1360	5	アキュラシード アキュラシード	1.1 1.3	18.5 20.6	S	A	-26.7%	24.1%		5.0		5.0
1313	5	ルミパルス	1.5	21.4	S	S	-2.7%	28.9%	0.0	5.0	0.0	5.0
1501	5	ルミパルス	1.6	21.5	S	S	3.8%	29.5%	0.0	5	0.0	5
1903	5	ルミパルス	1.6	22.5	S	S	3.8%	35.5%		5.0	o	3
8004	5	ルミパルス	1.6	22.5	S	S	3.8%	35.5%	0	4		
1001	5	ルミパルス	1.6	22.6	S	S	3.8%	36.1%	_	5.0		
1901	5	ルミパルス	1.6	23.0	S	S	3.8%	38.6%	0.0	5.0	0.0	5.0
6015	5	ルミパルス	1.7	23.2	S	S	10.2%	39.8%	0.0	5.0		
3055	5	ルミパルス	1.7	23.2	S	S	10.2%	39.8%	0	5.0	0	5.0
9037	5	ルミパルス	1.7	23.4	-	-	10.2%	41.0%		1		
1356	5	ルミパルス	1.8	23.6	S	S	16.7%	42.2%	0	5	0	5
1058	5	ルミパルス	1.8	23.8	S	S	16.7%	43.4%	0.0	5.0	0.0	5.0
1512	5	ルミパルス	1.8	23.8	S	S	16.7%	43.4%	0	5.0	0	5.0
1514	5	ルミパルス	1.8	24.3	S	S	16.7%	46.4%		5		5
1519	5	ルミパルス	2.0	24.5	A	S	29.7%	47.6%	_	5.0	_	_
5010	5	ルミパルス	1.8	24.5	S	S S	16.7%	47.6%	0	5	0	5 5.0
1024 5005	5 5	ルミパルス	1.8 1.9	24.6 24.6	S S	S	16.7% 23.2%	48.2% 48.2%	0 0.0	5.0 5.0	U	5.0
9040	5	ルミパルス ビトロス	1.9	24.6 17.7	5	-	-23.2% -22.2%		0.0	5.0		
1541	5	HISCL	1.5	14.9	S	S	-22.2% -2.7%	6.6% -10.2%		5.0		
9049	5	HISCL	1.5	14.9	-	-	-2.7%	-10.2%		5.0		
2009	5	HISCL	1.7	15.0	S	S	10.2%	-9.6%	0	5.0	0	5.0
1300	6	エクルーシス	1.4	13.3	S	S	-9.2%	-19.9%	0	3.5	0	3.5
1411	6	エクルーシス	1.5	13.5	S	S	-2.7%	-18.7%	0	3.4	0	3.4
9043-2	6	エクルーシス	1.39	13.6	-	-	-9.9%	-18.1%				- '
7001	6	エクルーシス	1.4	13.7	S	S	-9.2%	-17.5%		5.0		5.0
1404	6	エクルーシス	1.4	13.8	S	S	-9.2%	-16.9%		5以下		5以下
1040	6	エクルーシス	1.4	13.8	S	S	-9.2%	-16.9%	0.0	5.0	0.0	5.0
3001	6	エクルーシス	1.6	13.9	Α	S	3.8%	-16.3%	0	5	0	5
3022	6	エクルーシス	1.5	13.9	S	S	-2.7%	-16.3%		5.0		5.0
3048	6	エクルーシス	1.49	13.98	S	S	-3.4%	-15.8%		5.00		5.00
1006	6	エクルーシス	1.4	14.0	S	S	-9.2%	-15.7%		3.4		
1343	6	エクルーシス	1.4	14.0	S	S	-9.2%	-15.7%		3.4		
4002	6	エクルーシス	1.4	14.0	S	S	-9.2%	-15.7%	_	3.4	_	3.4
6016	6	エクルーシス	1.5	14.0	S	S	-2.7%	-15.7%	0	5	0	5
7002	6	エクルーシス	1.4	14.0	S	S	-9.2%	-15.7%		5.68		
1506	6	エクルーシス	1.5	14.1	S	S	-2.7%	-15.1%		5.0		5.0
2008	6	エクルーシス	1.5	14.2	S S	S S	-2.7%	-14.5%	0.0	5.0		5.0
1038	6	エクルーシス	1.5	14.6			-2.7% -2.7%	-12.0% -10.8%	0.0	5.0 5.0		
1505 1401	6 7	エクルーシス フレックスC	1.5 1.25	14.8 17.94	S -	S	-2.7% -18.9%	-10.8% 8.1%	0.0	5.0 5.0	0.0	5.0
1-101	_ ′	アウ	1.52	16.60			10.570	0.170	0.0	5.0	0.0	5.0

アレックスC 1.25 17.94
平均 1.52 16.60
SD 0.21 3.42
CV 14.29 20.696
3SD2回除去後平均 1.54 16.60
SD 0.17 3.42
CV 10.9% 20.696

TSH			測気	官 値	評	価	バイ	アス	基準範	囲(男)	基準範	囲(女)
施設CD	原理CD	分類	試料15	試料16	試料15	試料16	試料15%	試料16%	下限	上限	下限	上限
2012 9029	1 1	E-テスト E-テスト	1.32 1.48	4.11 4.85	Α -	Α -	4.8% 17.5%	5.1% 24.1%	0.38 0.38	4.31 4.31	0.38 0.38	4.31 4.31
1352	4	アーキテクト	0.801	2.465	В	В	-36.4%	-36.9%	0.35	4.94	0.35	4.94
1073	4	アーキテクト	1.058	3.14	S	S	-16.0%	-19.7%	0.49	4.67	0.49	4.67
1031	4	アーキテクト	1.05	3.28	S	S	-16.6%	-16.1%	0.35	4.94	0.25	4.94
5006 1054	4	アーキテクト アーキテクト	1.127 1.13	3.324 3.34	S S	S S	-10.5% -10.3%	-15.0% -14.5%	0.35 0.35	4.94 4.94	0.35	4.94
7011	4	アーキテクト	1.11	3.35	S	S	-11.9%	-14.3%	0.35	4.94		
6008	4	アーキテクト	1.11	3.36	S	S	-11.9%	-14.0%	0.35	4.94		
1358 1382	4	アーキテクト アーキテクト	1.1058 1.13	3.387 3.39	S S	S S	-12.2% -10.3%	-13.3% -13.3%	0.35 0.35	4.94 4.94	0.35	4.94
1102	4	アーキテクト	1.15	3.4	S	S	-8.7%	-13.0%	0.35	4.94	0.55	1.51
3056	4	アーキテクト	1.12	3.41	S	S	-11.1%	-12.8%	0.49	4.67	0.49	4.67
1331	4	アーキテクト	1.1196	3.4103	S S	S S	-11.1%	-12.8%	0.3500	4.9400	0.3500	4.9400 4.94
1101 1050	4	アーキテクト アーキテクト	1.14 1.123	3.42 3.43	S	S	-9.5% -10.8%	-12.5% -12.2%	0.35 0.350	4.94 4.940	0.35 0.350	4.940
1120	4	アーキテクト	1.14	3.44	S	S	-9.5%	-12.0%	0.4	4.0	0.550	
1403	4	アーキテクト	1.15	3.44	S	S	-8.7%	-12.0%	0.35	4.94	0.35	4.94
9027	4	アーキテクト	1.1438	3.4504	- S	- S	-9.2% -8.7%	-11.7% -11.5%	0.35	4.94		
1348 1325	4	アーキテクト アーキテクト	1.15 1.1569	3.46 3.4694	S	S	-8.2%	-11.3%	0.35	4.94	0.35	4.94
1302	4	アーキテクト	1.16	3.47	S	S	-7.9%	-11.2%	0.35	4.94	0.35	4.94
1035	4	アーキテクト	1.21	3.48	S	S	-3.9%	-11.0%	0.35	4.94		
1390	4	アーキテクト	1.2	3.5	S S	S S	-4.7%	-10.5%	0.4	4.0	0.4	4.0
1359 1310	4	アーキテクト アーキテクト	1.2 1.29	3.51 3.54	A	S	-4.7% 2.4%	-10.2% -9.4%	0.35 0.35	4.94 4.94	0.35 0.35	4.94 4.94
7007	4	アーキテクト	1.16	3.54	S	S	-7.9%	-9.4%	0.35	4.94	0.35	4.94
1315	4	アーキテクト	1.15	3.54	S	S	-8.7%	-9.4%	0.35	4.94	0.35	4.94
1355	4	アーキテクト	1.21	3.55	S	S	-3.9%	-9.2%	0.35	4.94	0.35	4.94
1316 1337	4	アーキテクト アーキテクト	1.28 1.18	3.58 3.58	A S	S S	1.6% -6.3%	-8.4% -8.4%	0.35 0.35	4.94 4.94	0.35 0.35	4.94 4.94
1368	4	アーキテクト	1.19	3.58	S	S	-5.5%	-8.4%	0.35	4.94	0.35	4.94
1529	4	アーキテクト	1.15	3.58	S	S	-8.7%	-8.4%	0.35	4.94	0.35	4.94
1301	4	アーキテクト	1.18	3.59	S	S	-6.3%	-8.2%	0.35	4.94		
1329 1532	4	アーキテクト アーキテクト	1.19 1.20	3.60 3.60	S S	S S	-5.5% -4.7%	-7.9% -7.9%	0.35 0.35	4.94 4.94	0.35 0.35	4.94 4.94
1002	4	アーキテクト	1.193	3.612	S	S	-5.3%	-7.6%	0.350	4.940	0.55	7.57
2002	4	アーキテクト	1.2	3.68	S	S	-4.7%	-5.9%	0.35	4.95		
1015	4	アーキテクト	1.15	3.46	S	S	-8.7%	-11.5%	0.49	4.67		
1305 3907	4	ケンタウルス ケンタウルス	1.35 1.32	4.08 4.22	A S	S S	7.2% 4.8%	4.4% 8.0%	0.55 0.38	4.78 3.64	0.55	4.78
7901	4	ケンタウルス	1.333	4.298	S	S	5.8%	10.0%	0.35	3.73	0.35	3.73
9050	4	ケンタウルス	1.333	4.298	-	-	5.8%	10.0%				
1911	4	ケンタウルス ウルトラ	1.304	3.981	S	S	3.5%	1.8%	0.436	3.780	0.436	3.780
9050-2	4	ケンタウルス ウルトラ	1.217	4.011	- S	- S	-3.4%	2.6%	0.55	1 70		
2006 1013	5	ケンタウルス ウルトラ スフィアライト	1.30 1.06	4.04 3.36	A	A	3.2% -15.8%	3.4% -14.0%	0.55 0.427	4.78 4.825		
1402	5	スフィアライト	1.094	3.482	S	S	-13.1%	-10.9%	0.427	4.825		
1012	5	スフィアライト	1.15	3.68	S	S	-8.7%	-5.9%	0.43	4.83	0.43	4.83
9023SL 9023AS	5 5	スフィアライト アキュラシード	1.202 1.227	3.773 3.998	-	-	-4.6% -2.6%	-3.5% 2.3%	0.5	4.8	0.5	4.8
1313	5	ルミパルス	1.036	3.243	S	S	-17.7%	-17.0%	0.500	4.300	0.500	4.300
1501	5	ルミパルス	1.064	3.364	S	S	-15.5%	-13.9%	0.541	4.261	0.541	4.261
1356	5	ルミパルス	1.089	3.438	S	S	-13.5%	-12.0%	0.464	3.728	0.464	3.728
1519 1512	5 5	ルミパルス ルミパルス	1.136 1.107	3.446 3.532	S S	S S	-9.8% -12.1%	-11.8% -9.6%	0.500 0.541	4.300 4.261	0.541	4.261
5005	5	ルミパルス	1.099	3.541	S	S	-12.7%	-9.4%	0.541	4.261	0.541	4.201
9037	5	ルミパルス	1.142	3.550	-	-	-9.3%	-9.2%				
1514	5	ルミパルス	1.112	3.644	S	S	-11.7%	-6.8%	0.541	4.261	0.541	4.261
5010 6015	5 5	ルミパルス ルミパルス	1.14 1.11	3.65 3.69	S S	S S	-9.5% -11.9%	-6.6% -5.6%	0.54 0.46	4.26 3.73	0.54	4.26
1058	5	ルミパルス	1.135	3.72	S	S	-9.9%	-4.8%	0.500	4.300	0.500	4.300
9040	5	ビトロス	1.34	4.22	-	-	6.4%	8.0%	0.465	4.68		
9049	5	HISCL	1.246	4.023	-	-	-1.1%	2.9%				
1541 2009	5 5	HISCL HISCL	1.266 3.87	4.094 4.15	S C	S S	0.5% 207.2%	4.7% 6.2%	0.340 0.34	4.220 4.22	0.34	4.22
1506	6	エクルーシス	1.33	4.13	S	S	5.6%	9.2%	0.500	5.00	0.500	5.00
1040	6	エクルーシス	1.38	4.35	S	S	9.6%	11.3%	0.27	4.20	0.27	4.20
1072	6	エクルーシス	1.380	4.380	S S	S	9.6%	12.1%	0.50	5.00	0.50	5.00
1006 1001	6 6	エクルーシス エクルーシス	1.41 1.390	4.43 4.450	S	S S	11.9% 10.4%	13.3% 13.8%	0.27 0.500	4.20 5.000		
6016	6	エクルーシス	1.40	4.45	S	S	11.1%	13.8%	0.35	4.94	0.35	4.94
3048	6	エクルーシス	1.390	4.460	S	S	10.4%	14.1%	0.50	5.00	0.50	5.00
1901	6	エクルーシス	1.44	4.48	S	S	14.3%	14.6%	0.50	5.00	0.50	5.00
3055 1404	6 6	エクルーシス エクルーシス	1.41 1.43	4.48 4.49	S S	S S	11.9% 13.5%	14.6% 14.9%	0.5 0.5	5.0 5.0	0.5	5.0
1010	6	エクルーシス	1.42	4.50	S	S	12.7%	15.1%	0.50	5.00	0.50	5.00
1004	6	エクルーシス	1.410	4.510	S	S	11.9%	15.4%	0.500	5.000	0.500	5.000
9043-2	6	エクルーシス	1.42	4.51	- S	- C	12.7%	15.4%	0.500	E 000		
1094 3001	6 6	エクルーシス エクルーシス	1.44 1.4	4.52 4.52	S	S S	14.3% 11.1%	15.6% 15.6%	0.500 0.27	5.000 4.2	0.27	4.2
1300	6	エクルーシス	1.4	4.54	S	S	11.1%	16.2%	0.34	6.5	0.34	6.5
3022	6	エクルーシス	1.480	4.550	S	S	17.5%	16.4%	0.48	5.08	0.48	5.08
2008	6	エクルーシス	1.42	4.56	S	S	12.7%	16.7%	0.50	5.00	0.50	5.00
7002 1411	6 6	エクルーシス エクルーシス	1.47 1.45	4.56 4.61	S S	S S	16.7% 15.1%	16.7% 17.9%	0.5 0.50	5.0 5.00	0.50	5.00
5003	6	エクルーシス	1.45	4.61	S	S	15.1%	17.9%	0.50	5.00	0.50	5.00
1343	6	エクルーシス	1.49	4.62	S	S	18.3%	18.2%	0.5	5.0		
8004	6	エクルーシス	1.43	4.62	S	S	13.5%	18.2%	0.3	4.2	0.3	4.2
1903 4002	6 6	エクルーシス	1.48 1.44	4.63 4.63	S S	S S	17.5% 14.3%	18.5% 18.5%	1.50 0.50	5.00 5.00	0.50	5.00
7001	6	エクルーシス エクルーシス	1.44	4.63 4.637	S	S	14.3% 18.3%	18.5% 18.6%	0.50	5.000	0.50	5.000
1038	6	エクルーシス	1.48	4.68	S	S	17.5%	19.7%	0.50	5.00	1.5500	
1127	6	エクルーシス	1.490	4.693	S	S	18.3%	20.1%	0.500	5.000		
1902 1505	6 6	エクルーシス	1.470	4.710 4.8	S S	S S	16.7%	20.5%	0.500	5.000		
1401	7	エクルーシス フレックスC	1.51 1.23	4.8 4.05	-	-	19.9% -2.3%	22.8% 3.6%	0.50 0.50	5.00 5.00	0.50	5.00
	·	立りりり入こ	1 282	3 000		·		2.370	55	2.00	2.50	2.00

 フレックスC
 1.23
 4.05

 平均
 1.282
 3.909

 SD
 0.303
 0.519

 CV
 23.9%
 13.3%

 3SD2回除去後平均
 1.260
 3.909

 SD
 0.140
 0.519

 CV
 11.2%
 13.3%

FT3			測	官 値		価		アス	基準範	囲(男)	基準範	囲(女)
施設CD	原理CD	分類	試料15	試料16	試料15	試料16	試料15%	試料16%	下限	上限	下限	上限
9029 2012	1 1	E-テスト E-テスト	2.28 2.19	2.26 2.40	S	S	-16.9% -20.1%	-18.6% -13.5%	2.1 2.17	3.8 3.34	2.1 2.17	3.8 3.34
1073	4	アーキテクト	2.14	2.32	В	A	-20.1 %	-16.4%	1.92	3.38	1.92	3.38
1403	4	アーキテクト	2.47	2.35	A	Α	-9.9%	-15.3%	1.71	3.71	1.71	3.71
1368	4	アーキテクト	2.43	2.41	Α	Α	-11.4%	-13.2%	1.71	3.71	1.71	3.71
7007	4	アーキテクト	2.44	2.42	Α	S	-11.0%	-12.8%	1.71	3.71	1.71	3.71
1529 1348	4	アーキテクト アーキテクト	2.56 2.52	2.52 2.54	S S	S S	-6.7% -8.1%	-9.2% -8.5%	1.71 1.71	3.71 3.71	1.71	3.71
5006	4	アーキテクト	2.65	2.54	S	S	-3.4%	-8.5%	1.71	3.71	1.71	3.71
1302	4	アーキテクト	2.60	2.56	S	S	-5.2%	-7.8%	1.71	3.71	1.71	3.71
1120	4	アーキテクト	2.59	2.59	S	S	-5.6%	-6.7%	2.2	4.1		
1390	4	アーキテクト	2.7	2.6	S	S	-1.6%	-6.3%	2.2	4.1	2.2	4.1
7011	4	アーキテクト	2.56	2.6	S	S S	-6.7%	-6.3%	1.71	3.71		
1002 1316	4	アーキテクト アーキテクト	2.61 2.63	2.64 2.65	S S	S	-4.8% -4.1%	-4.9% -4.5%	1.71 1.71	3.71 3.71	1.71	3.71
1337	4	アーキテクト	2.62	2.66	S	S	-4.5%	-4.2%	1.71	3.71	1.71	3.71
1315	4	アーキテクト	2.61	2.67	S	S	-4.8%	-3.8%	1.71	3.71	1.71	3.71
6008	4	アーキテクト	2.67	2.68	S	S	-2.6%	-3.4%	1.71	3.71		
9027	4	アーキテクト	2.79	2.69	-	-	1.7%	-3.1%	4 7	2.7	4 7	2.7
1329 1310	4	アーキテクト アーキテクト	2.6 2.60	2.7 2.72	S S	S S	-5.2% -5.2%	-2.7% -2.0%	1.7 1.71	3.7 3.71	1.7 1.71	3.7 3.71
1101	4	アーキテクト	2.84	2.75	S	S	3.6%	-0.9%	1.71	3.71	1.71	3.71
1532	4	アーキテクト	2.58	2.75	S	S	-5.9%	-0.9%	1.71	3.71	1.71	3.71
2002	4	アーキテクト	2.66	2.77	S	S	-3.0%	-0.2%	1.71	3.71		
1054	4	アーキテクト	2.75	2.78	S	S	0.3%	0.2%	1.71	3.71		
1102	4	アーキテクト	2.81	2.92	S S	S S	2.5% 5.7%	5.2% 5.6%	1.71	3.71	1 71	3 71
1331 3056	4	アーキテクト アーキテクト	2.90 2.66	2.93 3.09	S	A	5.7% -3.0%	5.6% 11.3%	1.71 1.92	3.71 3.38	1.71 1.92	3.71 3.38
1015	4	アーキテクト	2.91	2.91	S	S	6.1%	4.8%	1.45	3.48	1.52	3.30
3907	4	ケンタウルス	2.72	2.75	S	S	-0.8%	-0.9%	2.1	4.1		
7901	4	ケンタウルス	2.73	2.79	S	S	-0.5%	0.5%	2.2	4.1	2.2	4.1
9050	4	ケンタウルス	2.73	2.79	-	-	-0.5%	0.5%	2.4		2.4	
1911 2006	4	ケンタウルス ケンタウルス	2.7 2.77	2.8 2.81	S S	S S	-1.6% 1.0%	0.9% 1.2%	2.1 2.13	4.1 4.07	2.1	4.1
1305	4	ケンタウルス	2.89	2.93	S	S	5.4%	5.6%	2.13	4.07	2.13	4.07
1013	5	スフィアライト	2.44	2.51	S	S	-11.0%	-9.6%	2.39	3.86		
9023SL	5	スフィアライト	2.49	2.59	-	-	-9.2%	-6.7%	2.39	3.86	2.39	3.86
1012	5	スフィアライト	2.69	2.67	S	S	-1.9%	-3.8%	0.87	1.72	0.87	1.72
1402 9023AS	5 5	スフィアライト アキュラシード	2.92 2.90	2.88 2.96	A -	Α	6.5% 5.7%	3.8% 6.6%	2.39	3.86		
6015	5	ルミパルス	2.69	2.75	S	- S	-1.9%	-0.9%	2.51	4.12		
5005	5	ルミパルス	2.8	2.82	S	S	2.1%	1.6%	2.39	4.06		
1514	5	ルミパルス	2.77	2.83	S	S	1.0%	2.0%	2.39	4.06	2.39	4.06
5010	5	ルミパルス	2.84	2.91	S	S	3.6%	4.8%	2.48	4.14	2.48	4.14
1313	5	ルミパルス	2.86	2.93	S	S	4.3%	5.6%	2.30	4.10	2.30	4.10
1501 9037	5 5	ルミパルス ルミパルス	2.93 2.88	2.95 2.95	S -	S -	6.8% 5.0%	6.3% 6.3%	2.39	4.06	2.39	4.06
9040	5	ビトロス	2.9	2.98	_	_	5.7%	7.4%	2.35	4.48		
2009	5	HISCL	2.72	2.78	S	S	-0.8%	0.2%	2.24	3.94	2.24	3.94
9049	5	HISCL	2.85	2.89	-	-	3.9%	4.1%				
3055	6	エクルーシス	2.7	2.7	S	S	-1.6%	-2.7%	2.3	4.0		
1902 3048	6 6	エクルーシス	2.61	2.72	S S	S S	-4.8% -2.3%	-2.0% -1.6%	2.30	4.00	2 20	4.00
1094	6	エクルーシス エクルーシス	2.680 2.69	2.730 2.75	S	S	-2.3% -1.9%	-1.6% -0.9%	2.30 2.30	4.00 4.00	2.30	4.00
2008	6	エクルーシス	2.8	2.8	S	S	2.1%	0.9%	2.3	4.0	2.3	4.0
1505	6	エクルーシス	2.8	2.8	S	S	2.1%	0.9%	2.3	4.0		
7002	6	エクルーシス	2.7	2.8	S	S	-1.6%	0.9%	2.3	4.0	2	, _
1004	6	エクルーシス	2.86	2.85	S	S	4.3%	2.7%	2.30	4.00	2.30	4.00
1010 1901	6 6	エクルーシス エクルーシス	2.79 2.79	2.85 2.85	S S	S S	1.7% 1.7%	2.7% 2.7%	2.30 2.30	4.00 4.00	2.30 2.30	4.00 4.00
4002	6	エクルーシス	2.79	2.85	S	S	1.7%	2.7%	2.30	4.0	2.30	4.0
1040	6	エクルーシス	2.89	2.86	S	S	5.4%	3.0%	2.60	5.10	2.60	5.10
5003	6	エクルーシス	2.78	2.86	S	S	1.4%	3.0%	2.2	4.3	2.2	4.3
9043-2	6	エクルーシス	2.76	2.86	-	-	0.6%	3.0%	2 20	4 30		
1903 1404	6 6	エクルーシス エクルーシス	2.80 2.85	2.87 2.90	S S	S S	2.1% 3.9%	3.4% 4.5%	2.30 2.3	4.30 4.3	2.3	4.3
1001	6	エクルーシス	2.85	2.90	S	S	5.4%	4.5% 4.8%	2.300	4.000	۷.۵	4.3
3001	6	エクルーシス	2.88	2.92	S	S	5.0%	5.2%	2.2	4.4	2.2	4.4
1300	6	エクルーシス	2.85	2.93	S	S	3.9%	5.6%	2.47	4.34	2.47	4.34
7001	6	エクルーシス	2.86	2.93	S	S	4.3%	5.6%	2.30	4.00	2.30	4.00
1006	6	エクルーシス	2.93	2.95	S	S	6.8%	6.3%	2.3	4.0	1 71	2 74
6016 1072	6 6	エクルーシス エクルーシス	2.86 2.90	2.97 2.99	S S	S S	4.3% 5.7%	7.0% 7.7%	1.71 2.30	3.71 4.00	1.71 2.30	3.71 4.00
8004	6	エクルーシス	2.8	3.0	S	S	2.1%	8.1%	2.3	4.0	2.30	4.00
1038	6	エクルーシス	2.92	3.04	S	S	6.5%	9.5%	2.30	4.00		
1343	6	エクルーシス	2.97	3.06	S	S	8.3%	10.3%	2.3	4.3		
3022	6	エクルーシス 平均	2.82	3.27 2.775	S	Α	2.8%	17.8%	2.37	3.91	2.37	3.91

エグルーシス 2.82 3.27 平均 2.722 2.775 SD 0.170 0.188 CV 6.2% 6.8% 3SD2回除去後平均 2.743 2.775 SD 0.135 0.188 CV 4.9% 6.8%

FT4			測	官 値	評	価	バイ	アス	基準節	囲(男)	基準節	囲(女)
施設CD	原理CD	分類	試料15	試料16	試料15	試料16	試料15%	試料16%	下限	上限	下限	上限
9029 2012	1	E-テスト E-テスト	1.16 0.98	1.19 0.98	- A	- A	6.7% -9.9%	7.5% -11.5%	0.82 0.82	1.63 1.63	0.82 0.82	1.63 1.63
1002	4	アーキテクト	0.94	0.95	Ś	ŝ	-13.5%	-14.2%	0.70	1.48	0.02	1.03
1050	4	アーキテクト	0.90	0.95	S	S	-17.2%	-14.2%	0.70	1.48	0.70	1.48
1368	4	アーキテクト	0.93	0.95	S	S	-14.5%	-14.2%	0.70	1.48	0.7	1.48
1355	4	アーキテクト アーキテクト	0.99 0.94	0.95 0.95	S	S S	-8.9%	-14.2% -14.2%	0.70	1.48 1.48	0.70	1.48
2002 3056	4	アーキテクト	0.94	0.95	S S	S	-13.5% -11.7%	-14.2%	0.7 0.71	1.48	0.71	1.85
1529	4	アーキテクト	0.96	0.96	S	S	-11.7%	-13.3%	0.70	1.48	0.70	1.48
1102	4	アーキテクト	0.97	0.97	S	S	-10.8%	-12.4%	0.70	1.48		
1316	4	アーキテクト	0.96	0.97	S	S	-11.7%	-12.4%	0.70	1.48	0.70	1.48
1054 1101	4	アーキテクト アーキテクト	0.95 0.96	0.98 0.98	S S	S S	-12.6% -11.7%	-11.5% -11.5%	0.70 0.70	1.48 1.48	0.70	1.48
1337	4	アーキテクト	0.97	0.98	S	S	-10.8%	-11.5%	0.7	1.48	0.7	1.48
6008	4	アーキテクト	0.97	0.98	S	S	-10.8%	-11.5%	0.70	1.48		
1301	4	アーキテクト	0.99	0.99	S	S	-8.9%	-10.6%	0.7	1.48		
1302 1310	4	アーキテクト アーキテクト	0.96 0.99	0.99 0.99	S S	S S	-11.7% -8.9%	-10.6% -10.6%	0.70 0.70	1.48 1.48	0.70 0.70	1.48 1.48
1532	4	アーキテクト	0.97	0.99	S	S	-10.8%	-10.6%	0.70	1.48	0.70	1.48
9027	4	アーキテクト	0.97	0.99	-	-	-10.8%	-10.6%				
1325	4	アーキテクト	0.98	1.00	S	S	-9.9%	-9.7%	0.70	1.48	0.70	1.48
1329	4	アーキテクト	1.0	1.0	S	S	-8.0%	-9.7%	0.7	1.5	0.7	1.5
1359 1390	4	アーキテクト アーキテクト	1 1	1 1	S S	S S	-8.0% -8.0%	-9.7% -9.7%	0.7 0.8	1.5 1.9	0.7 0.8	1.5 1.9
1120	4	アーキテクト	0.99	1.01	S	S	-8.9%	-8.8%	0.8	1.9	0.0	1.5
7007	4	アーキテクト	0.99	1.01	S	S	-8.9%	-8.8%	0.7	1.48	0.7	1.48
1352	4	アーキテクト	0.94	1.01	S	S	-13.5%	-8.8%	0.7	1.48	0.7	1.48
1331 1403	4 4	アーキテクト アーキテクト	1.00 0.99	1.02 1.02	S S	S S	-8.0% -8.9%	-7.9% -7.9%	0.70 0.70	1.48 1.48	0.70 0.70	1.48 1.48
7011	4	アーキテクト	1.02	1.02	S	S	-8.9% -6.2%	-7.9% -7.9%	0.70	1.48	0.70	1.40
1358	4	アーキテクト	1.04	1.03	S	S	-4.3%	-7.0%	0.7	1.48		
1382	4	アーキテクト	1.01	1.03	S	S	-7.1%	-7.0%	0.70	1.48	0.70	1.48
1073	4	アーキテクト アーキテクト	1.03	1.04	S	S S	-5.3%	-6.1%	0.71	1.85	0.71	1.85
1035 1031	4	アーキテクト	1.02 1.03	1.04 1.06	S S	S	-6.2% -5.3%	-6.1% -4.3%	0.70 0.7	1.48 1.48		
1348	4	アーキテクト	1.03	1.06	S	S	-5.3%	-4.3%	0.70	1.48		
5006	4	アーキテクト	0.99	1.06	S	S	-8.9%	-4.3%	0.70	1.48	0.70	1.48
1315	4	アーキテクト	1.08	1.09	Α	S	-0.7%	-1.6%	0.70	1.48	0.70	1.48
1015 3907	4	アーキテクト ケンタウルス	0.93 1.18	0.98 1.16	S S	S S	-14.5% 8.5%	-11.5% 4.8%	0.71 0.95	1.85 1.74		
2006	4	ケンタウルス	1.20	1.18	S	S	10.4%	6.6%	0.95	1.74		
7901	4	ケンタウルス	1.19	1.18	S	S	9.4%	6.6%	0.90	1.80	0.90	1.80
9050	4	ケンタウルス	1.19	1.18	=	-	9.4%	6.6%				
1911	4	ケンタウルス	1.2	1.2	S	S S	10.4%	8.4%	1.0	1.7	1.0	1.7
1305 1013	5	ケンタウルス スフィアライト	1.25 1.08	1.29 1.11	S S	S	15.0% -0.7%	16.5% 0.2%	0.95 0.87	1.74 1.72	0.95	1.74
1402	5	スフィアライト	1.18	1.19	S	S	8.5%	7.5%	0.87	1.72		
1012	5	スフィアライト	1.23	1.22	S	S	13.1%	10.2%	2.39	3.86	2.39	3.86
9023SL	5	スフィアライト	1.18	1.22	-	-	8.5%	10.2%	0.87	1.72	0.87	1.72
9023AS 1501	5 5	アキュラシード ルミパルス	1.25 0.97	1.29 1.01	S	S	15.0% -10.8%	16.5% -8.8%	0.76	1.65	0.76	1.65
5005	5	ルミパルス	1.04	1.01	S	S	-4.3%	-8.8%	0.76	1.65	0.70	1.03
6015	5	ルミパルス	0.98	1.02	S	S	-9.9%	-7.9%	0.88	1.50		
9037	5	ルミパルス	1.03	1.04	-	-	-5.3%	-6.1%				
1313 1058	5 5	ルミパルス ルミパルス	1.07 1.06	1.07 1.07	S S	S S	-1.6% -2.5%	-3.4% -3.4%	0.70 0.7	1.70 1.7	0.70 0.7	1.70 1.7
1512	5	ルミパルス	1.08	1.08	S	S	-0.7%	-2.5%	0.76	1.65	0.76	1.65
1356	5	ルミパルス	1.06	1.09	S	S	-2.5%	-1.6%	0.88	1.50	0.88	1.50
1519	5	ルミパルス	1.09	1.11	S	S	0.2%	0.2%	0.70	1.70		
5010	5 5	ルミパルス	1.12	1.11	S	S S	3.0% 0.2%	0.2%	0.76	1.65	0.76	1.65
1514 9040	5	ルミパルス ビトロス	1.09 1.08	1.13 1.13	S -	-	-0.7%	2.1% 2.1%	0.76 0.81	1.65 1.58	0.76	1.65
9049	5	HISCL	1.02	1.04	-	-	-6.2%	-6.1%	0.01	1.50		
2009	5	HISCL	1.02	1.06	S	S	-6.2%	-4.3%	0.77	1.59	0.77	1.59
1541	5	HISCL	1.07	1.10	S	S S	-1.6%	-0.7%	0.77	1.59		
7002 1004	6	エクルーシス エクルーシス	1.13 1.13	1.17 1.18	S S	S	3.9% 3.9%	5.7% 6.6%	0.9 0.90	1.7 1.70	0.90	1.70
1072	6	エクルーシス	1.17	1.19	S	S	7.6%	7.5%	0.90	1.70	0.90	1.70
1094	6	エクルーシス	1.17	1.19	S	S	7.6%	7.5%	0.90	1.70		
2008	6	エクルーシス	1.2	1.2	S S	S	10.4%	8.4%	0.9	1.7	0.9	1.7
1038 1010	6 6	エクルーシス エクルーシス	1.18 1.17	1.2 1.20	S	S S	8.5% 7.6%	8.4% 8.4%	0.90 1.00	1.70 1.80	1.00	1.80
1411	6	エクルーシス	1.18	1.20	S	S	8.5%	8.4%	0.90	1.70	0.90	1.70
1404	6	エクルーシス	1.17	1.21	S	S	7.6%	9.3%	0.90	1.70	0.90	1.70
3048	6	エクルーシス	1.190	1.210	S	S	9.4%	9.3%	0.90	1.70	0.90	1.70
1505 1506	6 6	エクルーシス エクルーシス	1.2 1.19	1.22 1.22	S S	S S	10.4% 9.4%	10.2% 10.2%	0.93 0.90	1.70 1.70	0.90	1.70
3001	6	エクルーシス	1.2	1.22	S	S	10.4%	10.2%	1	1.8	1	1.8
1006	6	エクルーシス	1.21	1.23	S	S	11.3%	11.1%	1.0	1.8		
1300	6	エクルーシス	1.2	1.23	S	S S	10.4%	11.1%	0.97	1.79	0.97	1.79
1903 7001	6	エクルーシス エクルーシス	1.22 1.20	1.23 1.23	S S	S	12.2% 10.4%	11.1% 11.1%	0.90 0.90	1.70 1.70	0.90	1.70
8004	6	エクルーシス	1.24	1.23	S	S	14.0%	11.1%	1.1	1.8	1.1	1.8
9043-2	6	エクルーシス	1.19	1.23	-	-	9.4%	11.1%				
1901	6	エクルーシス	1.21	1.24	S	S	11.3%	12.0%	0.90	1.70	0.90	1.70
4002 1127	6	エクルーシス エクルーシス	1.2 1.20	1.24 1.25	S S	S S	10.4% 10.4%	12.0% 12.9%	0.90 0.90	1.70 1.70	0.90	1.70
1343	6	エクルーシス	1.20	1.25	S	S	11.3%	12.9%	0.90	1.70		
1902	6	エクルーシス	1.22	1.25	S	S	12.2%	12.9%	0.90	1.70		
3022	6	エクルーシス	1.19	1.25	S	S	9.4%	12.9%	0.95	1.57	0.95	1.57
1040 1001	6	エクルーシス エクルーシス	1.21 1.240	1.26 1.270	S S	S S	11.3% 14.0%	13.8% 14.7%	1.00 0.900	1.80 1.700	1.00	1.80
5003	6	エクルーシス	1.240	1.270	S	S	13.1%	14.7%	0.900	1.700	0.9	1.7
6016	6	エクルーシス	1.23	1.27	S	S	13.1%	14.7%	0.7	1.48	0.7	1.48
3055	6	エクルーシス	1.3	1.3	S	S	19.6%	17.4%	0.9	1.7	0.00	
1401	7	フレックスC 平均	1.00	1.04	-	-	-8.0%	-6.1%	0.90	1.70	0.90	1.70

 フレックスC
 1.00
 1.04

 平均
 1.09
 1.11

 SD
 0.11
 0.11

 CV
 9.8%
 9.9%

 3SD2回除去後平均
 1.09
 1.11

 SD
 0.11
 0.11

 CV
 9.8%
 9.9%

IgE			測	官 値	評	価	バイ	アス	基準範	囲(男)	基準範	囲(女)
施設CD	原理CD	分類	試料15	試料16	試料15	試料16	試料15%	試料16%	下限	上限	下限	上限
9029	1	E-テスト	242	492	-	-	7.3%	6.6%		≦295		≦295
1001	1	イムノキャッフ°	218	437	-	-	-3.3%	-5.4%		170		
1902	1	イムノキャッフ°	244	498	-	-	8.2%	7.9%	0	170		
1901	1	イムノキャッフ°	249	501	-	-	10.4%	8.5%	0	170	0	170
3056	2	IgE-ラテックス「生研」	195.9	420.1	S	Α	-13.1%	-9.0%	0	250	0	250
2002	2	IgE-ラテックス「生研」	214	447	S	S	-5.1%	-3.2%	0	170		
4002	2	IgE-ラテックス「生研」	217.3	455.9	S	S	-3.6%	-1.3%		< 400		
1004	2	IgE-ラテックス「生研」	211	467	S	S	-6.4%	1.1%	0	358	0	358
1006	2	IgE-ラテックス「生研」	218	471	S	S	-3.3%	2.0%		240		
9012	2	IgE-ラテックス「生研」	213	483	-	-	-5.5%	4.6%		358		358
9023AA	2	LTオートワコー	216	449	-	-	-4.2%	-2.8%				
1368	2	LTオートワコー	219	455	S	S	-2.9%	-1.5%	0	300	0	300
6016	2	N-アッセイLA	218.0	461.7	S	S	-3.3%	0.0%	0	270	0	270
1102	2	N-アッセイLA	213	463	S	S	-5.5%	0.3%		170		
8004	2	N-アッセイLA	212	464	S	S	-6.0%	0.5%	0	359		
1404	2	N-アッセイLA	217	469	S	S	-3.8%	1.6%	0	358	0	358
9014	2	N-アッセイLA	219	470	-	-	-2.9%	1.8%				
7901	4	ケンタウルス	202.6	412.1	S	S	-10.2%	-10.7%	174		300	
9050	4	ケンタウルス	203.6	412.6	-	-	-9.7%	-10.6%				
3907	4	ケンタウルス	203.8	413.1	S	S	-9.6%	-10.5%		174		
1903	5	シーメンス(イムライス)	235	470	S	S	4.2%	1.8%		170		
9050-3	5	シーメンス(イムライス)	238.5	473.0	-	-	5.8%	2.4%				
2006	5	シーメンス(イムライス)	249	484	S	S	10.4%	4.8%		170		
1315	5	シーメンス(イムライス)	271	583	Α	В	20.2%	26.3%		232		232
9023SL	5	スフィアライト	183.5	393.5	-	-	-18.6%	-14.8%		300		300
6008	5	ルミパルス	204.5	412.7	S	S	-9.3%	-10.6%	3.7	311.6	3.7	311.6
9037	5	ルミパルス	210.21	428.08	-	-	-6.8%	-7.3%				
7011	5	ルミパルス	213	433	S	S	-5.5%	-6.2%	0	269		
1329	5	ルミパルス	216.63	441.91	S	S	-3.9%	-4.3%	3.65	311.63	3.65	311.63
3022	5	ルミパルス	228.2	444.4	S	S	1.2%	-3.8%		269.1		269.1
1313	5	ルミパルス	219	465	S	S	-2.9%	0.7%	0	250	0	250
1505	5	ルミパルス	224	475	S	Α	-0.7%	2.9%	3	319		
7002	6	エクルーシス	249	488	S	S	10.4%	5.7%		231		
9043-2	6	エクルーシス	247.8	491.7	-	-	9.9%	6.5%				
7001	6	エクルーシス	250	493	S	S	10.9%	6.8%		232		232
3055	6	エクルーシス	247	496.1	S	S	9.5%	7.4%	0	232		
2008	6	エクルーシス	250	498	S	S	10.9%	7.9%	0	100	0	100
1343	6	エクルーシス	251	498	S	S	11.3%	7.9%		232		
1094	6	エクルーシス	261	519	S	S	15.7%	12.4%	0	232		

エグルーシス 261 519
平均 225.50 464.84
SD 19.91 35.94
CV 8.8% 7.7%
3SD2回除去後平均 225.50 461.73
SD 19.91 30.65
CV 8.8% 6.6%

インスリ	ン		測	定 値	評	価	バイ	アス	基準範	囲(男)	基準範	囲(女)
施設CD	原理CD	分類	試料15	試料16	試料15	試料16	試料15%	試料16%	下限	上限	下限	上限
1505	1	E-テスト	18	20.9	S	S	3.8%	15.9%	1.1	17.0		
9029	1	E-テスト	18.1	21.25	-	-	4.4%	17.8%	1.1	17	1.1	17
9012	2	LASAYオート デンカ	14.9	19.4	-	-	-14.0%	7.6%	5	20	5	20
1038	2	サイアス	16.4	20.3	-	-	-5.4%	12.5%	5.0	10.0		
1352	4	アーキテクト	18.1	18.1	Α	S	4.4%	0.4%	5	10	5	10
9027	4	アーキテクト	15.8	18.7	-	-	-8.9%	3.7%				
1054	4	アーキテクト	16	19	S	S	-7.7%	5.3%	5	10		
3048	4	アーキテクト	16.7	19	S	S	-3.7%	5.3%	5	10	5	10
1382	4	アーキテクト	15.7	19.1	S	S	-9.4%	5.9%	5.0	10.0	5.0	10.0
1403	4	アーキテクト	16	19.1	S	S	-7.7%	5.9%	5.0	10.0	5.0	10.0
1315	4	アーキテクト	16.2	19.1	S	S	-6.5%	5.9%	5.0	10.0	5.0	10.0
3056	4	アーキテクト	16.4	19.2	S	S	-5.4%	6.4%	2.0	13.7	2.0	13.7
5006	4	アーキテクト	16.6	19.2	S	S	-4.2%	6.4%	5	10	5	10
1102	4	アーキテクト	17.1	19.3	S	S	-1.4%	7.0%	2.2	12.4		10
1368	4	アーキテクト	16.2	19.3	S	S	-6.5%	7.0%	5	10	5	10
2006	4	アーキテクト	16.7	19.4	S	S	-3.7%	7.6%	5.0	10.0	3	10
6008	4	アーキテクト	16.7	19.4	S	S	-3.7%	7.6%	5.0	10.0		
7901	4	アーキテクト	16.26	19.47	S	S	-6.2%	7.9%	2.7	10.4	2.7	10.4
1094	4	アーキテクト	16.1	19.5	S	S	-7.1%	8.1%	5.0	10.4	2.7	10.4
2002	4	アーキテクト	16.35	19.5	S	S	-5.7%	8.1%	5.0	10.0		
1337	4	アーキテクト	16.33	19.5	S	S	-6.0%		5.0	10.0	5.0	10.0
					S	S		8.7%			5.0	10.0
1301	4	アーキテクト	16.0	19.8			-7.7%	9.8%	5	10		
1006	4	アーキテクト	17	19.9	S	S	-1.9%	10.3%	1.0	18.0	-	20
1302	4	アーキテクト	17	20	S	S	-1.9%	10.9%	5	20	5	20
7011	4	アーキテクト	17.3	20.5	S	S	-0.2%	13.7%	5.0	10.0		
1035	4	アーキテクト	17	22	S	Α	-1.9%	22.0%	5	10		
1902	4	ケンタウルス	17.7	19.9	S	S	2.1%	10.3%	2.2	12.4		
1911	4	ケンタウルス	17.5	20.1	S	S	1.0%	11.4%	2.2	12.4	2.2	12.4
9050	4	ケンタウルス	17.7	20.5	-	-	2.1%	13.7%				
1012	5	スフィアライト	14.5	17.0	S	S	-16.4%	-5.7%		10.0		10.0
9023SL	5	スフィアライト	15.2	17.3	-	-	-12.3%	-4.1%	1	11	1	11
9023AS	5	アキュラシード	17.8	20.4	-	-	2.7%	13.1%				
8004	5	ルミパルス	17	13	S	S	-1.9%	-27.9%	1.1	9		
1901	5	ルミパルス	16.9	13.9	S	S	-2.5%	-22.9%	2.0	15.0	2.0	15.0
1903	5	ルミパルス	16.7	14.0	S	S	-3.7%	-22.4%	1.84	12.2		
1356	5	ルミパルス	17.0	14.0	S	S	-1.9%	-22.4%	5	10	5	10
1329	5	ルミパルス	16.7	14.1	S	S	-3.7%	-21.8%	1.9	13.7	1.9	13.7
9037	5	ルミパルス	16.7	14.1	-	-	-3.7%	-21.8%				
6016	5	ルミパルス	17.17	14.5	S	S	-1.0%	-19.6%	1.84	12.3	1.84	12.3
3055	5	ルミパルス	17.7	14.8	S	S	2.1%	-17.9%	1.84	12.2	1.84	12.2
5010	5	ルミパルス	17.8	14.9	S	S	2.7%	-17.4%	1.9	13.7	1.9	13.7
9049	5	HISCL	17.9	17.0	-	-	3.3%	-5.7%				
1401	5	HISCL	18.6	17.3	S	S	7.3%	-4.1%	5.0	11.0	5.0	11.0
1541	5	HISCL	18.9	17.6	S	S	9.0%	-2.4%	5.0	15.0		
2009	5	HISCL	20.1	18.5	A	S	16.0%	2.6%	5.0	15.0	5.0	15.0
7001	6	エクルーシス	19.6	16.4	S	S	13.1%	-9.1%		18.7		18.7
3001	6	エクルーシス	18.91	16.47	S	S	9.1%	-8.7%	3	18	3	18
1004	6	エクルーシス	19.2	16.5	S	S	10.8%	-8.5%	0.0	7.7	0.0	7.7
2008	6	エクルーシス	19.2	16.6	S	S	10.8%	-8.0%	0.0	18.7	0.0	18.7
9043-2	6	エクルーシス	19.6	16.6	-	-	13.1%	-8.0%	0.0	10.7	0.0	10.7
1404	6	エクルーシス	19.7	16.9	S	S	13.6%	-6.3%	0	18.7	0	18.7
3022	6	エクルーシス	19.8	16.9	S	S	14.2%	-6.3%	0.90	12.1	0.90	12.1
4002	6	エクルーシス	19.7	16.9	S	S	13.6%	-6.3%	0.90	18.7	0.90	18.7
7002	6	エクルーシス	19.7	17.8	S	S	14.8%	-0.3%		18.6		10.7
7002	0	エンルーシス	13.3	17.0	5	5	14.0%	-1.5%		10.0		

平均 17.34 18.04 SD 1.37 2.21 CV 7.9% 12.3% 3SD2回除去後平均 17.34 18.04 SD 1.37 2.21 CV 7.9% 12.3%

PSA			測	定値		価	バイ	アス	基準範	囲(男)	基準節	囲(女)
施設CD	原理CD	分類	試料15	試料16	試料15	試料16	試料15%	試料16%	下限	上限	下限	上限
9029 9046	1 2	E-テスト LZテスト栄研	0.11 0.24	11.7 12.42	-	-	9.0% 137.8%	-0.8% 5.3%		≦4 4.0		
1073	4	アーキテクト	0.10	10.80	S	Α	-0.9%	-8.4%	0	4	0	4
1038	4	アーキテクト	0.08	10.99	Α	Α	-20.7%	-6.8%	0.0	4.0		
3056	4	アーキテクト	<=0.1	11.2	- S	S	- -0.9%	-5.0%	0.0	<4.0		<4.0
1050 1031	4	アーキテクト アーキテクト	0.10 0.089	11.20 11.354	S	S S	-0.9%	-5.0% -3.7%	0.0	4.0 4		
5006	4	アーキテクト	0.10	11.49	S	S	-0.9%	-2.6%	0	<u>.</u> ≦4	0	≦4
1316	4	アーキテクト	0.09	11.51	S	S	-10.8%	-2.4%	0.00	4.00	0.00	4.00
1358	4	アーキテクト アーキテクト	0.09	11.57 11.59	S S	S S	-10.8%	-1.9%		4.0		
1403 1004	4	アーキテクト	0.09 0.10	11.80	S	S	-10.8% -0.9%	-1.7% 0.1%	0.00	4.0 4.00	0.00	4.00
1040	4	アーキテクト	0.10	11.97	S	S	-0.9%	1.5%	0.00	2.00	0.00	2.00
1310	4	アーキテクト	0.100	11.993	S	S	-0.9%	1.7%	0.000	4.000		
1101	4	アーキテクト	0.092	12.00	S	S	-8.8%	1.8%		4.0		4.0
1072 1315	4	アーキテクト アーキテクト	0.099 0.10	12.004 12.03	S S	S S	-1.9% -0.9%	1.8% 2.0%	0	4.0 4.0		
1094	4	アーキテクト	0.094	12.04	S	S	-6.9%	2.1%	0.000	4.000		
2002	4	アーキテクト	0.10	12.07	S	S	-0.9%	2.3%	0	4		
1529	4	アーキテクト	0.105	12.086	S	S	4.0%	2.5%	0.000	4.000	0.000	4.000
1532 1054	4	アーキテクト アーキテクト	0.1 0.10	12.1 12.20	S S	S S	-0.9% -0.9%	2.6% 3.5%	0.0	4.0 4	0.0	4.0
1368	4	アーキテクト	0.10	12.2	S	S	-0.9%	3.5%	0	4		
1325	4	アーキテクト	0.099	12.233	S	S	-1.9%	3.7%		4.0		
1331	4	アーキテクト	0.106	12.247	A	S	5.0%	3.8%	0.000	4.000	0.000	4.000
7901 1337	4	アーキテクト アーキテクト	0.10 0.10	12.26 12.28	S S	S S	-0.9% -0.9%	4.0% 4.1%	4.00 0	4	4.00 0	4
1348	4	アーキテクト	0.10	12.28	S	S	-0.9%	4.1%	0.0	4.0		
9027	4	アーキテクト	0.095	12.296	-	-	-5.9%	4.3%				
1329	4	アーキテクト	0.100	12.319	S	S	-0.9%	4.5%	0.000	4.000	0.000	0.500
1301 2006	4	アーキテクト アーキテクト	0.10 0.10	12.36 12.37	S S	S S	-0.9% -0.9%	4.8% 4.9%		4.0 4.00		
1382	4	アーキテクト	0.10	12.37	S	S	-0.9%	5.1%		4.00		4.00
7007	4	アーキテクト	0.1	12.4	S	S	-0.9%	5.1%	0	4		
7011	4	アーキテクト	0.10	12.45	S	S	-0.9%	5.6%	0.0	4.0		
6008	4	アーキテクト	0.10	12.5 12.59	S	S S	-0.9% 9.0%	6.0% 6.8%	3.5	19.4	5.2	26.5
1010 1902	4	アーキテクト アーキテクト	0.11 0.11	12.59	A A	S	9.0%	7.2%	0.0 0	4.0 4.000	0.0	4.0
1120	4	アーキテクト	0.10	12.75	S	S	-0.9%	8.1%	0	4		
1302	4	アーキテクト	0.10	12.75	S	S	-0.9%	8.1%		4.0		4.0
1352 1390	4	アーキテクト	0.10	12.83	S A	S S	-0.9% 9.0%	8.8% 9.4%	0	3.99 4.00	0	3.99
1359	4	アーキテクト アーキテクト	0.11 0.10	12.9 12.94	S	S	-0.9%	9.4%		4.00		4.0
1911	4	アーキテクト	0.10	13.03	S	S	-0.9%	10.5%	なし	4.000	なし	4.000
1002	4	アーキテクト	0.105	13.155	S	S	4.0%	11.5%	0	4.000		
1015	4	アーキテクト	0.101	12.528	S S	S S	0.1%	6.2%		4		4
1305 9050	4	ケンタウルス ケンタウルス	0.11 0.13	9.56 10.07	-	-	9.0% 28.8%	-18.9% -14.6%		4		4
3907	4	ケンタウルス	0.13	10.56	S	S	28.8%	-10.5%		4		
1903	5	アクセス	0.097	11.7	S	S	-3.9%	-0.8%		4.0		
9047 1012	5 5	アクセス スフィアライト	0.11 0.11	13.0	- S	- S	9.0%	10.2%		4.00		
9023SL	5	スフィアライト	0.11	13.39 13.804	-	-	9.0% 9.0%	13.5% 17.1%		4.00		4
1402	5	スフィアライト	0.118	13.895	S	S	16.9%	17.8%		≦4.000		-
1013	5	スフィアライト	0.12	14.35	S	S	18.9%	21.7%		4.000		
1360	5	アキュラシード	0.1	10.7	S -	S	-0.9%	-9.3%		4.0		
9023AS 1313	5 5	アキュラシード ルミパルス	0.09 0.094	10.899 10.659	S	S	-10.8% -6.9%	-7.6% -9.6%	0.000	4.000		
1501	5	ルミパルス	0.096	10.743	S	S	-4.9%	-8.9%	0	4	0	4
1024	5	ルミパルス	0.099	10.869	S	S	-1.9%	-7.8%	0	4	0	4
1058	5	ルミパルス	0.102	11.181	S	S	1.1% -0.9%	-5.2%	0.00	4.00	0.00	4.00
3055 5010	5 5	ルミパルス ルミパルス	0.10 0.10	11.21 11.5	S S	S S	-0.9% -0.9%	-4.9% -2.5%	0	4.000 4	0	4.000
9037	5	ルミパルス	0.102	11.50	-	-	1.1%	-2.5%	_			
1542	5	ルミパルス	0.104	11.615	S	S	3.0%	-1.5%		4.0		
6015 1512	5 5	ルミパルス	0.11 0.104	11.68	S S	S S	9.0% 3.0%	-1.0% -0.2%	0.0 0	4.0 4.000		
1512	5	ルミパルス ルミパルス	0.104	11.770 11.939	S	S	3.0% 4.0%	-0.2% 1.2%	U	4.000		4
9040	5	ビトロス	0.103	12.10	-	-	-5.9%	2.6%		4		'
9049	5	HISCL	0.078	11.166	-	-	-22.7%	-5.3%				
2009	5	HISCL	0.10	11.42	В	S	-0.9%	-3.2%	0	4	0	4
1401 3048	5 6	HISCL エクルーシス	0.09 0.098	11.51 10.53	A S	S S	-10.8% -2.9%	-2.4% -10.7%	0	3.99 4.00		
3022	6	エクルーシス	0.099	10.640	S	S	-1.9%	-9.8%		4.0		4.0
1300	6	エクルーシス	0.10	10.85	S	S	-0.9%	-8.0%	0	4.0	0	4.0
3001	6	エクルーシス	0.10	10.92	S	S	-0.9%	-7.4%	0	4	0	4
6016 7002	6 6	エクルーシス エクルーシス	0.10 0.10	10.95 10.98	S S	S S	-0.9% -0.9%	-7.1% -6.9%	0	4.0 3.9	0	4.0
4002	6	エクルーシス	0.10	11.1	S	S	-0.9%	-5.9%		4.0		4.0
8004	6	エクルーシス	0.10	11.1	S	S	-0.9%	-5.9%	0	3.53		
9043-2	6	エクルーシス	0.1	11.1	-	-	-0.9%	-5.9%		4.0		
1001 1404	6 6	エクルーシス エクルーシス	0.1 0.104	11.3 11.440	S S	S S	-0.9% 3.0%	-4.2% -3.0%		4.0 4.0以下		4.0以下
1343	6	エクルーシス	0.104	11.440	S	S	9.0%	-3.0% -2.7%		4.0以下 4		寸.0以下
1505	6	エクルーシス	0.10	11.50	S	S	-0.9%	-2.5%		4		
1901	6	エクルーシス	0.10	11.5	S	S	-0.9%	-2.5%	0.000	4.000	0.000	4.000
7001 2008	6 6	エクルーシス エクルーシス	0.106 0.112	11.577 11.63	S S	S S	5.0% 11.0%	-1.8% -1.4%	0.00	4.000 3.53		4.000
1411	6	エクルーシス	0.112	11.63	S	S	9.0%	-1.4%	0.00	4.0	0	4.0
1006	6	エクルーシス	0.113	11.820	S	S	12.0%	0.2%		4.0		
1506	6	エクルーシス 平均	0.12	11.96 11.821	S	S	18.9%	1.4%		4.0		4.0

 エクルーシス
 0.12
 11.96

 平均
 0.100
 11.821

 SD
 0.014
 0.831

 CV
 13.5%
 7.0%

 3SD2回除去後平均
 0.101
 11.793

 SD
 0.007
 0.791

 CV
 7.2%
 6.7%

フェリチ				定 値	評	価		アス	基準範	囲(男)	基準範	囲(女)
施設CD 9029	原理CD	<u>分類</u> E-テスト	試料15 22.7	<u>試料16</u> 245.5	試料15	試料16	<u>試料15%</u> -21.5%	<u>試料16%</u> -29.6%	下限 25	上限 280	下限	上限 ≦73.3
4002	1 2	E-デスト FER−ラテックスX2「生研」 CN	24.8	245.5	A	S	-21.5% -14.2%	-29.6% -20.5%	0	280 245	3	≥/3.3 132
5006	2	FER-ラテックスX2「生研」 CN	26.7	280.1	S	S	-7.6%	-19.7%	50	200	12	60
5003	2	FER-ラテックスX2「生研」 CN	25.8	280.7	S	S	-10.7%	-19.5%	39.4	340	3.6	114
9012	2	FER-ラテックスX2「生研」 CN	28	281	-	-	-3.1%	-19.4%	50	200	12	60
2006	2	FER-ラテックスX2「生研」 CN	28	282	S	S	-3.1%	-19.1%	22	275	5	204
1316	2	FER-ラテックスX2「生研」 CN	26	284	S	S	-10.1%	-18.5%	30	200	4	97
1038	2	FER-ラテックスX2「生研」 CN	27	284	S S	S	-6.6%	-18.5%	50	200	12	60
1006 3055	2	F E R – ラテックス X 2 「生研」 C N F E R – ラテックス X 2 「生研」 C N	26.7 27.3	284.8 286.5	S	S S	-7.6% -5.6%	-18.3% -17.8%	39.9 50	465 200	6.23 12	138 60
1010	2	FER-ラテックスX2「生研」 CN	29.3	287.2	S	S	1.4%	-17.6%	22.5	233	7.9	75.3
9043	2	FER-ラテックスX2「生研」 CN	28	289	-	-	-3.1%	-17.1%	22.0	200	7.5	75.5
1404	2	F E R – ラテックス X 2 「生研」 C N	27.8	291.5	S	S	-3.8%	-16.4%	21.8	274.7	4.6	204.0
2002	2	FER-ラテックスX2「生研」 CN	27.3	292	S	S	-5.6%	-16.3%	30	300		
6016	2	F E R – ラテックス X 2 「生研」 C N	28.7	295.3	S	S	-0.7%	-15.3%	50	200	12	60
6008	2	FER-ラテックスX2「生研」 CN	28	300	S	S	-3.1%	-14.0%	50	200	12	60
9046 5010	2	LZテスト栄研 LZテスト栄研	27.5 24	282.6 284	- А	- S	-4.9% -17.0%	-18.9% -18.5%	13 13	277 277	5 5	152 152
1315	2	イアトロ	33.6	268.7	-	-	16.2%	-22.9%	10	250	10	250
1402	2	イアトロ	31.3	269.9	-	-	8.3%	-22.6%	30.0	310.0	3.0	120
1329	2	イアトロ	31	283	-	-	7.2%	-18.8%	30	310	5	120
1368	2	LTオートワコー	28	316	В	S	-3.1%	-9.4%	18.7	323	6.9	282.5
1505	2	LTオートワコー	24	324	S	S	-17.0%	-7.1%	15.0	160.0	10.0	60.0
1300	2	LTオートワコー	29.2	324.6	C	S	1.0%	-6.9%	48	165	11	123
1301	2	LTオートワコー	25.7	326.6	A -	S -	-11.1% -23.9%	-6.3%	15	160	10	60
9023AA 1411	2 2	LTオートワコー LTオートワコー	22 29.4	327 327.2	C	S	1.7%	-6.2% -6.2%	48	165	48	165
1031	2	LTオートワコー	28	329	В	S	-3.1%	-5.6%	15.0	160.0	10.0	60.0
1352	2	LTオートワコー	28	331	В	S	-3.1%	-5.1%	15	160	15	160
5005	2	N-Pyt1LA	25.1	272.6	S	S	-13.2%	-21.8%	39.9	465.0	6.2	138.0
2009	2	N-Pyt1LA	24.0	276.5	S	S	-17.0%	-20.7%	50	200	12	60
9014	2	N-Pyt1LA	26	283	-	-	-10.1%	-18.8%				
8004	2	N-Pyt1LA	26	284	S	S	-10.1%	-18.5%	50	200	12	60
1512	2	N-7yt/LA	27	288	S -	S -	-6.6%	-17.4%	21.0	282.0 282.0	10.0 5.0	157.0
1902 9033	2	BML ランピア ラテックス	26.2 21.6	315.4 282.2	-	-	-9.4% -25.3%	-9.5% -19.1%	21.0 17	321	5.0 4	157.0 96
1015	2	ランピア ラテックス	24	281	Α	S	-17.0%	-19.4%	38	234	7	50
1054	4	アーキテクト	27.84	391.44	S	A	-3.7%	12.3%	21.8	274.7	4.6	204.0
1355	4	アーキテクト	29.7	427.3	S	S	2.7%	22.6%	21.8	275	4.6	204
1120	4	アーキテクト	30.005	434.61	S	S	3.8%	24.6%	21.81	274.66	4.63	204.00
1001	4	アーキテクト	29	438	S	S	0.3%	25.6%	22	275	4	164
3056	4	アーキテクト	30.3	440	S	S	4.8%	26.2%	23	250	3.4	120
1382 7011	4	アーキテクト アーキテクト	29.6 29.8	441.1 441.4	S S	S S	2.4% 3.1%	26.5% 26.6%	22.0 22	275.0 275	5.0 5	204.0 204
1325	4	アーキテクト	30.61	442.82	S	S	5.9%	27.0%	22.0	275.0	5.0	204.0
1102	4	アーキテクト	31	446	S	S	7.2%	27.9%	22	275	5.0	20
1094	4	アーキテクト	31.25	448.41	S	S	8.1%	28.6%	21.81	274.66		
1302	4	アーキテクト	31.9	459.3	S	S	10.4%	31.7%	10	250	5	100
9027	4	アーキテクト	30.12	461.14	-	-	4.2%	32.3%				
1390	4	アーキテクト	31.1	461.7	S	S	7.6%	32.4%	21.8	274.7	4.6	204.0
1529 1359	4	アーキテクト アーキテクト	32.3 32.3	463.0 464.4	S S	S S	11.7% 11.7%	32.8% 33.2%	21.0 21.8	282.0 274.7	5.0 4.6	157.0 204.0
1337	4	アーキテクト	30.71	465.52	S	S	6.2%	33.5%	21.81	274.66	4.6	204.0
7007	4	アーキテクト	32.9	467.8	S	S	13.8%	34.2%	21.81	274.66	4.63	204.0
1035	4	アーキテクト	29.41	468.34	S	S	1.7%	34.3%	21.81	274.66	4.63	204
1072	4	アーキテクト	32.8	484.3	S	S	13.5%	38.9%	39.4	340	3.6	114
1532	4	アーキテクト	30.5	487.43	S	S	5.5%	39.8%	30	323	4	142
1358 7901	4	アーキテクト	34.55 19.1	495.41 352.3	A C	S S	19.5% -33.9%	42.1% 1.0%	4.6	204.0	5.3	180
9050	4	ケンタウルス ケンタウルス	29.1	352.3	-	5	0.7%	1.0%	14.5	332	5.5	100
3907	4	ケンタウルス	29.1	355.1	S	S	0.7%	1.8%	12.9	301.3	5.0	177.6
1911	4	ケンタウルス	28.6	357.1	S	S	-1.1%	2.4%	14.5	332.0	5.3	180.0
1013	5	スフィアライト	23	312	S	S	-20.4%	-10.5%	15	250	5	80
9023SL	5	スフィアライト	23.4	312.5	-	-	-19.0%	-10.4%	15	250	5	80
1002	5	ルミパルス	20.0	264.3	S	S	-30.8%	-24.2%	39.4	340		
1313	5	ルミパルス	22.0	277.2	S	S	-23.9%	-20.5%	39.4	340.0	3.6	114.0
9037 6015	5 5	ルミパルス ルミパルス	21.0 20.8	278.3 285.5	- S	- S	-27.3% -28.0%	-20.2% -18.1%	39.4	340.0	3.6	114.0
1903	5	ルミバルス	20.8	285.5	S	S	-28.0%	-18.1% -17.1%	39.4 39.4	340.0	3.6	114.0
9049	5	HISCL	21.9	286.7	-	-	-24.2%	-17.1%	33.7	3.3	5.5	111
1541	5	HISCL	21.6	293.8	S	S	-25.3%	-15.7%	16.0	239.0	2.3	150.0
1004	6	エクルーシス	39	376	S	S	34.9%	7.8%	40	465	6	138
9043-2	6	エクルーシス	39.05	377.5	-	-	35.1%	8.3%				
1040	6	エクルーシス	39	382	S	S	34.9%	9.6%	30	400	15	150
3048	6	エクルーシス	39.3	386.4	S	S	36.0%	10.8%	39.9	465	6.23	138
3022 7002	6 6	エクルーシス エクルーシス	41 40	388 388	S S	S S	41.8% 38.4%	11.3% 11.3%	40 39.9	465 465	6 6.23	138 138
7002	6	エクルーシス エクルーシス	42.0	389.2	S	S	45.3%	11.5%	39.9	465.0	6.2	138.0
1343	6	エクルーシス エクルーシス	40	396	S	S	38.4%	13.6%	40	480	6.2	182
3001	6	エクルーシス	40.8	396.4	S	S	41.1%	13.7%	30	310	30	120
2008	6	エクルーシス	41	400	S	S	41.8%	14.7%	40	465	6	138
1401	7	フレックスC	25.7	348.6	-	-	-11.1%	0.0%	26.0	388.0	8.0	252.0
		平均	28.91	348.67								

プレックスC 25.7 348.6 平均 28.91 348.67 SD 5.38 72.48 CV 18.6% 20.8% 3SD2回除去後平均 28.91 348.67 SD 5.38 72.48 CV 18.6% 20.8%

HBs 抗原・HCV 抗体・梅毒 TP 抗体検査

鹿児島大学病院 検査部 宮内 恵美 熊本保健科学大学 保健科学部 楢原 真二

I. 参加状况

平成 29 年度の HBs 抗原・HCV 抗体・梅毒 TP 抗体検査について、集計・解析結果を報告する。

参加施設数は、HBs 抗原: 152 施設、HCV 抗体: 147 施設、梅毒 TP 抗体: 140 施設であった。

Ⅱ. サーベイ試料について

試料 43 は、アルブミン溶液をベースとし、リコンビナントの HBs 抗原を約 0.5 ng/mL 添加し作製した。HCV 抗体は陰性である。

試料 44 は、アルブミン溶液をベースとし、リコンビナントの HBs 抗原を約 5 ng/mL 添加し作製した。HCV 抗体は陽性(CLEIA 法にて $22\sim23$ C.O.I)とした。

試料 41 は、梅毒 TP 抗体陽性のヒト血清を試料とした。事前に測定した結果は、ラテックス比濁法で 79.0 T.U.(陰性: <10.0 T.U.)、CLEIA 法で 7.5 C.O.I (陰性: <1.0 C.O.I) であった。

試料 42 は、梅毒 TP 抗体陰性のヒト血清を試料とした。事前の測定では、ラテックス 比濁法で <5.0 T.U. (陰性: <10.0 T.U.)、CLEIA 法で <0.1 C.O.I (陰性: <1.0 C.O.I)であった。

Ⅲ. 測定方法および結果

1. HBs 抗原

用手法での測定を行っている施設は 31 施設(20.4%)、自動分析装置での測定を行っている施設は 121 施設(79.6%)であった。(表 1)

用手法では、イムノクロマト法による測定を行っている施設が 30 施設(19.6%)、逆受身粒子凝集法による測定を行っている施設が 1 施設(0.7%)であった。

自動分析装置による測定を原理別に分類すると、化学発光免疫測定法が 69 施設 (45.1%)、化学発光酵素免疫測定法が 45 施設(29.4%)、蛍光酵素免疫測定法が 4 施設 (2.6%)であった。(表 2)

試料 43 の判定結果は、陰性が 17 施設、陽性が 134 施設であった。陰性の結果が得られた施設のほとんどがイムノクロマト法である。このように用手法と自動分析装置とで判定が分かれているのは、試料中の HBs 抗原濃度がイムノクロマト法の最小検出感度よりも低いためと考えられる。試薬によって陰性と陽性の判定が分かれているが、試薬ごとの測定値は収束している。また、自動分析装置での測定を行っている施設で陰性と回答した施設は、判定ミスおよび記入ミスだと思われる。該当する施設は確認をして頂きたい。

試料44では回答が得られたほぼ全ての施設で陽性の結果が得られた。

表 3に試薬別定性結果を、表 4に試薬別定量結果を示すので参考にして頂きたい。

2. HCV 抗体

用手法での測定を行っている施設は 28 施設(19.0%)、自動分析装置での測定を行っている施設は 119 施設(81.0%)であった。(表 5)

用手法は、イムノクロマト法による測定のみであり、上記に示した施設数と同じである。

自動分析装置による測定を原理別に分類すると、化学発光免疫測定法が 65 施設 (44.2%)、化学発光酵素免疫測定法が 47 施設(32.0%)、蛍光酵素免疫測定法が 2 施設 (1.4%)、電気化学発光免疫測定法が 2 施設(1.4%)であった。(表 6)

判定結果において、試料 43 では回答が得られたほぼ全ての施設で陽性の判定であったが、アーキテクトを使用している多数の施設で測定エラーが発生した。試料 44 では回答が得られたほぼ全ての施設で陰性の結果が得られた。試料 43 において測定エラーとなった原因は、試料のベースとして使用したアルブミン溶液にあった。アーキテクトにおける HCV 抗体測定は、血清中の γ -グロブリンが非特異的にマイクロパーティクル(磁性粒子)と吸着することで始まる。次いで、生じた物質にコンジュゲートが反応することで RLU(発光強度)が上昇し結果が得られる。今回の試料は、 γ -グロブリンが含まれていないアルブミン溶液をベースとして使用したため、マイクロパーティクルの吸着反応が起こらなかった。そのため、RLU(発光強度)が得られず測定エラーとなった。

表 7に試薬別定性結果を、表 8に試薬別定量結果を示すので参考にして頂きたい。

3. 梅毒 TP 抗体

用手法での測定を行っている施設は、25 施設(17.9%)、自動分析装置での測定を行っている施設は 115 施設(82.1%)であった。(表 9)

用手法ではイムノクロマト法が 22 施設(15.7%)、受身粒子凝集法が 2 施設(1.4%)、 受身赤血球凝集法が 1 施設(0.7%)であった。

自動分析装置による測定を原理別に分類すると、ラテックス比濁法(汎用機器)が 68

施設(48.6%)と最も多く、化学発光免疫測定法は20 施設(14.3%)、化学発光酵素免疫測定法は19 施設(13.6%)、であった。(表 10)

判定結果において、試料 41 では回答が得られたほぼ全ての施設で陽性、試料 42 では回答が得られた全施設で陰性の結果が得られた。

自動分析装置での測定を行っている施設で、試料 41 で陰性、試料 42 で陽性の回答のあった施設は、判定ミスおよび記入ミスだと思われる。

表 11に試薬別定性結果を、表 12に試薬別定量結果を示すので参考にして頂きたい。

IV. まとめ

梅毒 TP 抗体検査については用手法・自動化法ともに良好な結果が得られた。HBs 抗原は、試料 43 が陰性・陽性の判定が分かれる結果となった。試薬によって検出限界やカットオフ値が異なるためと考えられる。試薬間差や機種間差は日常の検査においても起こりうることであるが、自施設で使用している試薬の特性(最小検出感度やカットオフ値など)をきちんと認識して検査を行っていくことが必要だと考える。HCV 抗体は回答が得られた施設は用手法・自動化法ともに良好な結果であったが、アーキテクトを使用している施設で多数測定エラーとなった。測定エラーとなった原因は、試料のベースにあったため、試料作製方法の見直しを今後の課題としたいと思う。

判定結果においては、判定ミスおよび記入ミスだと思われる施設が数施設あった。日常検査においてはインシデントに繋がるため、判定結果の報告には十分注意をしていただきたいと思う。

表 1 《 HBs抗原 参加施設の用手法・自動化法の推移 》

	2011	年度	2012	年度	2013	年度	2014	年度	2015	年度	2016	年度	2017	年度
	施設数	比率(%)	施設数	比率(%)	施設数	比率(%)	施設数	比率(%)	施設数	比率(%)	施設数	比率(%)	施設数	比率(%)
用手法	40	24. 5	34	22.7	36	23.7	32	21.1	32	20.8	28	18.4	31	20.4
自動化法	121	74. 2	116	77.3	116	76.3	107	70.4	120	77. 9	124	81.6	119	78.3
不明	2	1.2	_	_	_	_	13	8. 5526316	2	1.3	0	0.0	2	1.3
合 計	163	_	150	_	152	_	152	_	154	_	152	_	152	_

表 2 《 HBs抗原 原理別定性結果 》

測定原理	採用	比率		試料	43			試料	44	
测 足原理	施設数	(%)	陰 性	陽 性	保留	無回答	陰 性	陽 性	保留	無回答
イムノクロマト法	30	19.6	14	15	1			30		
化学発光酵素免疫測定法	45	29.4		45				45		
化学発光免疫測定法	69	45. 1	2	66		1	1	67		1
逆受身粒子凝集法	1	0.7	1					1		
蛍光酵素免疫測定法	4	2.6		4				4		
電気化学発光免疫測定法	2	1.3		2				2		
その他	2	1.3		2			·	2	·	
合 計	153	_	17	134	1	1	1	151	0	1

表 3 《 HBs抗原 試薬別定性結果 》

試薬メーカー	試薬名	採用		試料	43			試料	44	
武楽メーガー	武米 石	施設数	陰 性	陽 性	保留	無回答	陰 性	陽 性	保留	無回答
富士レビオ	エスプライン HBsAg	21	14	6	1			21		
ミズホメディー	クイックチェイサー HBsAg	9		9				9		
シスメックス	HISCL HBsAg試薬	9		9				9		
LSIメディエンス	スティシアCLEIA HBs抗原	1		1				1		
和光純薬	スフィアライトHBs抗原	4		4				4		
オーソ	ビトロス HBs抗原	2		2				2		
富士レビオ	ルミパルスI HBsAg	15		15				15		
富士レビオ	ルミパルス HBsAg-HQ	9		9				9		
富士レビオ	ルミパルスプレスト HBsAg	5		5				5		
アボットジャパン	アーキテクト・HBsAg QT	66	2	63		1	1	64		1
シーメンスHC DX	ケミルミ HBs抗原Ⅱ	1		1				1		
シーメンスHC DX	ケミルミ Centaur-HBs抗原	2		2				2		
シノテスト	クイックビーズ HBs抗原	1	1					1		
東ソー	STEテスト「TOSOH」Ⅱ (HBsAgⅡ)	4		4				4		
ロシュ	エクルーシス試薬 HBsAgⅡ	2		2				2		
	合 計	151	17	132	1	1	1	149	0	1

表 4 《 HBs抗原 試薬別定量結果 》

試薬メーカー	試薬名		カットオフ値	単位		試料 43		試料 44			
武来メーカー			カケドオノ旧	平 位	最小値	最大値	平均值	最小值	最大値	平均值	
シスメックス	HISCL HBsAg試薬	9	0.03	IU/mL	0. 23	0. 26	0. 244	1.76	1.97	1.862	
LSIメディエンス	スティシアCLEIA HBs抗原	1	1	C. O. I	5. 9	5. 9	5. 900	48. 60	48. 6	48. 600	
和光純薬	スフィアライトHBs抗原	4	0.18	IU/mL	0.3	0.38	0.340	2. 27	2. 51	2. 40	
オーソ	ビトロスHBs抗原	2	1	C. O. I	5. 51	5. 51	5. 51	47.3	47. 3	47. 30	
富士レビオ	ルミパルス II HBsAg	15	1	C. O. I	2. 900	3.3	3.0929	23.6	26. 200	24. 8457	
富士レビオ	ルミパルスHBsAg-HQ	9	0.005	IU/mL	0.1613	0. 182	0. 171	1. 3256	1.545	1.46	
富士レビオ	ルミパルスプレストHBsAg	5	1	C. O. I	3.8	4. 2	4. 05	37.000	39.8	38. 6	
アボットジャパン	アーキテクト・HBsAg QT	66	0.05	IU/mL	0. 22	0.35	0. 288	1.51	414	8. 048	
シーメンスHC DX	ケミルミ HBs抗原Ⅱ	1	1	Index	9. 042	9. 042	9. 042	69.939	69. 939	69. 939	
シーメンスHC DX	ケミルミCentaur-HBs抗原	2	1	Index	6. 61	6. 9	6. 76	58. 51	59. 1	58. 805	
東ソー	STEテスト「TOSOH」 II (HBsAg II)	4	0.05	IU/mL	0.16	0. 2	0.17667	1. 27	1.51	1. 38667	

《 HCV抗体 参加施設の用手法・自動化法の推移 》

2011	年度	2012	生度	2013	2013年度		2014年度		2015年度		年度	2017年度	
施設数	比率(%)	施設数	比率(%)	施設数	比率(%)	施設数	比率(%)	施設数	比率(%)	施設数	比率(%)	施設数	比率(%)
31	20.5	27	18.6	29	20	25	17. 2	30	20. 0	26	17.6	28	19.0
117	77.5	117	80. 7	115	79. 310345	108	74. 5	118	78. 7	121	81.8	116	79.0
3	2. 0	1	0. 7	1	0. 7	12	8.3	2	1.3	1	0.7	3	2. 0
151	_	145	_	145	_	145	_	150	_	148	_	147	_

表 6 《 HCV抗体 原理別定性結果 》

測定原理	採用	比率		i	試料 43	3			試料 44			
则 足	施設数	(%)	陰 性	陽 性	保留	その他	無回答	陰 性	陽性	保留	無回答	
イムノクロマト法	28	19.0	28						28			
化学発光酵素免疫測定法	47	32.0	46			1			47			
化学発光免疫測定法	65	44. 2	19		1	45			64		1	
蛍光酵素免疫測定法	2	1.4	2						2			
電気化学発光免疫測定法	2	1.4	2						2			
その他	3	2. 0	3						3			
合 計	147	_	100	0	1	46	0	0	146	0	1	

表 7 《 HCV抗体 試薬別定性結果 》

試薬メーカー	試薬名	採用		1	試料 43	3			試	料 44	
武楽メーカー	武栄 石		陰 性	陽 性	保留	その他	無回答	陰 性	陽 性	保留	無回答
オーソ	オーソ・クイックチェイサーHCVAb	28	28					28			
シスメックス	HISCL HCVAb試薬	9	9					9			
和光純薬	スフィアライトHCV抗体	4	4					4			
オーソ	ビトロスHCV抗体	2	2					2			
富士レビオ	ルミパルスⅡオーソHCV	21	20			1		21			
富士レビオ	ルミパルスプレストオーソHCV	11	11					11			
アボットジャパン	アーキテクト・HCV	62	19			42	1	61			1
シーメンスHC DX	ケミルミCentaur-HCV抗体	3	1			2		3			
東ソー	STEテスト「TOSOH」 II (HCVAb)	2	2					2			
ロシュ	エクルーシス試薬Anti-HCVⅡ	2	2					2			
	その他	3	3					3			
_	合計	147	101	0	0	45	1	146	0	0	1

表 8 《 HCV抗体 試薬別定量結果 》

試薬メーカー	試薬名	参加	カットオフ値	単位		試料 43			試料 44			
武楽メーカー	武 栄石	施設数	ガットオノ100	单位	最小値	最大値	平均值	最小値	最大値	平均値		
シスメックス	HISCL HCVAb試薬	9	1	C. O. I	0	0	0	9.3	11.5	10.01		
和光純薬	スフィアライトHCV抗体	4	1	C. O. I	0.01	0.01	0.010	35. 29	45. 72	41. 303		
オーソ	ビトロスHCV抗体	2	1	C. O. I	0	0	0	31.6	31.6	31.6		
富士レビオ	ルミパルスⅡオーソHCV	21	1	COI	0. 1	0.1	0.1	19.6	22. 8	21.661		
富士レビオ	ルミパルスプレストオーソHCV	11	1	C. O. I	0. 1	0.1	0. 1	21	26	23. 37		
アボットジャパン	アーキテクト・HCV	62	1	C. O. I	0	0.04	0.0	10. 28	15. 02	13.65		
シーメンスHC DX	ケミルミCentaur-HCV抗体	3	1	S/CO	0.024	0. 024	0. 02	0	0	0.00		
東ソー	STEテスト「TOSOH」II (HCVAb)	2	1	Index	0	0	0	21.8	21.8	21.8		

表 9 《 梅毒TP抗体 参加施設の用手法・自動化法の推移 》

	2011	年度	2012	年度	2013	2013年度		2014年度		2015年度		2016年度		年度
	施設数	比率(%)	施設数	比率(%)	施設数	比率(%)	施設数	比率(%)	施設数	比率(%)	施設数	比率(%)	施設数	比率(%)
用手法	37	26. 4	28	20.7	28	20.9	25	18.9	28	19.7	23	16.7	25	17. 9
自動化法	95	67. 9	104	77.0	105	78. 4	91	68.9	113	79.6	113	81.9	108	77. 1
不 明	8	5. 7	3	2. 2	1	0.7	16	12. 1	1	0.7	2	1.4	7	5.0
合 計	140	_	135	_	134	_	132	_	142	_	138	_	140	_

表 10 《 梅毒TP抗体 原理別定性結果 》

測定原理	採用	比率		試料	41			試料	42	
测 足原理	施設数	(%)	陰 性	陽 性	保留	無回答	陰 性	陽 性	保留	無回答
イムノクロマト法	22	15. 7	2	20			22			
ラテックス比濁法(専用機器)	1	0. 7		1			1			
ラテックス比濁法(汎用機器)	68	48.6	1	67			68			
化学発光酵素免疫測定法	19	13.6		19			19			
化学発光免疫測定法	20	14.3	1	19		1	19	1		1
受身赤血球凝集法	1	0. 7		1			1			
受身粒子凝集法	2	1.4		2			2			
その他	7	5. 0	·	6			6		·	
合 計	140		4	135	0	1	138	1	0	1

表 11 《 梅毒TP抗体 試薬別定性結果 》

試薬メーカー	=+ 並 々	採用		試料	41			試彩	42	
1000000000000000000000000000000000000	試薬名	施設数	陰 性	陽 性	保留	無回答	陰 性	陽 性	保留	無回答
富士レビオ	エスプラインTP	15		15			15			
ミズホメディー	クイックチェイサーTPAb	7	2	5			7			
積水メディカル	コバスシステム用メディエースTPLA	1		1			1			
シマ研究所	LASAYオートTPAb	7		7			7			
シノテスト	アキュラスオートTP抗体(梅毒)	26		26			26			
A&T	イムノティクルスオート3 TP	11	1	10			11			
積水メディカル	メディエースTPLA	19		19			19			
富士レビオ	ラピディアオートTP	5		5			5			
シスメックス	HISCL TPAb試薬	3		3			3			
和光純薬	スフィアライトTP	2		2			2			
富士レビオ	ルミパルス II TP-N	12		12			12			
富士レビオ	ルミパルスプレストTP	2		2			2			
アボットジャパン	アーキテクト・TPAb	20	1	18		1	18	1		1
富士レビオ	セロディア-TP	1		1			1			
富士レビオ	セロディア-TP・PA	2	_	2			2			
	その他	7		7			7			
_	合計	140	4	135	0	1	138	1	0	1

表 12 《 梅毒TP抗体 試薬別定量結果 》

試薬メーカー	試薬名	参加	カットオフ値	単位		試料 41			試料 42	
武楽メーガー	武栄 石	施設数	ガットオノ1回	单 位	最小値	最大値	平均值	最小値	最大値	平均值
積水メディカル	コバスシステム用メディエースTPLA	1	10	T. U.	84. 1	84. 1	84. 1	0	0	0
シマ研究所	LASAYオートTPAb	7	10	U/mL	44. 9	51.5	49. 24	0	0.6	0. 15
シノテスト	アキュラスオート TP抗体(梅毒)	26	1	COI	3	3.608	3.169	0	0.1	0.0
A&T	イムノティクルスオート3 TP	11	10	U	76.3	100.5	86.86	0	1.1	0.4
積水メディカル	メディエース TPLA	19	10	T. U.	73	84.3	78. 91	-4. 9	0	-0.4
富士レビオ	ラピディアオートTP	5	5	U/mL	47.4	50. 23	49. 33	0	0.4	0. 2
シスメックス	HISCL TPAb試薬	3	1	C. O. I	6.8	6.8	6.8	0	0	0.00
和光純薬	スフィアライト TP	2	1.5	C. O. I	4	4. 1	4. 05	0.1	0.1	0.10
富士レビオ	ルミパルスⅡ TP-N	12	1	C. O. I	7	8	7. 53	0.1	0.1	0. 1
富士レビオ	ルミパルスプレスト TP	2	1	C. O. I	13	15.3	14. 15	0.1	0.1	0. 1
アボットジャパン	アーキテクト・TPAb	20	1	S/CO	3	5. 1	4. 76	0	0. 0475	0. 03

輸血関連検査

久留米大学病院 臨床検査部 江頭弘一

【目的】

めざせ100% -正しい血液型判定と不規則抗体の検出と輸血可能血液の選択-

【配付試料】

21-A:患者血清。

21-B: 患者3%アルセバー浮遊血球。

22-A・22-B・22-C: 在庫供血セグメントチューブ血液 (RBC-LR2 単位製剤想定)。

【検査内容】

試料21で血液型検査と不規則抗体検査を実施して下さい。

また RBC-LR2 単位製剤 (試料 22-A、22-B、22-C) とクロスマッチを実施して下さい。

【試料作成】

21-A: 抗Eを含有したB型血漿 (FFP-LR240 2バッグ分を等量混合)を分注し、配布。

21-B:B型 ee 赤血球濃厚液-LR「日赤」(以下RBC-LRと略す)より調整分注。

22-A:B型FFPとB型ee RBC-LRの合成。 22-B:B型FFPとB型EE RBC-LRの合成。 22-C:B型FFPとB型Ee RBC-LRの合成。

使用した抗E含有FFPならびに因子指定RBC-LR血液は日本赤十字九州ブロック血液センターからの譲渡血である。

【参加・報告施設数】

報告方法は今回も異なる2方法までの報告を可能とし、輸血検査結果記入用紙の欄内の「ドロップダウンリスト」からの選択による回答とした。

ドロップダウンリスト	
ABO試薬	・ヒト由来 ・モノクローナル ・ 動物免疫
抗D試薬	・ポリクローナル ・モノクローナル抗体 ・ポリ+モノブレンド
Rhコントロール	・実施(専用試薬)・実施(自家製)・未実施
酵素試薬	・ブロメリン ・パッペイン ・ フィシン ・未実施
反応増強剤	・ 重合ウシアルブミン・ ポリエチレングリコール (PEG)
	・低イオン強度溶液(LISS)・ウシアルブミン ・ 未使用
参加	・参加・不参加
方法	・試験管 ・ カラム凝集 ・マイクロプレート ・スライド ・ペーパー
カラム法操作	・全自動・半自動・用手法
最終判定反応層	・ 生食水法 (室温) ・ 酵素法 ・ 間接抗グロブリン法
クームス試薬	・ 多特異性 ・ 抗 I g G ・ 抗補体性
ABO判定	・A型 ・ B型 ・O型 ・AB型
	・ A亜型 ・ B亜型 ・ O亜型 ・ AB亜型 ・ 判定保留
RhD判定	・ D陰性 ・ D陽性 ・ D亜型 ・ 判定保留

不	判定	・ 陰性・ 陽性
規		・不参加 ・ 抗D ・抗C ・ 抗E ・ 抗 c ・ 抗 e ・ 抗 F y a
則	同 定	・抗Fyb ・抗Jka ・抗Jkb ・抗K ・抗k・抗Lea・抗Leb
抗		・抗P1 ・抗M ・抗N ・抗S ・抗Xga ・抗Dia
体		・ 抗D+E ・ 抗D+F y b ・抗D+M ・抗E+c ・抗E+F y b
		・抗Lea+Leb ・抗E+M ・ 抗E+D i a
反 点	站 強 度	・陰性 ・w+ ・ 1+ ・ 2+ ・ 3+ ・ 4+ ・溶血
交差定	適合試験判	・適合・不適合

参加施設 177 施設 (昨年: 166 施設)、報告数 196 (2 法報告: 19 施設) であった。 昨年より、参加施設数は5 施設減少したが、新たに 16 施設増えた。2 法報告数は、昨年の 17 施設から 19 施設と 2 施設増加した。

【基本的調査報告結果】 (詳細は「輸血関連検査 報告一覧」参照)

測定は9月6日~15日の間に行われており、試料発送後3~5日で83.6%の施設が測定を実施していた。

測定方法別集計を、図1に示す。

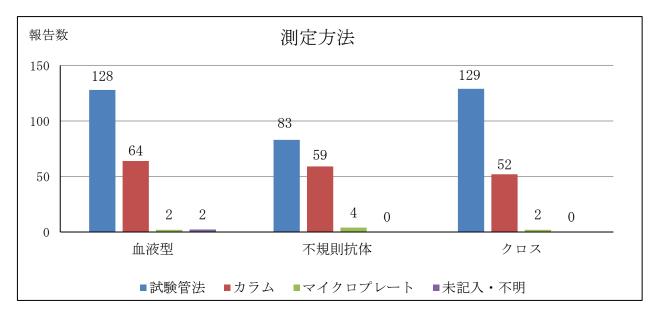


図1. 測定方法別集計

≪血液型検査≫

「ABO 試薬」(図2)

- *試験管法で128 報告の内訳* ヒト由来抗血清:1 (0.8%)、モノクローナル抗血清:126 (98.4%) 動免:1 (0.5%)
- *試験管法以外での68報告の内訳* ヒト由来抗血清:3 (4.4%)、モノクローナル抗血清:65 (95.6%)
- *合計 196 報告* ヒト由来抗血清:4(2.0%)、モノクローナル抗血清:191(97.4%)、動免:1(0.5%) 昨年とほぼ同様の結果であった。

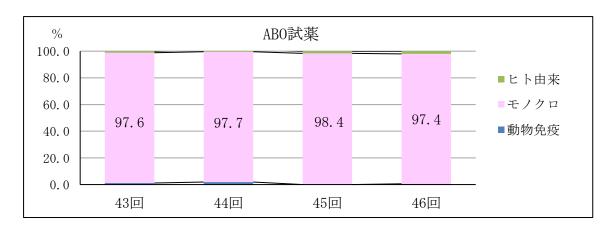


図 2. ABO 試薬

「RhD 試薬」(図3)

試験管法での129 報告の内訳 ポリクローナル抗体:10 (7.8%)、モノクローナル抗体:43 (33.3%)、ポリクローナル・モノクローナルブレンド抗体:76 (58.9%)

試験管法以外での67報告の内訳 ポリクローナル抗体:2 (3.0%) モノクローナル抗体:61 (91.0%)、ポリクローナル・モノクローナルブレンド抗体:4 (6.0%)

合計 196 報告 ポリクローナル抗体: 12 (6.1%)、モノクローナル抗体: 104 (53.1%)、ポリクローナル・モノクローナルブレンド抗体: 80 (40.8%)

昨年とほぼ同様の結果であった。1報告のみ、ABO血液型がカラム凝集、Rh が試験管法と入力されていた。

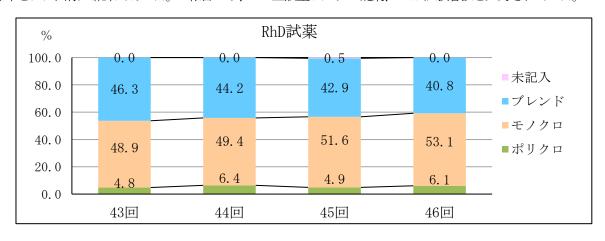


図 3. RhD 試薬

「Rh コントロール試薬」(図 4)

試験管法での129 報告の内訳 未実施:17 (13.2%)、自家製11 (8.5%)、専用:100 (77.5%)、 未回答:1 (0.8%)

試験管法以外での67報告の内訳 未実施:4 (6.0%)、専用:63 (94.0%)

ただしカラム法において、コントロールの反応は陰性だが、試薬は未実施と回答した報告が1報告あり、 矛盾を生じている。カラム法におけるコントロールはカセット1枚全体のコントロールであるが、Rh コントロールの意味も兼ね備えていることを知っておく必要がある。

合計 196 報告 未実施: 21 (10.7%)、自家製: 11 (5.6%)、専用: 163 (83.2%)、未回答: 1 (0.5%) 昨年とほぼ同様の結果であった。

平成24年(2014年)、日本輸血・細胞治療学会より、赤血球型検査(赤血球系検査)ガイドラインの改訂が行われ、「Rh コントロール(陰性対照試薬)は使用する抗D 試薬の添付文書で指定されたものを用いる。」「抗D 試薬と同時にRh コントロールを用いて検査を実施する」と明記された。この事を踏まえ、抗D対照(Rh コントロール)未実施あるいは結果未記入状態でRhDの判定を行った施設は、B判定以下とした(20 施設)。Rh コントロール試薬の使用と、正確な結果入力をお願いしたい。

また、上記ガイドラインに則り、自家製の施設も早期に専用試薬に変更されることが望ましい。 Rh コントロール未実施等の施設は、昨年28 施設であったが、今年は20 施設と減少傾向にあった。

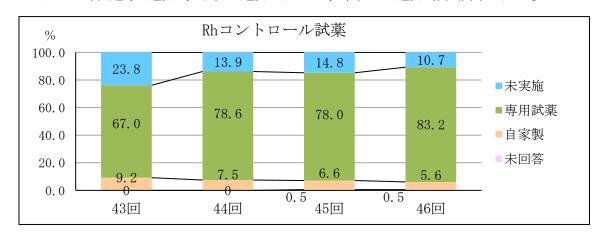


図4. Rh コントロール試薬

《不規則抗体検査》

「酵素試薬」(図5)

試験管法での83 報告の内訳 ブロメリン:24 (28.9%)、フィシン:2 (2.4%)、未実施:54 (65.1%)、 未記入:3 (3.6%)

試験管法以外での63 報告の内訳 ブロメリン:11 (17.5%)、フィシン:17 (27.0%)、パパイン:18 (28.6%)、

未実施:17 (27.0%)

合計146報告 ブロメリン:35 (24.0%)、フィシン:19 (13.0%)、パペイン:18 (12.3%)、

未実施:71 (48.6%)、未記入:3 (2.1%)

昨年よりブロメリンの使用が減少し、パパインの使用が若干増加傾向であるが、全体的には酵素法未実施の傾向にあった。

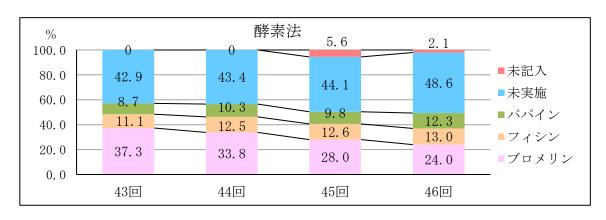


図 5. 酵素試薬

「反応増強剤」(図6)

試験管法での83 報告の内訳 重合ウシアルブミン:3 (3.6%)、ポリエチレングリコール (以下PEGと略す): 77 (92.8%)、低イオン強度溶液 (以下LISSと略す):3 (3.6%)

試験管法以外での63 報告の内訳 重合ウシアルブミン:0、PEG:1 (1.6%)、LISS:61 (96.8%)、 未使用:1 (1.6%)

カラム法において反応増強剤が未使用とした回答が1施設あったが、カラム法で使用する試薬等、説明書を熟読して検査を進めるべきである。

合計146報告 重合ウシアルブミン:3 (2.1%)、PEG:78 (53.4%)、LISS:64 (43.8%)、未使用:1 (0.7%) 昨年とほぼ同様の結果であったが、自動機器の普及により、LISSの使用が増加していることが考えられる。

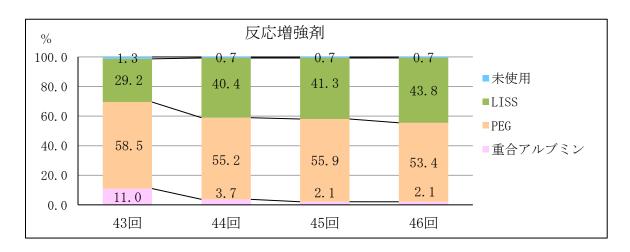
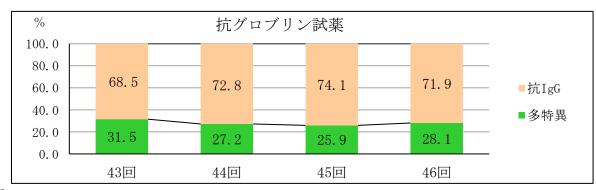



図6. 反応増強剤

「抗グロブリン**試薬**」(図7)

- *試験管法での83報告の内訳* 多特異抗体:11 (13.3%)、抗 IgG:72 (86.7%)
- *試験管法以外での63報告の内訳* 多特異抗体:30 (47.6%)、抗 IgG:33 (52.4%)
- *合計 146 報告* 多特異抗体: 41 (28.1%)、抗 IgG: 105 (71.9%)

多特異クームス試薬が増加傾向にある。また、方法別 反応増強的別 抗グロブリン試薬の使用状況を図8に示

す。

図7. 抗グロブリン試薬

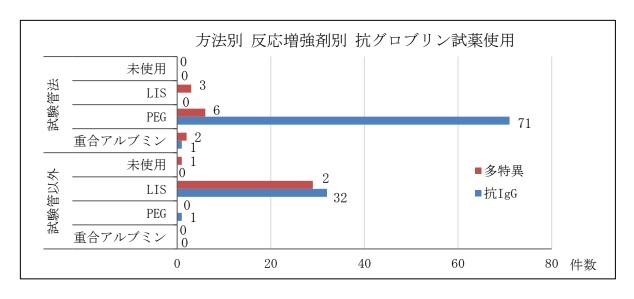


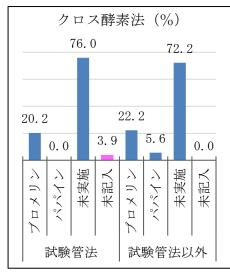
図8. 方法別 反応増強が別 抗グロブリン試薬の使用状況

《交差適合試験》

「酵素試薬」(図9)

- *試験管法での129 報告の内訳* ブロメリン:26 (20.2%)、未実施:98 (76.0%)、未記入:5 (3.9%)
- *試験管法以外での54報告の内訳* ブロメリン:12 (22.2%)、パパイン:3 (5.6%)、未実施:39 (72.2%)
- *合計 183 報告* ブロメリン:38 (20.8%)、パップイン:3 (1.6%)、未実施:137 (74.9%)、未記入:5 (2.7%)

未実施が年々増加傾向にある。未記入報告は減少傾向にあるが、正確な結果入力をお願いしたい。


「反応増強剤」 (図 10)

- ***試験管法での129 報告の内訳*** 重合ウシアルブミン:8 (6.2%)、PEG:113 (87.6%)、LISS:7 (5.4%)、 未使用:1 (0.8%)
- *試験管法以外での54報告の内訳* PEG:1 (1.9%)、LISS:49 (90.7%)、未使用:4 (7.4%)
- *合計 183 報告* 重合ウシアルブミン:8 (4.4%)、PEG:114 (62.3%)、LISS:56 (30.6%)、未使用:5 (2.7%)

昨年とほぼ同様の結果であった。

「抗グロブリン試薬」(図 11)

- *試験管法での129 報告の内訳* 多特異抗体: 26 (20.2%)、抗 IgG: 103 (79.8%)
- *試験管法以外での54報告の内訳* 多特異抗体:22 (40.7%)、抗 IgG:30 (55.6%)、未記入:2 (3.7%)
- *合計 183 報告* 多特異抗体: 48 (26.2%)、抗 IgG: 133 (72.7%)、未記入: 2 (1.1%) 昨年とほぼ同様の結果であった。未記入が2 報告あったので、正確な結果入力をお願いしたい。

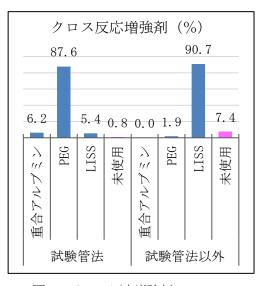


図9. クロス酵素法試薬

図10. クロス反応増強剤

図11. クロス抗ブロブリン試薬

【測定・反応結果】

「ABO 血液型判定」

今回はB型RhD陽性を試料とした。ABO式血液型報告は、B型が196回答中193 (98.5%) であった。3 施設が不正解であった。(詳細は後述)

測定方法は、試験管法:128(65.3%)、カラム凝集:64(32.7%)、マイクロプレート法:2(1.0%)、未記入・不明:2(1.0%)、スライド法、ペーパー法はなかった。

未記入・不明の2回答は、今回試験管法以外で集計を行った。今後は、正確な入力をお願いしたい。

≪判定強度≫

オモテ試験

抗Aとの反応 陰性:194 (99.0%)、4+:1 (0.5%)、3+:1 (0.5%)

抗Bとの反応 4+:192 (98.0%)、3+:1 (0.5%)、陰性:2 (1.0%)、溶血:1 (0.5%)

ウラ試験

A 血球との反応 4+: 128 (65.3%)、3+: 63 (32.1%)、2+: 2 (1.0%)、陰性: 2 (1.0%)、未実施: 1 (0.5%)

B血球との反応 陰性:193 (98.5%)、4+:1 (0.5%)、3+:1 (0.5%)、未実施:1 (0.5%)

今回、ウラ試験のA血球と反応が、3+~4+に97.4%の回答が収束していた。昨年96.7%、一昨年79.2%であったので、各施設の努力が伺える。しかし、ウラ検査未実施(施設 No.1123)の施設があり、血液型検査の原則は、オモテ検査とウラ検査の結果が一致している場合に血液型を判定できると赤血球型検査(赤血球系検査)ガイドラインが示していることから、D判定とした。

施設 No. 1557 は抗 A 4+、抗 B 陰性、A 血球 陰性、B 血球 3+、判定 A 型と回答し、D 判定とした。 施設 No. 6016 は抗 A 3+、抗 B 陰性、A 血球 陰性、B 血球 4+、判定 B 型と回答し、D 判定とした。

「RhD判定」

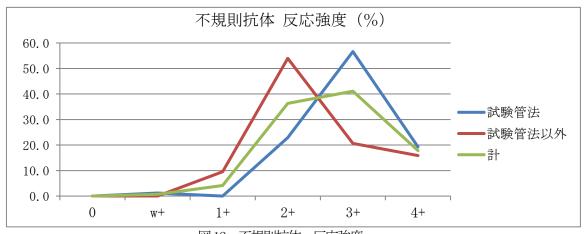
報告施設数、報告方法はABO 式血液型と同様。RhD 陽性は196 回答中196 (100.0%) であった。

≪反応強度≫

抗Dとの反応 4+:178 (90.8%)、3+:18 (9.2%)

Rh コントロール (抗D 対照) との反応 陰性:175 (89.3%)、未実施:20 (10.2%)、未記入:1 (0.5%) 平成24年 (2014年)、日本輸血・細胞治療学会より、赤血球型検査 (赤血球系検査) ガイドラインの改訂が行われ、「Rh コントロール (陰性対照試薬) は使用する抗D 試薬の添付文書で指定されたものを用いる。」「抗D 試薬と同時にRh コントロールを用いて検査を実施する」と明記された。また、前回までは「抗D 対照」と表現が分かりづらかったため、今年からは、「Rh コントロール」と結果記入用紙の変更を行った。これら事を踏まえ、Rh コントロール未実施あるいは結果未記入状態でRhD の判定を行った施設は、B 判定以下とした (20 施設) (施設 No. 1026、1029、1032、1057、1074、1091、1097、1122、1123、1328、1347、1355、1358、1371、1390、1401、1410、1419、1530、1902)。

昨年より9施設減少し、ガイドラインに沿った正しい手順を構築されている努力が伺える。一方で、昨年と同様 改善がみられない施設もあるので、今後の努力に期待したい。


「不規則抗体検査」

今回は、参加報告数 146 回答中、145 回答(99.3%)が陽性と回答した。1 回答は、反応強度が「2+」であったにもかかわらず、判定結果が未記入であったため、B 判定とした(施設 No. 1026)。

参加報告数 146 回答中、試験管法:83 (56.8%)、カラム凝集法:59 (40.4%)、マイクロプレート法:4 (2.7%) であった。

≪反応強度≫ (図 12)

試験管法での83 報告の内訳 w+:1 (1.2%)、2+:19 (22.9%)、3+:47 (56.6%)、4+:16 (19.3%)
試験管法以外での63 報告の内訳 1+:6 (9.5%)、2+:34 (54.0%)、3+:13 (20.6%)、4+:10 (15.9%)
合計146 報告 w+:1 (0.7%)、1+:6 (4.1%)、2+:53 (36.3%)、3+:60 (41.1%)、4+:26 (17.8%)

≪抗体同定≫

同定を実施したのは92 (試験管法: 42 (45.7%)、試験管法以外: 50 (54.3%)) 回答であった。 92 回答全てが、抗Eと回答した。

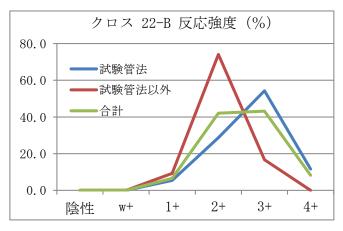
「交差適合試験」(表1)

試料 22-A~C の報告数 183、試験管法:129 (70.5%) カラム凝集法:49 (28.4%)、マイクロプレート法:2 (1.1%) であった。

表 1. 各供血血液に対する判定報告

મુ	サンプル	22-A	22-B	22-C
	血液型	ee	EE	Ee
	期待値	適合	不適合	不適合
回答	適合	183 (100.0%)	0 (0.0%)	3 (1.6%)
凹合	不適合	0 (0.0%)	183 (100.0%)	180 (98.4%)

総回答数 183 で、22-A、B、C ともに全正解は 180 回答で 98.4%。不正解の 3 施設とも、22-C 試料を陰性で適合と回答していた。(施設 No. 1079、1936、4040)


昨年の不正解は1施設であったので、2施設不正解が増加した。交差適合試験は、輸血検査の最後の砦であるので、 不正解施設は、手順や技術、正確な結果入力といった基本をもう一度見直して頂きたい。

≪反応強度≫

22-A、22-B、22-C のそれぞれの反応強度を、表 2 に示す。黄色で示している部分は、最多報告を表している。 また、不適合を示した試料 22-B、22-C の反応強度のグラフを、図 13、図 14 に示す。

表 2. 方法別反応強度

	凝集	試験	管法	試験管	法以外	合	·計
	強度	報告数	割合(%)	報告数	割合(%)	報告数	割合(%)
	陰性	129	100.0	54	100.0	183	100.0
22-A	w+	0	0.0	0	0.0	0	0.0
ハオヘ)	1+	0	0.0	0	0.0	0	0.0
(適合)	2+	0	0.0	0	0.0	0	0.0
ee	3+	0	0.0	0	0.0	0	0.0
66	4+	0	0.0	0	0.0	0	0.0
	計	129	100.0	54	100.0	183	100.0
	陰性	0	0.0	0	0.0	0	0.0
22-B	W+	0	0.0	0	0.0	0	0.0
	1+	7	5.4	5	9.3	12	6.6
(不適合)	2+	37	28.7	40	74. 1	77	42.1
	3+	70	54.3	9	16.7	79	43.2
EE ホモ	4+	15	11.6	0	0.0	15	8.2
	計	129	100.0	54	100	183	100.0
	陰性	3	2.3	0	0.0	3	1.6
22-C	W+	0	0.0	2	3. 7	2	1.1
	1+	15	11.6	24	44.4	39	21.3
(不適合)	2+	50	38.8	23	42.6	73	39.9
	3+	50	38.8	5	9.3	55	30.1
Ee ヘテロ	4+	11	8. 5	0	0.0	11	6.0
	計	129	100.0	54	100.0	183	100

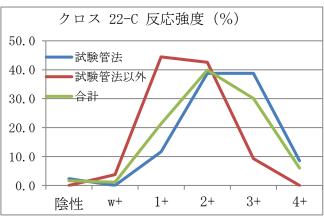


図13. クロス 22-B 反応強度

図14. クロス 22-C 反応強度

【まとめ】

ABO 血液型報告は、196 回答中 193 (98.5%) が B型と回答し、正解であった。昨年が 98.9%なので正解率はほぼ変わらなかった。特にウラ検査を実施せず、オモテ検査のみで血液型判定することは医療安全上危険であり、赤血球型検査ガイドラインや、「輸血療法の実施に関する指針」(厚生労働省)にも血液型の判定は、オモテ検査とウラ検査を実施しなければならず、その両方が一致している場合に血液型を確定することができると記載されているため、改善をお願いしたい。また、ABO 血液型が不正解だった施設は、検体の受け取り手順、確実な検査結果の記載と入力、検査手順の見直し、検査技術の向上などに努めて頂きたい。

RhD 報告は、196 回答中 196(100.0%)が RhD 陽性と回答し、正解であった。昨年と同様に正解率 100.0%であったが、Rh コントロールを実施していないあるいは未記入等で 20 施設は B 判定以下としたので、厳密には 100% とは言い難い。

不規則抗体検査報告は、146 回答中 145 (99.3%) が陽性と回答し、正解であった。1 回答は、反応強度が「2+」であったにもかかわらず、結果が未記入であったため、B 判定とした。正確な結果の入力をお願いしたい。

抗体同定検査報告は、92回答中92(100.0%)が抗Eと回答し、正解であった。今回は報告数も増えた上で昨年と同じく100%正解だったのは、各施設の努力が伺える。

交差適合試験報告は、183 回答で、22-A、B、C ともに全正解は180 回答(98.4%)であり、昨年より正解率は若干下回った(昨年 99.4%)。22-C で 3 回答が不正解であり、Ee のヘテロ血球で抗E の反応も EE のホモ血球より若干弱くなることが予想されるが、陰性ではない。不正解だった 3 施設は、検査手順の見直し、検査技術の向上などに努めて頂きたい。

ただし、表2 方法別反応強度が示す通り、最多報告より、試験管法で±2 管差以上離れている施設(特に22-Bで1+)は、もう一度凝集の観察方法を確認して頂きたい。

今回は、ABO、Rh、不規則抗体、交差適合試験いずれも、100%に近い正解率であり、各施設の努力が伺える。

しかし、輸血の分野は常に100%を目指さないと輸血事故に直結する。更に、昨年の報告で未記入が目立つことから、今年からは未記入がないように結果記入用紙にも注意書きを入れたが、まだ未記入が散見された。未記入の場合、実際に検査を実施しているのか、実施していないのかの判断に苦慮するので、今後未記入欄がある場合は評価が下がることもありうる。

数年前から結果記入用紙は、エクセルのドロップダウン方式を採用しており、回答内容が収束したが、一方で選択ミスやドロップダウンメニューにない選択肢を入力してくる例が散見された。例を挙げると、「陰性」を選択するところで「0」と入力していたり、「B型」を選択するところを、「(B)」と入力していた等が挙げられる。確実なドロップダウンメニューでの選択をお願いしたい。

今一度、入力した報告書を精査して正確な結果入力をお願いしたい。報告書も大事な臨床への情報提供と同じものと考えるので、今後は参加施設全てが輸血検査も100%、完全な形での報告書の作成も100%を目指して努力して頂きたいと考える。検体の受入れや検査、結果入力において複数人でのダブルチェックの導入も積極的に行って頂き、安全で安心な輸血医療に寄与して頂きたい。

最後に、精度管理の試料、結果記入用紙は、患者検体や患者報告書と同様に扱って頂きたいと切に願う。 また、精度管理の実施と並行して、アンケート調査へのご協力頂き大変感謝致します。

【第46回 輸血部門 想定結果一覧】

			ABO血液型	Ĩ		Rh血液型					
	オモラ	テ検査	ウラ	検査	判定	抗D	Rhコント	判定			
	抗A	抗B	A血球	B血球	刊化	1) LD	ロール	刊化			
試料21	陰性	4+	3+~4+	陰性	B型	4+	陰性	D陽性			
		不規則	則抗体			交差適合試験					
	反応	強度	判定	抗体		22-A 22-B		22-C			
	2+~	~3+	陽性	抗E	供血血液	適合	不適合	不適合			

【評価】

()内は、昨年の結果を示す。

評価			施設数	%
A評価	正解	誤回答はなく、今回の輸血では過誤を起こさない	147 (133)	83. 1 (80. 1)
B評価	正解	誤回答はなく、今回の輸血では過誤を起こさないが結果が不十分	23 (29)	13. 0 (17. 5)
C評価	許容回答	誤回答はあったが、今回の輸血では過誤を起こさない	1 (1)	0. 6 (0. 6)
D評価	輸血過誤	血液型間違いや、交差適合試験判定ミスで輸血過誤を引き起こす	6 (3)	3. 4 (1. 8)

⁽B 評価は、Rh コントロール(抗 D 対照)未実施、結果に未記入がある、結果記入に不備がある (Rh コントロール は専用試薬だが、結果が未実施など))

⁽C評価は、未記入項目が2項目以上ある)

輸血関連検査 報告一覧

施設番号に※がついている施設は、2法報告施設の2報告目を示す。

施設	T	••••••	***************************************	ABO血液	<u></u> 型		***************************************			***************************************	Rh血液	 Ū	***************************************	
番号	実施日	方法	試薬	抗A	抗B	A血球	B血球	ABO判定	方法	試薬	抗D	Rhコントロール	Rhコントロール試薬	RhD判定
1001	2017/9/7	カラム凝集法	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集法	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1002	2017/9/6	カラム凝集	モノクローナル	陰性	4+	4+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1004	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリクローナル	4+	陰性	実施(専用試薬)	D陽性
1006	2017/9/7	試験管	モノクローナル	陰性	4+	3+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1010	2017/9/6	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1012	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1013	2017/9/8	カラム凝集	モノクローナル	陰性	4+	4+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1015	2017/9/6	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1018	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1021	2017/9/8	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1023	2017/9/6	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1024	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(自家製)	D陽性
1026	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	未実施	未実施	D陽性
1029	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	未実施	未実施	D陽性
1031	2017/9/10	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1032	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	未実施	未実施	D陽性
1033	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1034	2017/9/7	カラム凝集	モノクロナール	陰性	4+	3+	陰性	B型	カラム凝集	ポリクロナール	4+	陰性	実施(専用試薬)	D陽性
1035	2017/9/11	試験管	モノクローナル	陰性	4+	4+	陰性	 B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1038	2017/9/13	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1039	2017/9/14	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1040	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1044	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	- <u>-</u> B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1046	2017/9/6	試験管	モノクローナル	陰性	4+	3+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1049	2017/9/7	カラム凝集	モノクローナル	陰性	4+	4+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1050	2017/9/8	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1051	2017/9/11	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1054	2017/9/6	カラム凝集	モノクローナル	陰性	4+	4+	陰性	Dエ B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1055	2017/9/8	試験管	モノクローナル	陰性	4+	3+	陰性	B型	試験管	モノクローナル	3+	陰性	実施(専用試薬)	D陽性
1056	2017/9/6	試験管	モノクローナル	陰性	4+	3+	陰性	Dエ B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1057	2017/9/7	試験管	モノクローナル	陰性	4+	3+	陰性	B型	試験管	ポリ+モノブレンド	4+	未実施	未実施	D陽性
1057	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1058	2017/9/11	試験管	モノクローナル	陰性	4+	3+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1060	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	Dエ B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1062	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	Dエ B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1072	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	Dエ B型	試験管	ポリ+モノブレンド	4+	陰性	実施(自家製)	D陽性
1072	2017/9/7	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1073	2017/9/12	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	未実施	未実施	D陽性
1074	2017/9/13	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
	2017/9/13		モノクローナル	}	4+	4+	 	B型	試験管	ポリ+モノブレンド	3+	陰性	実施(専用試薬)	D陽性
1079 1081	2017/9/8	試験管 試験管	モノクローナル	陰性 陰性	4+	3+	陰性 陰性	B型	試験管	モノクローナル	3+	陰性	実施(専用試薬)	D陽性
1081	2017/9/8	試験管	モノクローナル	陰性	4+	3+ 4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1084	2017/9/8	武駅官 カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
}	2017/9/7	カフム/縦果 試験管	モノクローナル	陰性	4+	3+ 4+	陰性	B型	カフム/凝集 試験管	ポリ+モノブレンド	4+ 4+	ļ		
1090	2017/9/7	試験官 試験管	モノクローナル	陰性	4+	3+	陰性	B型	試験管 試験管	ポリ+モノブレンド	4+	陰性 - 宇宙族	実施(専用試薬)	D陽性
1091 1094	2017/9/6	試験官 カラム凝集	モノクローナル	陰性	4+	3+	 	B型	□ 試験官 カラム凝集	モノクローナル	4+	未実施 陰性	未実施 実施(専用試薬)	D陽性
!	dj			ţ	ţ	<u> </u>	陰性	}		 		ţ	}	D陽性
1097	2017/9/8	試験管	モノクローナル	陰性	4+ 4+	4+ 4+	陰性	B型 D刑	試験管	モノクローナル	4+	未実施	未実施	
1101	2017/9/7	試験管	モノクローナル	陰性	 	 	陰性	B型 D刑	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性 D陽性
1102	2017/9/6	カラム凝集	モノクローナル	陰性	4+	3+ 4+	陰性	B型 D펜	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	***************************************
1108	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1120	2017/9/13	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型 D펜	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1121	2017/9/11	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリクローナル	4+	陰性	実施(専用試薬)	D陽性
1122	2017/9/8	カラム凝集	モノクローナル	陰性	4+	4+	陰性	B型	カラム凝集	モノクローナル	4+	未実施	未実施	D陽性
1123	2017/9/8	試験管	モノクローナル	陰性	4+	未実施	未実施	B型	試験管	ポリ+モノブレンド	4+	未実施	未実施	D陽性
1128	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1129	2017/9/9	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1130	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリクローナル	4+	陰性	実施(専用試薬)	D陽性
1131	2017/9/6	試験管	モノクローナル	陰性	4+	3+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性

施設			•••••••••	ABO血液	·····································	***************************************	•••••			••••••	Rh血液		***************************************	
番号	実施日	方法	試薬	抗A	抗B	A血球	B血球	ABO判定	方法	試薬	抗D	Rhコントロール	Rhコントロール試薬	RhD判定
1300	2017/9/7	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1301	2017/9/6	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1302	2017/9/7	カラム凝集	ヒト由来	陰性	4+	4+	陰性	B型	カラム凝集	ポリクローナル	4+	陰性	実施(専用試薬)	D陽性
1305	2017/9/11	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(自家製)	D陽性
1308	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1310	2017/9/7	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1313	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1315	2017/9/8	試験管	モノクローナル	陰性	4+	4+ 2+	陰性	B型 B型	試験管	ポリ+モノブレンド	4+ 2+	陰性	実施(専用試薬)	D陽性
1316 1325	2017/9/11	試験管 カラム凝集法	モノクローナル モノクローナル抗体	陰性 陰性	4+ 4+	3+ 4+	陰性 陰性	B型	カラム凝集法	ポリ+モノブレンド モノクローナル抗体	3+ 4+	陰性	実施(専用試薬)	D陽性 RhD陽性
1327	2017/3/10	マイクロプレート	モノクローナル	陰性	4+	4+	陰性	D王 B型	マイクロプレート	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1328	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	未実施	未実施	D陽性
1329	2017/9/13	カラム凝集	モノクローナル	陰性	4+	4+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1330	2017/9/7	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1331	2017/9/13	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1335	2017/9/8	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1336	2017/9/8	試験管	ヒト由来	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1337	2017/9/7	試験管	モノクローナル	陰性	4+	3+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(自家製)	D陽性
1339	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1343	2017/9/12	カラム凝集	モノクローナル モノクローナル	陰性	4+ 4+	4+ 4+	陰性	B型 B型	カラム凝集 試験管	モノクローナル モノクローナル	4+ 4+	陰性	実施(専用試薬)	D陽性 D陽性
1344 1346	2017/9/6	試験管 試験管	モノクローテル	陰性 陰性	4+	4+ 4+	陰性 陰性	B型 B型	試験管	モノクローテル ポリ+モノブレンド	3+	陰性	実施(専用試薬)	D陽性
1346	2017/9/7	試験管	モノクローナル	陰性	3+	4+ 4+	陰性	B型	試験管	モノクローナル	3+ 4+	未記入	未記入	D陽性
1348	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	D王 B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1349	2017/9/7	試験管法	モノクローナル	(-)	(4+)	(4+)	(-)	(B)	試験管法	ポリクローナル	(4+)	(-)	実施(専用試薬)	(+)
1352	2017/9/12	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1355	2017/9/13	試験管	モノクローナル	陰性	4+	3+	陰性	B型	試験管	モノクローナル	4+	未実施	未実施	D陽性
1356	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1357	2017/9/8	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1358	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	未実施	未実施	D陽性
1359	2017/9/6	試験管	モノクローナル	0	4+	3+	0	B型	試験管	ポリ+モノブレンド	4+	0	実施(専用試薬)	D陽性
1365	2017/9/7	試験管	モノクローナル	陰性	4+	3+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1368	2017/9/7	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型 B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性 D陽性
1370 1371	2017/9/6 2017/9/7	試験管 試験管	モノクローナル モノクローナル	陰性 陰性	4+ 4+	4+ 2+	陰性 陰性	B型	試験管 試験管	モノクローナル モノクローナル	4+ 4+	陰性 未実施	実施(専用試薬)	D陽性
1371	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1390	2017/9/8	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	未実施	未実施	D陽性
1391	2017/9/9	試験管	モノクローナル	陰性	4+	3+	陰性	 B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1393	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1401	2017/9/6	カラム凝集	モノクローナル	陰性	4+	4+	陰性	B型	カラム凝集	モノクローナル	4+	未実施	未実施	D陽性
1402	2017/9/12	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1403	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1404	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1405	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1408	2017/9/7	試験管	モノクローナル	陰性	4+	4+ 4+	陰性	B型 D型	試験管	ポリクローナル	3+ 2+	陰性	実施(専用試薬)	D陽性 D陽性
1410	2017/9/7	試験管	モノクローナル	陰性	4+ 4+	4+ 4+	陰性	B型 B型	試験管 試験管	モノクローナル ポリクローナル	3+ 3+	未実施	未実施 実施(専用試薬)	D陽性
1411 1413	2017/9/7 2017/9/8	試験管 試験管	モノクローナル モノクローナル	陰性 陰性	4+	4+ 4+	陰性 陰性	B型 B型	試験官 試験管	ポリクローナル ポリクローナル	3+ 4+	陰性	実施(専用試薬)	D陽性 D陽性
1415	2017/9/8	試験管	モノクローナル	陰性	4+	4+ 3+	陰性	B型	試験管	ポリ+モノブレンド	3+	陰性	実施(専用試薬)	D陽性
1419	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	未実施	未実施	D陽性
1501	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1502	2017/9/8	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1505	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	3+	陰性	実施(専用試薬)	D陽性
1506	2017/9/6	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1511	2017/9/8	試験管	モノクローナル	陰性	4+	3+	陰性	B型	試験管	ポリ+モノブレンド	3+	陰性	実施(専用試薬)	D陽性
1512	2017/9/6	試験管	モノクローナル	陰性	4+	3+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1513	2017/9/13	試験管	モノクローナル	陰性	4+	4+ 4+	陰性	B型 B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1514	2017/9/6 2017/9/7	試験管 試験管	モノクローナル モノクローナル	陰性 陰性	4+ 4+	4+ 4+	陰性 陰性	B型 B型	試験管 試験管	モノクローナル ポリ+モノブレンド	4+ 4+	陰性 陰性	実施(専用試薬)	D陽性 D陽性
1518 1519	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1520	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1523	未記入	未記入	モノクローナル	陰性	4+	4+	陰性	B型	未記入	モノクローナル	3+	陰性	実施(専用試薬)	D陽性
1525	2017/9/6	試験管	モノクローナル	陰性	4	3	陰性	B型	試験管	ポリ+モノブレンド	4	陰性	実施(専用試薬)	D陽性
1528	2017/9/7	試験管	動物免疫	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1529	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1530	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	未実施	未実施	D陽性
1531	2017/9/6	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1532	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1540	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	3+	陰性	実施(専用試薬)	D陽性

施設				ABO血液	型	*************	***************************************	••••••			Rh血液	 Ū		
番号	実施日	方法	試薬	抗A	抗B	A血球	B血球	ABO判定	方法	試薬	抗D	Rhコントロール	Rhコントロール試薬	RhD判定
1541	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリクローナル	4+	陰性	実施(専用試薬)	D陽性
1542	2017/9/6	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1543	2017/9/11	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1546	2017/9/7	試験管法	モノクローナル	0	4+	4+	0	B型	試験管法	ポリ+モノブレンド	4+	0	実施(専用試薬)	D陽性
1557	2017/9/11	試験管	モノクローナル	4+	陰性	陰性	3+	A型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1558	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリクローナル	4+	陰性	実施(専用試薬)	D陽性
1559	2017/9/7 2017/9/8	試験管 カラム凝集	モノクローナル モノクローナル	陰性 陰性	4+ 4+	4+ 4+	陰性 陰性	B型 B型	試験管 カラム凝集	モノクローナル モノクローナル	4+ 4+	陰性 陰性	実施(専用試薬)	D陽性 D陽性
1901 1902	2017/9/8	カラム凝集	モノクローナル	陰性	4+	4+	陰性	B型	カラム凝集	モノクローナル	4+	未実施	未実施	D陽性
1903	2017/9/7	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1909	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(自家製)	D陽性
1911	2017/9/8	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(自家製)	D陽性
1917	2017/9/6	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1920	2017/9/12	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(自家製)	D陽性
1923	2017/9/11	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	陽性
1925	2017/9/12	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
1928	2017/9/11	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(自家製)	D陽性
1930	2017/9/7	カラム凝集	モノクローナル	陰性	4+	4+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1931	2017/9/6	カラム凝集	モノクローナル	陰性	4+ 4+	4+	陰性	B型 B型	カラム凝集	モノクローナル モノクローナル	4+	陰性	実施(専用試薬)	D陽性
1934 1936	2017/9/7 2017/9/10	カラム凝集 試験管	モノクローナル モノクローナル	陰性 陰性	4+ 4+	4+ 4+	陰性 陰性	B型 B型	カラム凝集 試験管	ポリ+モノブレンド	4+ 3+	陰性	実施(専用試薬)	D陽性 D陽性
2002	2017/9/10	試験管	モノクローナル	陰性	4+ 4+	3+	陰性	B型	試験管	ポリ+モノブレンド	3+ 4+	陰性	実施(専用試薬)	D陽性
2002	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
2008	2017/9/8	カラム凝集	モノクローナル	陰性	4+	3+	陰性	-工 B型	カラム凝集	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
2009	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
2011	2017/9/6	カラム凝集	モノクローナル	陰性	4+	4+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
3001	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
3022	2017/9/6	試験管	モノクローナル	陰性	4+	3+	陰性	B型	試験管	ポリ+モノブレンド	3+	陰性	実施(専用試薬)	D陽性
3048	2017/9/8	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
3055	2017/9/7	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
3056	2017/9/6 2017/9/6	カラム凝集	ヒト由来	陰性	4+ 4+	4+ 4+	陰性	B型 B型	カラム凝集	モノクローナル	4+ 4+	陰性	実施(専用試薬)	D陽性 D陽性
3907 4002	2017/9/6	試験管 カラム凝集	モノクローナル モノクローナル	陰性 陰性	4+	3+	陰性 陰性	D至 B型	試験管	ポリ+モノブレンド モノクローナル	4+ 4+	陰性	実施(自家製) 実施(専用試薬)	D陽性
4040	2017/9/8	試験管	モノクローナル	陰性	4+	3+	陰性	D王 B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
5003	2017/9/12	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
5005	2017/9/6	カラム凝集	モノクローナル	陰性	溶血	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
5006	2017/9/7	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
5010	2017/9/6	カラム凝集	モノクローナル	陰性	4+	4+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
6008	2017/9/9	カラム凝集	モノクローナル	陰性	4+	4+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
6015	2017/9/7	カラム凝集	ヒト由来	陰性	4+	4+	陰性	B型	カラム凝集	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
6016	2017/9/6	試験管	モノクローナル	3+	陰性	陰性	4+	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
7001	2017/9/10	試験管	モノクローナル モノクローナル	陰性	4+ 4+	4+ 3+	陰性	B型 B型	試験管	モノクローナル	4+ 4+	陰性 陰性	実施(専用試薬)	D陽性
7002 7007	2017/9/8 2017/9/7	カラム凝集 試験管	モノクローナル	陰性 陰性	4+	3+ 4+	陰性 陰性	B型	カラム凝集 試験管	モノクローナル モノクローナル	4+ 4+	陰性	本天旭 実施(専用試薬)	D陽性 D陽性
7011	2017/9/8	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
7901	2017/9/7	カラム凝集	モノクローナル	陰性	4+	4+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
8004	2017/9/11	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	3+	陰性	実施(専用試薬)	D陽性
9023	2017/9/15	カラム凝集	モノクローナル	陰性	4+	4+	陰性	- — B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
9040	2017/9/8	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
9999	2017/9/12	カラム凝集	モノクローナル	陰性	4+	4+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
※1004	2017/9/6	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
<u> </u>	2017/9/7	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
<u> </u>	2017/9/6	カラム凝集	モノクローナル	陰性	4+	3+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
※1094 ※1121	2017/9/8 2017/9/6	カラム凝集	モノクローナル モノクローナル	陰性	4+ 4+	3+ 3+	陰性	B型 B型	カラム凝集 試験管	モノクローナル ポリ+モノブレンド	4+ 4+	陰性 陰性	実施(専用試薬)	D陽性 D陽性
<u>**1131</u> **1300	2017/9/6	試験管 カラム凝集	モノクローナル	陰性 陰性	4+	3+	陰性 陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
×1300 ×1316	2017/9/11	対りな凝集	モノクローナル	陰性	4+	3+	陰性	B型	試験管	ポリ+モノブレンド	3+	陰性	実施(専用試薬)	D陽性
×1310	2017/9/13	試験管	モノクローナル	陰性	4+	3+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(自家製)	D陽性
×1343	2017/9/12	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
※ 1352	2017/9/12	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
※ 1371	2017/9/7	試験管	モノクローナル	陰性	4+	2+	陰性	B型	試験管	モノクローナル	4+	未実施	未実施	D陽性
※1402	2017/9/12	試験管	モノクローナル	陰性	4+	4+	陰性	B型	試験管	ポリ+モノブレンド	4+	陰性	実施(専用試薬)	D陽性
※ 1520		マイクロプレート	モノクローナル	陰性	4+	4+	陰性	B型	マイクロプレート		4+	陰性	実施(専用試薬)	D陽性
※1523	未記入	未記入	モノクローナル	陰性	4+	4+	陰性	B型	未記入	モノクローナル	3+	陰性	実施(専用試薬)	D陽性
※1529	2017/9/6	カラム凝集	モノクローナル	陰性	4+	4+	陰性	B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
×1558	2017/9/7	試験管	モノクローナル	陰性	4+	4+ 2+	陰性	B型 B型	試験管	ポリクローナル	4+	陰性	実施(専用試薬)	D陽性
×2008	2017/9/8 2017/9/6	カラム凝集	モノクローナル モノクローナル	陰性	4+ 4+	3+ 4+	陰性	B型 B型	カラム凝集 カラム凝集	ポリ+モノブレンド モノクローナル	4+ 4+	陰性 陰性	実施(専用試薬)	D陽性 D陽性
※3022 ※5010	2017/9/6	カラム凝集 カラム凝集	モノクローナル	陰性 陰性	4+	4+	陰性 陰性	B型 B型	カラム凝集	モノクローナル	4+	陰性	実施(専用試薬)	D陽性
×3010	1 ZUII/3/U	カノム版表		元 土				1 DE	1000元末	-, , - , , , ,		LEIT	⋌心(寸川四米 /	니에그

施設 番号		日幼业内广土口	E#36#		不規則抗体	T+ + ++	_ + 1×2×+1	h /
	方法	最終判定反応層	反応強度	判定	同定抗体名	酵素試薬	反応増強剤	クームス試薬
1001	カラム凝集法	間接抗グロブリン法	2+	陽性	抗E	フィシン	低イオン強度溶液(LISS)	多特異生
1002	カラム凝集	間接抗グロブリン法	3+	陽性	抗E	未実施	低イオン強度溶液(LISS)	抗IgG
1004	試験管	間接抗グロブリン法	2+	陽性	抗E	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1006	試験管	間接抗グロブリン法	3+	陽性	抗E	フィシン	ポリエチレングリコール(PEG)	抗IgG
1010	試験管	間接抗グロブリン法	4+	陽性	抗E	フィシン	ポリエチレングリコール(PEG)	抗IgG
1012	試験管	間接抗グロブリン法	4+	陽性	不参加	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1013	カラム凝集	酵素法	4+	陽性	抗E	パパイン	低イオン強度溶液(LISS)	多特異性
1015	カラム凝集	間接抗グロブリン法	2+	陽性	抗巨	フィシン	低イオン強度溶液(LISS)	多特異性
1018	試験管	間接抗グロブリン法	3+	陽性	抗巨	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1021	試験管	間接抗グロブリン法	2+	陽性	不参加	ブロメリン	重合ウシアルブミン	多特異性
1023	カラム凝集	間接抗グロブリン法	4+	陽性	不参加	パパイン	低イオン強度溶液(LISS)	多特異性
1024	未記入							
1026	試験管	間接抗グロブリン法	2+	未記入	未記入	未実施	ポリエチレングリコール(PEG)	抗IgG
1029	試験管	間接抗グロブリン法	3+	陽性	抗E	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1031	カラム凝集	間接抗グロブリン法	2+	陽性	抗巨	パパイン	低イオン強度溶液(LISS)	抗IgG
1032	不参加							
1033	不参加			***************************************		<u></u>		
1034	カラム凝集	間接抗グロブリン法	4+	陽性	抗E	フィシン	低イオン強度溶液(USS)	抗IgG
1035	試験管	間接抗グロブリン法	2+	陽性	抗巨	未実施	ポリエチレングリコール(PEG)	抗IgG
1038	試験管	間接抗グロブリン法	2+	陽性	抗E	未実施	ポリエチレングリコール(PEG)	抗IgG
1039	カラム凝集	間接抗グロブリン法	2+	陽性	抗E	未実施	低イオン強度溶液(LISS)	抗IgG
1040	カラム凝集	間接抗グロブリン法	2+	陽性	抗E	パパイン	低イオン強度溶液(LISS)	多特異性
1044	不参加				<u> </u>	<u></u>		
1046	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレン グリコール (PEG)	抗IgG
1049	不参加	不参加	未実施	不参加	不参加	未実施	未使用	未実施
1050	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
1051	試験管	間接抗グロブリン法	3+	陽性	抗E	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1054	カラム凝集	間接抗グロブリン法	2+	陽性	不参加	ブロメリン	低イオン強度溶液(LISS)	抗IgG
1055	不参加	自技がプロフランス		りかしエ	71°57/II	7477	四十月ノ 強反治(人口33)	niga
~~~~~	不参加				<b></b>	<b></b>		***************************************
1056	ļ				<b></b>	+ + +	+ # 8	+ +
1057	不参加		4.	7日 小牛	72m	未実施	未使用 ポリエチレングリコール(PEG)	未実施
1058	試験管	間接抗グロブリン法	4+	陽性	不参加	未実施		抗IgG
1059	カラム凝集	間接抗グロブリン法	2+	陽性	抗巨	未実施	低イオン強度溶液(LISS)	抗IgG
1060	不参加		0.	7日 44	1	J	-1°11	
1062	試験管	間接抗グロブリン法	3+	陽性	抗巨	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1072	試験管	間接抗グロブリン法	3+	陽性	抗日	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1073	カラム凝集	間接抗グロブリン法	4+	陽性	不参加	ブロメリン	低イオン強度溶液(LISS)	多特異性
1074	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	多特異性
1077	試験管	間接抗グロブリン法	3+	陽性	抗巨	未実施	ポリエチレングリコール(PEG)	抗IgG
1079	不参加							
1081	試験管	間接抗グロブリン法	2+	陽性	不参加	未実施	低イオン強度溶液(LISS)	多特異性
1084	試験管	間接抗グロブリン法	4+	陽性	抗巨	未実施	ポリエチレングリコール(PEG)	抗IgG
1088	カラム凝集	間接抗グロブリン法	1+	陽性	不参加	ブロメリン	低イオン強度溶液(LISS)	多特異性
1090	試験管	間接抗グロブリン法	3+	陽性	不参加	未記入	ポリエチレングリコール(PEG)	抗IgG
1091	不参加							***************************************
1094	カラム凝集	間接抗グロブリン法	3+	陽性	抗E	未実施	低イオン強度溶液(LISS)	抗IgG
1097	不参加	不参加	未実施	不参加	不参加	未実施	未使用	未実施
1101	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
1102	カラム凝集	間接抗グロブリン法	2+	陽性	抗E	フィシン	低イオン強度溶液(LISS)	多特異性
1108	不参加							
1120	カラム凝集	間接抗グロブリン法	2+	陽性	抗巨	未実施	低イオン強度溶液(LISS)	抗IgG
1121	試験管	間接抗グロブリン法	4+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	多特異性
1122	カラム凝集	間接抗グロブリン法	2+	陽性	不参加	ブロメリン	低イオン強度溶液(LISS)	抗IgG
1123	不参加			1271-			,	
1128	試験管	間接抗グロブリン法	3+	陽性	不参加	ブロメリン	低イオン強度溶液(LISS)	多特異性
1129	不参加		J .	rන Iエ	I D IJH		,_ ,_ ,_ ,_ ,,,,,,,,,,,,,,,,,,,,,,,,,,	ノバスは
1130	試験管	間接抗グロブリン法	3+	陽性	不参加	未記入	ポリエチレングリコール(PEG)	抗IgG
	( PASSA E)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, 0.	1991 I.T.		, -/-110//	,, _ , ~ ~ , , _ /v (i LG) )	July G

施設 番号		B 级 如 六 二 六 □	-+×+	stat 🛨	不規則抗体	##=>#	- + 1×3×+·	h !-===
	方法	最終判定反応層	反応強度	判定	同定抗体名	酵素試薬	反応増強剤	クームス試薬
1300	カラム凝集	間接抗グロブリン法	3+	陽性	抗E	フィシン	低イオン強度溶液(LISS)	多特異性
1301	カラム凝集	間接抗グロブリン法	2+	陽性	抗E	フィシン	低イオン強度溶液(LISS)	多特異性
1302	カラム凝集	間接抗グロブリン法	2+	陽性	抗E	ブロメリン	低イオン強度溶液(LISS)	多特異性
1305	試験管	間接抗グロブリン法	4+	陽性	不参加	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1308	カラム凝集	間接抗グロブリン法	3+	陽性	抗E	ブロメリン	未使用	多特異性
1310	カラム凝集	間接抗グロブリン法	2+	陽性	抗巨	パパイン	低イオン強度溶液(LISS)	多特異性
1313	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
1315	試験管	間接抗グロブリン法	2+	陽性	抗E	未実施	ポリエチレングリコール(PEG)	抗IgG
1316	マイクロプレート	間接抗グロブリン法	4+	陽性	抗巨	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1325	カラム凝集法	間接抗グロブリン試験	3+	陽性	抗E	未実施	低イオン強度溶液(LISS)	抗IgG
	\$		4+	陽性	<b></b>	ļ		
1327	マイクロプレート	間接抗グロブリン法	4*	りあり土	不参加	未実施	低イオン強度溶液(LISS)	抗IgG
1328	不参加				1			
1329	カラム凝集	間接抗グロブリン法	3+	陽性	抗巨	パパイン	低イオン強度溶液(LISS)	多特異性
1330	カラム凝集	間接抗グロブリン法	3+	陽性	抗E	未実施	低イオン強度溶液(LISS)	抗IgG
1331	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
1335	不参加	不参加	未実施	不参加	不参加	未実施	未使用	未実施
1336	試験管	間接抗グロブリン法	2+	陽性	抗E	ブロメリン	ポリエチレングリコール(PEG)	多特異性
1337	試験管	間接抗グロブリン法	2+	陽性	抗E	未実施	ポリエチレングリコール(PEG)	抗IgG
1339	試験管	間接抗グロブリン法	3+	陽性	抗E	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1343	カラム凝集	間接抗グロブリン法	2+	陽性	抗巨	フィシン	低イオン強度溶液(LISS)	抗IgG
1343 1344	試験管	間接抗グロブリン法	4+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	多特異性
	<b></b>	<b></b>	<u> </u>		ş	ļ		
1346	試験管	間接抗グロブリン法	3+	陽性	抗E	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1347	不参加	nn i tili i ti	<u> </u>	70 L-1	<b>-</b>	,	10.1	
1348	試験管	間接抗グロブリン法	2+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
1349	試験管法	間接抗グロブリン	(W+)	陽性	抗E	未実施	ウシアルブミン	多特異性
1352	不参加							
1355	試験管	間接抗グロブリン法	3+	陽性	抗E	未記入	ポリエチレングリコール(PEG)	抗IgG
1356	試験管	間接抗グロブリン法	4+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
1357	試験管	間接抗グロブリン法	3+	陽性	不参加	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1358	試験管	間接抗グロブリン法	2+	陽性	抗E	未実施	ポリエチレングリコール(PEG)	抗IgG
1359	不参加				<u> </u>			
1365	試験管	間接抗グロブリン法	2+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
************	カラム凝集	間接抗グロブリン法	1+	陽性	抗日	未実施	低イオン強度溶液(LISS)	抗IgG
1368	}	<b></b>	{		<u> </u>	ł		
1370	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
1371	不参加							
1382	不参加	不参加	未実施	不参加	不参加	未実施	未使用	未実施
1390	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
1391	試験管	間接抗グロブリン法	3+	陽性	不参加	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1393	不参加							
1401	カラム凝集	間接抗グロブリン法	2+	陽性	抗E	未実施	低イオン強度溶液(LISS)	抗IgG
1402	カラム凝集	間接抗グロブリン法	2+	陽性	抗E	フィシン	低イオン強度溶液(LISS)	抗IgG
1403	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
1404	試験管	間接抗グロブリン法	4+	陽性	抗E	未実施	ポリエチレン グリコール (PEG)	抗IgG
1405	不参加			1911	770-			
	不参加				<b> </b>			
1408	不参加		<b> </b>		<b> </b>			
1410	ф	関体性がっづい さ	2 .	[7旦 사사	不会加	<b>土中</b> #-	ポリエチリン・ガリー リフラウン	++1 ~
1411	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
1413	不参加		ļ	·····	<b> </b>			
1415	不参加		ļ		ļ			
1419	不参加		ļ		<b></b>			
1501	試験管	間接抗グロブリン法	4+	陽性	抗E	未実施	ポリエチレングリコール(PEG)	抗IgG
1502	カラム凝集	間接抗グロブリン法	2+	陽性	抗巨	パパイン	低イオン強度溶液(LISS)	多特異性
1505	試験管	間接抗グロブリン法	4+	陽性	抗E	未実施	ポリエチレングリコール(PEG)	抗IgG
1506	カラム凝集	間接抗グロブリン法	1+	陽性	不参加	未実施	低イオン強度溶液(LISS)	抗IgG
1511	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
1512	試験管	間接抗グロブリン法	3+	陽性	· · · · · · · · · · · · · · · · · · ·	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
	試験管	間接抗グロブリン法	2+	陽性	抗巨	未実施	ポリエチレングリコール(PEG)	抗IgG
1512	試験管	間接抗グロブリン法	3+	陽性	抗日	未実施	ポリエチレングリコール(PEG)	抗IgG
1513	}	·			&	ł		
1514		間接抗グロブリン法	4+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
1514 1518	試験管	間接抗グロブリン法	3+	陽性	抗巨	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1514 1518 1519	試験管	<b>}</b>		陽性	抗E	未実施	ポリエチレングリコール(PEG)	多特異性
1514 1518 1519 1520	\$	間接抗グロブリン法	3+	דו נפיו		1		
1514 1518 1519	試験管	<b>}</b>	3+	) I [6]				
1514 1518 1519 1520	試験管 試験管	<b>}</b>	3+	T				
1514 1518 1519 1520 1523	試験管 試験管 不参加	<b>}</b>	3+ 3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	多特異性
1514 1518 1519 1520 1523 1525	試験管 試験管 不参加 不参加	間接抗グロブリン法			不参加 抗E	未実施未実施	ポリエチレングリコール(PEG) ポリエチレングリコール(PEG)	多特異性 抗IgG
1514 1518 1519 1520 1523 1525 1528 1529	試験管 試験管 不参加 不参加 試験管	間接抗グロブリン法間接抗グロブリン法	3+	陽性	<b></b>	<del></del>		
1514 1518 1519 1520 1523 1525 1528 1529 1530	試験管 試験管 不参加 不参加 試験管 試験管	間接抗グロブリン法間接抗グロブリン法間接抗グロブリン法	3+ 2+	陽性 陽性	抗巨	未実施	ポリエチレングリコール(PEG)	抗IgG
1514 1518 1519 1520 1523 1525 1528 1529	試験管 試験管 不参加 不参加 試験管	間接抗グロブリン法間接抗グロブリン法	3+	陽性	<b></b>	<del></del>		多特異性 抗IgG 多特異性 抗IgG

施設 番号	方法	最終判定反応層	反応強度	判定	不規則抗体 同定抗体名	酵素試薬	反応増強剤	クームス試薬
					<b>!</b>	ļ		
1541	試験管	間接抗グロブリン法	3+	陽性	不参加	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1542	カラム凝集	間接抗グロブリン法	1+	陽性	不参加	未実施	低イオン強度溶液(LISS)	抗IgG
1543	不参加	88차산 보드 국가 가	0.1	7日 小牛	7±10	+ + +	<b>キヘムンフェイン</b>	4+. 0
1546	試験管法	間接抗グロブリン法	2+	陽性	不参加	未実施	重合ウシアルブミン	抗IgG
1557	不参加	T 2 to	+ + +	<b>工</b> 4 切	72h	+==	+ # #	+ + +
1558	不参加	不参加	未実施	不参加	不参加	未実施	未使用	未実施
1559	不参加	不参加	未実施	不参加	不参加	未実施	未使用	未実施
1901	カラム凝集	間接抗グロブリン法	2+	陽性	抗日	パパイン	低イオン強度溶液(LISS)	多特異性
1902	カラム凝集	間接抗グロブリン法	3+	陽性	不参加	ブロメリン	低イオン強度溶液(LISS)	抗IgG
1903	カラム凝集	間接抗グロブリン法	2+	陽性	抗E	フィシン	低イオン強度溶液(LISS)	多特異性
1909	試験管	間接抗グロブリン法	4+	陽性	抗日	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1911	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
1917	不参加	***************************************						
1920	試験管	間接抗グロブリン法	4+	陽性	不参加	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1923	不参加							
1925	不参加							
1928	不参加	不参加	未実施	不参加	不参加	未実施	未使用	未実施
1930	不参加			***************************************				
1931	不参加				<u></u>			
1934	不参加							
1936	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
2002	試験管	間接抗グロブリン法	3+	陽性	抗E	未実施	ポリエチレングリコール(PEG)	抗IgG
2006	試験管	間接抗グロブリン法	3+	陽性	抗巨	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
2008	試験管	間接抗グロブリン法	3+	陽性	抗E	未実施	ポリエチレングリコール(PEG)	抗IgG
2009	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
2011	不参加							
3001	カラム凝集	間接抗グロブリン法	3+	陽性	抗E	パパイン	低イオン強度溶液(LISS)	多特異性
3022	試験管	間接抗グロブリン法	3+	陽性	抗E	未実施	ポリエチレングリコール(PEG)	抗IgG
3048	カラム凝集	間接抗グロブリン法	2+	陽性	抗E	パパイン	低イオン強度溶液(LISS)	多特異性
3055	試験管	間接抗グロブリン法	3+	陽性	抗E	未実施	ポリエチレングリコール(PEG)	抗IgG
3056	カラム凝集	間接抗グロブリン法	4+	陽性	抗E	パパイン	低イオン強度溶液(LISS)	抗IgG
3907	試験管	間接抗グロブリン法	3+	陽性	抗E	未実施	ポリエチレングリコール(PEG)	抗IgG
4002	カラム凝集	間接抗グロブリン法	2+	陽性	抗E	フィシン	低イオン強度溶液(LISS)	多特異性
4040	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	低イオン強度溶液(LISS)	多特異性
5003	試験管	間接抗グロブリン法	3+	陽性	抗E	ブロメリン	ポリエチレングリコール(PEG)	抗原G
5005	カラム凝集	間接抗グロブリン法	2+	陽性	不参加	フィシン	低イオン強度溶液(LISS)	抗IgG
5006	試験管	間接抗グロブリン法	4+	陽性	抗日	未実施	ポリエチレングリコール(PEG)	抗IgG
5010	カラム凝集	間接抗グロブリン法	1+	陽性	抗日	ブロメリン	低イオン強度溶液(LISS)	抗IgG
	カラム凝集	間接抗グロブリン法	2+	陽性	14-	パパイン		
6008	試験管	間接抗グロブリン法	3+	陽性	玩E 不参加	未実施	低イオン強度溶液(LISS) ポリエチレングリコール(PEG)	多特異性 抗IgG
6015		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	d	陽性	<u> </u>	パパイン		多特異性
6016	カラム凝集	間接抗グロブリン法	2+	陽性 陽性	抗日	ļ	低イオン強度溶液(LISS) ポリエチレングリコール(PEG)	
7001	試験管	間接抗グロブリン法	2+		抗日	未実施		抗IgG
7002	カラム凝集	間接抗グロブリン法	3+	陽性	抗日	未実施	0.8%RCD	抗IgG
7007	試験管	間接抗グロブリン法	2+	陽性	抗日	未実施	ポリエチレングリコール(PEG)	抗IgG
7011	カラム凝集	間接抗グロブリン法	4+	陽性	抗日	フィシン	低イオン強度溶液(LISS)	抗IgG
7901	カラム凝集	間接抗グロブリン法	3+	陽性	抗日	パパイン	低イオン強度溶液(LISS)	多特異性
8004	試験管	間接抗グロブリン法	3+	陽性	抗日	未実施	ポリエチレングリコール(PEG)	抗IgG
9023	カラム凝集	間接抗グロブリン法	4+	陽性	抗日	パパイン	低イオン強度溶液(LISS)	多特異性
9040	カラム凝集	間接抗グロブリン法	2+	陽性	抗日	フィシン	低イオン強度溶液(LISS)	多特異性
9999	カラム凝集	間接抗グロブリン法	2+	陽性	抗日	パパイン	低イオン強度溶液(LISS)	多特異性
<u> </u>	カラム凝集	間接抗グロブリン法	2+	陽性	不参加	フィシン	低イオン強度溶液(LISS)	多特異性
<u> </u>	カラム凝集	間接抗グロブリン法	2+	陽性	抗E	未実施	低イオン強度溶液(LISS)	抗IgG
<u> </u>	カラム凝集	間接抗グロブリン法	2+	陽性	抗E	フィシン	低イオン強度溶液(LISS)	多特異性
<u> </u>	カラム凝集	間接抗グロブリン法	3+	陽性	抗E	未実施	低イオン強度溶液(LISS)	抗IgG
<u> </u>	試験管	間接抗グロブリン法	2+	陽性	不参加	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
<b>※1300</b>	不参加							
<b>※</b> 1316	マイクロプレート	間接抗グロブリン法	4+	陽性	抗巨	ブロメリン	低イオン強度溶液(LISS)	抗IgG
<b>X</b> 1329	試験管	間接抗グロブリン法	3+	陽性	不参加	未実施	ポリエチレングリコール(PEG)	抗IgG
<b>%</b> 1343	カラム凝集	間接抗グロブリン法	2+	陽性	抗E	フィシン	低イオン強度溶液(LISS)	抗IgG
<b></b> 1352	不参加							
<b>X</b> 1371	不参加							
<b>X</b> 1402	カラム凝集	間接抗グロブリン法	2+	陽性	不参加	フィシン	低イオン強度溶液(LISS)	抗IgG
×1520	マイクロプレート	間接抗グロブリン法	3+	陽性	抗E	未実施	低イオン強度溶液(LISS)	抗IgG
×1523	不参加							
<del>X1529</del>	カラム凝集	間接抗グロブリン法	2+	陽性	抗E	パパイン	低イオン強度溶液(LISS)	多特異性
×1558	不参加	不参加	未実施	不参加	不参加	未実施	未使用	未実施
×2008	カラム凝集	間接抗グロブリン法	2+	陽性	不参加	未実施	低イオン強度溶液(LISS)	抗IgG
×3022	不参加				51			
	. ~ //	間接抗グロブリン法	1+	陽性	り・ 抗E	ブロメリン	低イオン強度溶液(LISS)	抗IgG

施設		·	·····		······	交差適合	試験		,		
番号	方法	最終判定反応層	22	-A	22	-В	22	-c	酵素試薬	反応増強剤	クームス試導
1001	試験管法	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1002	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
1004	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1006	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1010	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1012	試験管	間接抗グロブリン法	陰性	適合	4+	不適合	4+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1013	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
1015	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1018	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1021	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	ブロメリン	重合ウシアルブミン	多特異性
1023	カラム凝集	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	パパイン	低イオン強度溶液(LISS)	多特異性
1024	未記入										
1026	試験管	間接抗グロブリン法	陰性	適合	4+	不適合	4+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1029	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1031	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1032	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	重合ウシアルブミン	多特異性
1033	不参加										
1034	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
1035	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1038	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1039	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
1040	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1044	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1046	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1049	カラム凝集	間接抗グロブリン法	陰性	適合	1+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
1050	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1051	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1054	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	ブロメリン	低イオン強度溶液(LISS)	抗IgG
1055	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1056	不参加										
1057	試験管	間接抗グロブリン法	陰性	適合	1+	不適合	1+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1058	試験管	間接抗グロブリン法	陰性	適合	4+	不適合	4+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1059	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
1060	不参加										
1062	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1072	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1073	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	ブロメリン	低イオン強度溶液(LISS)	多特異性
1074	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	多特異性
1077	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1079	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	陰性	適合	未実施	重合ウシアルブミン	多特異性
1081	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
1084	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1088	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	ブロメリン	低イオン強度溶液(LISS)	多特異性
1090	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未記入	ポリエチレングリコール(PEG)	抗IgG
1091	試験管	間接抗グロブリン法	陰性	適合	1+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	多特異性
1094	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1097	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1101	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1102	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1108	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	多特異性
1120	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
1121	試験管	間接抗グロブリン法	陰性	適合	4+	不適合	4+	不適合	未実施	ポリエチレングリコール(PEG)	多特異性
1122	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	ブロメリン	低イオン強度溶液(LISS)	抗IgG
1123	未記入										
1128	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	ブロメリン	低イオン強度溶液(LISS)	多特異的
1129	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1130	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未記入	ポリエチレングリコール(PEG)	抗IgG
1131	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG

施設		***************************************				交差適名	試験		••••••••••	***************************************	••••••
番号	方法	最終判定反応層	22	-A	22	-B	,	-C	酵素試薬	反応増強剤	クームス試薬
1300	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
1301	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	ブロメリン	ポリエチレン グリコール (PEG)	抗IgG
1302	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	ブロメリン	低イオン強度溶液(LISS)	多特異性
1305	試験管	間接抗グロブリン法	陰性	適合	4+	不適合	4+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1308	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	未使用	多特異性
1310	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
1313	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1315	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1316	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1325	カラム凝集法	間接抗グロブリン試験	陰性	適合	2+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
1327	マイクロプレート	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施 ブロメリン	低イオン強度溶液(LISS)	抗IgG
1328 1329	試験管 カラム凝集	間接抗グロブリン法 間接抗グロブリン法	陰性 陰性	適合適合	4+ 2+	不適合	3+ 2+	不適合	未実施	ポリエチレングリコール(PEG) 低イオン強度溶液(LISS)	多特異性 多特異性
1330	カラム凝集	間接抗グロブリン法	陰性	適合	1+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
1331	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1335	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	未使用	多特異性
1336	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	ブロメリン	ポリエチレングリコール(PEG)	多特異性
1337	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	ポリエチレン グリコール (PEG)	抗IgG
1339	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1343	カラム凝集	間接抗グロブリン法	陰性	適合	3+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
1344	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレン グリコール (PEG)	多特異性
1346	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1347	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未記入	ポリエチレングリコール(PEG)	抗IgG
1348	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1349	試験管法	間接抗グロブリン	(-)	適合	(1+)	不適合	(2+)	不適合	未実施	ウシアルブミン	多特異性
1352	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	ブロメリン	未使用	抗IgG
1355	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未記入	ポリエチレングリコール(PEG)	抗IgG
1356	試験管	間接抗グロブリン法	陰性	適合	4+	不適合	4+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1357	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1358	試験管	間接抗グロブリン法	陰性	適合	4+	不適合	4+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1359	試験管 試験管	間接抗グロブリン法 間接抗グロブリン法	0 陰性	適合適合	3+ 2+	不適合不適合	2+ 2+	不適合	未実施 未実施	ポリエチレングリコール(PEG) ポリエチレングリコール(PEG)	抗IgG 抗IgG
1365	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
1368 1370	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1371	試験管	間接抗グロブリン法	陰性	適合	1+	不適合	1+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1382	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1390	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1391	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	ļ	ポリエチレン グリコール (PEG)	抗IgG
1393	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1401	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
1402	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
1403	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレン グリコール (PEG)	抗IgG
1404	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1405	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	3+	不適合	未実施	ポリエチレン グリコール (PEG)	抗IgG
1408	試験管	間接抗グロブリン法	陰性	適合	4+	不適合	2+	不適合	未記入	ポリエチレングリコール(PEG)	抗IgG
1410	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1411	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1413	不参加	BB++1+ + 1	g& 1-1	No. 2			4.		+====	±211=-₹1 + ₽21 : / :	44
1415	試験管	間接抗グロブリン法	陰性	適合	1+	不適合	1+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1419	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+ 2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1501	試験管 カラム凝集	間接抗グロブリン法 間接抗グロブリン法	陰性 陰性	適合適合	3+ 2+	不適合	2+ 2+	不適合	未実施 未実施	ポリエチレングリコール(PEG) 低イオン強度溶液(LISS)	抗IgG 多特異性
1502 1505	カフム凝集 試験管	間接抗グロブリン法	陰性	適合	2+ 4+	不適合	2+ 3+	不適合	未実施	低イオン強度溶液(USS) ポリエチレングリコール(PEG)	多特異性 抗IgG
1505	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	3+ 1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
1511	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1512	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1513	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1514	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1518	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	4+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1519	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1520	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	ポリエチレン グリコール (PEG)	多特異性
1523	未記入										
1525	試験管	間接抗グロブリン法	陰性	適合	3	不適合	2	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1528	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	ブロメリン	ポリエチレングリコール(PEG)	多特異性
1529	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	ポリエチレン グリコール (PEG)	抗IgG
1530	カラム凝集	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	ブロメリン	低イオン強度溶液(LISS)	多特異性
1531	カラム凝集	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	パパイン	低イオン強度溶液(LISS)	多特異性
1532	試験管	間接抗グロブリン法	陰性	適合	4+	木適合	4+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
1540	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	ポリエチレン グリコール (PEG)	抗IgG

施設	***************************************	***************************************	••••••••	•	•	交差適名	計験	***************************************		***************************************	
番号	方法	最終判定反応層	22	-A	22	-B	***********	-c	酵素試薬	反応増強剤	クームス試薬
1541	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1542	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
1543	試験管	間接抗グロブリン法	陰性	適合	4+	不適合	3+	不適合	未実施	ポリエチレン グリコール (PEG)	抗IgG
1546	試験管法	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	重合ウシアルブミン	多特異性
1557	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	ブロメリン	ポリエチレン グリコール (PEG)	抗IgG
1558	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレン グリコール (PEG)	抗IgG
1559	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	ブロメリン	ポリエチレン グリコール (PEG)	多特異性
1901	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	パパイン	低イオン強度溶液(LISS)	多特異性
1902	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	ブロメリン	重合ウシアルブミン	多特異性
1903	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	ブロメリン	重合ウシアルブミン	多特異性
1909	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	4+	不適合	ブロメリン	ポリエチレン グリコール (PEG)	抗IgG
1911	試験管	間接抗グロブリン法	陰性	適合	1+	不適合	2+	不適合	未実施	ポリエチレン グリコール (PEG)	抗IgG
1917	未記入										
1920	試験管	間接抗グロブリン法	陰性	適合	4+	不適合	4+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
1923	未記入										
1925	不参加										
1928	不参加	不参加	未実施	未実施	未実施	未実施	未実施	未実施	未実施	未使用	未実施
1930	カラム凝集	間接抗グロブリン法	陰性	適合	1+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
1931	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
1934	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
1936	試験管	間接抗グロブリン法	陰性	適合	4+	不適合	陰性	適合	未実施	ポリエチレングリコール(PEG)	抗IgG
2002	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
2006	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
2008	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	ポリエチレン グリコール (PEG)	抗IgG
2009	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
2011	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	未記入
3001	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
3022	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	ポリエチレン グリコール (PEG)	抗IgG
3048	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
3055	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレン グリコール (PEG)	抗IgG
3056	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	未使用	未実施
3907	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
4002	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
4040	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	陰性	適合	未実施	低イオン強度溶液(LISS)	多特異性
5003	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
5005	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
5006	試験管	間接抗グロブリン法	陰性	適合	4+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
5010	カラム凝集	間接抗グロブリン法	陰性	適合	1+	不適合	1+	不適合	ブロメリン	低イオン強度溶液(LISS)	抗IgG
6008	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
6015	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
6016	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
7001	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	重合ウシアルブミン	多特異性
7002	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	w+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
7007	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
7011	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
7901	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
8004	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレン グリコール (PEG)	抗IgG
9023	カラム凝集	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
9040	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
9999	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	ブロメリン	低イオン強度溶液(LISS)	多特異性
<b>※1004</b>	不参加										
<b>※</b> 1006	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
<b>※</b> 1015	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
<b>※</b> 1094	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	w+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
<b>※</b> 1131	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
<b>※</b> 1300	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
<b>※</b> 1316	マイクロプレート	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
<b>※</b> 1329	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	2+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
<b>※</b> 1343	カラム凝集	間接抗グロブリン法	陰性	適合	3+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
<b>※</b> 1352	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	ブロメリン	未使用	抗IgG
<b>※</b> 1371	試験管	間接抗グロブリン法	陰性	適合	1+	不適合	1+	不適合	未実施	ポリエチレングリコール(PEG)	抗IgG
<b>※</b> 1402	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	ブロメリン	ポリエチレングリコール(PEG)	抗IgG
<b>※</b> 1520	試験管	間接抗グロブリン法	陰性	適合	2+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
<b>※</b> 1523	不参加										
<b>※</b> 1529	カラム凝集	間接抗グロブリン法	陰性	適合	2+	不適合	2+	不適合	未実施	低イオン強度溶液(LISS)	多特異性
<b>※</b> 1558	試験管	間接抗グロブリン法	陰性	適合	3+	不適合	3+	不適合	未実施	ポリエチレン グリコール (PEG)	抗IgG
		ᄪᅝᅷᅜᇊᅼᄓᅩᆉ	陰性	適合	2+	不適合	1+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG
<b>※2008</b>	カラム凝集	間接抗グロブリン法	8 PXII :	8 22 11	, <u>-</u> .	1 122 1	§ ''	~		131172 342/11/2 (1100)	2000-
	カラム凝集 カラム凝集	間接抗グロブリン法	陰性	適合	3+	54000	2+	不適合	未実施	低イオン強度溶液(LISS)	抗IgG

# [生化学項目]

項 目 別 解 析

# 目標値の設定について

## 【目標値設定の主旨】

九州精度管理調査の試料には、正確さを考慮した目標値を設定している。

この目標値の設定は、九州精度管理調査に参加する各施設の臨床検査値の"正確さ"を評価することを目的としている。九州精度管理調査参加各施設は、自施設の報告値を目標値と比較して、検査データの標準化をさらに進めていただきたい。

# 【九州地区目標値設定ワーキンググループ】

目標値の設定は、九州地区目標値設定ワーキンググループの下記施設にて実施した。 九州大学病院、産業医科大学病院、久留米大学病院、飯塚病院、福岡大学病院、 福岡赤十字病院、聖マリア病院、福岡大学筑紫病院、佐賀大学医学部附属病院、 長崎大学病院、熊本大学医学部附属病院、大分大学医学部附属病院、大分県立病院、 宮崎大学医学部附属病院、鹿児島大学病院、琉球大学医学部附属病院

## 【目標値設定の手順】

目標値の設定は、図1のフローチャートに従って実施した。

測定値(生データ)の桁数は認証標準物質等の標準品の桁数に合わせ、標準品がない項目 (TP、TB等)については臨床報告値より一ケタ下の位までの設定にした。

精密さのチェック: ワーキンググループ各施設が日常検査に用いている試薬は、各施設における日間再現精度の変動係数 (CV%) を求め、生理的変動をもとに算出した施設内の許容誤差限界  $(CV_A\%)$  と比較した。なお日間再現精度が基準を満たさない場合は、試料測定日より前に併行精度 (CV%) を求め、 $CV_A\%$ と比較した。また、ワーキンググループ各施設が日常的に用いていない試薬の場合にはランダマイズ 2 回測定を行い、その標準偏差 (SD) を生理的変動幅  $(1/2SD_W)$  と比較した。ランダマイズ 2 回測定が実施できない場合は併行精度 (CV%) を求め、 $(CV_A\%)$ と比較した。

(除外基準)日間再現精度において複数濃度中 2 濃度以上で  $CV\%>CV_A\%$ かつ併行精度において複数濃度中 2 濃度以上で  $CV\%>CV_A\%$ の場合、また日常的に用いていない試薬の場合には、ランダマイズ 2 回測定で SD 値>1/2  $SD_W$ 、あるいは併行精度において複数濃度中 2 濃度以上で  $CV\%>CV_A\%$ の場合、その施設のその項目データは全て除外した。

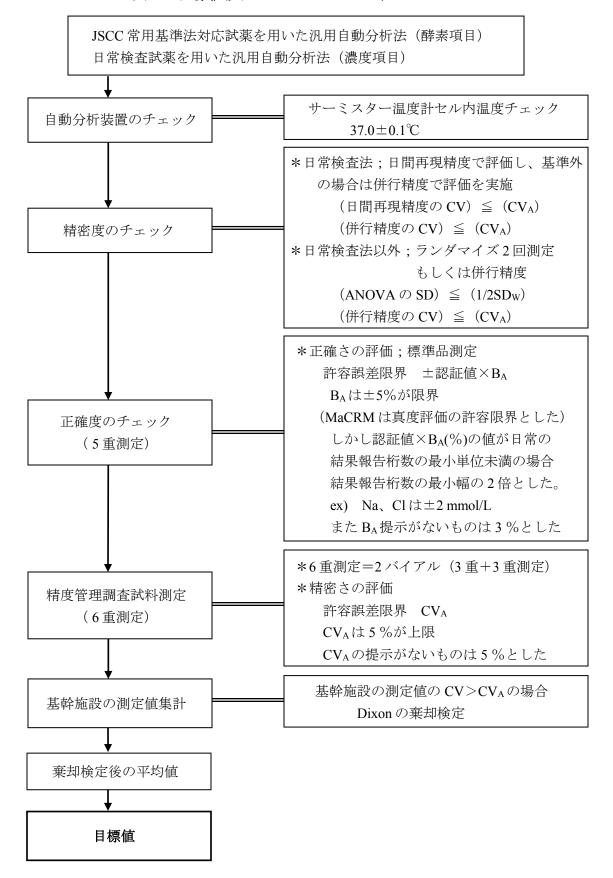
<u>正確さのチェック</u>:標準品がある場合、それを 5 重測定し、測定平均値と認証値の隔たり ((認証値-測定平均値)/認証値)を BA%で評価した。標準品がない場合、このチェックは適応しない。

(除外基準)標準品の認証値が1濃度のみの場合は、その1濃度が外れたときにはその施設のその項目データを全て除外した。複数濃度の場合は、2濃度以上が外れたときに

その施設のその項目データを全て除外した。(HDL-C、LDL-C については対象とする標準品全てが基準を外れた場合のみ除外対象とした。)但し、BA%が最小報告値よりも小さい項目の場合(Na、K、Cl、ALB、CRE、Ca、Mg等)には、最小報告値の2倍を除外基準とした。また、標準品未測定の場合、その施設の該当項目データを全て除外した。

精度管理試料測定:各試料は2バイアルをそれぞれ3重測定、計6重測定測定し、計6 重測定の測定値から求めたCV%をCVA%で評価した。 (除外基準)各試料の6重測定CV%>CVA%の場合、その試料データを除外した。

<u>測定値の検定</u>:除外されなかった各施設の測定平均値より精度管理試料の CV%を求め、 CV_A%で評価した。CV%>CV_A%の場合、各測定平均値は昇順に並べ替えて両端値を Dixon 検定し、外れ値は棄却した。


目標値:上記手順にて除外されなかった測定値の平均値を目標値とした。

<u>目標範囲</u>:目標範囲は、A) ワーキンググループ各施設の施設間 2SD、B) 目標値 $\pm BA$ %、C) 各項目の最小報告値、のうち最も大きいものとした。また、HbA1c は生理的変動幅についての報告などから目標値 $\pm 0.2\%$ とした。

なお、CRP の試料 13 および試料 14 については目標値設定施設により設定された目標値とサーベイ参加施設の測定値に乖離が認められたため、目標範囲を目標値 $\pm 3SD$  とした。

正確さの評価に用いた標準品を表 1、許容誤差限界を表 2、CVA 及び BA の運用を表 3、各施設の使用機器及び使用試薬などの測定条件を表 4 に、最終的に求められた目標値と目標範囲を表 5 に示す。

図 1. 目標値設定のためのフローチャート



# 表1 正確さの評価に用いた標準品

2 1 11 PE C 1 F I	m(-) 3 ( ) C   O ( )   H
標準品	項目
含窒素・グルコース常用参照標準物質	GLU, UN, CRE, UA
コレステロール・中性脂肪常用参照標準	TC、HDL-C、LDL-C、TG
物質	
電解質常用参照標準物質	Ca, Mg, Na, K, Cl
血清鉄常用参照標準物質	Fe
無機リン認証実用標準物質	IP
IFCC 血漿蛋白国際標準品	ALB、IgA、IgM、IgG
IFCC 血清 CRP 国際標準品	CRP
HbA _{IC} 測定用実試料一次標準物質	HbA _{1C}
常用参照標準物質: JSCC 常用酵素	AST、ALT、ALP、LD、 γ GT、CK、AMY
常用参照標準物質:ChE	CHE
多項目実用参照物質: JCCLS MaCRM	AMY、HDL-C、LDL-C

# 表 2 許容誤差限界

項目	CV _A (%)	B _A (%)
GLU	2.9	2.3
UN	7.1	6.0
CRE	2.7	4.8
UA	4.4	6.5
TB	11.7	12.1
DB	14.8	13.1
Ca	1.3	1.0
IP	4.6	3.5
Fe	16.9	11.3
Na	0.4	0.3
K	2.6	1.9
Cl	0.7	0.5

	HI H RVA	117471
項目	CV _A (%)	B _A (%)
TP	1.5	1.2
ALB	1.6	1.3
TC	3.4	4.5
HDL-C	4.2	6.0
LDL-C	4.6	6.9
TG	14.8	15.4
CRP	28.6	27.7
IgG	2.3	4.2
IgA	2.0	9.9
IgM	2.8	11.1
C3	3.8	4.3
C4	5.6	6.6

項目	$CV_A(\%)$	B _A (%)
AST	7.6	7.1
ALT	11.1	12.4
LD	3.4	3.9
ALP	3.9	6.5
CK	11.1	11.3
γGT	8.2	12.8
AMY	4.2	6.8
CHE	2.6	4.7
LAP	2.4	5.6
PL	3.4	3.9
TTT	11.6	15.2
ZTT	3.9	8.4

(日本臨床化学会クオリティマネジメント専門委員会:生理的変動に基づいた測定の許容誤差限界)

# 表 3 CVA、BAの運用

	精密さの評価	正確さの評価
対象項目	併行精度 日内再現精度 日間再現精度	標準物質(真度管理物質)および参照物質 の精確さ 外部精度管理調査の評価
評価指標	変動係数	かたより:測定値(平均値)-目標値
許容誤差限界	CVA CVA>5%の場合、5%が上限	±目標値×BA BA>5% BA< - 5%の場合、±5%が上限 (MaCRM は真度評価の許容限界)
留意点	低濃度(活性)域の試料を評価する場合は5%ではなく CVA(表 2の値)とすることもある。	BA が小さい項目の場合(Na、K、Cl、ALB、CRE、Ca、Mg)には、最小報告値およびその 2 倍を許容誤差限界とする。

	i目	TP	及び使用記 ALB	IgG	IgA	IgM	C3	C4	CRP	RF
	測定機器名	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008
	測定方法	· ビューレット法	改良型BCP法	免疫比濁法	免疫比濁法	免疫比濁法	免疫比濁法	免疫比濁法	ラテックス比濁法	ラテックス免疫法
九州大学	試薬メーカー名	カイノス	カイノス	ニットーホ゛ーメテ゛ィカル	ニットーホ゛ーメテ゛ィカル	ニットーホ゛ーメテ゛ィカル	ニットーホ゛ーメテ゛ィカル	ニットーホ・ーメテ・ィカル	デンカ生研	LSIメディエンス
病院	試薬キット名	アクアオートカイノスTP II	アクアオートカイノスALB	N-アッセイTIAIgG-SH	N-アッセイTIAIgA-SH	N-アッセイTIAIgM-SH	N-アッセイTIAC3-SH	N-アッセイTIAC4-SH	CRP-ラテックスX2「生研」	17⊦□RF II
	標準物質	TP/ALB標準血清	TP/ALB標準血清	マルチV-SH2	マルチV-SH2	マルチV-SH2	マルチV-SH2	マルチV-SH2	CRPX2 標準液NX	RF+vJJ [*] レータ
	測定機器名	Labospect008	Labospect008	BM6010	BM6010	BM6010	BM6010	BM6010	Labospect008	BM6010
福岡大学	測定方法	ビューレット法	改良BCP法	免疫比濁法	免疫比濁法	免疫比濁法	免疫比濁法	免疫比濁法	ラテックス比濁法	ラテックス免疫法
病院	試薬メーカー名	積水メディカル	積水メディカル	ニットーホ゛ーメテ゛ィカル	ニットーホ゛ーメテ゛ィカル	ニットーホ゛ーメテ゛ィカル	ニットーホ゛ーメテ゛ィカル	ニットーホ゛ーメテ゛ィカル	デンカ生研	栄研化学
אפו פאל	試薬キット名	クオリシ゛ェントTP	クオリシ゛ェントALB	N-アッセイTIAIgG-SH	N-アッセイTIAIgA-SH	N-アッセイTIAIgM-SH	NアッセイTIA C3-SH	NアッセイTIA C4-SH	CRP-ラテックスX2「生研」	LZテスト栄研RF
	標準物質	Caキャリフ・レータ	Caキャリプレータ	マルチV-SH2	マルチV-SH2	マルチV-SH2	マルチV-SH2	マルチV-SH2	CRPX2 標準液NX	LZ-RF標準栄研
	測定機器名	BM9130	BM9130						BM9130	BM9130
福大筑紫	測定方法	ビューレット法	BCP改良法						ラテックス比濁法	ラテックス免疫法
病院	試薬メーカー名	関東化学	オリエンタル						関東化学	ニットーホ゛ーメテ゛ィカル
71 3130	試薬キット名	シカリキッド	シカリキッド-P						サイアス V	NアッセイLA-K
	標準物質	TP·ALB標準血清	TP·ALB標準血清						V CRP用標準血清(A)	RF標準血清LA
	測定機器名	Labospect008 α	Labospect008 α	Labospect008 α	Labospect008 α	Labospect008 α	Labospect008 α	Labospect008 α	Labospect008 α	Labospect008 α
久留米大学	測定方法	ビューレット法	BCP改良法	免疫比濁法	免疫比濁法	免疫比濁法	免疫比濁法	免疫比濁法	ラテックス比濁法	ラテックス免疫法
病院	試薬メーカー名	和光純薬	和光純薬	和光純薬	和光純薬	和光純薬	和光純薬	和光純薬	和光純薬	和光純薬
	試薬キット名	Lタイプ・ワコーTP	L917 73-ALB-BCP	オートワコーIgG・N	オートワコーIgA・N	オートワコーIgM・N	オートワコーC3・N	オートワコーC4・N	LTオートワコーCRP-HS II	LTオートワコー RF
	標準物質	Ca(酵素法)キャリプレー	Ca(酵素法)キャリプレーク	専用キャリブレーター	専用キャリブレーター	専用キャリブレーター	専用キャリブレーター	専用キャリブレーター	LT・CRP-HSキャリブ	専用キャリブレーター
	測定機器名	BM6070	BM6070	BM6070	BM6070 免疫比濁法	BM6070 会点以深法	BM6070 在点以需求	BM6070	BM6070	BM6070
飯塚病院	測定方法	ビューレット法	BCP改良法	免疫比濁法		免疫比濁法	免疫比濁法	免疫比濁法	ラテックス比濁法	ラテックス免疫法
<b>姒-涿</b> /阴/兀	試薬メーカー名 試薬キット名	積水メディカル オーートセラTD試薬	積水メディカル	デンカ生研 InCatio NY「生研」	デンカ生研 エーヘーTiヘ NS「生研」	デンカ生研 エჾルーエス ハン「生研」	デンカ生研 C2ーTIA NY「生研」	デンカ生研 C4-TIA NY「生研」	デンカ生研 CPD-ラテックスソ2「生研」	栄研化学 LZテスト栄研RF
楞	標準物質	オートセラTP試薬 セロノルム・マルチキャリブレータ	ピュアオートS ALB	IgG-TIA NX「生研」 マルチ煙淮流	IgA-TIA NS「生研」 マルチ標準液	IgM-TIA NX「生研」	C3-TIA NX「生研」 マルチ標準液	C4-TIA NX「生研」 マルチ標準液	CRP-ラテックスX2「生研」 CRPX2 標準液NX	LZTXN宋研RF LZ-RF標準栄研
	標準物員 測定機器名	BM2250	セロノルム・マルチキャリブレータ BM2250	マルチ標準液 BM2250	マルチ標準液 BM2250	マルチ標準液 BM2250	マルチ標準液 BM2250	マルチ標準液 BM2250	CRPX2 標準液NX BM2250	LZ-RF標準末研 BM2250
	測定方法	ビューレット法	BCP改良法	免疫比濁法	免疫比濁法	免疫比濁法	免疫比濁法	免疫比濁法	ラテックス比濁法	ラテックス免疫法
産業医科	試薬メーカー名	和光純薬	和光純薬	和光純薬	和光純薬	和光純薬	和光純薬	和光純薬	和光純薬	学研化学
大学病院	試薬キット名	Lタイプ・ワコーTP	Lタイプ・ワコーALB-BCP	オートワコーIgG・N	オートワコーIgA・N	オートワコーIgM・N	オートワコーC3・N	オートワコーC4・N	LTオートワコーCRP-HS II	LZテスト栄研RF
	標準物質	血清マルチキャリプレーター	血清マルチキャリプレーター	免疫キャリプレーター・N	免疫キャリフ・レーター・N	免疫キャリフレーター・N	免疫キャリプレーター・N	免疫キャリフ・レーター・N	LT・CRP-HSキャリブ	LZ-RF標準栄研
	測定機器名	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008
	測定方法	· ビューレット法	BCP改良法	免疫比濁法	免疫比濁法	免疫比濁法	免疫比濁法	免疫比濁法	ラテックス比濁法	ラテックス免疫法
	試薬メーカー名	カイノス	カイノス	LSIメディエンス	LSIメディエンス	LSIメディエンス	LSIメディエンス	LSIメディエンス	和光純薬	ニットーホ・ーメテ・ィカル
拘阮	試薬キット名	アクアオートカイノスTP II	アクアオートカイノスALB	17ト□IgG	<b>ሰ</b> アト□IgA	17トロIgM	<b>1</b> 7ト□C3	17⊦□C4	LTオートワコーCRP-HS II	NアッセイLA-K
	標準物質	TP/ALB標準血清	TP/ALB標準血清	TIAマルチキャリプレーター	TIAマルチキャリプレーター	TIAマルチキャリフ・レーター	TIAマルチキャリフ・レーター	TIAマルチキャリプレーター	LT・CRP-HSキャリブ	RF標準血清「LA」
	測定機器名	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008
即つロマ	測定方法	ビューレット法	BCP改良法	免疫比濁法	免疫比濁法	免疫比濁法	免疫比濁法	免疫比濁法	ラテックス比濁法	ラテックス免疫法
	試薬メーカー名	和光純薬	和光純薬	ニットーホ゛ーメテ゛ィカル	ニットーホ゛ーメテ゛ィカル	ニットーホ゛ーメテ゛ィカル	ニットーホ゛ーメテ゛ィカル	ニットーホ゛ーメテ゛ィカル	和光純薬	栄研化学
טפופע	試薬キット名	Lタイプ ワコーTP	LタイプワコーALB-BCP	N-アッセイTIAIgG-SH	N-アッセイTIAIgA-SH	N-アッセイTIAIgM-SH	NアッセイTIA C3-SH	NアッセイTIA C4-SH	LTオートワコーCRP-HS II	LZテスト栄研RF
	標準物質	TP/ALBキャリプレーター	TP/ALBキャリブレーター	マルチV-SH2	マルチV-SH2	マルチV-SH2	マルチV-SH2	マルチV-SH2	LT・CRP-HSキャリブ	LZ-RF標準栄研
	測定機器名	コパス8000c702	コパス8000c702	コハ [*] ス8000c702	コハ [*] ス8000c702	コハ [*] ス8000c702	コハ [*] ス8000c702	コパス8000c702	コパス8000c702	コハ [*] ス8000c502
佐賀大学	測定方法	ビューレット法	BCP改良法	免疫比濁法	免疫比濁法	免疫比濁法	ラテックス比濁法	ラテックス比濁法	ラテックス比濁法	ラテックス免疫法
	試薬メーカー名	シノテスト	シノテスト	和光純薬	和光純薬	和光純薬	デンカ生研	デンカ生研	和光純薬	デンカ生研
71 3130	試薬キット名	アキュラスオート	アキュラスオート	オートワコー・N	オートワコー・N	オートワコー・N	C3-TIA NX「生研」	C4-TIA NX「生研」	LTオートワコーCRP-HS II	RF-ラテックスX1
	標準物質	自動分析用キャリプレ−タ−Ⅱ	自動分析用キャリプレ−タ−Ⅱ	免疫キャリフ・レーター・N	免疫キャリプレーター・N	免疫キャリプレーター・N	マルチ標準液NX	マルチ標準液NX	LT・CRP-HSキャリブ	RF標準液X1
	測定機器名	BM8020	BM8020	BM8020	BM8020	BM8020	BM8020	BM8020	BM8020	BM8020
大分大学	測定方法	ビューレット法	BCP改良法	免疫比濁法	免疫比濁法	免疫比濁法	免疫凝集法	免疫凝集法	ラテックス比濁法	ラテックス免疫法 ニットーホーメディカル
病院	試薬メーカー名 試薬キット名	和光純薬 LタイプワコーTP	カイノス	ニットーホ・ーメテ・ィカル		ニットーホ゛ーメテ゛ィカル	デンカ生研	デンカ生研	デンカ生研	
									ODD == havef # TH .	
	標準物質測定機器名	TD /ALD+villa*L A	アクアオートカイノスALB	N-772/TIAIgG-SH	N-77t/TIAIgA-SH	N-アッセイTIAIgM-SH	C3-TIA NX「生研」	C4-TIA NX「生研」	CRP-ラテックスX2「生研」	NアッセイLA-K
	州足饭矿石	TP/ALBキャリプレーター	TP/ALB標準血清	マルチV-SH2	マルチV-SH2	マルチV-SH2	マルチ標準液	マルチ標準液	CRPX2標準液T	NアッセイLA-K リウマチ因子調整ヒト血清
	測定方法	BM6070	TP/ALB標準血清 BM6070	マルチV-SH2 BM6070	マルチV-SH2 BM6070	マルチV-SH2 BM6070	マルチ標準液 BM6070	マルチ標準液 BM6070	CRPX2標準液T BM6070	NアッセイLA-K リウマチ因子調整ヒト血清 BM6070
Table	測定方法 試薬メーカー名	BM6070 ビューレット法	TP/ALB標準血清 BM6070 BCP改良法	マルチV-SH2 BM6070 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法	CRPX2標準液T BM6070 ラテックス比濁法	NアッセイLA-K リウマチ因子調整い血清 BM6070 ラテックス免疫法
	試薬メーカー名	BM6070 ビューレット法 カイノス	TP/ALB標準血清 BM6070 BCP改良法 カイノス	マルチV-SH2 BM6070 免疫比濁法 ニットーホ [*] ーメテ [*] ィカル	マルチV-SH2 BM6070 免疫比濁法 ニットーホ゛ーメテ゛ィカル	マルチV-SH2 BM6070 免疫比濁法 ニットーホ゛ーメテ゛ィカル	マルチ標準液 BM6070 免疫比濁法 ニットーホ [*] ーメテ [*] イカル	マルチ標準液 BM6070	CRPX2標準液T BM6070 ラテックス比濁法 デンカ生研	NアッセイLA-K リウマチ因子調整け・血清 BM6070 ラテックス免疫法 栄研化学
		BM6070 ビューレット法	TP/ALB標準血清 BM6070 BCP改良法	マルチV-SH2 BM6070 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニットーホ [*] ーメテ [*] ィカル	CRPX2標準液T BM6070 ラテックス比濁法	NアッセイLA-K リウマチ因子調整い血清 BM6070 ラテックス免疫法
	試薬メーカー名 試薬キット名	BM6070 ビューレット法 カイノス アクアオートカイノスTPⅡ	TP/ALB標準血清 BM6070 BCP改良法 カイノス 7ク7オートカイノスALB	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAIgG-SH	マルチV-SH2 BM6070 免疫比濁法 ニットーホ・ーメテ・イカル N-7ッセイTIAIgA-SH	マルチV-SH2 BM6070 免疫比濁法 ニットーホ [*] ーメテ [*] ィカル N-アッセイTIAI _B M-SH	マルチ標準液 BM6070 免疫比濁法 ニットーホ [*] ーメテ [*] イカル N-アッセイTIAC3-SH	マルチ標準液 BM6070 免疫比濁法 ニットーホ [*] ーメテ [*] イカル N-アッセイTIAC4-SH	CRPX2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP-ラテックスX2「生研」	NアッセイLA-K リウマチ因子調整とト血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF
病院	試薬メーカー名 試薬キット名 標準物質	BM6070 ビューレット法 カイノス 797オートカイノスTP II TP/ALB標準血清	TP/ALB標準血清 BM6070 BCP改良法 カイノス 7クアオートカイノスALB TP/ALB標準血清	マルチV-SH2 BM6070 免疫比濁法 ニットーホ・メディカル N-アッセイTIAIgG-SH マルチV-SH2	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAIgA-SH マルチV-SH2	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAIgM-SH マルチV-SH2	マルチ標準液 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAC3-SH マルチV-SH2	マルチ標準液 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC4-SH マルチV-SH2	CRPX2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP-ラテックスX2「生研」 CRPX2標準液H	NアッセイLA-K リウマチ因子調整t+血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研
病院	試薬メーカー名 試薬キット名 標準物質 測定機器名	BM6070 ビューレット法 カイノス アクアオートカイノスTPⅡ TP/ALB標準血清 BM6070	TP/ALB標準血清 BM6070 BCP改良法 カイノス 7クアオートカイノスALB TP/ALB標準血清 BM6070	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAIgG-SH マルチV-SH2 BM6070	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAIgA-SH マルチV-SH2 BM6070	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070	マルチ標準液 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070	マルチ標準液 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070	CRPX2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP-ラテックスX2「生研」 CRPX2標準液H BM6070	NアッセイLA-K リウマチ因子調整とト血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070
病院	試薬ノーカー名 試薬キット名 標準物質 測定機器名 測定大法	BM6070 ビューレット法 カイノス アクアオートカイノスTPⅡ TP/ALB標準血清 BM6070 ビューレット法	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法	CRPX2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP-ラテックスX2「生研」 CRPX2標準液H BM6070 ラテックス凝集法	NアッセイLA-K リウマチ因子調整とい血清 BM6070 ラテックス免疫法 栄 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法
病院	試薬ノーカー名 試薬キット名 標準物質 測定大法 試薬ノーカー名 試薬キット名 標準物質	BM6070 ビューレット法 カイノス 797オーカイ/ATP II TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイ/ATP II TP/ALB標準血清	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイIIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイIIAIgG-SH マルチV-SH2	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAIgA-SH マルチV-SH2	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC4-SH マルチV-SH2	CRP×2標準液T BM6070 ラテックス比濁法 デ'か生研 CRP-57777X2「生研」 CRPX2標準液H BM6070 ラデックス凝集法 デ'か生研 CRP-57777X2「生研」 CRPX2標準液H	NアッセイLA-K リウマチ因子調整と1血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研
病院	試薬ノーカー名 試薬キット名 標準物質 測定機器名 測定方法 試薬ノーカー名 試薬キット名	BM6070 ビューレット法 カイノス 797オートカイノスTP II TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTP II	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB	マルチV-SH2 BM6070 免疫比濁法 -ットーボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 -ットーボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC4-SH	CRPX2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP-ラデックス2「生研」 CRPX2標準液H BM6070 ラテックス凝集法 デンカ生研 CRP-ラデックス2「生研」	NアッセイLA-K リウマチ因子調整と1血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF
病院 熊本大学 病院	試薬/トカー名 試薬キャッ質 標準準機器法 測試 試薬 本 キッツ質 器法 カーッツ質 器 本 キャッツ質 器 本 年 名 標準機器 表 名 名 標準 機器 表 名 名 標準 機器 表 名 名 原定 方 カーッツ質 器 変 車 を 乗 来 き を き で ま で ま で ま で ま で ま で ま で ま で ま で ま で	BM6070 ビューレット法 カイノス 797オーかイ/スTP II TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オーかイ/スTP II TP/ALB標準血清 BM6070 ビューレット法	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オーかイ/スALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オーかイ/スALB TP/ALB標準血清 BM6070 BCP改良法	マルチV-SH2 BM6070 免疫比濁法 - ットーボーメディカル N-7ッセ(TIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 - ットーボーメディカル N-7ッセ(TIAIgG-SH マルチV-SH2 BM6070 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法 -ットーボーメディカル N-7ッセ(TIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 -ットーボーメディカル N-7ッセ(TIAIgA-SH マルチV-SH2 BM6070 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 -ットーボーメディカル N-7ッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 -ットーボーメディカル N-7ッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-7ッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-7ッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法	CRPX2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP-ラテックスX2「生研」 CRPX2標準液H BM6070 ラテックス凝集法 デンカ生研 CRP-ラテックスX2「生研」 CRP-ラテックスX2「生研」 CRPX2標準液H BM6070 ラテックス比濁法	NアッセイLA-K りつす日子調整とい血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法
病院	試薬/トカー名 試薬/年物質 薬・中物質 ボステント ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	BM6070 ビューレット法 カイノス 797オートカイ/スTP II TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイ/スTP II TP/ALB標準血清 BM6070 ビューレット法 カイノス	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスAB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスAB TP/ALB標準血清 BM6070 BCP改良法 カイノス	マルチV-SH2 BM6070 免疫比濁法 ニット・ホーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ホーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ホーメディカル 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法 ニットーホ・メデ・イカル N-アッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホ・メデ・イカル N-アッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニット・ボーケディカル NーフャセイTAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーケディカル NーフッセイTAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーケディカル Republic SH2 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニット・ホーチディカル N-アッセイTIAC4-SH マルチソーSH2 BM6070 免疫比濁法 ニットーホーチディカル N-アッセイTIAC4-SH マルチソーSH2 BM6070 免疫比濁法 ニットーホーチディカル Republication	CRP×2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP-5テラックス×2「生研」 CRP×2標準液H BM6070 ラテックス凝集法 デンカ生研 CRP×2標準液H BM6070 ラテックスと標準液H BM6070 ラテックスと標準液H BM6070	NアッセイLA-K りつす日子調整とい血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学
病院	試薬半カー名名 薬薬・生物の 薬薬・生物の がいる。 がいる。 はは、薬薬・生物の では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの では、シャットの は、シャットの は、シャットの は、シャットの は、シャットの は、シャっと、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は	BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセ(TIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセ(TIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル R・アッセイTIAIgM-SH マルナイエーメディカル N-7ッセイTIAIgM-SH	マルチ標準液 BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAC3-SH	マルチ標準液 BM6070 免疫比濁法 ニット・ホーノディカル N-アナセイTIAC4-SH マルチソ-SH2 BM6070 免疫比濁法 ニット・ボーノディカル N-アナセイTIAC4-SH マルチソ-SH2 BM6070 免疫比濁法 ニット・ボーノディカル 免疫比濁法 ニット・ボーノディカル N-アナセイTIAC4-SH	CRP×2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP-ラテックス×2「生研」 CRPと2標準液H BM6070 ラテックス凝集法 デンカ生研 CRP-3デックスXZ「生研」 CRP×2標準液H BM6070 ラデックスと濁法 デンカ生研 CRP-ラテックス×2「生研」	NアッセイLA-K リウマチ因子調整と4血清 BM6070 ラテックス免疫法 学 LZテスト学研RF LZ-RF標準学研 BM6070 ラテックス免疫法 学研化学 LZ-RF標準学研 BM6070 ラテックス免疫法 学研化学 LZ-RF標準学研 BM6070 ラテックス免疫法 学研化学 LZ-RF標準学研 BM6070
病院	試 薬 半 かっ 一名名 名	BM6070 ビューレット法 カイノス 797オートカイノスTP II TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTP II TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTP II TP/ALB標準血清	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BCP改良法 カイノス	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgG-SH マルチV-SH2	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセ(TIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセ(TIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAIgA-SH マルチV-SH2	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アゥセイTIAIgM-SH マルチンドコカル マルチンドコカル	マルチ標準液 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 マルチV-SH2	マルチ標準液 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC4-SH マルチV-SH2	CRPX2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP-ラデックXX2「生研」 CRPン2標準液H BM6070 ラテックス凝集法 デンカ生研 CRP-ラデックXX2「生研」 CRPX2標準液H BM6070 ラテックス比濁法 デンカ生研 CRP-フデックスと濁法 デンカ生研 CRP-フデックスと関議な アンカ生研 CRP-フデックスと関議な アンカ生研 CRP-フデックスと関議な アンカ生研 CRP-フデックスと	NアッセイLA-K りつ7年因子調整に血清 BM6070 ラテックス免疫法 栄 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 BM6070 エZ-RF標準栄研 BM6070 レステスト栄研RF LZ-RF標準栄研
病院	試薬・ナーカー名名 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カーレット法 カーレット法 カーレット法 アクアオートカイノスTPII TP/ALB標準血清 TBA2000FR NEO	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TP/ALB標準血清 TP/ALB標準血清 TBA2000FR NEO	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイIIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイIIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイIIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイIIAIgG-SH マルチV-SH2 TBA2000FR NEO	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイIIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイIIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイIIAIgA-SH マルチV-SH2 EM6070 エットーボーメディカル N-7ッセイIIAIgA-SH マルチV-SH2 TBA2000FR NEO	マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 TB-7ッセイTIAIgM-SH マルチV-SH2 TBA2000FR NEO	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-7ッセTTAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-7ッセTTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-7ッセTTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-7ッセTTIAC3-SH マルチV-SH2 TBA2000FR NEO	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫 サンド・フィーター・アッセイTIAC4-SH マルチV-SH2 マルチV-SH2 TBA2000FR NEO	CRP×2標準液T BM6070 ラデックス比濁法 デンカ生研 CRP・ラデックス2「生研」 CRP×2標準液H BM6070 ラデックス凝集法 デンカ生研 CRP・ラデックス2「生研」 CRP×2標準液H BM6070 ラデックス比濁法 デンカ生 のCRP×2標準液H BM6070 ラデックス比濁法 デンカ生研 CRP・ラデックスと「生研」 CRP×2標準液H	NアッセイLA-K リウマチ因子調整とい血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 ELZ-RF標準栄研 LZ-RF標準栄研 FBA2000FR NEO
病院 熊本病院 大院 大院 大院	試、 薬・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 TBA2000FR NEO ビューレット法	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスLB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TB/ALB標準血清 TBA2000FR NEO BCP改良法	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイIIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイIIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイIIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイIIAIgG-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイIIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイIIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイIIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイIIAIgA-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAIgM-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボータディカル N-アッセイTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニットーボーケディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法	CRP×2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP・57ヶ77×2「生研」 CRP×2標準液H BM6070 ラテックス凝集法 デンカ生研 CRP・57ヶ7×2「生研」 CRP×2標準液H BM6070 ラテックス比濁法 デンカ生研 CRP・57ヶ7×2「生研」 CRP×2標準液H BM6070 ラテックス比濁法 デンカ生研 CRP・57ヶ7×2「生研」 CRP×2標準液H TBA2000FR NEO ラテックス比濁法	NアッセイLA-K リウマチ因子調整と1血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 BM6070 ラテックス免疫法 大研化学 LZ-RF標準栄研 BM6070 ラテックス免疫法 大研化学 LZ-RF標準栄研 BM6070 ラテックス免疫法 大研り BM6070 ラテックス免疫法 大研り BM6070 ラテックス免疫法 大研り BM6070 ラテックス免疫法 大研り BM6070 ラテックス免疫法 大研り BM6070 ラテックス免疫法 大研り BM6070 ラテックス免疫法 大研り BM6070 ラテックス免疫法 大研り BM6070 ラテックス免疫法 大研り BM6070 ラテックス免疫法 大研り BM6070 ラテックス免疫法 大研り 日本のののののののののののののののののののののののののののののののののののの
病院	試試標準定 規制 東東本物 東東本物 東東東 東東東 東東 東東 東東 東東 東東 東東 東東	BM6070 ビューレット法 カイノス 797オーかイ/スTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オーかイ/スTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オーかイ/スPII TP/ALB標準血清 TBA2000FR NEO ビューレット法 和光純薬	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 和光純薬	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイIIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイIIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイIIAIgG-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイITAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイITAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイITAIgA-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイITAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイITAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイITAIgM-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-アッセTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーチディカル	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーチディカル	CRP×2標準液T BM6070 ラテックス比濁法 デ'ンカ生研 CRP・57**ウスX2「生研」 CRP×2標準液H BM6070 ラテックス凝集法 デ'ンカ生研 CRP×2標準液H BM6070 ラテックス比濁法 デ'ンカ生研 CRP・57**ウスX2「生研」 CRP×2標準液H TBA2000FR NEO ラテックス比濁法 デンカ生研	NアッセイLA-K リウマチロ子調整とい血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZ-RF標準栄研 TBA2000FR NEO 免疫比濁法 ニット・ボームデーカル
病院 熊本病院 大院 大院 学	試試標準定機力・1 名名名 名名名 名名 名名 名名 名名 名名 名名 名 名	BM6070 ビューレット法 カイノス 797オーカイ/スTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オーカイ/スTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オーカイ/スTPII TP/ALB標準血清 TBA2000FR NEO ビューレット法 和光純薬 L947*ワューTP	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TP/ALB標準血清 TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB標準の TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB# TP/ALB#	マルチV-SH2 BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチV-SH2 TBA2000FR NEO 免疫比別高法	マルチV-SH2 BM6070 免疫比濁法 ニットーホ・メデ・イカル N-アッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホ・メデ・イカル N-アッセ4TIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホ・メデ・イカル N-アッセイTIAIgA-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ラットーホ・メデ・イカル N-アッセイTIAIgA-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgA-TIA X1「生研」	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgM-TIA X1「生研	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH でルチン・SH2 TBA2000FR NEO 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセTIAC4-SH マルチン-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーチディカル N-アッセTIAC4-SH マルチン-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーチディカル N-アッセTIAC4-SH	CRP×2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP→5797242「生研」 CRP×2標準液H BM6070 ラテックス凝集法 デンカ生研 CRP×2標準液H BM6070 ラテックスと標準液H BM6070 ラテックス比濁法 デンカ生研 CRP×2標準液H CRP×37974X2「生研」 CRP×2標準液H DR24環準液H CRP×37974X2「生研」 CRP×2標準液H TSP×97974X2「生研」 CRP×2標準液H TSP×97974X2「生研」 CRP×2標準液H TSP×97974X2「生研」	NアッセイLA-K リウマチ因子調整とい血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準米研 BM6070 ラテックス免疫法 学研化学 LZ-RF標準米研 BM6070 ラテックス免疫法 学研化学 LZ-RF標準米研 BM6070 ラテックス免疫法 デザインスト を表しているのである。 エースト・ボール・ボール・バール Nーアッセイ TIA
病院 熊本病院 大院 大院 学	試試標準中の一名名名 (東京 中で	BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 TBA2000FR NEO ビューレット法 カエノス 797オートカイノスTPII TP/ALB標準血清 TBA2000FR NEO ビューレット法 カエノス 797オートカイノスTPII TP/ALB標準点清 TBA2000FR NEO ビューレット法 カエノス 797オートカイノスTPII TP/ALB標準点清 TBA2000FR NEO	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 AT TBA2000FR NEO BCP改良法 TP/ALB根単単血清 TBA2000FR NEO BCP改良法 TP/ALB根単単血清 TBA2000FR NEO BCP改良法	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgG-TIA X1「生研」 マルチ 研生 でいます	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセ(TIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセ(TIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセ(TIAIgA-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgA-TIA X1「生研」 マルチ 研 IgA-TIA X1「生研」	マルチV-SH2 BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgM-TIA X1「生研」 マルチザ栗準液(H)	マルチ標準液 BM6070 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチソ-SH2 BM6070 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチソ-SH2 BM6070 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチソ-SH2 TBA2000FR NEO 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチソ-SH2 TBA2000FR NEO 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチソ-SH2	マルチ標準液 BM6070 免疫比濁法 ニット・ホーケディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーケディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ホーケディカル N-アッセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニット・ホーケディカル N-アッセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニット・ボーケディカル N-アッセイTIAC4-SH マルチV-SH2	CRP×2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP-57*ウ7×2「生研」 CRP-57*ウ7×2「生研」 ORP×2標準液H BM6070 ラテックス凝集法 デンカ生研 CRP×2標準液H BM6070 ラテックス比濁法 デンカ生研 CRP×2標準液H TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP×2標準液H TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP×2標準液H TBA2000FR NEO フテックス比濁法 デンカ生研 CRP×3F***プインス2「生研」 CRP×3F***プインス2「生研」 CRP×3F***プインス2「生研」 CRP×3F***プインス2「生研」 CRP×3F***プインス2「生研」 CRP×3F***プインス2「生研」 CRP×3F***プインス2「生研」 CRP×3F****プインス2「生研」 CRP×3F****プインス2「生研」 CRP×3F*****プインス2「生研」 CRP×3F******	NアッセイLA-K リウマチ因子調整に血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 BM6070 ラテックス免疫法 光研化学 LZ-RF標準栄研 BM6070 ラテックス免疫法 光研ル学 LZ-RF標準栄研 BM6070 ラテックス免疫法 光研ル学 LZ-RF標準米研 TBA2000FR NEO 免疫比濁法 ニット・ボーケディルル N-アッセイTIA
病院 熊本病院 大院 大院 学	試試標測別試試標測別試試標測別試試標準定方と十物質器法カッ質器法カッ質器法カッ質器法カッ質器法カッ質器法カッ質器法カッ質器法カッ	BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 TBA2000FR NEO ビューレット法 オノフス 1797オートカイノスTPII TP/ALB標準血清 TBA2000FR NEO ビューレット法 カイノス 1797オートカイノスTPII TP/ALB標準の によっしか。 1797年 NEO ビューレット 1797年 NEO ビューレット 1797年 NEO ビューレット 1797年 NEO ビュートリアトラー BM6070	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 L947′973-ALB-BCP TP/ALB+ヤリアレーター BM6070	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAlgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAlgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAlgG-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 アンカ生研 IgG-TIA XI「生研」 マルチ様準液(H) BM6070	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセ(TIAI8A-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセ(TIAI8A-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセ(TIAI8A-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgA-TIA XI「生研」 マルチ 標準液(H) BM6070	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 アンカ生研 IgM-TIA XI「生研 マルチ U-J HE マルチ HE マルチ U-J HE マルチ U-J HE マルチ U-J HE E W HE V HE マルチ U-J HE E W HE V HE V HE V HE V HE V HE V HE V HE V	マルチ標準液 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070	マルチ標準液 BM6070 免疫比濁法 ニットーボーノディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーノディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーノディカル N-アッセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁 ニットーボーノディカル N-アッセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 生物・デーノディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070	CRP×2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP-ラテックス×2「生研」 CRP-シテックス×2「生研」 DF・クス凝集法 デンカ生研 CRP-シテックス×2「生研」 CRP×2標準液H BM6070 CRP-ラテックス×2「生研」 CRP・ブテックス比濁法 デンカ生研 CRP-ラテックス×2「生研」 CRP×2標準液H TBA2000FR NEO ラテックス比濁法 デンカ生研 CRP-ラテックス×2「生研」 CRP×2標準液H TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP-ラテックス×2「生研」 CRP×2標準液H TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP-ラテックス×2「生研」 CRP-ブラックスと写生研 CRP-ブラックスと写生研 CRP-ブラックスと写生研 CRP-ブラックスと標準液T BM6070	NアッセイLA-K リウマチ因子調整とも血清 BM6070 ラテックス免疫法
病病     長病       有病     大院       大院     大院       大院     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大	試試標準定と表示を表示を表示を表示を表示を表示を表示を表示を表示を表示を表示を表示を表示を表	BM6070 ビューレット法 カイノス 797オートカイノス甲 TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノス下耳 TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノス下耳 TP/ALB標準血清 TBA2000FR NEO ビューレット法 和光純薬 ムーレット法 和光純薬 ローソット法 和光純薬 ローソット法 オース・ローソット法 ローソット法 ローソット法 ローソット法	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 和光純薬 和光純薬 和光純素 197-ALB-BCP TP/ALB+リプレーター BM6070 BCP改良法	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgG-TIA XI「生研」 マルチ標準液(H) BM6070 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IBA-TIA XI「生研 マルチ状操準液(H) BM6070 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイIIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイIIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイIIAIgM-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ・生研 IgM-TIA XI「生研 マルチ環準液(H) BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 Bを比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーメディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニットーボーノディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーノディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーノディカル N-アッセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーノディカル N-アッセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーノディカル N-アッセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 コットーボーノディカル N-アッセイTIAC4-SH マルナV-SH2 BM6070 免疫比濁法	CRP×2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP-ラデックス×2「生研」 CRP-ラデックス凝集法 デンカ生研 CRP-ラデックス×2「生研」 CRP×2標準液H BM6070 ラテックス比濁法 デンカ生研 CRP-ラデックスとスタイト CRP×2標準液H TBA2000FR NEO ラデックスと出濁法 デンカ生研 CRP-フデックス×2「生研」 CRP×2標準液H TBA2000FR NEO ラデックスと出濁法 デンカ生研 CRP-フデックス×2「生研」 CRP×2標準液 TBA2000FR NEO ラデックスと関準を でアーフデックス×2「生研」 CRP×2標準液 TBA2000FR NEO ラデックス×2「生研」 CRP×2標準液 TBM6070 ラデックス凝集上濁法	NアッセイLA-K リウマチ因子調整とト血清 BM6070 ラテックス免疫法 栄工テスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 BM70 ラテックス免疫法 光研化学 LZ-RF標準栄研 BM70 BM70 BM70 BM70 BM70 BM70 BM70 BM70
病院 熊	試試標別別試試標別別試試標別別試試標別別試試標別別試試標別別試試標別別試試標	BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 TBA2000FR NEO ビューレット法 和光純薬 Lタイプラコー下 TP/ALBキャリアレーター BM6070 ビューレット法	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 和光純薬 L917'3 - ALB-BCP TP/ALBキャリフレーター BM6070 BCP改良法	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAlgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAlgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAlgG-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgG-TIA XI「生研」 マルチ標準液(H) BM6070 免疫比濁法 ニッル・ボーメディカル	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイIIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイIIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイIIAIgA-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgA-TIA XI「生研」 マルチ標準液(H) BM6070 免疫比濁法 ニッル・ボーメディカル	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカー生研 国際-TIA X1「生研 マルチ単藻(H) BM6070 免疫比濁法 テット・ボーメディカル BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチントSH2 BM6070 免疫比濁法 ニットーボーチディカル	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーチディカル N-アッセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーチディカル N-アッセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーチディカル N-アッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル	CRP×2標準液T BM6070 ラデックス比濁法 デンカ生研 CRP・ブラックス2「生研」 CRP・ス2標準液H BM6070 ラデックス凝集法 デンカ生研 CRP・ラデックスと2「生研」 CRP×2標準液H BM6070 ラデックス比濁法 デンカ生研 CRP・ラデックスと2「生研」 CRP×2標準液H TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP・ブデックスと3 でRP・ブデックスと3 でRP・ブデックスと3 でRP・ブデックスと4 でRP・ブデックスと5 でRP・ブデックスと5 でRP×2標準液H TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP・ブデックスと7 になるである。 でRP×2標準液T BM6070 ラデックス凝集比濁法 ニット・ボー	NアッセイLA-K リウマチ因子調整とも血清 BM6070 ラテックス免疫法 栄工テスト学研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 BM6070 カテックス免疫法 来研化学 LZ-RF標準栄研 TBA2000FR NEO 免疫比濁法 ニット・ホーメティカル NーアッセイTIA 用標準 BM6070 ラテックス免疫法 ニット・ボーメディカル
病病     長病       有病     大院       大院     大院       大院     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大       大     大	試試標準定分の (表別の) (表別	BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 TBA2000FR NEO ビューレット法 和光純薬 LタイプフコーTP TP/ALBキャリアレーター BM6070 ビューレット法 カイノス 797オートカイノスTPII	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 和光純薬 LタイプコーALB-BCP TP/ALB キャリブレーター BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 カイノス 797オートカイノスALB	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgG-TIA X1「生研] マルチ 乗換(H) BM6070 免疫比濁法 デンカ生研 IgG-TIA X1「生研] マルチ 乗換(H) BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイITAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイITAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アッセイITAIgA-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgA-TIA X1「生研」 マルチ 研算を はる一下を研算を はいました。 でルース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセイ リカース・アッセー リカース・アッセイ リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アッセー リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・アット リカース・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア	マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカナ生研 IgM-TIA X1「生研 マルチ軍準液(H) BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgM-SH	マルチ標準液 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH マルチマ-SH2 BM6070 免疫比濁法 ニットーボーチディカル N-アッセイTIAC3-SH	マルチ標準液 BM6070 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチマ-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH	CRP×2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP・57ゥクス2[生研] CRP×2標準液H BM6070 ラテックス凝集法 デンカ生研 CRP・57ゥクス2[集研] CRP×2標準液H BM6070 ラテックス比濁法 デンカ生研 CRP・57ゥクス比濁法 デンカ生研 CRP・57ゥクス比濁法 デンカ生研 CRP・57ゥクス比濁法 デンカ生研 CRP・57ゥクスと[生研] CRP×2標準液H TBA2000FR NEO ラテックス比濁法 デンカ生研 CRP・57ゥクスと[生研] CRP×2標準液T BM6070 ラデックスと標準液 TBM6070 ラデックスと標準流 TBM6070 ラデックス経集地濁法 ニット・ボー Nー7ッセイ LA CRP・T	NアッセイLA-K リウマチ因子調整に血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 来研化学 LZテスト栄研RF LZ-RF標準栄研 TBA2000FR NEO 免疫比濁法 ニット・ボームディカル N-アッセイTIA用標準 BM6070 ラテックス免疫法
病     長     宮     虎       大院     大院     大院     大       大院     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大     大       大     大     大     大     大       大     大     大     大     大       大     大     大     大     大       大     大     大     大     大       大     大     大     大     大       大     大     大     大     大       大     大     大     大     大       大     大     大     大     大       大 <td< td=""><td>試試標準定分別は試標測測試試標測測試試標準定方と主物機力・小質器法力・小質器法力・小質器法力・小質器法力・小質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法のよりに対していません。</td><td>BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 TBA2000FR NEO ビューレット法 和光純薬 LタイプコーTP TP/ALBキャリブレーター BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 TP/ALBキャリブレーター TP/ALBキャリブレーター TP/ALBキャリブレーター TP/ALBキャリブレーター TP/ALBキャリブレーター TP/ALBキャリブレーター</td><td>TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TP/ALB標準血清 TP/ALB標準ののFR NEO BCP改良法 和光純薬 L947*ワコーALB-BCP TP/ALBキャリプレーター BM6070 BCP改良法 カイノス</td><td>マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgG-TIA X1「生研」 マルチ(H) BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgG-SH マルチ(H) BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2</td><td>マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAIgA-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgA-TIA XI「生研」 マルチ(H) BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAIgA-SH マルチ(H) BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAIgA-SH マルチV-SH2</td><td>マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgM-TIA X1「生研 マルチ (H) BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチ (H) BM6070 免疫比濁法 ニットーボーメディカル アットポーズ・メディカル N-7ッセイTIAIgM-SH マルチ (H)</td><td>マルチ標準液 BM6070 免疫比濁法 ニット・ボーケディカル NーフッセTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル NーフッセTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル NーフッセTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーケディカル NーフッセTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル NーフッセTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル NーファセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル NーファセイTIAC3-SH マルチV-SH2</td><td>マルチ標準液 BM6070 免疫比濁法 ニットーボーケデイカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 元疫投過法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2</td><td>CRP×2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP・57ックス2[準要] BM6070 ラテックス凝集法 デンカ生研 CRP・57ックス2[準要] BM6070 ラテックス比濁法 デンカ生研 CRP・27ックス比濁法 デンカ生研 CRP・37ックス比濁法 デンカ生研 CRP・37ックス比濁法 デンカ生研 CRP・37ックスと[生研] CRP×2標準液日 BM6070 ラテックスと標準液 でRP・37ックスと[生研] CRP×2標準液 TBA2000FR NEO ラデックスと標準液 でRP・37ックスと「生研] CRP×2標準液 BM6070 ラデックス及集単液 TBM6070 ラデックス及集単流 N-7ックよ LA CRP・T CRP・標準液「LA」</td><td>NアッセイLA-K リウマチ因子調整とも血清 BM6070 ラテックス免疫法 業研化学 LZテスト柴研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 来研化学 LZ-RF標準等研 BM6070 ラテックス免疫法 ストポーメディカル N-アッセイTIA用標準 BM6070 ラテックス免疫法 ニット・ホーメディカル N-アッセイTIA用標準 BM6070 ラテックス免疫法 ニット・ボーメディカル NアッセイTIA用標準</td></td<>	試試標準定分別は試標測測試試標測測試試標準定方と主物機力・小質器法力・小質器法力・小質器法力・小質器法力・小質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法カー・リ質器法のよりに対していません。	BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 TBA2000FR NEO ビューレット法 和光純薬 LタイプコーTP TP/ALBキャリブレーター BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 TP/ALBキャリブレーター TP/ALBキャリブレーター TP/ALBキャリブレーター TP/ALBキャリブレーター TP/ALBキャリブレーター TP/ALBキャリブレーター	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TP/ALB標準血清 TP/ALB標準ののFR NEO BCP改良法 和光純薬 L947*ワコーALB-BCP TP/ALBキャリプレーター BM6070 BCP改良法 カイノス	マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgG-TIA X1「生研」 マルチ(H) BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgG-SH マルチ(H) BM6070 免疫比濁法 ニット・ボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-アッセイTIAIgA-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgA-TIA XI「生研」 マルチ(H) BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAIgA-SH マルチ(H) BM6070 免疫比濁法 ニットーボーメディカル N-アッセイTIAIgA-SH マルチV-SH2	マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーホーメディカル N-7ッセイTIAIgM-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgM-TIA X1「生研 マルチ (H) BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgM-SH マルチ (H) BM6070 免疫比濁法 ニットーボーメディカル アットポーズ・メディカル N-7ッセイTIAIgM-SH マルチ (H)	マルチ標準液 BM6070 免疫比濁法 ニット・ボーケディカル NーフッセTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル NーフッセTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル NーフッセTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーケディカル NーフッセTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル NーフッセTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル NーファセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル NーファセイTIAC3-SH マルチV-SH2	マルチ標準液 BM6070 免疫比濁法 ニットーボーケデイカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2 BM6070 元疫投過法 ニットーボーケディカル N-アッセTIAC4-SH マルチV-SH2	CRP×2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP・57ックス2[準要] BM6070 ラテックス凝集法 デンカ生研 CRP・57ックス2[準要] BM6070 ラテックス比濁法 デンカ生研 CRP・27ックス比濁法 デンカ生研 CRP・37ックス比濁法 デンカ生研 CRP・37ックス比濁法 デンカ生研 CRP・37ックスと[生研] CRP×2標準液日 BM6070 ラテックスと標準液 でRP・37ックスと[生研] CRP×2標準液 TBA2000FR NEO ラデックスと標準液 でRP・37ックスと「生研] CRP×2標準液 BM6070 ラデックス及集単液 TBM6070 ラデックス及集単流 N-7ックよ LA CRP・T CRP・標準液「LA」	NアッセイLA-K リウマチ因子調整とも血清 BM6070 ラテックス免疫法 業研化学 LZテスト柴研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 来研化学 LZ-RF標準等研 BM6070 ラテックス免疫法 ストポーメディカル N-アッセイTIA用標準 BM6070 ラテックス免疫法 ニット・ホーメディカル N-アッセイTIA用標準 BM6070 ラテックス免疫法 ニット・ボーメディカル NアッセイTIA用標準
病     長     宮     鹿       病     大院     大     大       大院     大     大     大       大院     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大	試試標別測試試標別測試試標別測試試標別測試試標別測試試標別測試試標別測試試標別	BM6070 ビューレット法 カイノス 797オートカイノス下ITP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 TBA2000FR NEO ビューレット法 和光純薬 L947'ワコーTP TP/ALBキャリアレーター BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALBキャリアレーター BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 和光純薬 L347*ワコーALB-BCP TP/ALBキャリプレーター BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 TBA2000FR NEO BCP改良法 797オートカイノスALB TP/ALBキャリプレーター BM6070 BCP改良法 アクイノス 797オートカイノスALB	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgG-TIA X1「生研」 マルチ 乗準液(H) BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH マルチ サース・リース・リース・リース・リース・リース・リース・リース・リース・リース・リ	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgA-TIA X1「生研」 マルチ 標準液(H) BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチ 研算を マルチ で	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgM-TIA X1「生研 マルチを開き マルチを開き アルチ標準液(H) BM6070 免疫比濁法 ニットーボーメディカル N-アゥセイTIAIgM-SH マルチマーSH2 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニット・ホーケディカル N-アゥセイTIAC3-SH マルチン-SH2 BM6070 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチン-SH2 BM6070 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチン-SH2 TBA2000FR NEO 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチン-SH2 BM6070 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチン-SH2 BM6070 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチン-SH2 BM6070 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチン-SH2 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニットーホーイディカル NーアッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーイディカル NーアッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーイディカル NーアッセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーイディカル NーアッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーイディカル NーアッセイTIAC4-SH マルチV-SH2 BM6070 た変比濁法 ニットーボーイディカル NーアッセイTIAC4-SH マルチV-SH2 BM6070 たットーボーイディカル NーアッセイTIAC4-SH マルチV-SH2 BM6070	CRP×2標準液T BM6070 ラデックス比濁法 デンカ生研 CRP・ラデックスX2「生研」 ORP×2標準液H BM6070 ラデックス凝集法 デンカ生研 CRP×2標準液H BM6070 ラデックス比濁法 デンカ生研 CRP×3Fックス比濁法 デンカ生研 CRP×3Fックス比濁法 デンカ生研 CRP×3Fックス比濁法 デンカ生研 CRP×2標準液H TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP・ラデックスと標準液 TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP・フデックスと標準液 TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP・フデックスと標準液 CRP・フデックスと標準液 CRP・フデックスと標準液 CRP・フデックスと標準液 CRP・フデックスと標準液 CRP・フデックスと標準液 CRP・フデックスと標準液 CRP・フデックな経典として、 CRP・フデックな経典として、 CRP・フデックな経典として、 CRP・フデックな経典として、 CRP・フデックな経典として、 CRP・ファートでは、 CRP・ファートでは、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・	NアッセイLA-K リウマチ因子調整とい血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 BM6070 ラテックス免疫法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
病     長     宮     鹿       病     木院     大院     大       大院     大     上房     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大       大     大     大     大 <td< td=""><td>試試標測測試試標測測試試標測測試試標測測試試標測測試試標測測試試標測測試試標</td><td>BM6070 ビューレット法 カイノス 797オートカイノス下II TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 TBA2000FR NEO ビューレット法 和光純薬 LタイプワコーTP TP/ALBキャリブレーター BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALBキャリブレーター BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALBキャリブレーター BM6070 ビューレット法</td><td>TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 LタイファーALB-BCP TP/ALB+リプレーター BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB+リプレーター BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法</td><td>マルチV-SH2 BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgG-TIA X1「生研」 マルチ標準液(H) BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチザーSH2 BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチボーメデ・カル BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法</td><td>マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgA-TIA X1「生研」 マルチ標準液(H) BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチ標準液(H) BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法</td><td>マルチV-SH2 BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAIgM-SH マルテツ-SH2 BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgM-TIA X1「生研 マルチ 標準液(H) BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAIgM-SH マルチ 標準液(H) BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAIgM-SH マルチマーSH2 BM6070 免疫比濁法</td><td>マルチ標準液 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法</td><td>マルチ標準液 BM6070 免疫比濁法 ニットーボーイディカル N-アゥセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーイディカル N-アゥセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーイディカル N-アゥセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーグディカル N-アゥセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーグディカル N-アゥセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーグディカル N-アゥセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 マルチV-SH2 BM6070 免疫比濁法 マルチV-SH2 BM6070 免疫比濁法</td><td>CRP×2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP・ブデックス×2「生研」 CRP・ブデックス凝集法 デンカ生研 CRP・ブデックスX/E 生研」 CRP×2標準液H BM6070 ラテックス比濁法 デンカ生研 CRP×2標準液H BM6070 ラテックス比濁法 デンカ生研 CRP×2標準液H TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP×2標準液 TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP×2標準液 TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP×2標準液 TBA2000FR NEO フテックス比濁法 デンカ生研 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2 デックス LL G CRP・T CRP・標準液「LA」 BM6070 ラデックス LL M法</td><td>NアッセイLA-K リウィチ因子調整に血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 BM6070 ラテックスト発研RF LZ-RF標準栄研 TBA2000FR NEO 免疫比濁法 ニットボーメディルル N-アッセイTIA N-アッセイTIA N-アッセイTIA N-アッセイTIA N-アッセイエム SM6070 ラテックス免疫法 ニットボーメディル NアッセイLA-K RF標準血清「LA」 BM6070 ラテックス免疫法</td></td<>	試試標測測試試標測測試試標測測試試標測測試試標測測試試標測測試試標測測試試標	BM6070 ビューレット法 カイノス 797オートカイノス下II TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 TBA2000FR NEO ビューレット法 和光純薬 LタイプワコーTP TP/ALBキャリブレーター BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALBキャリブレーター BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALBキャリブレーター BM6070 ビューレット法	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 LタイファーALB-BCP TP/ALB+リプレーター BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB+リプレーター BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法	マルチV-SH2 BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgG-TIA X1「生研」 マルチ標準液(H) BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチザーSH2 BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチボーメデ・カル BM6070 免疫比濁法 ニットーボ・メデ・カル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgA-TIA X1「生研」 マルチ標準液(H) BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチ標準液(H) BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法	マルチV-SH2 BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAIgM-SH マルテツ-SH2 BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgM-TIA X1「生研 マルチ 標準液(H) BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAIgM-SH マルチ 標準液(H) BM6070 免疫比濁法 ニット・ホーメディカル N-アゥセイTIAIgM-SH マルチマーSH2 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法 ニット・ボーメディカル N-アゥセイTIAC3-SH マルチV-SH2 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニットーボーイディカル N-アゥセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーイディカル N-アゥセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーイディカル N-アゥセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーグディカル N-アゥセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーグディカル N-アゥセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーグディカル N-アゥセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 マルチV-SH2 BM6070 免疫比濁法 マルチV-SH2 BM6070 免疫比濁法	CRP×2標準液T BM6070 ラテックス比濁法 デンカ生研 CRP・ブデックス×2「生研」 CRP・ブデックス凝集法 デンカ生研 CRP・ブデックスX/E 生研」 CRP×2標準液H BM6070 ラテックス比濁法 デンカ生研 CRP×2標準液H BM6070 ラテックス比濁法 デンカ生研 CRP×2標準液H TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP×2標準液 TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP×2標準液 TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP×2標準液 TBA2000FR NEO フテックス比濁法 デンカ生研 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2標準液 CRP×2 デックス LL G CRP・T CRP・標準液「LA」 BM6070 ラデックス LL M法	NアッセイLA-K リウィチ因子調整に血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 BM6070 ラテックスト発研RF LZ-RF標準栄研 TBA2000FR NEO 免疫比濁法 ニットボーメディルル N-アッセイTIA N-アッセイTIA N-アッセイTIA N-アッセイTIA N-アッセイエム SM6070 ラテックス免疫法 ニットボーメディル NアッセイLA-K RF標準血清「LA」 BM6070 ラテックス免疫法
病     長     宮     鹿       病     大院     大院     大       大院     大     大院       大院     大     大       大院     大     大       大院     大     大       大院     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大     大     大       大	試試標別測試試標別測試試標別測試試標別測試試標別測試試標別測試試標別測試試標別	BM6070 ビューレット法 カイノス 797オートカイノス下ITP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清 TBA2000FR NEO ビューレット法 和光純薬 L947'ワコーTP TP/ALBキャリアレーター BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALBキャリアレーター BM6070 ビューレット法 カイノス 797オートカイノスTPII TP/ALB標準血清	TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 和光純薬 L347*ワコーALB-BCP TP/ALBキャリプレーター BM6070 BCP改良法 カイノス 797オートカイノスALB TP/ALB標準血清 TBA2000FR NEO BCP改良法 TBA2000FR NEO BCP改良法 797オートカイノスALB TP/ALBキャリプレーター BM6070 BCP改良法 アクイノス 797オートカイノスALB	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgG-TIA X1「生研」 マルチ 乗準液(H) BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgG-SH マルチ サース・リース・リース・リース・リース・リース・リース・リース・リース・リース・リ	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgA-TIA X1「生研」 マルチ 標準液(H) BM6070 免疫比濁法 ニットーボーメディカル N-7ッセイTIAIgA-SH マルチ 研算を マルチ で	マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーメディカル N-アゥセイTIAIgM-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 デンカ生研 IgM-TIA X1「生研 マルチを開き マルチを開き アルチ標準液(H) BM6070 免疫比濁法 ニットーボーメディカル N-アゥセイTIAIgM-SH マルチマーSH2 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニット・ホーケディカル N-アゥセイTIAC3-SH マルチン-SH2 BM6070 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチン-SH2 BM6070 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチン-SH2 TBA2000FR NEO 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチン-SH2 BM6070 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチン-SH2 BM6070 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチン-SH2 BM6070 免疫比濁法 ニット・ボーケディカル N-アゥセイTIAC3-SH マルチン-SH2 BM6070 免疫比濁法	マルチ標準液 BM6070 免疫比濁法 ニットーホーイディカル NーアッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーイディカル NーアッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーイディカル NーアッセイTIAC4-SH マルチV-SH2 TBA2000FR NEO 免疫比濁法 ニットーボーイディカル NーアッセイTIAC4-SH マルチV-SH2 BM6070 免疫比濁法 ニットーボーイディカル NーアッセイTIAC4-SH マルチV-SH2 BM6070 た変比濁法 ニットーボーイディカル NーアッセイTIAC4-SH マルチV-SH2 BM6070 たットーボーイディカル NーアッセイTIAC4-SH マルチV-SH2 BM6070	CRP×2標準液T BM6070 ラデックス比濁法 デンカ生研 CRP・ラデックスX2「生研」 ORP×2標準液H BM6070 ラデックス凝集法 デンカ生研 CRP×2標準液H BM6070 ラデックス比濁法 デンカ生研 CRP×3Fックス比濁法 デンカ生研 CRP×3Fックス比濁法 デンカ生研 CRP×3Fックス比濁法 デンカ生研 CRP×2標準液H TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP・ラデックスと標準液 TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP・フデックスと標準液 TBA2000FR NEO ラデックス比濁法 デンカ生研 CRP・フデックスと標準液 CRP・フデックスと標準液 CRP・フデックスと標準液 CRP・フデックスと標準液 CRP・フデックスと標準液 CRP・フデックスと標準液 CRP・フデックスと標準液 CRP・フデックな経典として、 CRP・フデックな経典として、 CRP・フデックな経典として、 CRP・フデックな経典として、 CRP・フデックな経典として、 CRP・ファートでは、 CRP・ファートでは、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マートで、 CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・マート CRP・	NアッセイLA-K リウマチ因子調整とい血清 BM6070 ラテックス免疫法 栄研化学 LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZテスト栄研RF LZ-RF標準栄研 BM6070 ラテックス免疫法 栄研化学 LZ-RF標準栄研 BM6070 ラテックス免疫法 ポポ化学 LZ-RF標準栄研 TBA2000FR NEO 免疫比濁法 ニットーボームディカル NーアッセイTIA 用標準 BM6070 ラテックス免疫法 ニットーボームディカル NアッセイエムーK RF標準血清「LA」 BM6070

項	i目	ТВ	TB パナジン酸	DB	UN	CRE	UA	Glu	HbA1c
	測定機器名	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	HLC-723G9
	測定方法	酵素法	バナジン酸法	酵素法	ウレアーセ GLDH・ICDH (NH3消去)	酵素法	ウリカーセ´-POD法	ヘキソキナーセ゛法	HPLC法
九州大学 病院	試薬メーカー名	LSIメディエンス	和光純薬	LSIメディエンス	セロテック	シノテスト	シノテスト	和光純薬	東ソー
개이	試薬キット名	イアトロLQ T-BIL II	総ビリルビン EーHAテストワコー	イアトロLQD-BIL(A)	UN-SL	シグナスオート CRE	クイックオートネオ UA Ⅱ	Lタイプ・ワコー Glu2	HLC-723試薬
	標準物質	BIL標準品	ビリルビンキャリブレーター	BIL標準品	キャリブM	CRE標準液	UA標準液	マルチキャリフ・レーターB	HbA1cキャリフ・レーターセット
	測定機器名	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	HLC-723G11
福岡大学	測定方法	酵素法	バナジン酸法	酵素法	ウレアーセ・LED(NH3回避)	酵素法	ウリカーセ*POD法	ヘキソキナーセ・法	HPLC法
病院	試薬メーカー名	アルフレッサファーマ	和光純薬	アルフレッサファーマ	積水メディカル	積水メディカル クオリジェント CRE	積水メディカル	積水メディカル	東ソー
	試薬キット名 標準物質	ネスコートVLT-BIL ネスコートBIL標準	総ビリルピン EーHAテストワコー ビリルピンキャリプレーター	ネスコートVL D-BIL ネスコートBIL標準	クオリシ゛ェント UN マルチキャリフ゛レータ カイノス	マルチキャリプレータ カイノス	クオリシ゛ェント UA マルチキャリフ・レータ カイノス	クオリシ゛ェント GLU アナセラムGLU	HLC-723試薬 HbA1cキャリプレーターセット
	測定機器名	BM9130	とりルとシャャリンレーター	BM9130	BM9130	BM9130	BM9130	BM9130	HA8180V
1= 1 66 116	測定方法	酵素法		酵素法	ウレアーセ・GIDH(NH3消去)	酵素法	ウリカーセ POD法	ヘキソキナーセ・法	HPLC法
福大筑紫 病院	試薬メーカー名	ニプロ		ニプロ	協和メデックス	和光純薬	和光純薬	関東化学	アークレイ
개인	試薬キット名	アキュラスオート		アキュラスオート	デタミナーL UN	Lタイプ ワコー CRE.•M	Lタイプ・ワコー UA.・M	シカリキッド-J	アダムス試薬
	標準物質	ビリルビン標準品		ビリルビン標準品	デタミナー標準液尿素窒素	血清マルチキャリプレーター	マルチキャリプレーターB	グルコース標準液	ADAMSキャリプレーター
	測定機器名	Labospect008 α	Labospect008 α	Labospect008 α	Labospect008 α	Labospect008 α	Labospect008 α	GA1172	HA8182
久留米大学	測定方法	酵素法	バナジン酸法	酵素法	ウレアーセ・GLDH・ICDH (NH3消去)	酵素法	ウリカーセ POD法	GOD電極法	HPLC法
病院	試薬メーカー名	LSIメディエンス イアトロLQ T-BIL II	和光純薬	LSIメディエンス イアトロLQ D-BIL(A)	和光純薬 LタイプワコーUNV	和光純薬 Lタイプワコー CRE.・M	和光純薬	アークレイ アダムスGA試薬	アークレイ アダムス試薬
	試薬キット名 標準物質	BIL標準品		A アドロLQ D-BIL(A) BIL標準品	マルチキャリフ・レーターB	マルチキャリブレーターA	Lタイプ・ワコー UA.・M マルチキャリフ・レーターB	グルコース標準液	アダム人武楽 ADAMSキャリプレーター
	測定機器名	BM6070	BM6070	BM6070	BM6070	BM6070	BM6070	BM6070	HLC-723G8
	測定方法	酵素法	バナジン酸法	酵素法	ウレアーセ・GLDH・ICDH(NH3消去)	酵素法	ウリカーセ・POD法	ヘキソキナーセ゛法	HPLC
飯塚病院	試薬メーカー名	LSIメディエンス	和光純薬	LSIメディエンス	和光純薬	和光純薬	和光純薬	关研化学	東ソー
	試薬キット名	イアトロLQ T-BIL II	総ヒ'リルヒ'ン EーHAテストワコー	イアトロLQ D-BIL(A)	Lタイプ・ワコー UN2	Lタイプ ワコー CRE.・M	Lタイプ・ワコー UA.・M	エクディアXL栄研GLU II	HLC-723試薬
	標準物質	BIL標準品	ビリルビンキャリブレーター	BIL標準品	マルチキャリフ・レーターB	マルチキャリプレーターA	マルチキャリプレーターB	GluキャリプレータXL栄研	HbA1cキャリフ・レーターセット
	測定機器名		BM2250	BM2250	BM2250	BM2250	BM2250	GA08 II	HLC-723G8
産業医科	測定方法		バナジン酸酸化法	バナジン酸酸化法	ウレアーセ・GLDH・ICDH (NH3消去)	酵素法	ウリカーセ POD法	GOD電極法	HPLC法
大学病院	試薬メーカー名		和光純薬	和光純薬	和光純薬	シグテスト	和光純薬	A&T GA試薬	東ソー HLC-723試薬
	試薬キット名 標準物質		総ビリルピン EーHAテストワコー ビリルビンキャリブレーター	直接ビリルビン E-HAテストワコー ビリルピンキャリブレーター	Lタイプ・ワコー UN2 血清マルチキャリブレーター	シグナスオートCRE CRE標準液	Lタイプ・ワコー UA.・M 血清マルチキャリブ・レーター	GA試楽 グルコース標準液	HLC-/23試楽 HbA1cキャリプレーターセット
	測定機器名	Labospect008	ヒリルヒンキャリフレーター	Labospect008	血清マルチキャックレーター Labospect008	Labospect008	Labospect008	フルコ 入1条年/区 Labospect008	HLC-723G8
	測定方法	酵素法		酵素法	ウレアーセ・GIDH(NH3消去)	酵素法	ウリカーセ POD法	ヘキソキナーセ・法	HPLC法
福岡赤十字	試薬メーカー名	LSIメディエンス		LSIメディエンス	協和メデックス	協和メデックス	協和メデックス	関東化学	東ソー
病院	試薬キット名	イアトロLQ T-BIL II		イアトロLQ D-BIL(A)	デタミナーL UN	デタミナーL CRE	デタミナーL UA	シカリキット GLU J	HLC-723試薬
	標準物質	BIL標準品		BIL標準品	デタミナー標準血清	デタミナー標準血清	デタミナー標準血清	グルコース標準液	HbA1cキャリフ・レーターセット
	測定機器名	Labospect008		Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	HA8181
聖マリア	測定方法	酵素法		酵素法	ウレアーセ・GLDH・ICDH(NH3消去)	酵素法	ウリカーセ。POD法	ヘキソキナーセ・法	HPLC法
病院	試薬メーカー名	アルフレッサファーマ		アルフレッサファーマ	和光純薬	和光純薬	和光純薬	ミズホメディー	アークレイ
	試薬キット名 標準物質	ネスコートVLT-BIL ネスコートBIL標準		ネスコートVL D-BIL ネスコートBIL標準	Lタイプ・ワコーUN V マルチキャリフ・レーターB	Lタイプ・ワコー CRE.・M マルチキャリプ・レーターA	Lタイプ・ワコー UA.・M マルチキャリフ・レーターB	リキッドグルコース Ⅱ Mーキャリブ	アダムス試薬 ADAMSキャリプレーター
	<b>原华初員</b> 測定機器名	スペートロに標準 コパ、ス8000c702		ホペコートロに保存 コハ・ス8000c702	コハ*ス8000c702	コハ*ス8000c702	コハ*ス8000c702	コハ*ス8000c702	コハ*ス8000c502
	測定方法	酵素法		酵素法	ウレアーセ・GLDH・ICDH (NH3消去)	酵素法	ウリカーセ・POD法	ヘキソキナーセ・法	免疫比濁法
佐賀大学	試薬メーカー名	LSIメディエンス		LSIメディエンス	シノテスト	シノテスト	シノテスト	シノテスト	ロシュ
病院	試薬キット名	イアトロLQ T-BIL II		イアトロLQ D-BIL(A)	クイックオートネオ	シグナスオートCRE	クイックオートネオ Ⅱ	クイックオートネオ HK	コハ・ス皿
	標準物質	BIL標準品		BIL標準品	自動分析用キャリプレーターⅡ	自動分析用キャリフレーターⅡ	自動分析用キャリフレーターⅡ	自動分析用キャリプレーターⅡ	C.f.a.s. HbA1c
	測定機器名	BM8020		BM8020	BM8020	BM8020	BM8020	BM8020	HA8181
大分大学	測定方法	酵素法		酵素法	ウレアーセ・GIDH(NH3消去)	酵素法	ウリカーセ POD法	ヘキソキナーセ・法	HPLC法
病院	試薬メーカー名	アルフレッサファーマ		アルフレッサファーマ	シノテスト	シノテスト	シノテスト クイックオートネオ Ⅱ	ミズホメディー リキッドグルコース I	アークレイ
	標準物質	ネスコートVLT-BIL ネスコートBIL標準		ネスコートVL D-BIL ネスコートBIL標準	クイックオートネオ BUN 多項目標準血清	アキュラスオート CRE 多項目標準血清	多項目標準血清	Mーキャリブ	ADAMSキャリプレーター
	測定機器名	BM6070		BM6070	<u>タ気日標半皿</u> 用 BM6070	タダロ 赤 十 皿 月 BM6070	<u>タ気ロホー皿</u> /月 BM6070	BM6070	HLC-723G8
	測定方法	酵素法		酵素法	ウレアーセ・GIDH(NH3消去)	酵素法	ウリカーセ・POD法	ヘキソキナーセ゛法	HPLC法
大分県立	試薬メーカー名	LSIメディエンス		LSIメディエンス	ミズホメディー	ミズホメディー	ミズホメディー	ミズホメディー	東ソー
病院	試薬キット名	イアトロLQ T-BIL II		イアトロLQ D-BIL(A)	リキッドUN「ミズホ」	オートL「ミス゛ホ」CRE(N)	オートL「ミス゛ホ」Ua II	リキッドグルコース II	HLC-723試薬
	標準物質	BIL標準品		BIL標準品	M-キャリブ	M-キャリブ	M-キャリフ [*]	M-キャリブ	HbA1cキャリプレーターセット
	測定機器名	BM6070	BM2250	BM6070	BM6070	BM6070	BM6070	GA08Ⅲ	HLC-723G11
熊本大学	測定方法 試薬メーカー名	酵素法 LSIメディエンス	バナジン酸法 和光純薬	酵素法 LSIメディエンス	ウルアーセ・GLDH・ICDH (NH3消去) カイノス	酵素法 カイノス	ウリカーセ・POD法 カイノス	GOD電極法 A&T	HPLC法 東ソー
病院	試薬キット名	イアトロLQ T-BIL II		イアトロLQ D-BIL(A)		プイフス アクアオートカイノスCREⅢplus	プインベ アクアオートカイノスUA-II	GA試薬	^{果りー} HLC-723試薬
	標準物質	BIL標準品	ビリルビンキャリブレーター	BIL標準品	血清マルチキャリプレーター	血清マルチキャリプレーター	血清マルチキャリプレーター	グルコース標準液	HbA1cキャリフ・レーターセット
	測定機器名	ВМ6070		ВМ6070	BM6070	BM6070	BM6070	BM6070	HA8180
<b>上</b> 岭十씍	測定方法	酵素法		酵素法	ウレアーセ GLDH・ICDH (NH3消去)	酵素法	ウリカーセ・POD法	グルコキナーゼ法	HPLC法
長崎大学 病院	試薬メーカー名	LSIメディエンス		LSIメディエンス	和光純薬	ミズホメディー	ミズホメディー	協和メデックス株式会社	アークレイ
16161	試薬キット名	イアトロLQ T-BIL II		イアトロLQ D-BIL(A)		オートL「ミス゛ホ」CRE(N)		デタミナーL GLU II	アダムス試薬
	標準物質	BIL標準品		BIL標準品	マルチキャリフ・レーターB	M-キャリブ	M-++リブ	デタミナー標準液	ADAMSキャリプレーター
	測定機器名	TBA2000FR NEO 醚表注		TBA2000FR NEO 醚表注	TBA2000FR NEO	TBA2000FR NEO 酵素法	TBA2000FR NEO ウリカーセ POD法	TBA2000FR NEO ヘキソキナーセ [*] 法	HLC-723G8 HPLC法
宮崎大学	測定方法 試薬メーカー名	酵素法 アルフレッサファーマ		酵素法 アルフレッサファーマ	ウレアーセ・GIDH(NH3消去) ニットーボーメディカル	東洋紡	東洋紡	和光純薬	東ソー
山門八丁	試薬キット名	ネスコートVLT-BIL		ネスコートVE D-BIL	N-アッセイBUN-L=ットーボーDType	宋ノ干初 ダイヤカラー・リキッドCRE-S	大・千初 ウリカラー・リキッドS	トタイプ・ワコー Glu2	来ノー HLC-723試薬
	標準物質	ネスコートBIL標準		ネスコートBIL標準	マルチキャリブレーターB	ダイヤカラー・キャリプレーターL	ダイヤカラー・キャリブレーターL	マルチキャリプレーターB	HbA1cキャリプレーターセット
	測定機器名	BM6070	BM6070	BM6070	BM6070	BM6070	BM6070	GA08Ⅲ	HLC-723G9
鹿児島大学	測定方法	酵素法	バナジン酸法	酵素法	ウレアーセ・GIDH(NH3消去)	酵素法	ウリカーセ。POD法	GOD電極法	HPLC法
病院	試薬メーカー名	LSIメディエンス	和光純薬	LSIメディエンス	シノテスト	シノテスト	シノテスト	A&T	東ソー
	試薬キット名	イアトロLQ T-BIL II		イアトロLQ D-BIL(A)		シグナスオート CRE	クイックオートネオ Ⅱ	GA試薬	HLC-723試薬
<u> </u>	標準物質	BIL標準品	ビリルビンキャリブレーター	BIL標準品	多項目標準血清	多項目標準血清	多項目標準血清	グルコース標準液	HbA1cキャリプレーターセット
	測定機器名	BM6070 酵素法		BM6070 酵素法	BM6070	BM6070 酵素法	BM6070 ウリカーセ [*] POD法	BM6070 ヘキソキナーセ [*] 法	HLC-723G9 HPLC法
琉球大学	測定方法 試薬メーカー名	野系法 アルフレッサファーマ		野系法 アルフレッサファーマ	ウレアーセ・GIDH(NH3消去) シスメックス	極東製薬	協和メデックス	ヘキソキナーセ 法 シノテスト	RPLC法 東ソー
病院	試薬キット名	ネスコートVLT-BIL		ネスコートVL D-BIL	BUN試薬・L コクサイ	7型米設米 ランピアリキット゚S CREA	デタミナーL UA	クイックオートネオGLU-HK	来ノー HLC-723試薬
	標準物質	ネスコートBIL標準		ネスコートBIL標準	BUN標準液	M-キャリフ・レーター	デタミナー標準血清	GLU標準液	HbA1cキャリフ・レーターセット
		•							

## 200	項	目	Na	K	CI	Mg	Са	Fe	IP	NH3
# 大学元子   日本学生   日本学   日本学生   日本学   日本学生   日本学   日本学生   日本学生   日本学生   日本学生   日本学生   日本学生   日本学生   日本学生   日本学生   日本学   日本学生   日本学生   日本学生   日本学生   日本学生   日本学生   日本学生   日本学   日本学生   日本学生   日本学生   日本学生   日本学生   日本学生   日本学		測定機器名	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008
			· '		· · · · · · · · · · · · · · · · · · ·	· ·				· · · · · · · · · · · · · · · · · · ·
## 1										
大学   大学	抦院		j,c.7 / [101.	120-210-7-1100	100.2007					
製造業務			ISEキャリフ・レーター	ISEキャリフ・レーター	ISEキャリフ・レーター					
個点大会							100. 1	100 1 100		
「大きな   10 日本の			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		酵素法			
「大きいます   10mm   10			<b>積水メディカル</b>	積水メディカル	積水メディカル	カイノス	シノテスト	シノテスト	和光純薬	オーソ
おかけ	<b>孙阮</b>	試薬キット名				アクアオートカイノスMg	アキュラスオートCa HLS	クイックオート ネオ Fe	Lタイプ・ワコー無機リン	ピトロス スライドAMON90
新文学   東京大東   京京大東   京京作業   日本電子   日本   日本電子   日本   日本電子   日		標準物質	ISEキャリフ・レーター	ISEキャリフ・レーター	ISEキャリフ・レーター		Ca標準液			
第20年代		測定機器名	BM9130	BM9130	BM9130		BM9130	BM9130	BM9130	BM9130
### 1982年 -	<b>万十</b>	測定方法	ISE希釈法	ISE希釈法	ISE希釈法		アルセナゾⅢ法	ニトロソPSAP法	酵素法	酵素サイクリング法
京都子小名   西田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田		試薬メーカー名	日本電子	日本電子	日本電子		ニプロ	シノテスト	協和メデックス	関東化学
展現大学 (1985年) 1985年 (1986年日 1987年	게이	試薬キット名					エスパ	クイックオート ネオ Fe	デタミナーL IP II A	シカリキット*NH3
		標準物質	血清用標準液04	血清用標準液04	血清用標準液04		マルチキャリブレータ	Aalto EC	デタミナー標準液無機リン	アンモニア標準液
***		測定機器名	Labospect008 $lpha$	Labospect008 α	Labospect008 $lpha$	Labospect008 α	Labospect008 $lpha$	Labospect008 $lpha$	Labospect008 $lpha$	Labospect008 α
### 2017 日本の	カ四半大学	測定方法	ISE希釈法	ISE希釈法	ISE希釈法	酵素法	酵素法	バソフェナントロリン法	酵素法	酵素サイクリング法
株理学・大き		試薬メーカー名	和光純薬	和光純薬	和光純薬	ニプロ	和光純薬	和光純薬	和光純薬	関東化学
新球病病   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/07   1969/	761150	試薬キット名				Lタイプ ワコーMg	Lタイプ ワコーCa	LタイプワコーFe・N	Lタイプ・ワコー無機リン	シカリキット*NH3
## 2月										アンモニア標準液
「成業の			BM6070	BM6070	BM6070	BM6070	BM6070	BM6070	BM6070	STACIA
### 4	AC (- +								MITTINE.	
## 機関名   1.5元	飯塚病院		A&T	A&T	A&T					セロテック
# (										
産業務料 次学時間							100 1 100			
大学病院 (株型・7-2) A61	産業医科						H1111-1			
選集中から   日本物質   日本ので			A&T	A&T	A&T					
横震奏音			/ >= m   = :# >=	/ v= m   = 14 v=	/ >= m   m ># >=					NH3-W II
福岡赤十字							1.1. 1 .2.			
### 1					·					
### 2017   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   197	福岡赤十字									
要性報名 の流標準 の流標準 の流標準 の流標準 の流標準 で 244+リアレーター を 244+リアレータ	病院		和光純楽	和光純楽	和光純楽					
選定 世界名			<b>加速播</b> 维	<b>加速振</b> 游	<b>加油海</b>					
要でプリア 病院								100 1 100		₩L II 7 ECOO
製造・小名   シスメックス   シススメックス   シスノックス   シススメックス   シスススメックス   シススメックス   シススメックス   シススメックス   シススメックス   シススメックス   シススメックス   シススメックス   シスススメックス   シススメ			· ·			· ·	· ·		·	
「	聖マリア									
接来物質	病院		ンヘアックへ	ンヘアッソへ	ンヘアックへ					
## 2000-0702			雪板田キャリブレーター	雪坂田土 カリブレーター	雪板田キャリブレーター					
接来上の										
佐東大学 病院										
#護率か名										
展集物質	病院		igesto 7 franc	130717   1317	Berry 1 1000					
対象機器名   8M8020   8M822   8M8020   8M8020   8M8020   8M822   8M8020   8M822   8M8020   8M822   8M8020   8M8020   8M8020   8M8020   8M8020   8M8020   8M8020   8M8020   8M822   8M8020										
大分大学   病院   原本   原本   原本   原本   原本   原本   原本   原			BM8020	BM8020	BM8020		BM8020	BM8020	BM8020	BM8020
病院   誤乗ールー名   日本電子   日本電子   日本電子   日本電子   日本電子   日本電子   日本電子   日本電子   日本電子   アンフ生物   アンフェか   アジフート   日本電子   日本電子   日本電子   日本電子   アンフェか   アジフート   日本電子   アジフート   日本電子   アジフート   アジンフート   アジンフー	T \\ T \		ISE希釈法	ISE希釈法	ISE希釈法	酵素法	酵素法	ニトロソPSAP法	酵素法	酵素サイクリング法
議集争物質   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808070   1808		試薬メーカー名	日本電子	日本電子	日本電子	デンカ生研	シノテスト	シノテスト	協和メデックス	関東化学
大分県立   対応   対応   対応   対応   対応   対応   対応   対	内坑	試薬キット名				自動分析用試薬「生研」Mg-S	アキュラスオートCa	クイックオート ネオ Fe	デタミナーL IP	シリカリキット NH3
大分県立		標準物質				Mg標準液	多項目標準血清	Fe標準液	デタミナー標準液無機リン	アンモニア標準液
大学   京藤   京藤   京藤   京藤   京藤   京藤   京藤   京		測定機器名	BM6070	BM6070	BM6070	BM6070	BM6070	BM6070	BM6070	BM6070
病院   議案チット名   A&I	十八月六	測定方法	ISE希釈法	ISE希釈法	ISE希釈法	酵素法	酵素法	ニトロソPSAP法	酵素法	酵素法
議業や小名   カライトの		試薬メーカー名	A&T	A&T	A&T	カイノス	シノテスト	シノテスト	シノテスト	関東化学
# 定機器名 BM6070	יומונאנ	試薬キット名				アクアオートカイノスMg試薬	アキュラスオートCa	クイックオート ネオ Fe	アキュラスオート	シカリキッドNH3
##										
旅業										
議案・カー名 A&I A&I A&I PUTD セロテック セロテック ファスト ゼロテック 関東科学	能太大学									酵素サイクリンキ、法
展集やり名 標準物質			A&T	A&T	A&T					
長崎大学 病院         別定機器名         BM6070         BM607										
長崎大学 病院         ISE希釈法         ISE希釈法         ISE希釈法         ISE希釈法         ISE希釈法         酵素法         ニトロソPSAP法         酵素法           試薬ナット名 標準物質 高崎大学 病院         15E希釈法         ISE希釈法         ISEA釈法         ISEARY         A&T         A&T         シスメックス         東洋紡         シノテスト         協和メデックス           関皮機器名 調定方法 病院         TBA2000FR NEO 調定方法 ISEARY         TBA2000FR NEO TBA2000FR NEO			D. 1007-	D140075						アンモニア標準液
技術大学 病院   試薬メーカー名   A&T   A&T   A&T   シスメックス   東洋紡   シノテスト   協和メデックス   対象ナーレス   技薬キット名   技薬キット名   大学 大学   大学   大学   大学   大学   大学   大学										
(	長崎大学									
標準物質			A&I	A&I	A&I					
割定機器名   TBA2000FR NEO   TAA00FN NEO   TA										
宮崎大学         ISE希釈法         ISE希釈法         ISE希釈法         ISE希釈法         酵素法         ニトロソPSAP法         酵素法         トライヤストリー 原業分の           試業メーカー名 標準物質         ISEキャリプレータS         ISEキャリプレータS         ISEキャリプレータS         ISEキャリプレータS         マルチャリアレーター アルチャリアレーター アルチャリアレーター アルチャリアレーター アルナット名 開定機器名         ISEキャリプレータS         ISEキャリプレータS         ISEキャリプレータS         ISEキャリプレーター アルナットとののののである。マルチャリアレーター アルナットとのののである。アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナットのでは、アルナット			TRASONED MEC	TRASONER NEC	TRASONED MEC					 
宮崎大学 試業メーカー名 、										
試薬キット名	宮崎大学									
標準物質 ISEキャリプレータS ISEキャリプレータS ISEキャリプレータS 7ルチキャリプレータ 5/4やカテー・キャリアレーター Fe標準液 デッミナー機単液無機リン BM6070 BM	ᆸᆒ수		木ベクティルルン人アム人	末心 / 1 1 川ルン人丁ム人	木ベクリ1川ルン人下ム人					
鹿児島大学病院         調定機器名         BM6070         BM6070         BM6070         BM6070         BM6070         BM6070         富士ドライケム1           病院         調定方法         ISE希釈法         ISE希釈法         ISE希釈法         財産分子以外のイントロストロストロストロストロストロストロストロストロストロストロストロストロスト			ISFキャリブレータC	ISFキャリブレータで	ISFキャリブレータC					m ∓ : /1/AA//1FNH3-WIL
鹿児島大学病院     ISE希釈法     ISE希釈法     ISE希釈法     ISE希釈法     F ライヤミストリー										富士ドライケ /、100
正児島大子										
試薬キット名										
標準物質         血清用標準液         血清用標準液         血清用標準液         オルラキャリプレーター         キャリブS         Aalto EC         生化学マルチキャリプレーター           別定機器名         BM6070         BM6070 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>富士ドライケムスライドNH3-WII</td></td<>							_			富士ドライケムスライドNH3-WII
別定機器名     BM6070     BM6070     BM6070     BM6070     BM6070     BM6070     BM6070       加定方法     ISE希釈法     ISE希釈法     酵素法     ニトロソPSAP法     酵素法       試薬メーカー名 試薬キット名     A&T     A&T     カイノス     東洋紡     カイノス       イヤカラ・リキットでa     アクアオートカイノスMg試薬     ダイヤカラ・リキットでa     アクアオートカイノスFe試薬     デ・タテナー LIP			血清田煙淮液	血清用標準液	血清用標準液					
琉球大学 病院     ISE希釈法     ISE希釈法     ISE希釈法     ISE希釈法     日本書法     日本書法 </td <td></td> <td>標準物質</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>		標準物質								1
琉球大子				BM6070	BM6070	BM6070	IBM6070	BM6070	BIMIOU/U	
<b>内内に</b> 試薬キット名 アクアオートカイノスMg試薬 ダイヤカラ・リキット・Ca アクアオートカイノスFe試薬 ディタナーL IP	病院	測定機器名	ВМ6070							
	病院  琉球大学	測定機器名 測定方法	BM6070 ISE希釈法	ISE希釈法	ISE希釈法	酵素法	酵素法	ニトロソPSAP法	酵素法	
標準物質	病院  琉球大学	測定機器名 測定方法 試薬メーカー名	BM6070 ISE希釈法	ISE希釈法	ISE希釈法	酵素法 カイノス	酵素法 東洋紡	ニトロソPSAP法 カイノス	酵素法 協和メデックス	

項		TC	TG	HDL-K	HDL-S	HDL-W	LDL-K	LDL-S	LDL-W
	測定機器名	Labospect008	Labospect008	(協和) Labospect008	(積水) Labospect008	(和光) Labospect008	(協和) Labospect008	(積水) Labospect008	(和光) Labospect008
	測定方法	Cho酸化酵素法	酵素比色法(FG消去)	直接法(阻害)	直接法(阻害)	直接法(消去)	直接法	直接法	直接法
九州大学	試薬メーカー名	セロテック	セロテック	協和メデックス	積水メディカル	和光純薬	協和メデックス	積水メディカル	和光純薬
病院	試薬キット名	セロテック TCHO-L	セロテック TG-L	メタボリードHDL-C	クオリシ・ェント HDL	L9/7°73-HDL-C•M3	メタボリード LDL-C	クオリシ・ェントLDL	L917 73- LDL-C·M
	標準物質	リピッドーL	リピッドーL	メタホリート・標準血清	クオリシ [*] ェントNキャリフ [*] レータ	マルチキャリフ・レーター リヒット	メタホリート・標準血清	クオリシ [*] ェントNキャリフ [*] レータ	マルチキャリフ・レーター リヒット
	測定機器名	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008
	測定方法	Cho酸化酵素法	酵素比色法(FG消去)	直接法(阻害)	直接法(阻害)	直接法(消去)	直接法	直接法	直接法
福岡大学	試薬メーカー名	積水メディカル	積水メディカル	協和メデックス	積水メディカル	和光純薬	協和メデックス	積水メディカル	和光純薬
病院	試薬キット名	クオリシ・ェント CHO	クオリシ゛ェント TG	メタボリードHDL-C	クオリシ・ェント HDL	Lタイプ・ワコーHDL-C・M3	メタボリード LDL-C	クオリシ [*] ェントLDL	Lタイプ・ワコー LDL-C・M
	標準物質	クオリシ [*] ェントNキャリフ [*] レータ	クオリシ [*] ェントNキャリフ [*] レータ	メタボリード標準血清	クオリシ゛ェントNキャリフ゛レータ	マルチキャリフ・レーター リピット	メタボリード標準血清	クオリシ゛ェントNキャリフ゛レータ	マルチキャリフ・レーター リピット
	測定機器名	BM9130	BM9130	BM9130	BM9130	BM9130	BM9130	BM9130	BM9130
福大筑紫	測定方法	Cho酸化酵素法	酵素比色法(FG消去)	直接法(阻害)	直接法(阻害)	直接法(消去)	直接法	直接法	直接法
病院	試薬メーカー名	和光純薬	和光純薬	協和メデックス	積水メディカル	和光純薬	協和メデックス	積水メディカル	和光純薬
763190	試薬キット名	LタイプワコーCHO・M	LタイプワコーTG・M	メタボリードHDL-C	コレステストN	Lタイプ・ワコーHDL-C・M3	メタボリード LDL-C	コレステスト	Lタイプ・ワコー LDL-C・M
	標準物質	マルチキャリフ・レーターリビット	マルチキャリフ・レーターリヒ・ット	メタボリード標準血清	コレステストNキャリブレータ	マルチキャリフ・レーター リピット	メタボリード標準血清	コレステストNキャリブレータ	マルチキャリフ・レーター リピット
	測定機器名	Labospect008 α	Labospect008 α	Labospect008 α	Labospect008 α	Labospect008 α	Labospect008 α	Labospect008 α	Labospect008 α
久留米大学	測定方法	Cho酸化酵素法	酵素比色法(FG消去)	直接法(阻害)	直接法(阻害)	直接法(消去)	直接法	直接法	直接法
病院	試薬メーカー名	和光純薬	和光純薬	協和メデックス	積水メディカル	和光純薬	協和メデックス	積水メディカル	和光純薬
	試薬キット名	LタイプワコーCHO・M	LタイプワコーTG・M	メタボリードHDL-C	クオリシ゛ェント HDL	Lタイプ・ワコーHDL-C・M3	メタボリード LDL-C	クオリシ゛ェントLDL	Lタイプ・ワコー LDL-C・M
	標準物質	マルチキャリフ・レーターリヒ・ット* BM6070	マルチキャリフ・レーターリヒ・ット・	メタホリートで標準血清	クオリシ゛ェントNキャリフ・レータ	マルチキャリブレーター リピット	メタホ´リート´標準血清	クオリシ・ェントNキャリフ・レータ BM6070	マルチキャリフ・レーター リヒット
	測定機器名		BM6070	BM6070	BM6070	BM6070 本体:+ (※+)	BM6070		BM6070
飯塚病院	測定方法 試薬メーカー名	Cho脱水素酵素法 シスメックス	酵素比色法(FG消去) 協和メデックス	直接法(阻害) 協和メデックス	直接法(阻害) 積水メディカル	直接法(消去) 和光純薬	直接法 協和メデックス	直接法積水メディカル	直接法和光純薬
ᄴᄽᄭᆟᆟᅚ	試薬キット名	ンスメックス T-CHO試薬・KL「コクサイ」	励和メデックス デタミナーL TG II	励和メデックス メタボリードHDL-C	根 ハメティカル コレステストN	トリアルが光 Lタイプ・ワコーHDL-C・M3	MMメデックス メタボリード LDL-C	付かアティカルコレステスト	トリアルが出来 Lタイプ・ワコー LDL-C・M
	標準物質	脂質キャリフ・レーターネオ	デダナー標準血清	メタホ・リート・標準血清	コレス・ストN	マルチキャリフ・レーター リピット	メタホ・リート・標準血清	コレス・ハト コレステストNキャリブレータ	マルチキャリフ・レーター リヒット
	測定機器名	周負47770 7 4切 BM2250	BM2250	BM2250	BM2250	BM2250	BM2250	BM2250	BM2250
-t- alle 1	測定方法	Cho酸化酵素法	酵素比色法(FG消去)	直接法(阻害)	直接法(阻害)	直接法(消去)	直接法	直接法	直接法
産業医科	試薬メーカー名	積水メディカル	積水メディカル	協和メデックス	積水メディカル	和光純薬	協和メデックス	積水メディカル	和光純薬
大学病院	試薬キット名	コレステスト CHO	コレステスト TG	メタボリードHDL-C	コレステストN	Lタイプ ワコーHDL-C・M3	メタボリード LDL-C	コレステスト	Lタイプ・ワコー LDL-C・M
	標準物質	コレステストNキャリブレーター	コレステストNキャリブレーター	メタボリード標準血清	コレステストNキャリブレータ	マルチキャリフ・レーター リピット	メタボリード標準血清	コレステストNキャリブレータ	マルチキャリフ・レーター リヒット
	測定機器名	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008
福岡赤十字	測定方法	Cho酸化酵素法	酵素比色法(FG消去)	直接法(阻害)	直接法(阻害)	直接法(消去)	直接法	直接法	直接法
病院	試薬メーカー名	積水メディカル	積水メディカル	協和メデックス	積水メディカル	和光純薬	協和メデックス	積水メディカル	和光純薬
773150	試薬キット名	コレステスト CHO	コレステスト TG	メタボリードHDL-C	クオリシ [・] ェント HDL	Lタイプ・ワコーHDL-C・M3	メタボリード LDL-C	クオリシ・ェントLDL	Lタイプ・ワコー LDL-C・M
	標準物質	クオリシ [・] ェントNキャリフ・レータ	クオリシ [*] ェントNキャリフ [*] レータ	メタボリード標準血清	クオリシ゛ェントNキャリフ゛レータ	マルチキャリフ・レーター リピット	メタボリード標準血清	クオリシ゛ェントNキャリフ゛レータ	マルチキャリフ・レーター リピット
	測定機器名	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008
聖マリア	測定方法	Cho酸化酵素法	酵素比色法(FG消去)	直接法(阻害)	直接法(阻害)	直接法(消去)	直接法	直接法	直接法
病院	試薬メーカー名	積水メディカル クオリジェント CHO	積水メディカル クオリジェントTG	協和メデックス メタボリードHDL-C	積水メディカル クオリジェント HDL	和光純薬	協和メデックス メタボリード LDL-C	積水メディカル クオリシ・ェントLDL	和光純薬 Lタイプワコー LDL-C・M
	標準物質	クオリシ・ェントNキャリフ・レータ	クオリジェントNキャリプレータ	メタホリート 標準血清	クオリジェントNキャリプレータ	Lタイプ・ワコーHDL-C・M3 マルチキャリプ・レーター リヒ・ット	メタホ・リート・標準血清	クオリシ [*] ェントNキャリフ [*] レータ	マルチキャリフ・レーター リヒット
	測定機器名	コハ*ス8000c702	コハ*ス8000c702	フバス8000c702	コハ*ス8000c702	コハ*ス8000c702	コハ・ス8000c702	コハ*ス8000c702	コハ*ス8000c702
	測定方法	Cho酸化酵素法	酵素比色法(FG消去)	直接法(阻害)	直接法(阻害)	直接法(消去)	直接法	直接法	直接法
佐賀大学	試薬メーカー名	和光純薬	和光純薬	協和メデックス	積水メディカル	和光純薬	協和メデックス	積水メディカル	和光純薬
病院	試薬キット名	LタイプワコーCHO・M	LタイプワコーTG・M	メタホ゛リート゛	コレステストN	Lタイプ ワコーHDL-C・M3	メタボリード LDL-C	コレステスト	Lタイプ・ワコー LDL-C・M
	標準物質	マルチキャリフ・レーター リヒ・ット・RD	マルチキャリフ・レーター リヒット・RD	メタボリード標準血清	コレステストNキャリブレータ	マルチキャリフ・レーター リピット	メタボリード標準血清	コレステストNキャリブレータ	マルチキャリフ・レーター リピット
	測定機器名	BM8020	BM8020	BM8020	BM8020	BM8020	BM8020	BM8020	BM8020
大分大学	測定方法	Cho酸化酵素法	酵素比色法(FG消去)	直接法(阻害)	直接法(阻害)	直接法(消去)	直接法	直接法	直接法
病院	試薬メーカー名	積水メディカル	積水メディカル	協和メデックス	積水メディカル	和光純薬	協和メデックス	積水メディカル	和光純薬
77 3130	試薬キット名	コレステスト CHO	オートセラーN	メタボリードHDL-C	コレステストN	Lタイプ・ワコーHDL-C・M3	メタボリード LDL-C	コレステスト	Lタイプ・ワコー LDL-C・M
	標準物質	クオリシ [・] ェントNキャリフ・レータ	コレテストN キャリブレーター	メタボリード標準血清	コレステストNキャリブレータ	マルチキャリフ・レーター リピット	メタボリード標準血清	コレステストNキャリブレータ	マルチキャリフ・レーター リビット
	測定機器名	BM6070	BM6070	BM6070	BM6070	BM6070	BM6070	BM6070	BM6070
大分県立	測定方法	Cho酸化酵素法	酵素比色法(FG消去)	直接法(阻害)	直接法(阻害)	直接法(消去)	直接法	直接法	直接法
病院	試薬メーカー名	協和メデックス	協和メデックス	協和メデックス	積水メディカル	和光純薬	協和メデックス	積水メディカル	和光純薬
	試薬キット名標準物質	デタミナーL TCⅡ	デタミナーL TGⅡ	メタボリードHDL-C	コレステストN	Lタイプ・ワコーHDL-C・M3	メタボリード LDL-C	コレステスト	L917*73- LDL-C·M
	標準物質測定機器名	メタボリード標準血清 BM6070	メタボリード標準血清 BM6070	メタホ"リート"標準血清 BM6070	コレステストNキャリブレータ BM6070	マルチキャリフ・レーター リヒット BM6070	メタホ [*] リート [*] 標準血清 BM6070	コレステストNキャリブレータ BM6070	マルチキャリプレーター リピット BM6070
	測定方法	Cho酸化酵素法	酵素比色法(FG消去)	直接法(阻害)	直接法(阻害)	直接法(消去)	直接法	直接法	直接法
熊本大学	試薬メーカー名	協和メデックス	協和メデックス	協和メデックス	積水メディカル	和光純薬	協和メデックス	積水メディカル	和光純薬
病院	試薬キット名	デタミナーL TO II	デタミナーL TG II	メタボリードHDL-C	コレステストN	Lタイプ・ワコーHDL-C・M3	メタボリード LDL-C	コレステスト	L\$17°73- LDL-C•M
	標準物質	デタミナー標準血清	デタミナー標準血清	メタホブリートで標準血清	コレステストNキャリブレータ	マルチキャリフ・レーター リヒット	メタホ゛リート゛標準血清	コレステストNキャリブレータ	マルチキャリフ・レーター リヒット
	測定機器名	BM6070	BM6070	ВМ6070	BM6070	BM6070	ВМ6070	BM6070	BM6070
E I 上 上	測定方法	Cho酸化酵素法	酵素比色法(FG消去)	直接法(阻害)	直接法(阻害)	直接法(消去)	直接法	直接法	直接法
長崎大学 病院	試薬メーカー名	協和メデックス	協和メデックス	協和メデックス	積水メディカル	和光純薬	協和メデックス	積水メディカル	和光純薬
기식 [시]	試薬キット名	デタミナ−L TC Ⅱ	デタミナーL TGⅡ	メタボリードHDL-C	コレステストN	Lタイプ・ワコーHDL-C・M3	メタボリード LDL-C	コレステスト	Lタイプ・ワコー LDL-C・M
	標準物質	デタミナー標準血清	デタミナー標準血清	メタボリード標準血清	コレステストNキャリブレータ	マルチキャリブレーター リヒット	メタボリード標準血清	コレステストNキャリブレータ	マルチキャリフ・レーター リヒット
		TBA2000FR NEO	TBA2000FR NEO	TBA2000FR NEO	TBA2000FR NEO	TBA2000FR NEO	TBA2000FR NEO	TBA2000FR NEO	TBA2000FR NEO
	測定機器名				直接法(阻害)	直接法(消去)	直接法	直接法	直接法
<b>京林士</b> 华	測定方法	Cho酸化酵素法	酵素比色法(FG消去)	直接法(阻害)			1+1 To 1 - 1		
宮崎大学	測定方法 試薬メーカー名	Cho酸化酵素法 セロテック	酵素比色法(FG消去) セロテック	協和メデックス	積水メディカル	和光純薬	協和メデックス	積水メディカル	和光純薬
宮崎大学	測定方法 試薬メーカー名 試薬キット名	Cho酸化酵素法 セロテック セロテック TCHO-L	酵素比色法(FG消去) セロテック セロテック TG-L	協和メデックス メタボリードHDL-C	積水メディカル コレステストN	和光純薬 LタイプワコーHDL-C・M3	メタボリード LDL-C	コレステスト	Lタイプ・ワコー LDL-C・M
宮崎大学	測定方法 試薬メーカー名 試薬キット名 標準物質	Cho酸化酵素法 セロテック セロテック TCHO-L リピッドーL	酵素比色法(FG消去) セロテック セロテック TG-L リピッドーL	協和メデックス メタボリードHDL-C メタボリード標準血清	積水メディカル コレステストN コレステストNキャリブレータ	和光純薬 LタイプワコーHDL-C・M3 マルチキャリプレーター リピッド	メタボリード LDL-C メタボリード標準血清	コレステスト コレステストNキャリブレータ	Lタイプ・ワコー LDL-C・M マルチキャリプ・レーター リヒ・ット
	測定方法 試薬メーカー名 試薬キット名 標準物質 測定機器名	Cho酸化酵素法 セロテック セロテック TCHO-L リピッドーL BM6070	酵素比色法(FG消去) セロテック セロテック TG-L リピッドーL BM6070	協和メデックス メタボリードHDL-C メタホ・リート・標準血清 BM6070	積水メディカル コレステストN コレステストNキャリブレータ BM6070	和光純薬 LタイプワコーHDL-C・M3 マルチキャリプレーター リピッド BM6070	メタボリード LDL-C メタボリード標準血清 BM6070	コレステスト コレステストNキャリブレータ BM6070	Lタイプ・ワコー LDL-C・M マルチキャリフ・レーター リヒット BM6070
鹿児島大学	測定方法 試薬 メーカー名 試薬 キット名 標準物質 測定機器名 測定方法	Cho酸化酵素法 セロテック セロテック TCHO-L リピッドーL BM6070 Cho酸化酵素法	酵素比色法(FG消去) セロテック セロテック TG-L リピッドーL BM6070 酵素比色法(FG消去)	協和メデックス メタボリードHDL-C メタボリート標準血清 BM6070 直接法(阻害)	積水メディカル コレステストN コレステストNキャリブレータ BM6070 直接法(阻害)	和光純薬 LタイプワコーHDL-C・M3 マルチキャリプレーター リピッド BM6070 直接法(消去)	メタボリード LDL-C メタボリード標準血清 BM6070 直接法	コレステスト コレステストNキャリブレータ BM6070 直接法	L9イフ [*] ワコー LDL-C・M マルチキャリフ [*] レーター リヒ [*] ット [*] BM6070 直接法
	測定方法 試薬メーカー名 試薬キット名 標準物質 測定機器名	Cho酸化酵素法 セロテック セロテック TCHO-L リピッドーL BM6070	酵素比色法(FG消去) セロテック セロテック TG-L リピッドーL BM6070	協和メデックス メタボリードHDL-C メタホ・リート・標準血清 BM6070	積水メディカル コレステストN コレステストNキャリブレータ BM6070	和光純薬 LタイプワコーHDL-C・M3 マルチキャリプレーター リピッド BM6070	メタボリード LDL-C メタボリード標準血清 BM6070	コレステスト コレステストNキャリブレータ BM6070	Lタイプ・ワコー LDL-C・M マルチキャリフ・レーター リヒット BM6070
鹿児島大学	測定方法 試薬メーカー名 試薬キット名 標準物質 測定機器名 測定方法 試薬メーカー名	Cho酸化酵素法 セロテック セロテック TCHO-L リピッドーL BM6070 Cho酸化酵素法 協和メデックス	酵素比色法(FG消去) セロテック セロテック TG-L リピッドーL BM6070 酵素比色法(FG消去) 協和メデックス	協和メデックス メタボリードHDL-C メタボリード標準血清 BM6070 直接法(阻害) 協和メデックス	積水メディカル コレステストN コレステストNキャリプレータ BM6070 直接法(阻害) 積水メディカル	和光純薬 LタイプワコーHDL-C・M3 マルチキャリプレーター リピット BM6070 直接法 (消去) 和光純薬	メタボリード LDL-C メタボリード標準血清 BM6070 直接法 協和メデックス	コレステスト コレステストNキャリブレータ BM6070 直接法 積水メディカル	Lタイプウコー LDL-C・M マルチキャリプ・レーター リピット BM6070 直接法 和光純薬
鹿児島大学	測定方法 試薬メーカー名 試薬キット名 標準物質 測定機器名 測定方法 試薬メーカー名 試薬キット名	Cho酸化酵素法 セロテック セロテック TCHO-L リピッドーL BM6070 Cho酸化酵素法 協和メデックス デダナ-L TC II	酵素比色法(FG消去) セロテック セロテック TG-L リピッドーL BM6070 酵素比色法(FG消去) 協和メデックス デ・ダナーL TG II	協和メデックス メタボリードHDL-C メタボリード標準血清 BM6070 直接法(阻害) 協和メデックス メタボリードHDL-C	積水メディカル コレステストN コレステストNキャリブレータ BM6070 直接法(阻害) 積水メディカル コレステストN	和光純薬 LタイプワコーHDL-G・M3 マルチキャリプレーター リビット・ BM6070 直接法(消去) 和光純薬 LタイプワコーHDL-G・M3	メタボリード LDL-C タホリード標準血清 BM6070 直接法 協和メデックス メタボリード LDL-C	コレステスト コレステストNキャリブレータ BM6070 直接法 積水メディカル コレステスト	Lタイプワコー LDL-C・M マルチキャリプレーター リビット BM6070 直接法 和光純薬 Lタイプワコー LDL-C・M
鹿児島大学病院	測定方法 試薬メーカー名 試薬キット名 標準物質 測定機器名 測定方法 試薬メーカー名 試薬ギャット名 標準物質	Cho酸化酵素法 セロテック セロテック TCHO-L リピッドーL BM6070 Cho酸化酵素法 協和メデックス デタナーL TC II デタナー標準血清	酵素比色法(FG消去) セロテック セロテック TG-L リピッドーL BM6070 酵素比色法(FG消去) 協和メデックス デ・タナーL TG II デ・タナー標準血清	協和メデックス メタボリードHDL-C メタボリード標準血清 BM6070 直接法(阻害) 協和メデックス メタボリードHDL-C メタボリード標準血清	積水メディカル コレステストN コレステストNキャリブレータ BM6070 直接法(阻害) 積水メディカル コレステストN コレステストN	和光純薬 LタイプワコーHDL-G・M3 マルチキャリプレーター リビッド BM6070 直接法(消去) 和光純薬 LタイプワューHDL-G・M3 マルチキャリプレーター リピッド	メタボリード LDL-C タメボリート 標準血清 BM6070 直接法 協和メデックス メタボリード LDL-C タタボリード標準血清	コレステスト コレステストNキャリプレータ BM6070 直接法 積水メディカル コレステスト コレステストNキャリプレータ	Lタイプウコー LDL-C・M マルチキャリフ・レーター リビット・ BM6070 直接法 和光純薬 Lタイプウコー LDL-C・M マルチキャリフ・レーター リビット・
鹿児島大学 病院 琉球大学	測定方法 試薬/トカー名 試薬半物質 測定機器名 測定英/トカート 試薬薬キッ質 試薬薬キッ質 標準物質 測定機準物器名 測定機準物器名	Cho酸化酵素法 セロテック セロテック TCHO-L リピッドーL BM6070 Cho酸化酵素法 協和メデックス デダナーLTC II デダナー標準血清 BM6070	酵素比色法(FG消去) セロテック セロテック TG-L リピッドーL BM6070 酵素比色法(FG消去) 協和メデックス デ・タナーL TG II デ・タナー標準血清 BM6070	協和メデックス メタボリードHDL-C メタボリード標準血清 BM6070 直接法(阻害) 協和メデックス メタボリードHDL-C メケボリード標準血清 BM6070	積水メディカル コレステストN コレステストN コレステストNキャリブレータ BM6070 直接法(阻害) 積水メディカル コレステストN コレステストN コレステストNやサリブレータ BM6070	和光純薬 LタイプワコーHDL-C・M3 マルチキャリプレーター リピゥド BM6070 直接法(消去) 和光純薬 LタイプワコーHDL-C・M3 マルチキャリプレーター リピゥド BM6070	メタボリード LDL-C タボリード標準血清 BM6070 直接法 協和メデックス メタボリード LDL-C タボリード標準血清 BM6070	コレステスト コレステストNキャリブレータ BM6070 直接法 積水メディカル コレステスト コレステスト コレステストNキャリブレータ BM6070	Lタイプウコー LDL-C・M マルチキャリフ・レーター リビット・ BM6070 直接法 和光純薬 Lタイプ・ウコー LDL-C・M マルチキャリフ・レーター リビット・ BM6070
鹿児島大学 病院	測定 東	Cho酸化酵素法 セロテック セロテック TCHO-L リピッドーL BM6070 Cho酸化酵素法 協和メデックス デタナーL TC II デタナー構準血清 BM6070 Cho酸化酵素法	酵素比色法(FG消去) セロテック セロテック TG-L リピッドーL BM6070 酵素比色法(FG消去) 協和メデックス デッミナーL TG II デッミナー標準血清 BM6070 酵素比色法(FG消去)	協和メデックス メタボリードHDL-C ソタボリード標準血清 BM6070 直接法(阻害) 協和メデックス メタボリードHDL-C ソオリード標準血清 BM6070 直接法(阻害)	積水メディカル コレステストN コレステストN コレステストNキャリブレータ BM6070 直接法(阻害) 積水メディカル コレステストN コレステストN コレステストN コレステストキャリブレータ BM6070 直接法(阻害)	和光純薬 LタイプワコーHDL-C・M3 マルチキャリプレーター リピッド BM6070 直接法(消去) 和光純薬 LタイプワコーHDL-C・M3 マルチキャリプレーター リピッド BM6070 直接法(消去)	メタボリード LDL-C メタボリード 標準血清 BM6070 直接法 協和メデックス メタボリード LDL-C メタボリード標準血清 BM6070 直接法	コレステスト コレステスト(キャリブレータ BM6070 直接法 積水メディカル コレステスト コレステスト コレステスト(キャリブレータ BM6070 直接法	L9イフ'ワコー LDL-C・M マルチキャリフ'レーター リビット' BM6070 直接法 和光純薬 L9イフ'ワコー LDL-C・M マルチキャリフ'レーター リビット' BM6070 直接法

大学   大学   大学   1998年度   1999年度   19	項	目	AST	ALT	CK	ALP	GGT	LD	AMY	CHE
		測定機器名	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008	Labospect008
	+ 州十宗	測定方法	JSCC標準化対応法	JSCC標準化対応法	JSCC標準化対応法	JSCC標準化対応法	JSCC標準化対応法	JSCC標準化対応法	JSCC(Et-G7-pNP)	JSCC(p-HBC)
本語・中央										シノテスト
株理学院	71 7170									
### 1987年   198774   198744   198774   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744   198744										
「中国」	"				· ·	· ·	· ·			
接換が									•	
### 20 10 10 10 10 10 10 10 10 10 10 10 10 10	内机	試薬キット名		クオリシ・ェント ALT-L	クオリシ゛ェント CK-L	クオリシ゛ェント ALP	クオリジェント γ ーGT	クオリジェント LD	クオリシ [*] ェントAMY-G7	クイックオート ネオChE-E
# 大学										
### 18.2 (1.5 元) (1.										
類様の										
	抦阮									
### 2017 12 (1977) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974) 2 (1974)			トレースキャリブPLUS	トレースキャリプPLUS	トレースキャリブPLUS	トレースキャリブPLUS	トレースキャリブPLUS	トレースキャリブPLUS	トレースキャリブPLUS	トレースキャリブPLUS
「大きないった」							· ·			
製造学的	久留米大学									
# 2	病院									
### 2017   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   197										
数学の		測定機器名	BM6070	BM6070	BM6070	BM6070	BM6070	BM6070	BM6070	BM6070
### 2007 12 AST 12 AST 22 AST 25 AS										
産業等質	<b>敗</b> 塚病院		1470-1071	11.5 = 1 = 11.						
# 2							·			
展示性性										
	产業库利		JSCC標準化対応法					JSCC標準化対応法		JSCC(p-HBC)
銀子でから										
March   Ma										
### 2			· · · · · · · · · · · · · · · · · · ·				· ·			
## 表										
対抗機器を	טפו צאר		シカリキット [*] AST	シカリキット [*] ALT	シカリキット [*] CK	イアトロLQ ALPレートII		クイックオートネオLDJS	ピュアオートSAMYG7	クイックオートネオCh-E
要でリア 病院と										
#菓子小PS					·	·	·			
「										
#注意機響 2 m2 x 8000c 702 m3 x 8000c	抦阮									
接来がら、						酵素キャリブレーター				酵素キャリプレータープラス
(株食人子) 「「「「「「「「「「「」」」」」 「「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」」 「「」」」 「「」」」 「」」」 「「」」」 「「」」」」 「「」」」 「「」」」 「「」」」 「「」」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」 「「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」 「										
### 19										
別定機器名	病院									
大分大学   病院   おから   おいら   おい					酵素キャリブレーター				Aalto EC	
			BM8020	BM8020						
接葉キット名   イア-PGO ASTU-H-(J)	大分大学									
接条物質   日素キャリアレーケラス   酵素キャリアレーケラス   財産キャリアレーケラス   財産キャリアレーケラス   財産キャリアレーケーラス   財産キャリアレーケーラス   財産キャリアレーケーラス   財産キャリアレーケーラス   財産キャリアレーケーラス   財産キャリアレーケーラス   財産キャリアレーケーラス   財産キャリアレーケーラス   財産キャリアレーケーラス   財産・日本   日本・日本・日本・日本・日本・日本・日本・日本・日本・日本・日本・日本・日本・日	病院									
## 大分県立										
放棄ナー名   シノテスト   シンテスト   カインカートネイに下   カインカートネイに下   カインカートネイに下   カインカートネイに下   カインカートネイに下   カインカートネイに下   カインカートネイに下   カインカートネイに下   カインカートネイに下   シェアカース   カインカートネイに下   シェアカース   カインカートネイに下   シェアカース   カインカートネイに下   シノテスト   シストスト   シスト				BM6070					BM6070	BM6070
病院	大分県立									
##物質 Aalto EC BM6070 BM6										
# 本 大学 病院   #										
#										
議業・カー名	能太大学	測定方法			JSCC標準化対応法					
議集本物質   株子中代   かった性   のけったまー   トッた性   のけったまー   トッた性   のけったっきー   シケアスは、毎前上中コー   シケアスは、毎前上中コー   シケアスは、毎前上中コー   フケアスは、毎前上中コー   フケアスは、毎前上中コー   フケアスは、毎前上中コー   フケアスは、毎前上中コー   フケアスト   フケアスト   日ものつの   日本ののの   日本のののの   日本ののの   日本ののの   日本ののの   日本ののの   日本ののの   日本のののの   日本ののの   日本のののの   日本のののののの   日本のののの   日本のののの   日本ののののののの   日本のののの   日本のののの   日本のののののののの   日本のののののののののの										
操力性   BM6070   BM										
長崎大学病院										
記薬ナーカ名 和光純薬   和光純薬   和光純薬   和光純薬   米研化学   和光純薬   和光純薬   シノテスト   セロラック   セロラック   地域・大学   1947/93   AST・J2   1947/93   ALT・J2   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/94   1947/9	<b>上岭十</b> 씍									
「			和光純薬	和光純薬		栄研化学	和光純薬	和光純薬	シノテスト	
対しては、	.,,,,,,,									
店崎大学         別定方法         JSCC標準化対応法         JSCC標準化対応法         JSCC標準化対応法         JSCC信平内)         JSCC(戸-HBC)           施売大学 病院         3月20円標準化対応法         JSCC標準化対応法         JSCC標準化対応法         JSCC(原-PD)         JSCC(戸-HBC)           施売大学 病院         2月20日本 (大学)         2月20日本 (大学)         2月20日本 (大学)         2月20日本 (大学)         2月20日本 (大学)         2月20日本 (大学)         3月20日本 (大学)         3月20日本 (大学)         3月20日標準化対応法         JSCC(原-PBC)         3月20日本 (大学)										
宮崎大学 病院         試業・力・名 試業・ツ・名         シノテスト         シノテスト         LSIメディエンス         シスメックス         積水メディカル         シノテスト         セロテックEU         協和メデックス           施児島大学 病院         Aalto EC         Aalto EC         酵素キャリプレータープラス         酵素キャリプレータープラス         酵素キャリプレータープラス         Aalto EC         井ヤリプレータープラス         日田ファックEU         研修の70         BM6070         DVテスト         レンプテスト         レンプテスト         レンプテスト         レンプテスト         レンプテスト         レンプラスト         レンプラスト         レンプラスト         レンプラスト         レンプラスト         レンプラスト         Aalto EC         酵素キャリプレータープラス         耐能をしているようにはまままままままままままままままままままままままままままままままままままま										
振準物質         Aalto EC         Aalto EC         酵素キャリプレーターブラス         酵素キャリプレーターブラス         酵素キャリプレーターブラス         Aalto EC         キャリプEC         酵素キャリプレーターブラス           施足島大学病院         測定方法 減業・力・名 試業・ウト名         JSCC標準化対応法 イアトロLQ AST(J) II 標準物質         JSCC標準化対応法 レグテスト         JSCC標準化対応法 レグテスト         JSCC標準化対応法 レグテスト         JSCC標準化対応法 レグテスト         JSCC標準化対応法 レグテスト         JSCC提生化対応法 レグテスト         JSCC提生化対応法 レグテスト         JSCC提生化対応法 レグテスト         JSCC提生化対応法 レグテスト         JSCC提生 レグナスオート CK         イアトロLQ LDHレート II マイッカオーキオ・ア・GT         イアトロLQ LDHレート II イアトロLQ LDHレート II イア・ローターブラス ・ 横葉キャリプレーターブラス ・ 横葉キャリプレーターブラス ・ 横葉キャリプレーターブラス ・ 横葉キャリプレーターブラス ・ 横葉キャリプレーターブラス ・ 大子スト         Aalto EC         酵素キャリプレータープラス ・ 大学スト ・ シグテスト         おまた ・ ローターグラム ・ ローターグラス ・ ローターグラス ・ ローターグラス ・ ローターグラス ・ ローターグラス ・ ローターグラス ・ ローターグラス ・ ローターグラス ・ ローターグラム ・ ローターグラス ・ ローターグラスト ・ ローターグラムトネオ CK ・ ローターグラムトネオ CK ・ ローターグラムトネオ CK ・ ローターグランドスト ・ ローターグランドスト ・ ローターグラムトスト CK ・ ローターグラス ・ ローターグラムトスト CK ・ ローターグラム ・ ローターグラム ・ ローターグラムトスト CK ・ ローターグースト AR CK ・ ローターグーストスト CK ・ ローターグーストストスト CK ・ ローターグーストストスト CK ・ ローターグーストストスト CK ・ ロ	宮崎大学									
施足島大学病院         関連機器名         BM6070         BM607										
施児島大学病院         JSCC標準化対応法         JSCC標準化対応法         JSCC標準化対応法         JSCC標準化対応法         JSCC標準化対応法         JSCC信用のつり										
議業・力・名										
試薬キット名										
標準物質酵素キャリプレータープラス酵素キャリプレータープラスAalto EC酵素キャリプレータープラスAalto EC酵素キャリプレータープラスAalto EC酵素キャリプレータープラスAalto EC測定機器名BM6070BM6070BM6070BM6070BM6070BM6070BM6070BM6070測定方法 病院JSCC標準化対応法 試業メーカー名 試業キット名JSCC標準化対応法 シノテスト シノテスト ソイックオートネオAST JSJSCC標準化対応法 シノテスト シノテスト シノテスト シグ・テスオートCKJSCC標準化対応法 技・ゴオートS ALPJSCC標準化対応法 製定の標準化対応法 ・コスオートS ALPJSCC標準化対応法 ・フンデルト・ディーの ・フンデルト・ディーの ・フンデルト・ディーの ・フンデルト・アードアーGTR-R ・フンデルト・アーGTR-R ・フンデルト・アーGTR-R ・フェアオートS LDドニュアオートS LD ・フィックオートネオCh-E	抦阮									
琉球大学 病院         測定方法         JSCC標準化対応法         JSCC標準化対応法         JSCC標準化対応法         JSCC標準化対応法         JSCC標準化対応法         JSCC(同日-G5-P)         JSCC(PHBC)           試業メーカー名 試業キット名         シノテスト         シノテスト         シノテスト         フトラスト         技術メディカル         シスメックス         シノテスト           は流業キット名         グイッカオートネオAST JS         グイッカオートネイトーCK         ビュアオートS ALP         ランピアリキッド アーGTR-R         ビュアオートS LD         L「コクサイ」         クイッカオートネオCh-E										
琉球 人子   病院   試薬 ナ カ										
対対 iii 薬キット名 クイックオートネオAST JS クイックオートネオALT JS シグ・ナスオートCK ピュアオートS ALP ランピアリキッド アーGTR-R ピュアオートS LD L「コクサイ」 クイックオートネオCh-E										
	病院									

# グルコース (GLU)

宫崎大学医学部附属病院 緒方 良一

# 【参加状況】

今回の参加は 251 施設 (前回 237 施設) であった。

【測定方法の状況】表1に参加施設の測定方法別の施設数を示す。

表 1 測定方法別の施設数 ()内は施設数の割合

	②電極法 	③HK·GK 法	(5	9その他			
		OHK GK (Z	富士	アークレイ	オーソ	OF COME	
施設数	29 (11.5%)	191 (76.1%)	21 (8.4%)	5 (2.0%)	4 (1.6%)	1 (0.4%)	

## 【測定値の状況】

1. 表2 に±3SD 除去後の平均値とCV%を測定原理別に示した。全体のCV%は、各濃度域で 1.5%~1.8%と良好な結果であった。ドライケミストリー法の平均値は前回と同様に各濃度域とも に目標値に近づいており、CV%は各濃度域で2.5%~4.7%と良く収束していた。

表 2 ±3SD 除去後の平均値(mg/dL)とCV % ()内は前回の状況

年 度	試料 1 (高濃度域)	試料 2 (中濃度域)	試料3(低濃度域)		
十 及	平均值 CV%	平均值 CV%	平均值 CV %		
目標値	192. 7	150. 4	86. 5		
全体 (251)	191.4 1.5 (1.1)	149.8 1.5 (1.1)	86.6 1.8 (1.4)		
②電極法 (29)	191.5 1.0 (1.1)	149.3 1.1 (0.9)	85. 5 1. 5 (0. 9)		
③HK·GK 法 (191)	191.8 1.3 (1.1)	149.9 1.4 (1.1)	86. 5 1. 4 (1. 3)		
⑤ドライケミストリー法(30)	190.0 4.7 (4.2)	150.3 4.0 (3.5)	88.5 2.5 (3.5)		

2. 表3に示すように、②電極法は一昨年アークレイでは強い低値傾向が認められたが、昨年から メーカー差がほぼなくなった。アークレイ機器専用キャリブレター値付けの問題が改善されたと思われる。

表3 電極法 2 社の平均値 (mg/dL) と CV% () 内は前回の状況

		試料 1 (	斗 1 (高濃度域) 試料 2 (中濃度域)		試料3 (	試料3(低濃度域)		
		平均值	CV%	平均値	CV%	平均値	CV %	
目標値		192. 7		150. 4		86. 5		
②電極法	(29)	191. 5	1.0 (1.1)	149. 3	1.1 (0.9)	85. 5	1.5 (0.9)	
A&T	(16)	191.8	0.8 (0.6)	149. 3	1.0 (0.7)	85. 4	1.5 (0.8)	
アークレイ	(13)	191. 2	1.2 (1.4)	149. 4	1.0 (1.8)	85. 6	1.4 (2.0)	

図1 に電極法メーカー別の試料1 と試料3 のツインプロットを示した。目標範囲内を赤字の四角い枠内で示した。 $\ref{r-101}$ では昨年同様( $\ref{2/11}$ )、今年も2 施設( $\ref{2/13}$ )の施設が目標範囲から外れていた。

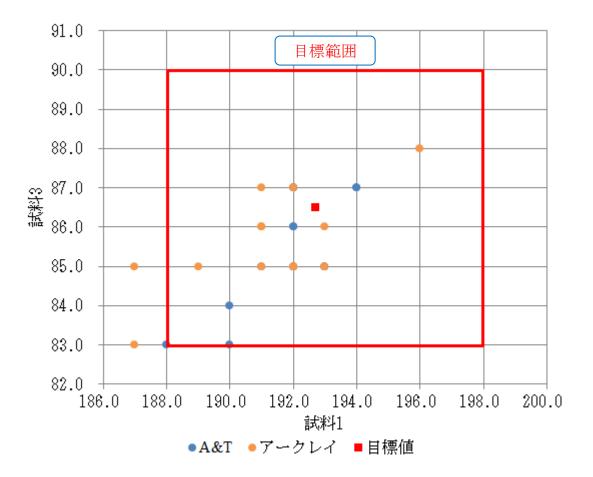



図1 電極法メーカー別 ツインプロット

3. 表 4 に⑤ドライケミストリー法3 社をメーカー別に示す。富士フイルムメディカルとオーソ・クリニカル・ダイアグノスティック スは高濃度域で低値傾向を示した。アークレイでは全濃度域で約4%高値傾向を示し、他の2社と比較してCV%は大きかった。傾向は昨年と同様であった。

表 4 ドライケミストリー3 社の平均値(mg/dL)と CV % ()内は前回の状況

年 度	試料 1 (高濃度域) 平均値 CV%	試料 2 (中濃度域) 平均値 CV%	試料 3(低濃度域) 平均値 CV %
目標値	192. 7	150. 4	86. 5
⑤ドライケミストリー法(30)	190.0 4.7 (4.2)	150.3 4.0 (3.5)	88.5 2.5 (3.5)
富士フィルムメディカル(21)	188.6 2.4 (2.3)	149.5 2.1 (2.1)	88. 2 2. 3 (3. 0)
アークレイ (5)	200.4 7.4 (7.6)	156.8 6.4 (5.5)	89. 4 3. 1 (4. 1)
オーソ・クリニカル・タ゛イアク゛ノステ ィックス (4)	184. 2 1. 6 (0. 7)	146.0 2.1 (1.3)	89. 2 1. 9 (2. 4)

4. 表 5 に目標範囲の達成状況を示した。②電極法、③HK・GK 法、共に良好な結果であっ た。⑤ドライクミストリー法では、前回と比較して目標達成施設割合は、中濃度域では60.0%とほ ぼ同様であったが、高濃度域で22.2%から43.3%、低濃度域では70.4%から86.7%とやや改 善が認められた。

表	5	目標範囲	(目標値±2.3%)	の達成状況	()内は方法内の割合
1	_				( )   1100/3   [2]   11/2   11/1

	試料 1 (高濃度域)	試料 2 (中濃度域)	試料3(低濃度域)
目標値範囲	188 ~ 198	146 ~ 154	83 ~ 90
全体 (251)	216 (86.1%)	226 (90.0%)	241 (96.0%)
②電極法 (29)	27 (93.1%)	28 (96.6%)	29 (100.0%)
③HK·GK 法 (191)	175 (91.6%)	179 (93.7%)	185 (96.9%)
⑤ドライケミストリー法(30)	13 (43.3%)	18 (60.0%)	26 (86.7%)
9その他 (1)	1 (100.0%)	1 (100.0%)	1 (100.0%)

5. 表 6 に試料1~3 の目標範囲を2 濃度域以上外れた施設数を測定原理別に示した。 2濃度域以上外れた施設は全体で9施設(3.6%)であった。

表 6 目標範囲を2濃度域外れた施設数 ()内は方法内の割合

	低値傾向	高値傾向	合計
全体 (251)	11 (4.4%)	10 (4.0%)	21 (8.4%)
②電極法 (29)	0 (0.0%)	0 (0.0%)	0 (0.0%)
③HK·GK 法 (191)	5 (2.6%)	5 (2.6%)	10 (5.2%)
⑤ドライケミストリー法(30)	6 (20.0%)	5 (16.7%)	11 (36.7%)
9その他 (1)	0 (0.0%)	0 (0.0%)	0 (0.0%)

### 【基準範囲の状況】

- 1. 基準範囲を 69 又は70~109 又は110mg/dL とした施設は98 施設(39.0%)、JCCLS 共用 基準範囲の73~109 mg/dL としている施設は97施設(38.6%)であった。
- 2. 基準範囲上限を 112mg/dL とした施設は3施設、115mg/dL とした施設は1 施設であった。 160 mg/dL とした施設が1 施設であった。早々の改定をお願いしたい。 昨年同様、基準範囲上限を 99 又は100mg/dL とされた施設が6施設あり解糖阻止剤不使 用又は通常血清使用の場合のみに使用すべきと思われる。
- 3. 基準範囲下限を 60mg/dL とした施設が11 施設あるが、解糖阻止剤不使用又は通常血清 使用の場合のみにしても、低血糖時の危険性を考慮すると少々危険と思われる。 改善が望まれる。

# 【ドライケミストリーの状況】

1. 図 2 に試料1 と試料3 のツインプロットを示した。目標範囲を赤枠で示した。 アークレイの各施設群にも系統誤差が認められた。富士フィルムメディカルとオーソ・クリニカル・ダイアグノスティックス は目標範囲に非常に近く収束していた。

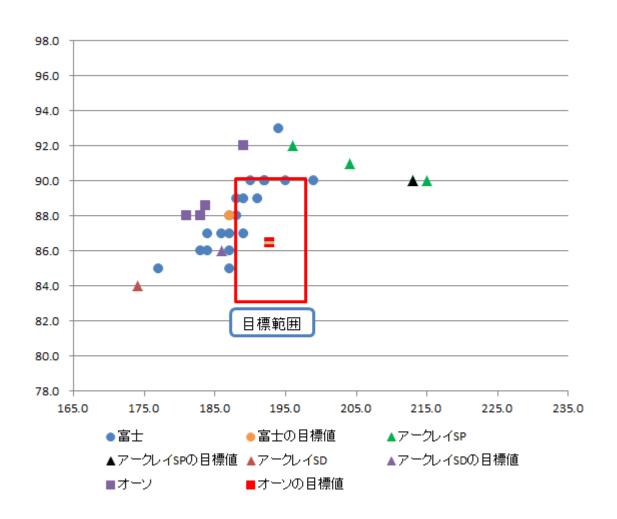



図2 ドライメーカー別 ツインプロット

2. 図 3 にドライケミストリー3 社の施設データと各メーカー指定許容幅(オーソ・クリニカル・ダイアグノスティックスはウエット 法許容幅と共通)を示した。富士フイルムメディカルでは±6%の幅を使用されておりほぼ全施設がこの範囲に収束している。アークレイでは±7.5%の幅を使用されているが、この範囲に入るのは1施設のみであり、4施設が外れていた。オーソ・クリニカル・ダイアグノスティックスはウエット法と同じ許容幅に非常に近く収束が見られる。

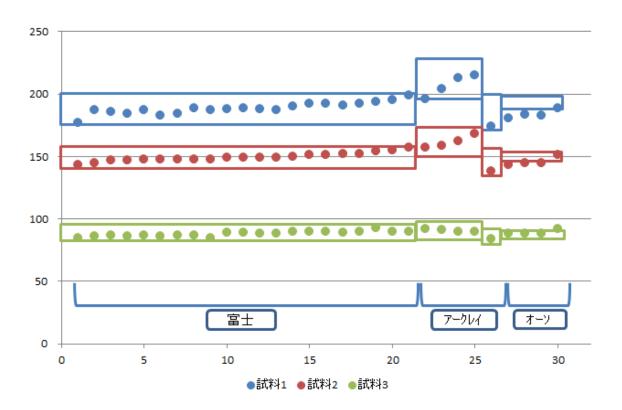



図3 ドライ施設データとメーカー指定許容幅

# 測定状況・測定データー覧表

1 GLU 施設No.が低い順に並んでいます

施設		-亚ル ていより		男性基	準範囲	女性基	進節囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1001	HK(GK)-UV法	セロテック	目立LABOSPE	73.00	109.0			O 191.0 C	150.0 〇	86.00
	HK(GK)-UV法	関東化学	目立LABOSPE	69.00	104.0			O 195.0 C		
1004	HK(GK)-UV法	積水メディカル	目立LABOSPE	73.00	109.0	73.00	109.0	○ 194.0 ○	151.0 〇	87.00
1006	HK(GK)-UV法	和光純薬	目立LABOSPE	73.00	109.0			○ 189.0 ○	147.0 〇	85.00
1010	HK(GK)-UV法	セロテック	東芝TBA-cシリー	69.00	104.0	69.00	104.0	○ 191.0 ○	149.0 〇	86.00
1011	HK(GK)-UV法	和光純薬	日本電子JCA-B	60.00	109.0	60.00	109.0	○ 193.0 ○	151.0 🔾	87.00
1012	HK(GK)-UV法	関東化学	日本電子JCA-B	73.00	109.0	73.00	109.0	○ 189.8 ○	148.1 🔾	85.30
	HK(GK)-UV法	和光純薬	日立7140-7170	73.00	109.0				146.0 〇	
	HK(GK)-UV法	ニットーボー	日本電子JCA-B	73.00	109.0			○ 192.0 ○		
	HK(GK)-UV法	ニットーボー	日本電子JCA-B	73.00	109.0			O 193.0 C		
	HK(GK)-UV法	シノテスト	日本電子JCA-B	70.00	109.0	70.00		O 193.0 C		
	GOD-電極法	エイアンドティー	A&TGA	73.00	109.0			O 193.0 C		
	HK(GK)-UV法 HK(GK)-UV法	シノテスト 和光純薬	目立LABOSPE	69.00 73.00	109.0			○ 192.0 ○ ○ 194.0 ○		
	HK(GK)-UV法	カイノス	東芝25FR_Accut 日立LABOSPE	69.00	109.0 109.0			O 193.0 C		
	HK(GK)-UV法	LSIメディエンス	日立7140-7170	73.00	109.0	73.00	109.0		151.0 🔾	
	HK(GK)-UV法	和光純薬	東芝TBA-cシリー	69.00	100.0	10.00		O 190.0 C		
	HK(GK)-UV法	シーメンス	シーメンスHCDDim	70.00	109.0			○ 190.0 ○		
	HK(GK)-UV法	シノテスト	日立7140-7170	70.00	109.0	70.00		○ 192.0 ○		
1034	GOD-電極法	エイアンドティー	A&TGA	70.00	109.0	70.00	109.0	○ 191.0 ○	148.0 〇	85.00
1035	グルコース脱水素	関東化学	日本電子JCA-B	69.00	104.0			○ 190.0 ○	148.0 〇	83.00
1038	HK(GK)-UV法	協和メデックス	目立LABOSPE	73.00	109.0			○ 193.0	156.0	96.00
1039	グルコース脱水素	関東化学	目立7140-7170	73.00	109.0			○ 192.0 ○	150.0 〇	86.00
1040	HK(GK)-UV法	和光純薬	目立LABOSPE	73.00	109.0	73.00	109.0	○ 190.0 ○	149.0 🔾	86.00
1046	GOD-電極法	アークレイ	アークレイアタ・ムスク・	80.00	109.0	80.00	109.0	○ 189.0 ○	149.0 🔾	85.00
	HK(GK)-UV法	和光純薬	ヘ・ックマン・コールター	69.00	109.0			○ 193.0 ○		
	HK(GK)-UV法	シノテスト	日本電子JCA-B	73.00	109.0	73.00		O 189.3 C		
	HK(GK)-UV法	和光純薬	日本電子JCA-B	70.00		70.00		O 192.0 C		
	HK(GK)-UV法 HK(GK)-UV法	セロテック シーメンス	東芝TBA-cシリー シーメンスHCDDim	70.00 73.00	110.0 109.0			○ 196.0 ○ ○ 190.0 ○		
	HK(GK)-UV法	協和メデックス	日立7140-7170	69.00	109.0	69.00		O 195.0 C		
	HK(GK)-UV法	シノテスト	東京貿易ビオリス5	70.00	109.0	00.00		O 190.0 C		
	HK(GK)-UV法	積水メディカル	日本電子JCA-B	69.00	109.0			O 191.0 C		
	GOD-電極法		アダムスハイブリット	70.00	109.0	70.00		O 191.0 C		
1060	GOD-POD法	LSIメディエンス	日本電子JCA-B	79.00	109.0			○ 190.0 ○	148.0 〇	85.00
1062	HK(GK)-UV法	積水メディカル	目立LABOSPE	73.00	109.0	73.00	109.0	○ 193.0 ○	152.0 〇	88.00
1064	HK(GK)-UV法	LSIメディエンス	日本電子JCA-B	64.00	109.0	64.00	109.0	○ 189.0 ○	148.0 〇	85.00
1072	HK(GK)-UV法	積水メディカル	目立LABOSPE	69.00	109.0	69.00	109.0	○ 193.0 ○	151.0 〇	87.00
1073	HK(GK)-UV法	和光純薬	目立LABOSPE	69.00	109.0	69.00	109.0	○ 190.0 ○	149.0 〇	86.00
1074	HK(GK)-UV法	シノテスト	東京貿易ビオリス2	70.00	109.0	70.00	109.0	○ 190.0	145.0 🔾	87.00
	HK(GK)-UV法	シーメンス	シーメンスHCDDim	70.00	109.0			O 191.0 C		
	GOD-電極法	アークレイ	アークレイアダンスク	60.00				○ 192.0 ○		
	HK(GK)-UV法	和光純薬	東京貿易ビオリス2	73.00	109.0		109.0	201.0	155.0 〇	
	HK(GK)-UV法 HK(GK)-UV法	シノテスト	目立LABOSPE	69.00	104.0			<ul><li>○ 192.0 ○</li><li>○ 190.5 ○</li></ul>		
	HK(GK)-UV法	シノテスト デンカ生研	目立7140-7170 目立7140-7170	73.00 73.00	109.0 109.0			O 190.5 C		
	GOD-電極法	アークレイ	アークレイアダムスク	80.00			109.0		147.0 🔾	
	HK(GK)-UV法	関東化学	日本電子JCA-B	70.00	99.00	70.00		O 193.0 C		
	HK(GK)-UV法	ニットーボー	日本電子JCA-B	80.00	112.0			○ 189.0 ○		
	HK(GK)-UV法	積水メディカル	東芝TBA-cシリー	70.00	110.0	70.00		O 193.0 C		
	HK(GK)-UV法	ニットーボー	東芝TBA-cシリー	73.00	109.0			○ 192.0 ○		
1105	HK(GK)-UV法	ベックマン・コー	ベックマン・コールター	70.00	109.0			○ 193.0 ○	150.0 〇	88.00
1108	GOD-電極法	エイアンドティー		80.00	109.0	80.00	109.0	○ 188.0	145.0 🔾	83.00
1112	HK(GK)-UV法	シノテスト	東京貿易ビオリス5	70.00	110.0	70.00	110.0	186.0 ℂ	146.0 〇	86.00
	HK(GK)-UV法	カイノス	日本電子JCA-B	70.00	109.0	70.00	109.0	○ 193.0 ○	152.0 〇	88.00
	HK(GK)-UV法	和光純薬	東芝TBA-cシリー	73.00	109.0			○ 191.0 ○		
1121	HK(GK)-UV法	デンカ生研	東芝25FR_Accut	69.00	109.0	69.00	109.0	187.0 ℂ	148.0 〇	84.00

1 GLU 施設No.が低い順に並んでいます

施設	.110.70 PAT //RTC	- 並んている)		男性基準	准約田	女性基	淮貓田			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1122	HK(GK)-UV法	ベックマン・コー	ヘ、ックマン・コールター	70.00	109.0	70.00	109.0	O 190.3 C	148.0 (	86.00
	HK(GK)-UV法	シーメンス	シーメンスHCDDim	7.000	109.0		109.0	198.8	157.6	94.60
	HK(GK)-UV法	シノテスト	目立7020-7080	75.00	109.0			169.0	115.0	82.00
1127	GOD-電極法	エイアンドティー	A&TGA	70.00	109.0			○ 194.0 ○	150.0 🔾	87.00
1129	HK(GK)-UV法	ベックマン・コー	ヘックマン・コールター	70.00	109.0			○ 191.0 ○	151.0 🔾	86.00
1130	HK(GK)-UV法	シノテスト	日本電子JCA-B	73.00	109.0	73.00	109.0	○ 188.0 ○	146.0 🔾	84.00
1134	その他	シノテスト	日立7140-7170	80.00	109.0	80.00	109.0	186.0	145.0 〇	83.00
1135	HK(GK)-UV法	ベックマン・コー	ヘ゛ックマン・コールター	69.00	109.0			207.0	161.0	93.00
1136	HK(GK)-UV法	和光純薬	日本電子JCA-B	73.00	109.0			○ 191.0 ○	150.0 🔾	87.00
1300	GOD-電極法	エイアンドティー	A&TGA	73.00	109.0			○ 190.0 ○	148.0 🔾	83.00
1301	HK(GK)-UV法	和光純薬	日本電子JCA-B	70.00	109.0			○ 190.0 ○	148.0 🔾	86.00
1302	HK(GK)-UV法	ベックマン・コー	ヘックマン・コールター	73.00	109.0			○ 194.0 ○	150.0 🔾	86.00
1305	HK(GK)-UV法	カイノス	日本電子JCA-B	73.00	109.0			○ 192.0 ○	150.0 🔾	87.00
	HK(GK)-UV法	和光純薬	東芝25FR_Accut	73.00	109.0			○ 196.0 ○	152.0 🔾	87.00
	HK(GK)-UV法	和光純薬	東芝TBA-200F	60.00	100.0	60.00	100.0	○ 193.0 ○		
	HK(GK)-UV法	和光純薬	日本電子JCA-B	80.00	109.0			O 193.0 C		
	HK(GK)-UV法	栄研化学	日本電子JCA-B	73.00	109.0	73.00	109.0	O 192.0 C		
	HK(GK)-UV法	和光純薬	日本電子JCA-B	69.00	104.0	<b>#</b> 0.00	1000	O 192.0 C		
	HK(GK)-UV法	シノテスト	日本電子JCA-B	73.00	109.0			0 193.0 0		
	HK(GK)-UV法	富士フィルムメ ベックマン・コー	日本電子JCA-B ヘックマン・コールター	73.00 73.00	109.0 109.0	73.00	109.0	O 193.0 C		
	HK(GK)-UV法 HK(GK)-UV法	富士フィルムメ		73.00	109.0	72.00	100.0	0 192.0 0		
	GOD-電極法	エイアンドティー	日本電子JCA-B A&TGA09	69.00	109.0	73.00	109.0	○ 196.0 ○ ○ 192.0 ○		
	HK(GK)-UV法	富士フィルムメ	東芝TBA-cシリー	70.00	110.0			0 195.0 0		
	HK(GK)-UV法	和光純薬	日本電子JCA-B	73.00	109.0			0 191.0 0		
	HK(GK)-UV法	LSIメディエンス	日本電子JCA-B	73.00	109.0			0 188.0	145.0 🔾	
	HK(GK)-UV法	ニットーボー	日本電子JCA-B	73.00		73.00	109.0	O 193.0 C		
	HK(GK)-UV法	エイアンドティー	A&TGA	70.00	109.0		109.0	183.0 (		81.00
	GOD-POD法	シノテスト	日立LABOSPE	73.00	109.0				146.0 〇	85.00
1344	HK(GK)-UV法	和光純薬	日立7140-7170	73.00	109.0	73.00	109.0	○ 192.0 ○	149.0 🔾	86.00
1346	HK(GK)-UV法	シノテスト	日本電子JCA-B	70.00	110.0			○ 190.0 ○	148.0 🔾	85.00
1347	HK(GK)-UV法	ロシュ・ダイアグ	ロシュコハ [*] ス8000c5	73.00	109.0			○ 197.0 ○	152.0 〇	89.00
1348	HK(GK)-UV法	積水メディカル	東芝TBA-cシリー	70.00	110.0			○ 189.0 ○	148.0 🔾	86.00
1349	HK(GK)-UV法	ロシュ・ダイアグ	ロシュコハ*ス8000c5	73.00	109.0	73.00	109.0	○ 193.0 ○	150.0 🔾	87.00
1350	HK(GK)-UV法	シノテスト	日本電子JCA-B	69.00	109.0			○ 191.0 ○	150.0 🔾	86.00
1351	GOD-電極法	アークレイ	アークレイアタ・ムスク・	73.00	109.0	73.00	109.0	○ 192.0 ○	151.0 🔾	87.00
1352	HK(GK)-UV法	和光純薬	日本電子JCA-B	69.00	109.0	69.00	109.0	○ 193.0 ○	151.0 🔾	87.00
	HK(GK)-UV法	和光純薬	東芝TBA-cシリー	73.00	109.0			○ 194.0 ○		
	HK(GK)-UV法	ミズホメディ	日本電子JCA-B	73.00	109.0			O 190.0 C		
	HK(GK)-UV法	和光純薬	日立7140-7170	69.00	109.0	69.00	109.0	0 194.0 0		
	HK(GK)-UV法	シノテスト	日本電子JCA-B	73.00	109.0	70.00	100.0	0 191.0 0		
	GOD-電極法 GOD-電極法	エイアンドティー	A&TGA09	73.00	109.0			O 192.0 C		
		エイアンドティー和光純薬	A&TGA 東本TPA-20-2	70.00	109.0	70.00	109.0	○ 192.0 ○ 192.0 ○		
	GOD-POD法 グルコース脱水素	和元純 <del>楽</del> LSIメディエンス	東芝TBA-20-3 日本電子JCA-B	73.00 80.00	109.0 109.0			0 191.0 0		
	HK(GK)-UV法	和光純薬	日立7140-7170	73.00	109.0	73.00	109.0	0 194.0 0		
	HK(GK)-UV法	和光純薬	東芝TBA-cシリー	73.00	109.0	15.00	103.0	0 190.0 0		
	HK(GK)-UV法	和光純薬	目立LABOSPE	73.00	109.0	73.00	109.0	0 189.0 0		
	HK(GK)-UV法	協和メデックス	東京貿易ビオリス5	70.00	110.0		109.0	199.0	156.0 🔾	
	HK(GK)-UV法	関東化学	東京貿易ビオリス1	60.00	110.0			O 192.0 C		
	HK(GK)-UV法	和光純薬	目立LABOSPE	73.00	109.0			O 195.0 C		
	HK(GK)-UV法	和光純薬	東芝25FR_Accut	73.00	109.0			○ 189.7 ○		
1390	HK(GK)-UV法	和光純薬	東芝TBA-cシリー	69.00	104.0	69.00	104.0	○ 194.0 ○	152.0 🔾	88.00
1391	HK(GK)-UV法	シノテスト	目立7140-7170	69.00	104.0	69.00	104.0	○ 191.0 ○	152.0 〇	88.00
1394	HK(GK)-UV法	協和メデックス	東京貿易ビオナリス5	73.00	109.0			○ 192.0 ○	149.0 🔾	87.00
1396	HK(GK)-UV法	シーメンス	シーメンスHCDDim	73.00	109.0	73.00	109.0	○ 191.0 ○	151.0 🔾	88.00
1400	HK(GK)-UV法	シノテスト	東京貿易ビオナリス2	73.00	109.0	73.00	109.0	○ 193.0 ○	149.0 🔾	86.00

1 GLU 施設No.が低い順に並んでいます

施設	INO.W EN PRIC	・並ん (		男性基準	准統田	女性基準	生給 田			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
										· · · · · · · · · · · · · · · · · · ·
	HK(GK)-UV法	シーメンス	シーメンスHCDDim	73.00		73.00	109.0	O 191.0 C		
	HK(GK)-UV法	シノテスト	日本電子JCA-B	73.00	109.0	<b>70.00</b>	100.0	O 190.0 C		
	HK(GK)-UV法	ミズホメディ	日本電子JCA-B	73.00	109.0	73.00	109.0	0 191.0 0		
	グルコース脱水素	関東化学	東芝TBA-cシリー	70.00	110.0	<b>70.00</b>	100.0	0 194.0 0		
	HK(GK)-UV法	関東化学	東京貿易ピオリス1	70.00	109.0	70.00	109.0	O 192.0 C		
	その他	- /フ、 がこ ·	セントラル科学Picc	73.00	118.0	70.00	100.0	0 189.0 0		
	GOD-電極法 GOD-POD法	エイアンドティーベックマン・コー	A&TGA09 ヘックマン・コールター	73.00 69.00	109.0		109.0	0 192.0 0	147.0 🔾	
	GOD-FOD伝 GOD-電極法	エイアンドティー	A&TGA09	80.00	109.0 109.0	69.00 80.00		0 192.0 0		
	HK(GK)-UV法	シノテスト	日本電子JCA-B	70.00	109.0			0 193.0 0		
	GOD-電極法	アークレイ	T本电 I JCA B	73.00	109.0	10.00	105.0	0 196.0 0		
	GOD-電極法	アークレイ	アークレイアダ・ムスク・	70.00	109.0	70.00	109.0	O 193.0 C		
	HK(GK)-UV法	シノテスト	日本電子JCA-B	73.00	109.0	10.00	100.0	O 190.0 C		
	GOD-電極法	エイアンドティー	A&TGA	73.00	109.0	73.00	109.0	O 193.0 C		
	HK(GK)-UV法	ミズホメディ	日立LABOSPE	73.00	109.0			○ 190.0 ○		
	GOD-電極法	エイアンドティー	A&TGA	73.00	109.0	73.00	109.0	O 192.0 C		
	HK(GK)-UV法	ミズホメディ	東京貿易ビオナリス2	73.00	109.0			○ 193.0 ○		
1519	HK(GK)-UV法	カイノス	東芝25FR_Accut	73.00	109.0			○ 192.0 ○	150.0 🔾	87.00
1525	GOD-電極法	アークレイ	アークレイアダ・ムスク・	69.00	109.0			○ 193.0 ○	149.0 🔾	85.00
1528	HK(GK)-UV法	和光純薬	目立7140-7170	73.00	109.0	73.00	109.0	○ 196.0 ○	153.0 🔾	90.00
1529	HK(GK)-UV法	和光純薬	目立LABOSPE	69.00	109.0	69.00	109.0	○ 190.0 ○	150.0 🔾	86.00
1530	HK(GK)-UV法	和光純薬	日本電子JCA-B	73.00	109.0	73.00	109.0	○ 190.0 ○	149.0 🔾	87.00
1531	GOD-電極法	アークレイ	アークレイアダ・ムスク・	60.00	110.0	60.00	110.0	○ 191.0 ○	149.0 🔾	85.00
1532	HK(GK)-UV法	カイノス	日立7140-7170	73.00	109.0	73.00	109.0	○ 193.0 ○	151.0 🔾	88.00
1533	HK(GK)-UV法	シーメンス	シーメンスHCDDim	73.00	109.0			○ 190.0 ○	150.0 🔾	88.00
1534	HK(GK)-UV法	カイノス	東京貿易ビオปス2	73.00	109.0			○ 194.0 ○	153.0 🔾	87.00
1538	HK(GK)-UV法	カイノス	東京貿易ビオปス2	73.00	109.0			○ 194.0 ○	151.0 🔾	89.00
1540	HK(GK)-UV法	シノテスト	日本電子JCA-B	73.00	109.0	73.00	109.0	○ 192.0 ○	151.0 🔾	88.00
	グルコース脱水素	シノテスト	東芝25FR_Accut	80.00	109.0			○ 198.0	155.0 🔾	89.00
	GOD-電極法	アークレイ	アークレイアダンムスク	70.00	109.0			○ 191.0 ○		
	HK(GK)-UV法	カイノス	東芝25FR_Accut	70.00	110.0	70.00	110.0	181.0	141.0	82.00
	GOD-電極法	アークレイ	アークレイアダンスク	70.00	109.0			O 192.0 C		
	HK(GK)-UV法	積水メディカル	東京貿易ピオリス2	69.00	109.0			0 188.0 0		
	HK(GK)-UV法	シノテスト	日立7140-7170	70.00	109.0	20.00	110.0	0 197.0 0		
	HK(GK)-UV法	シノテスト	日立7140-7170	60.00	110.0			O 192.0 C		
	HK(GK)-UV法	和光純薬シノテスト	日本電子JCA-B	73.00 73.00	109.0 109.0			O 190.0 C		
	HK(GK)-UV法		日本電子JCA-B ヘックマン・コールター					0 194.0 0		
	HK(GK)-UV法 HK(GK)-UV法	和光純薬 シノテスト	日本電子JCA-B	69.00 70.00	109.0	09.00	109.0	○ 192.0 ○ ○ 194.0 ○		
	HK(GK)-UV法	関東化学	日立7600Dモジュ	70.00	109.0			0 193.0 0		
	HK(GK)-UV法	ミズホメディ	目立LABOSPE		110.0			O 193.0 C		
	グルコース脱水素	LSIメディエンス	日本電子JCA-B	80.00	109.0			O 189.0 C		
	HK(GK)-UV法	和光純薬	日本電子JCA-B	73.00	109.0			O 193.0 C		
	HK(GK)-UV法	シノテスト	日立LABOSPE	69.00	109.0	69.00	109.0	O 191.0 C		
	HK(GK)-UV法	ミズホメディ	日立3100		110.0			○ 195.0 ○		
	HK(GK)-UV法	関東化学	日立7140-7170	70.00	109.0			○ 195.0 ○		
1923	HK(GK)-UV法	関東化学	日立7140-7170	70.00	109.0			○ 194.0 ○	152.0 🔾	87.00
1925	HK(GK)-UV法	セロテック	ヘックマン・コールター	70.00	109.0	70.00	109.0	○ 190.0 ○	149.0 🔾	86.00
1926	HK(GK)-UV法	シノテスト	東芝TBA-200F	60.00	109.0	60.00	109.0	○ 190.0 ○	149.0 🔾	86.00
1928	HK(GK)-UV法	関東化学	ヘックマン・コールター	70.00	109.0			○ 192.0 ○	150.0 🔾	86.00
1930	HK(GK)-UV法	和光純薬	ヘックマン・コールター	69.00	109.0	69.00	109.0	○ 191.0 ○	150.0 🔾	86.00
1931	HK(GK)-UV法	和光純薬	ヘックマン・コールター	69.00	109.0	69.00	109.0	○ 191.0 ○	149.0 🔾	86.00
1932	GOD-電極法	エイアンドティー	A&TGA	70.00	109.0			○ 192.0 ○	150.0 🔾	87.00
1934	HK(GK)-UV法	和光純薬	ヘックマン・コールター	69.00	109.0			○ 193.0 ○	150.0 🔾	86.00
	GOD-電極法	エイアンドティー	A&TGA	70.00	109.0			○ 194.0 ○		
	HK(GK)-UV法	セロテック	日本電子JCA-B	70.00	110.0			O 191.0 C		
1937	グルコース脱水素	シノテスト	日本電子JCA-B	70.00	110.0	70.00	110.0	○ 189.0 ○	149.0 🔾	87.00

1 GLU 施設No.が低い順に並んでいます

包設	測定原理	試薬メーカー	機器	男性基準範	節囲	女性基	準範囲				試料報告値
No	MACANA		1787-1111	下限 上	二限	下限	上限	試彩	斗01	試料02	試料03
2002	HK(GK)-UV法	シノテスト	日本電子JCA-B	73.00 10	09.0			O 19	0.0	149.0 🔾	86.00
2006	HK(GK)-UV法	積水メディカル	目立LABOSPE	80.00 11	10.0			O 193	2.0 🔾	150.0 🔾	87.00
8008	HK(GK)-UV法	シノテスト	ロシュコハ ス8000c7	73.00 10	09.0	73.00	109.0	O 19	5.0 🔾	152.0 🔾	88.00
2009	HK(GK)-UV法	カイノス	日本電子JCA-B	70.00 11	10.0	70.00	110.0	O 19	1.0 🔾	148.0 🔾	86.00
010	グルコース脱水素	カイノス	目立7140-7170	70.00 10	09.0	70.00	109.0	O 19	0.0	149.0 🔾	86.00
2011	HK(GK)-UV法	和光純薬	ヘ゛ックマン・コールター	69.00 10	09.0	69.00	109.0	O 19	1.0 🔾	149.0 🔾	86.00
001	HK(GK)-UV法	協和メデックス	日本電子JCA-B	73.00 10	09.0	73.00	109.0	O 188	8.4 🔾	147.5 🔾	85.60
013	HK(GK)-UV法	シーメンス	シーメンスHCDDim	70.00 10	09.0			O 19	0.0	151.0 🔾	89.00
018	HK(GK)-UV法	ベックマン・コー	ヘ・ックマン・コールター	70.00 10	09.0			O 19	6.0 🔾	152.0 🔾	87.00
022	HK(GK)-UV法	協和メデックス	日本電子JCA-B	73.00 10	09.0	73.00	109.0	O 189	9.9 🔾	146.4 〇	84.50
027	HK(GK)-UV法	関東化学	日立7600Dモシ゛ュ	70.00 10	09.0			O 193	2.0 🔾	149.0 🔾	87.00
048	HK(GK)-UV法	和光純薬	日本電子JCA-B	73.00 10	09.0	73.00	109.0	O 188	0.88	148.0 🔾	85.00
055	HK(GK)-UV法	栄研化学	日本電子JCA-B	73.00 10	09.0			O 19	3.0 🔾	151.0 🔾	87.00
056	HK(GK)-UV法	シスメックス	日本電子JCA-B	73.00 10	09.0	73.00	109.0	O 193	3.0 🔾	152.0 🔾	87.00
907	HK(GK)-UV法	セロテック	日本電子JCA-B	73.00 10	09.0	73.00	109.0	O 193	3.0 🔾	150.0 🔾	86.00
002	GOD-電極法	エイアンドティー	A&TGA	73.00 10	09.0	73.00	109.0	O 19	0.0	148.0 🔾	84.00
040	GOD-電極法	アークレイ	他のグルコース分	70.00 10	09.0			O 19	1.0 🔾	149.0 🔾	86.00
902	HK(GK)-UV法	関東化学	目立7140-7170	70.00 11	10.0			O 19	4.0 🔾	153.0 🔾	87.00
003	HK(GK)-UV法	ミズホメディ	目立7140-7170	76.00 11	15.0	76.00	115.0	O 19	6.0 🔾	154.0 🔾	88.00
005	HK(GK)-UV法	ミズホメディ	日本電子JCA-B	73.00 10	09.0			O 19	6.0 🔾	153.0 🔾	88.00
006	HK(GK)-UV法	ミズホメディ	日本電子JCA-B	73.00 10	09.0	73.00	109.0	O 19	5.0 🔾	152.0 🔾	88.00
010	HK(GK)-UV法	シノテスト	日本電子JCA-B	73.00 10	09.0	73.00	109.0	O 19	2.8 🔾	151.0 🔾	87.20
006	HK(GK)-UV法	シノテスト	東芝25FR_Accut	70.00 10	0.00			O 19	3.0 🔾	151.0 🔾	88.00
800	HK(GK)-UV法	和光純薬	東芝TBA-200F	73.00 10	09.0			O 19	4.0 〇	152.0 🔾	88.00
015	HK(GK)-UV法	協和メデックス	目立LABOSPE	70.00 11	10.0			O 189	9.0 🔾	149.0 🔾	85.00
016	GOD-電極法	アークレイ	アークレイアダ・ムスク・	80.00 11	12.0	80.00	112.0	18'	7.0 🔾	146.0 🔾	83.00
001	HK(GK)-UV法	セロテック	日本電子JCA-B	70.00 10	09.0	70.00	109.0	O 19	3.0 🔾	151.0 🔾	86.00
002	GOD-電極法	エイアンドティー	A&TGA	73.00 10	09.0			O 19	2.0 🔾	150.0 🔾	86.00
007	HK(GK)-UV法	和光純薬	ヘ゛ックマン・コールター	70.00 10	0.00	70.00	100.0	O 188	0.88	148.0 🔾	85.00
011	グルコース脱水素	関東化学	東芝TBA-cシリー	73.00 10	09.0			O 19	1.0 🔾	149.0 🔾	86.00
025	グルコース脱水素	ニットーボー	日本電子JCA-B	70.00 10	09.0			O 19	6.0 🔾	153.0 🔾	88.00
901	HK(GK)-UV法	和光純薬	目立LABOSPE	70.00 10	09.0			O 19	3.0 🔾	150.0 🔾	86.00
004	HK(GK)-UV法	シノテスト	日本電子JCA-B	68.00 10	05.0			O 19	2.0 🔾	153.0 🔾	87.00
004	HK(GK)-UV法	協和メデックス	日立7140-7170					O 19	0.0	149.0 🔾	86.00
800	HK(GK)-UV法	シノテスト	日立7140-7170					O 19	1.0 🔾	150.0 🔾	87.00
009	HK(GK)-UV法	LSIメディエンス	目立7140-7170	11	10.0			O 193	2.6 🔾	149.8 🔾	85.50
012	HK(GK)-UV法	デンカ生研	日立7140-7170	60.00 10	09.0	60.00	109.0	O 189	9.0 🔾	150.0 🔾	86.00
014	HK(GK)-UV法	ニットーボー	目立7140-7170					O 19	4.0 🔾	152.0 🔾	87.00
022	HK(GK)-UV法	ミズホメディ	目立7140-7170	70.00 11	10.0			O 19	5.0 🔾	152.0 🔾	88.00
023	HK(GK)-UV法	和光純薬	目立7140-7170					O 188	0.08	147.0 🔾	85.00
024	HK(GK)-UV法	関東化学	日本電子JCA-B	80.00 11	12.0	80.00	112.0	O 19	3.0 🔾	150.0 🔾	87.00
033	HK(GK)-UV法	極東製薬	日本電子JCA-B	70.00 10	09.0			O 19	0.0	149.0 🔾	86.00
035	HK(GK)-UV法	積水メディカル	積水EV800					O 19	6.0 🔾	152.0 🔾	88.00
043	HK(GK)-UV法	ロシュ・ダイアグ	ロシュコハ ス8000c5					O 19	4.1 🔾	152.0 🔾	87.46
044	HK(GK)-UV法	シノテスト	ロシュコハ ス8000c7					O 189	9.3 🔾	147.3 🔾	85.46
046	HK(GK)-UV法	栄研化学	目立7140-7170	60.00 11	10.0	60.00	110.0	18	7.6 🔾	146.9 🔾	84.70
047	HK(GK)-UV法	ベックマン・コー	ヘックマン・コールター					O 19	1.7 🔾	149.8 🔾	86.20
0.40	HK(GK)-UV法	シスメックス	日立7140-7170	60.00 10	0.00					147.0 🔾	
049	1111(011) 011										00.00

81 GLU(F) 施設No.が低い順に並んでいます

施設	测空压曲	試薬メーカー	466 QQ	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	武楽 グーガー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1044	ト゛ライケミストリー法	富士フィルムメ	富士ドライケムNX5	70.00	110.0			O 195.0 C	155.0 (	90.00
1053	ドライケミストリー法	富士フィルムメ	富士トライケム400	70.00	110.0			○ 186.0 ○	147.0	87.00
1076	ドライケミストリー法	富士フィルムメ	富士ドライケム700	69.00	109.0			○ 187.0 ○	148.0	87.00
1104	ドライケミストリー法	富士フィルムメ	富士ドライケム350	70.00	110.0			O 177.0 C	143.0 (	85.00
1126	ドライケミストリー法	富士フィルムメ	富士ドライケム700	69.00	109.0	69.00	109.0	○ 187.0 ○	145.0	86.00
1133	ドライケミストリー法	富士フィルムメ	富士トライケム400	70.00	110.0			○ 183.0 ○	148.0	86.00
1137	ドライケミストリー法	富士フィルムメ	富士トライケム400	69.00	104.0	69.00	104.0	○ 184.0 ○	148.0	87.00
1326	ドライケミストリー法	富士フィルムメ	富士トライケム400	70.00	109.0	70.00	109.0	O 194.0 C	154.0 (	93.00
1335	ドライケミストリー法	富士フィルムメ	富士ドライケム700	70.00	110.0			○ 188.0 ○	149.0 (	89.00
1336	ドライケミストリー法	富士フィルムメ	富士ドライケム700	70.00	110.0			○ 189.0 ○	149.0	89.00
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	70.00	110.0			O 191.0 C	152.0	89.00
1375	ドライケミストリー法	富士フィルムメ	富士トライケム400	70.00	109.0			○ 199.0 ○	157.0	90.00
1523	ドライケミストリー法	富士フィルムメ	富士ドライケム700	73.00	109.0			○ 184.0 ○	147.0	86.00
1545	ドライケミストリー法	富士フィルムメ	富士トライケム400	73.00	109.0			O 192.0 C	151.0	90.00
1552	ドライケミストリー法	富士フィルムメ	富士トライケム400	70.00	110.0			○ 189.0 ○	148.0	87.00
1557	ドライケミストリー法	富士フィルムメ	富士ドライケム700	70.00	110.0			○ 192.0 ○	151.0 (	90.00
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	73.00	109.0	73.00	109.0	○ 190.0 ○	150.0 (	90.00
1560	ドライケミストリー法	富士フィルムメ	富士ドライケム700	70.00	110.0			O 192.0 C	152.0	90.00
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	73.00	109.0	73.00	109.0	○ 188.0 ○	149.0	88.00
2012	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	70.00	110.0	70.00	110.0	○ 187.0 ○	148.0	85.00
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	70.00	110.0			O 187.0 C	149.0	88.00

### 116 GLU(A1)

施設	測定原理 試薬メーカー		機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原生	P19827 74	DATHU	下限 上限 下限 上限 試料01 試料02 試料03
1065	ト・ライケミストリー法	アークレイ	アークレイスホ°ットケム	○ 204.0 ○ 159.0 ○ 91.00
1317	ト・ライケミストリー法	アークレイ	アークレイスポットケム	70.00 109.0 70.00 109.0 $\bigcirc$ 215.0 $\bigcirc$ 168.0 $\bigcirc$ 90.00
1378	ト・ライケミストリー法	アークレイ	アークレイスホットケム	69.00 109.0 196.0 $\bigcirc$ 157.0 $\bigcirc$ 92.00
9041	ト・ライケミストリー法	アークレイ	アークレイスホットケム	$\bigcirc$ 213.0 $\bigcirc$ 162.0 $\bigcirc$ 90.00

146 GLU(A2)

施設	型 測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤			下限 上限 下限 上限 試料01 試料02 試料03
1521 F	・ライケミストリー法	アークレイ	アークレイスホ [°] ットケム	73.00 109.0 73.00 109.0 $\bigcirc$ 174.0 $\bigcirc$ 138.0 $\bigcirc$ 84.00

176 GLU(O)

施設	測定原理	試薬メーカー	機器	男性基準	<b>華範囲</b>	女性基	準範囲			試料報告値
No	例足原垤	武衆/一//	10% 116	下限	上限	下限	上限	試料01	試料02	試料03
1075	ト・ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	73.00	109.0	73.00	109.0	○ 189.0 ○	151.0	92.00
1100	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3					181.0	143.0 🔾	88.00
8011	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	60.00	109.0	60.00	109.0	183.0	145.0 🔾	88.00
9040	ドライケミストリー法	オーソ・クリニカ	オーソビトロス5600					183.6	144.8 🔾	88.60

### クレアチニン (CRTN)

飯塚病院 中央検査部 吉田 真紀

【参加状況】 253 施設(前回 242 施設)

【測定方法の状況】

酵素法216 施設(85.6%)ドライケミストリー法36 施設(13.6%)その他1 施設(0.8%)

【測定値の状況】(ドライケミストリー法は除く)

1. 表 1 に液状試薬での試料 1~3 の全体および測定原理別の 3SD 除去後平均値と CV%を示した。

表 1	3SD 除去後の平均値(mg/dL)	> CV%
<i>1</i>	<b>いいし はた たかり サージ 川田 ロロタ/ロエル</b>	C V V /0

	試彩	ł 1	試彩	ł 2	試料3		
	平均値	CV%	平均值	CV%	平均值	CV%	
全体	3.38	1.4	2.34	1.5	0.79	3.13	
酵素法	3.38	1.4	2.34	1.5	0.79	3.13	

2. 試料 1~3 の目標値(目標範囲)は、試料 1:3.85(3.2~3.6)mg/dL、試料 2:2.34(2.2~2.5)mg/dL、0.80(0.7~0.9)mg/dL であった。

3 試料すべて目標範囲内であった割合は 97.7%(211 施設)、試料別の目標範囲内施設割合は、試料 1 は 98.6%(213 施設)、試料 2 は 98.1%(212 施設)、試料 3 は 99.5%(215 施設)であった。

3. 表 2 に試料 1~3 の測定原理別の目標範囲達成状況を示した。 また、図 1 に試料 1 と試料 3 のツインプロットを示した。

表 2 測定原理別 目標範囲(目標値±4.8%、正常域:目標値±0.1mg/dL の達成状況 (%)

測定原理	試料 1	(施設数)	試料 2	(施設数)	試料3	(施設数)
酵素法	98.6%	(213)	98.1%	(212)	99.5%	(215)

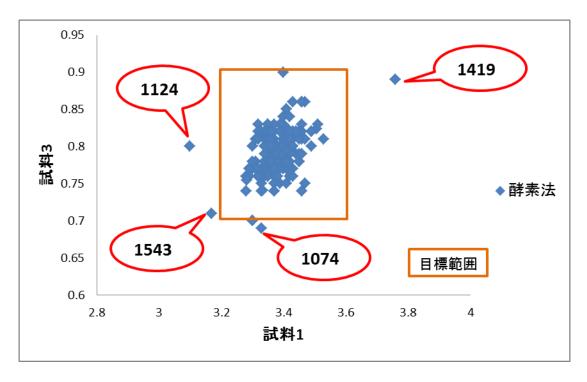



図1 試料1と試料3のツインプロット図

#### 【基準範囲の状況】

- 1. 設定幅は男性の下限値  $0\sim0.8$ mg/dL、上限値  $0.8\sim1.2$ mg/dL、女性の下限値  $0\sim0.6$ mg/dL、上限値  $0.7\sim1.7$ mg/dL であった。
- 2. JCCLS の共用基準範囲(M:0.65~1.07mg/dL、 $F:0.46\sim0.79$ mg/dL)を採用している施設は、37.9%(96/253)であった。前年度より、約8%の増加であった。

#### 【ドライケミストリー法の状況】

1. 表 3 にメーカーによる測定値及び目標範囲を示した。 オーツは液状試薬と同じ目標範囲である。

主っ	)ア J二小。	_/ァ ト	マ ロ	一曲活功	スペロ 神経は田	1
衣う	( ~ \ _ \ _ \ .	_によ	പ	保阻及	び目標範囲	1

		アークレイ	,	オーソ	富士		
	目標値 目標範囲		目標値	目標範囲	目標値	目標範囲	
	mg/dL	mg/dL	mg/dL	mg/dL	mg/dL	mg/dL	
試料 1	3.6	$3.3 \sim 3.9$	3.38	$3.2 \sim 3.6$	3.4	$3.1 \sim 3.7$	
試料 2	2.4	$2.2 \sim 2.6$	2.34	$2.2 \sim 2.5$	2.3	$2.1 \sim 2.5$	
試料 3	0.8 0.7~0.9		0.80	$0.7 \sim 0.9$	0.7	$0.5 \sim 0.9$	

2. 表 4 に メーカー別の平均値と参考範囲達成状況を示した。

表 4 メーカー別の平均値と参考範囲達成状況(%)

						. ,		
			アークレイ		オーソ	富士		
旅	面設数	数 4			4	28		
		平均値	参考範囲内施設	平均値	参考範囲内施設	平均値	参考範囲内施設	
		(mg/dL)	(%)	(mg/dL)	(%)	(mg/dL)	(%)	
	試料1	3.38	75%	3.32	100%	3.23	96.4%	
	試料 2	2.35	100%	2.33	100%	2.26	80%	
	試料 3	0.78	100%	0.80	100%	0.75	100%	

3. 図 2 ドライケミストリー法における測定値およびメーカー参考許容幅範囲を示した。

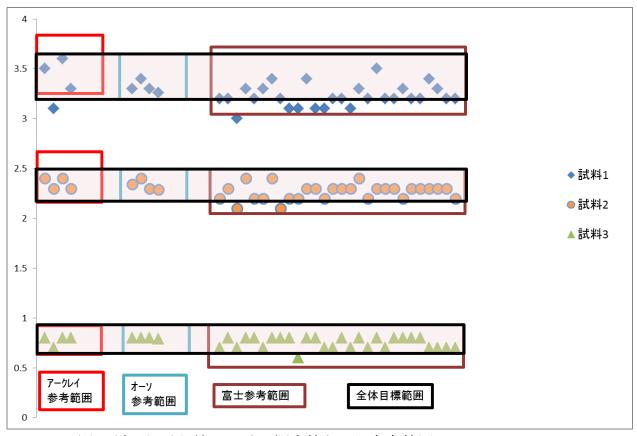



図2 ドライケミストリー法における測定値とメーカー参考範囲

### 【その他のコメント】

- 1. 酵素法の施設では、全体的に目標範囲達成率は良好だが、2 試料低めに外れた施設が 2 施設あった。
- 2. ドライケミストリー法では、メーカー参考範囲から2試料以上外れている施設はなかった。

2 CRTN 施設No.が低い順に並んでいます

施設	INO.N EN PRIC	ши (т ж)		男性其	准絎囲	女性基	淮絎囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
-		牧和ソデッカフ	日立LABOSPE							<u> </u>
	酵素法(H2O2比 酵素法(H2O2比	協和メデックス 協和メデックス	日立LABOSPE	0.650 0.600	1.070 1.100			<ul><li>○ 3.370 ○</li><li>○ 3.370 ○</li></ul>		
		積水メディカル	日立LABOSPE	0.650	1.070			○ 3.370 ○		
	酵素法(H2O2比		目立LABOSPE	0.650	1.070			○ 3.380 ○		
		セロテック	東芝TBA-cシリー	0.600		0.400		○ 3.350 ○		
	酵素法(H2O2比	和光純薬	日本電子JCA-B	0.000	1.000	0.100		○ 3.360 ○		
	酵素法(H2O2比	和光純薬	日本電子JCA-B	0.650	1.070	0.460		○ 3.310 ○		
	酵素法(H2O2比	和光純薬	日立7140-7170	0.650	1.070			○ 3.420 C		
	酵素法(H2O2比		日本電子JCA-B	0.650	1.070			○ 3.400 C		
	酵素法(H2O2比		日本電子JCA-B	0.650	1.070			○ 3.350 ○		
	酵素法(H2O2比	関東化学	日本電子JCA-B	0.650	1.090			○ 3.350 ○		
1023	酵素法(H2O2比	和光純薬	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.370 ○	2.330 ℂ	0.800
1024	酵素法(H2O2比	関東化学	日立LABOSPE	0.600	1.100	0.400	0.700	○ 3.430 ○	2.360 ℂ	0.770
1026	酵素法(H2O2比	シノテスト	東芝25FR_Accut	0.650	1.070	0.460	0.790	○ 3.360 ○	2.290 ℂ	0.770
1028	酵素法(H2O2比	シノテスト	日立LABOSPE	0.600	1.100	0.400	0.700	○ 3.390 ○	2.340 ℂ	0.770
1029	酵素法(H2O2比	LSIメディエンス	日立7140-7170	0.650	1.070	0.460	0.790	○ 3.380 ○	2.380 ℂ	0.790
1031	酵素法(H2O2比	積水メディカル	東芝TBA-cシリー	0.650	1.070	0.460	0.790	○ 3.320 ○	2.320 ℂ	0.810
1032	酵素法(H2O2比	シーメンス	シーメンスHCDDim	0.610	1.040	0.470	0.790	○ 3.400 ○	2.360 ℂ	0.790
1033	酵素法(H2O2比	関東化学	日立7140-7170	0.650	1.090	0.460	0.820	○ 3.440 ○	2.380 ℂ	0.790
1034	酵素法(H2O2比	関東化学	日立7140-7170	0.650	1.090	0.460	0.820	○ 3.420 ○	2.350 ℂ	0.770
1035	酵素法(H2O2比	セロテック	日本電子JCA-B	0.600	1.100			○ 3.360 ○	2.350 ℂ	0.800
1038	酵素法(H2O2比	シノテスト	日立LABOSPE	0.650	1.070	0.460	0.790	○ 3.460 ○	2.410 ○	0.860
1039	酵素法(H2O2比	ミズホメディ	日立7140-7170	0.650	1.070	0.460	0.790	○ 3.410 ○	2.350 ℂ	0.820
1040	酵素法(H2O2比	セロテック	日立LABOSPE	0.650	1.070	0.460	0.790	○ 3.300 ○	2.290 ℂ	0.770
1046	酵素法(H2O2比	カイノス	東芝25FR_Accut	0.600	1.100	0.400	0.700	○ 3.290 ○	2.250 ℂ	0.770
1049	酵素法(H2O2比	協和メデックス	ヘ゛ックマン・コールター	0.610	1.040	0.470	0.790	○ 3.360 ○	2.330 ℂ	0.820
		カイノス	日本電子JCA-B	0.650	1.070			○ 3.506 ○		
	酵素法(H2O2比		日本電子JCA-B	0.610	1.040	0.470		○ 3.450 ○		
	酵素法(H2O2比		東芝TBA-cシリー	0.400	1.200	0.400		○ 3.400 C		
	酵素法(H2O2比		シーメンスHCDDim	0.650	1.070			O 3.410 C		
	酵素法(H2O2比		目立7140-7170	0.600	1.100			○ 3.400 C		
	酵素法(H2O2比		東京貿易ビオリス5	0.650	1.090			○ 3.450 C		
	酵素法(H2O2比 酵素法(H2O2比	関東化学	日本電子JCA-B 東京貿易ピオナリス2	0.600 0.650	1.100 1.090			<ul><li>○ 3.330 ○</li><li>○ 3.350 ○</li></ul>		
	酵素法(H2O2比		日本電子JCA-B	0.650	1.090			○ 3.340 ○		
	酵素法(H2O2比		日立LABOSPE	0.650	1.070			○ 3.450 C		
	酵素法(H2O2比		日本電子JCA-B		1.100			○ 3.360 C		
	酵素法(H2O2比		目立LABOSPE		1.100			○ 3.350 ○		
	酵素法(H2O2比		日立LABOSPE	0.600	1.100			○ 3.370 ○		
1074	酵素法(H2O2比	関東化学	東京貿易ピオオリス2	0.650	1.090			○ 3.330	2.180	0.690
1077	酵素法(H2O2比	和光純薬	シーメンスHCDDim	0.610	1.040	0.470	0.790	○ 3.410 ○	2.410 🔾	0.820
1081	酵素法(H2O2比	和光純薬	東芝TBA-cシリー	0.650	1.070	0.460	0.790	○ 3.410 ○	2.350 ℂ	0.800
1084	酵素法(H2O2比	和光純薬	東京貿易ビオナリス2	0.650	1.070	0.460	0.790	○ 3.300 ○	2.300 ℂ	0.700
1088	酵素法(H2O2比	シノテスト	日立LABOSPE	0.600	1.100	0.400	0.700	○ 3.430 ○	2.400 ℂ	0.800
1089	酵素法(H2O2比	シノテスト	日立7140-7170	0.650	1.070	0.460	0.790	○ 3.400 ○	2.300 ℂ	0.800
1090	酵素法(H2O2比	デンカ生研	日立7140-7170	0.650	1.070	0.460	0.790	○ 3.420 ○	2.400 ℂ	0.810
1093	酵素法(H2O2比	積水メディカル	日本電子JCA-B	0.600	1.100	0.400	0.800	○ 3.320 ○	2.310 ℂ	0.760
1094	酵素法(H2O2比	シノテスト	日本電子JCA-B	0.600	1.100	0.400	0.700	○ 3.340 ○	2.290 ℂ	0.760
1101	酵素法(H2O2比	積水メディカル	東芝TBA-cシリー	0.800	1.200	0.600	0.900	○ 3.280 ○	2.270 ℂ	0.740
	酵素法(H2O2比		東芝TBA-cシリー	0.650	1.070		0.790	○ 3.310 ○	2.320 ℂ	0.810
	酵素法(H2O2比		ヘックマン・コールター	0.650	1.090			○ 3.460 ○		
	酵素法(H2O2比		東京貿易ピオリス5	0.610	1.040			○ 3.420 ○		
	酵素法(H2O2比		日本電子JCA-B	0.610	1.040			○ 3.340 ○		
	酵素法(H2O2比		東芝TBA-cシリー		1.070			○ 3.360 ○		
	酵素法(H2O2比		東芝25FR_Accut		1.100			○ 3.340 C		
	酵素法(H2O2比		ベックマン・コールター	0.610	1.040			○ 3.400 C		
1123	酵素法(H2O2比	和兀洲楽	シーメンスHCDDim	0.650	1.090	0.450	0.820	○ 3.370 ○	≥.330 €	0.760

2 CRTN 施設No.が低い順に並んでいます

施設	1110.10 PAT //RTC	- <del>-</del>		里性其	准統田	女性基	淮絎田			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
	酵素法(H2O2比	シノテスト		0.600	1.000		0.800	3.100	1.900 〇	
	酵素法(H2O2比		日本電子JCA-B	0.650	1.000			3.100 3.370 O		
	酵素法(H2O2比		日本電子JCA-B	0.650	1.070			<ul><li>3.370 </li></ul>		
	酵素法(H2O2比		ヘ゛ックマン・コールター	0.650				○ 3.400 ○		
	酵素法(H2O2比		日本電子JCA-B	0.650	1.070			○ 3.330 ○		
1134	酵素法(H2O2比	関東化学	日立7140-7170	0.600	1.100	0.400	0.700	○ 3.410 ○	2.350 🔾	0.790
1135	酵素法(H2O2比		ヘ゛ックマン・コールター	0.610	1.040	0.470	0.790	○ 3.470 ○	2.400 🔾	0.860
1136	酵素法(H2O2比	シノテスト	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.350 ○	2.310 🔾	0.760
1300	酵素法(H2O2比	シノテスト	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.379 ○	2.340 🔾	0.799
1301	酵素法(H2O2比	和光純薬	日本電子JCA-B		1.200			○ 3.360 ○	2.320 🔾	0.780
	酵素法(H2O2比		ヘ、ックマン・コールター	0.650	1.070			○ 3.360 ○		
	酵素法(H2O2比		日本電子JCA-B	0.650	1.070			○ 3.410 ○		
	酵素法(H2O2比		東芝25FR_Accut	0.650	1.070			O 3.420 O		
		和光純薬	東芝TBA-200F	0.600	1.200			○ 3.400 ○		
	酵素法(H2O2比 酵素法(H2O2比		日本電子JCA-B	0.600	1.100			○ 3.350 ○		
	酵素法(H2O2比 酵素法(H2O2比	和光純薬	日本電子JCA-B 日本電子JCA-B	0.650 0.600	1.070 1.100			<ul><li>○ 3.390 ○</li><li>○ 3.300 ○</li></ul>		
	酵素法(H2O2比	関東化学	日本電子JCA-B	0.650	1.070			3.530 O		
	酵素法(H2O2比	和光純薬	日本電子JCA-B	0.650	1.070			3.400 O		
	酵素法(H2O2比		ヘブックマン・コールター	0.650	1.070			O 3.400 O		
	酵素法(H2O2比		日本電子JCA-B	0.650	1.070			○ 3.410 ○		
	酵素法(H2O2比	和光純薬	日本電子JCA-B	0.400	1.100			○ 3.380 ○		
1331	酵素法(H2O2比	積水メディカル	東芝TBA-cシリー	0.800	1.200	0.600	0.900	○ 3.370 ○	2.320 〇	0.740
1337	酵素法(H2O2比	和光純薬	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.370 ○	2.330 🔾	0.790
1339	酵素法(H2O2比	LSIメディエンス	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.320 ○	2.300 🔾	0.770
1341	酵素法(H2O2比	和光純薬	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.390 ○	2.350 🔾	0.800
1342	酵素法(H2O2比	関東化学	日本電子JCA-B	0.650	1.090	0.460	0.820	○ 3.420 ○	2.350 🔾	0.780
	酵素法(H2O2比		日立LABOSPE	0.650	1.070			○ 3.420 ○		
	酵素法(H2O2比		日立7140-7170	0.650	1.070			○ 3.460 ○		
	酵素法(H2O2比	関東化学	日本電子JCA-B	0.600	1.100			O 3.390 O		
	酵素法(H2O2比		ロシュコハ ス8000c5	0.650	1.070			○ 3.460 ○		
	酵素法(H2O2比 酵素法(H2O2比		東芝TBA-cシリー ロシュコハ、ス8000c5	0.600	1.100 1.070			<ul><li>○ 3.380 ○</li><li>○ 3.390 ○</li></ul>		
	酵素法(H2O2比	関東化学	日本電子JCA-B	0.650 0.600	1.100			3.370 O		
	酵素法(H2O2比		ベックマン・コールター	0.650	1.070			3.320 O		
		和光純薬	日本電子JCA-B	0.600	1.100			O 3.420 O		
	酵素法(H2O2比		東芝TBA-cシリー	0.650	1.070			○ 3.490 ○		
1356	酵素法(H2O2比	シノテスト	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.360 ○	2.320 🔾	0.790
1357	酵素法(H2O2比	和光純薬	日立7140-7170	0.600	1.100	0.400	0.700	○ 3.420 ○	2.360 ○	0.800
1358	酵素法(H2O2比	シノテスト	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.418 ○	2.396 🔾	0.822
1359	酵素法(H2O2比	関東化学	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.470 ○	2.380 🔾	0.750
1360	酵素法(H2O2比	和光純薬	日本電子JCA-B	0.500	1.200	0.500	1.200	○ 3.410 ○	2.340 🔾	0.790
1361	酵素法(H2O2比	和光純薬	東芝TBA-20-3	0.650	1.070	0.460	0.790	○ 3.350 ○	2.330 🔾	0.780
	酵素法(H2O2比		ヘ、ックマン・コールター	0.600	1.100			○ 3.390 ○		
	酵素法(H2O2比		日立7140-7170	0.650	1.070			○ 3.430 ○		
	酵素法(H2O2比		東芝TBA-cシリー		1.070			O 3.430 O		
	酵素法(H2O2比		目立LABOSPE	0.650	1.070			○ 3.420 ○		
	酵素法(H2O2比 酵素法(H2O2比	協和メデックス 関重ル学	東京貿易ビオナリス5	0.500	1.200	0.460		○ 3.380 ○ 3.440 ○	2.170 🔾	
	酵素法(H2O2比 酵素法(H2O2比	関東化学 和光純薬	東京貿易ビオリス1 日立LABOSPE	0.650	1.100 1.070	0.460		<ul><li>○ 3.440 ○</li><li>○ 3.460 ○</li></ul>		
	酵素法(H2O2比	和光純薬	東芝25FR_Accut	0.650	1.070			3.400 O		
		和光純薬	東芝TBA-cシリー	0.600	1.100			3.420 O		
	酵素法(H2O2比		日立7140-7170	0.600	1.100			3.380 O		
	酵素法(H2O2比		東京貿易ビオリス5		1.070			O 3.380 O		
	酵素法(H2O2比		シーメンスHCDDim		1.070			○ 3.300 ○		
1400	酵素法(H2O2比	シノテスト	東京貿易ビオナリス2	0.650	1.070	0.460	0.790	○ 3.490 ○	2.440 〇	0.820
1401	酵素法(H2O2比	シーメンス	シーメンスHCDDim	0.650	1.070	0.460	0.790	○ 3.450 ○	2.310 🔾	0.780

2 CRTN 施設No.が低い順に並んでいます

施設	INO.N EN PERC	ши (т ж)		男性其	准絎囲	女性基	淮絎田			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1402	酵素法(H2O2比	シノテスト	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.340 ○	2.340 〇	0.810
	酵素法(H2O2比		日本電子JCA-B	0.650	1.070			○ 3.330 ○		
1404	酵素法(H2O2比	カイノス	東芝TBA-cシリー	0.600	1.100	0.400	0.700	○ 3.450 ○	2.370 ○	0.790
1405	酵素法(H2O2比	関東化学	東京貿易ビオナリス1	0.650	1.090	0.460	0.820	○ 3.400 ○	2.340 🔾	0.770
1407	その他		セントラル科学Picc	0.600	1.200			○ 3.400 ○	2.400	1.200
1411	酵素法(H2O2比	和光純薬	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.400 ○	2.320 🔾	0.790
1419	酵素法(H2O2比	ベックマン・コー	ヘックマン・コールター	0.600	1.100	0.400	0.700	3.760	2.620 🔾	0.890
1501	酵素法(H2O2比	協和メデックス	日立LABOSPE	0.600	1.100	0.400	0.700	○ 3.320 ○	2.260 〇	0.760
1502	酵素法(H2O2比	関東化学	日本電子JCA-B	0.600	1.100	0.400	0.700	○ 3.370 ○	2.320 🔾	0.740
1505	酵素法(H2O2比	和光純薬	日立LABOSPE	0.650	1.070	0.460	0.790	○ 3.340 ○	2.300 🔾	0.780
1506	酵素法(H2O2比	シノテスト	目立LABOSPE	0.610	1.040	0.470	0.790	○ 3.460 ○	2.380 ○	0.820
	酵素法(H2O2比	関東化学	日本電子JCA-B	0.650	1.070			○ 3.420 ○		
	酵素法(H2O2比	関東化学	日立7140-7170	0.650	1.070			○ 3.400 ○		
	酵素法(H2O2比	和光純薬	日立LABOSPE	0.650	1.070			O 3.410 C		
		和光純薬	目立LABOSPE	0.650	1.070			○ 3.390 ○		
	酵素法(H2O2比 酵素法(H2O2比	ミズホメディ	東京貿易ビオリス2 東茶255B A t	0.650	1.070			○ 3.320 ○		
			東芝25FR_Accut	0.650	1.070			○ 3.400 ○		
1528 1529		和光純薬和光純薬	日立7140-7170 日立LABOSPE	0.650 0.600	1.070 1.100			○ 3.470 ○ ○ 3.400 ○		
		和光純薬	日本電子JCA-B	0.650	1.070			3.340 C		
	酵素法(H2O2比		シーメンスHCDDim	0.600	1.100			○ 3.420 ○		
	酵素法(H2O2比		日立7140-7170	0.650	1.070			○ 3.490 ○		
	酵素法(H2O2比		シーメンスHCDDim	0.650	1.070			○ 3.320 ○		
1534	酵素法(H2O2比	カイノス	東京貿易ピオリス2	0.650	1.070	0.460	0.790	○ 3.410 ○	2.360 〇	0.770
1538	酵素法(H2O2比	シノテスト	東京貿易ビオナリス2	0.650	1.070	0.460	0.790	○ 3.410 ○	2.390 🔾	0.820
1540	酵素法(H2O2比	シノテスト	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.390 ○	2.360 🔾	0.820
1541	酵素法(H2O2比	シノテスト	東芝25FR_Accut	6.000	1.100	0.400	0.700	○ 3.510 ○	2.420 🔾	0.830
1542	酵素法(H2O2比	協和メデックス	日立7140-7170	0.610	1.040	0.470	0.790	○ 3.360 ○	2.350 🔾	0.780
		カイノス	東芝25FR_Accut	0.600	1.100		0.700		2.210 🔾	
		積水メディカル	東京貿易ビオリス2	0.600	1.100			○ 3.300 ○		
1550	酵素法(H2O2比	関東化学	目立7140-7170	0.650		0.460		○ 3.300 ○		
	酵素法(H2O2比 酵素法(H2O2比	和光純薬	日本電子JCA-B	0.600 0.650	1.100 1.070			○ 3.400 ○ ○ 3.380 ○		
		ミズホメディ	日本電子JCA-B	0.650	1.070			○ 3.350 ○		
	酵素法(H2O2比	協和メデックス	ベックマン・コールター	0.610	1.040			○ 3.380 ○		
	酵素法(H2O2比	関東化学	日本電子JCA-B	0.650		0.460		○ 3.360 ○		
1903	酵素法(H2O2比		日立7600Dモジュ	0.610	1.040	0.470		○ 3.350 ○		
1909	酵素法(H2O2比	和光純薬	日立LABOSPE	0.600	1.100	0.400	0.700	○ 3.370 ○	2.320 🔾	0.780
1911	酵素法(H2O2比	ミズホメディ	ヘックマン・コールター	0.600	1.100	0.400	0.700	○ 3.370 ○	2.350 🔾	0.830
1916	酵素法(H2O2比	和光純薬	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.320 ○	2.290 🔾	0.770
1917	酵素法(H2O2比	関東化学	日立LABOSPE	0.600	1.100	0.400	0.700	○ 3.350 ○	2.310 🔾	0.780
1920	酵素法(H2O2比	和光純薬	日立3100	0.600	1.100	0.400	0.700	○ 3.410 ○	2.360 🔾	0.780
	酵素法(H2O2比	協和メデックス	日立7140-7170	0.610	1.040			○ 3.370 ○		
	酵素法(H2O2比	協和メデックス	日立7140-7170	0.610	1.040			○ 3.400 ○		
	酵素法(H2O2比	関東化学	ヘックマン・コールター	0.610	1.040			○ 3.370 ○		
	酵素法(H2O2比 酵素法(H2O2比	<b>牧和ノデッカフ</b>	東芝TBA-200F ヘックマン・コールター	0.400	1.090			○ 3.350 ○		
		協和メデックス	ヘックマン・コールター	0.610	1.040 1.040			○ 3.290 ○		
	酵素法(H2O2比 酵素法(H2O2比	協和メデックス 協和メデックス	ヘックマン・コールター	0.610 0.610	1.040			<ul><li>○ 3.320 ○</li><li>○ 3.360 ○</li></ul>		
	酵素法(H2O2比	関東化学	日本電子JCA-B		1.090			○ 3.400 ○		
	酵素法(H2O2比	協和メデックス	ヘックマン・コールター	0.610	1.040			○ 3.340 ○		
	酵素法(H2O2比	関東化学	目立7140-7170	0.650	1.090			○ 3.380 ○		
	酵素法(H2O2比		日本電子JCA-B	0.600	1.200			○ 3.430 ○		
1937	酵素法(H2O2比	シノテスト	日本電子JCA-B	0.600	1.200	0.400	0.900	○ 3.280 ○	2.270 🔾	0.760
2002	酵素法(H2O2比	カイノス	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.380 ○	2.320 🔾	0.760
	酵素法(H2O2比		目立LABOSPE	0.600	1.100	0.400	0.700	○ 3.340 ○	2.320 🔾	0.780
2008	酵素法(H2O2比	シノテスト	ロシュコハ、ス8000c7	0.650	1.070	0.460	0.790	○ 3.450 ○	2.410 〇	0.810

2 CRTN 施設No.が低い順に並んでいます

設	測定原理	試薬メーカー	機器		準範囲						試料報告値
Vo	, u, e, a,		1/A HI	下限	上限	下限	上限	試米	斗01	試料02	試料03
009	酵素法(H2O2比	カイノス	日本電子JCA-B	0.530	1.020	0.530	1.020	○ 3.3	310 🔾	2.290 🔾	0.770
010	酵素法(H2O2比	カイノス	日立7140-7170	0.610	1.040	0.470	0.790	○ 3.3	390 🔾	2.360 🔾	0.790
011	酵素法(H2O2比	協和メデックス	ヘ、ックマン・コールター	0.610	1.040	0.470	0.790	○ 3.3	350 🔾	2.320 🔾	0.820
001	酵素法(H2O2比	協和メデックス	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.2	282 🔾	2.254 🔾	0.755
013	酵素法(H2O2比	和光純薬	シーメンスHCDDim	0.610	1.040	0.470	0.790	O 3.4	430 🔾	2.360 🔾	0.760
018	酵素法(H2O2比	ベックマン・コー	ヘ゛ックマン・コールター	0.610	1.040	0.470	0.790	O 3.4	450 🔾	2.380 🔾	0.820
022	酵素法(H2O2比	ミズホメディ	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.3	350 🔾	2.340 🔾	0.810
027	酵素法(H2O2比		日立7600Dモシ゛ュ	0.610	1.040	0.470	0.790	○ 3.3	350 🔾	2.320 🔾	0.790
048	酵素法(H2O2比	和光純薬	日本電子JCA-B	0.650	1.070	0.460	0.790	O 3.3	340 🔾	2.310 🔾	0.790
055	酵素法(H2O2比	協和メデックス	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.3	380 🔾	2.340 🔾	0.790
056	酵素法(H2O2比	関東化学	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.3	390 🔾	2.350 🔾	0.770
907	酵素法(H2O2比	ミズホメディ	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.3	350 🔾	2.330 🔾	0.810
002	酵素法(H2O2比	カイノス	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.3	370 🔾	2.310 🔾	0.770
040	酵素法(H2O2比		ヘ、ックマン・コールター	0.610	1.040	0.470	0.790	O 3.4	430 🔾	2.340 🔾	0.820
902	酵素法(H2O2比	カイノス	日立7140-7170	0.600	1.200	0.400	0.900	○ 3.3	360 🔾	2.320 🔾	0.780
003	酵素法(H2O2比	シノテスト	日立7140-7170	0.600	1.100	0.400	0.800	○ 3.4	410 🔾	2.360 🔾	0.790
005	酵素法(H2O2比	ミズホメディ	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.3	350 🔾	$2.340 \bigcirc$	0.830
006	酵素法(H2O2比	シノテスト	日本電子JCA-B	0.650	1.070	0.460	0.790	○ 3.2	290 🔾	2.270 🔾	0.770
010	酵素法(H2O2比	関東化学	日本電子JCA-B	0.650	1.070	0.460	0.790	O 3.4	400 🔾	2.400 〇	0.800
006	酵素法(H2O2比	シノテスト	東芝25FR_Accut	0.400	1.200			○ 3.3	330 🔾	2.300 🔾	0.750
800	酵素法(H2O2比	東洋紡績	東芝TBA-200F	0.650	1.070	0.460	0.790	O 3.4	410 🔾	2.370 🔾	0.800
015	酵素法(H2O2比	積水メディカル	目立LABOSPE	0.600	1.200	0.400	0.900	O 3.3	350 🔾	2.330 🔾	0.820
016	酵素法(H2O2比	カイノス	東芝TBA-200F	0.600	1.100	0.400	0.700	O 3.3	330 🔾	2.310 〇	0.760
001	酵素法(H2O2比	カイノス	日本電子JCA-B	0.610	1.040	0.470	0.790	O 3.3	330 🔾	2.280 🔾	0.760
002	酵素法(H2O2比	シノテスト	日本電子JCA-B	0.650	1.070	0.460	0.790	O 3.4	440 🔾	2.390 🔾	0.820
007	酵素法(H2O2比	カイノス	ヘ、ックマン・コールター		1.000		0.700	O 3.4	410 🔾	2.350 🔾	0.750
011	酵素法(H2O2比	カイノス	東芝TBA-cシリー	0.650	1.070	0.460	0.790	O 3.3	380 🔾	2.330 🔾	0.790
025	酵素法(H2O2比	ニットーボー	日本電子JCA-B	0.600	1.100	0.400	0.700	O 3.4	410 🔾	2.370 🔾	0.820
901	酵素法(H2O2比	関東化学	目立LABOSPE	0.610	1.040	0.470	0.790	O 3.3	360 🔾	2.340 〇	0.810
004	酵素法(H2O2比	極東製薬	日本電子JCA-B	0.550	1.100	0.400	0.800	O 3.4	410 🔾	2.330 🔾	0.810
011		オーソ・クリニカ	オーソビトロス250_3	0.610	1.040	0.470	0.790	O 3.3	300 🔾	2.340 〇	0.800
004	酵素法(H2O2比	協和メデックス	目立7140-7170					O 3.4	410 🔾	2.370 🔾	0.850
800	酵素法(H2O2比	シノテスト	目立7140-7170					O 3.4	420 🔾	2.380 🔾	0.820
009	酵素法(H2O2比	LSIメディエンス	目立7140-7170	0.610	1.040	0.470	0.790	O 3.3	398 🔾	2.364 〇	0.788
012	酵素法(H2O2比	デンカ生研	目立7140-7170	0.600	1.000	0.400	0.800	O 3.4	400 🔾	2.350 🔾	0.800
014	酵素法(H2O2比	ニットーボー	目立7140-7170					O 3.4	400 🔾	2.370 🔾	0.840
022	酵素法(H2O2比	ミズホメディ	目立7140-7170	0.600	1.200	0.400	0.800	O 3.3	360 🔾	2.340 🔾	0.820
023	酵素法(H2O2比	和光純薬	日立7140-7170					O 3.4	420 🔾	2.380 🔾	0.810
		関東化学	日本電子JCA-B	0.600	1.100	0.400	0.700			2.390 🔾	
033	酵素法(H2O2比		日本電子JCA-B	0.600	1.100	0.400	0.700	O 3.3	370 🔾	2.350 🔾	0.800
035	酵素法(H2O2比	積水メディカル	積水EV800					O 3.3	360 🔾	2.340 🔾	0.800
040		オーソ・クリニカ	オーソヒ・トロス5600							2.290 🔾	
	酵素法(H2O2比		ロシュコハ ス8000c5							2.260 〇	
	酵素法(H2O2比		ロシュコハ ス8000c7							2.363 🔾	
	酵素法(H2O2比	栄研化学	目立7140-7170	0.600	1.000	0.400	0.800			2.410 〇	
	酵素法(H2O2比		ベックマン・コールター							2.350 🔾	
			日立7140-7170	0.600	1.000					2.280 🔾	
)49	酵素法(H2O2比										

82 CRTN(F)

施設	测令医理	****	機器	男性基準	範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	(残石)	下限 .	上限	下限	上限	試料01	試料02	試料03
1044	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	0.600 1	1.100	0.400	0.800	O 3.300 C	2.300 €	0.700
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	0.400 1	1.200			○ 3.300 ○	2.400 €	0.800
1076	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.610 1	1.040	0.470	0.790	○ 3.100 ○	2.200 €	0.600
1097	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.650 1	1.090	0.460	0.820	○ 3.400 (	2.300 €	0.800
1104	ドライケミストリー法	富士フィルムメ	富士ドライケム350	0.600 1	1.100	0.400	0.800	○ 3.200 ○	2.200 €	0.700
1126	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.610 1	1.040	0.470	0.790	○ 3.100 ○	2.300 €	0.800
1133	ドライケミストリー法	富士フィルムメ	富士ドライケム400	0.600 1	1.100	0.400	0.800	○ 3.200 ○	2.200 €	0.800
1137	ドライケミストリー法	富士フィルムメ	富士ドライケム400	0.600 1	1.100	0.400	0.700	○ 3.300 ○	2.200 €	0.700
1326	ドライケミストリー法	富士フィルムメ	富士ドライケム400	0.650 1	1.090	0.460	0.820	○ 3.400 ○	2.400 (	0.800
1335	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.600 1	1.100	0.400	0.800	○ 3.100 ○	2.200 €	0.700
1336	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.600 1	1.100	0.400	0.800	○ 3.200 (	2.300 €	0.700
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.600 1	1.100	0.400	0.800	○ 3.200 ○	2.300 €	0.800
1374	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	0.650 1	1.090	0.460	0.820	○ 3.100 ○	2.300 €	0.700
1375	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	0.650 1	1.090	0.460	0.820	○ 3.200 ○	2.100 €	0.800
1393	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	0.610 1	1.040	0.470	0.790	○ 3.200 (	2.300 €	0.700
1415	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	0.600 1	1.100	0.400	0.800	○ 3.300 ○	2.400 €	0.800
1523	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.650 1	1.070	0.460	0.790	○ 3.200 ○	2.200 €	0.700
1525	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム350	0.610 1	1.040	0.470	0.790	○ 3.200 ○	2.300 €	0.800
1545	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム350	0.650 1	1.070	0.460	0.790	3.000	2.100 €	0.700
1546	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	0.600 1	1.100	0.400	0.800	○ 3.500 ○	2.300 €	0.800
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.650 1	1.070	0.460	0.790	○ 3.200 ○	2.300 €	0.700
1552	ドライケミストリー法	富士フィルムメ	富士ドライケム400	0.600 1	1.100	0.400	0.800	○ 3.100 ○	2.200 €	0.800
1557	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.400	0.800			○ 3.200 ○	2.300 €	0.800
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.650 1	1.070	0.460	0.790	○ 3.300 ○	2.200 €	0.800
1560	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	0.600 1	1.100	0.400	0.800	○ 3.200 ○	2.300 €	0.800
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.650 1	1.070	0.460	0.790	○ 3.200 ○	2.300 €	0.800
2012	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	0.600 1	1.100	0.400	0.800	○ 3.200 ○	2.200 €	0.700
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.600 1	1.100	0.400	0.800	○ 3.400 ○	2.300 €	0.700

### 117 CRTN(A1)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武架/一刀一	79文石计	下限 上限 下限 上限 試料01 試料02 試料03
1317	ト・ライケミストリー法	アークレイ	アークレイスホットケム	0.700 1.100 0.500 0.800 $\bigcirc$ 3.500 $\bigcirc$ 2.400 $\bigcirc$ 0.800
1378	ドライケミストリー法	アークレイ	アークレイスポットケム	$0.600  1.100  0.400  0.700 \qquad 3.100 \bigcirc \ 2.300 \bigcirc \ 0.700$
9041	ドライケミストリー法	アークレイ	アークレイスポットケム	$\bigcirc$ 3.600 $\bigcirc$ 2.400 $\bigcirc$ 0.800

147 CRTN(A2)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤			下限 上限 上限 試料01 試料02 試料03
1521	ト・ライケミストリー法	アークレイ	アークレイスポットケム	0.600 1.100 0.400 0.800 🔾 3.300 🔾 2.300 🔾 0.800

### 177 CRTN(O)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武衆/一//	79文石台	下限 上限 下限 上限 試料01 試料02 試料03
1075	ト゛ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	$0.650  1.070  0.460  0.790 \ \bigcirc \ 3.400 \ \bigcirc \ 2.400 \ \bigcirc \ 0.800$
1100	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	$\bigcirc$ 3.300 $\bigcirc$ 2.300 $\bigcirc$ 0.800

飯塚病院 中央検査部 吉田 真紀

【参加状況】 237 施設(前回 228 施設)

#### 【測定方法の状況】

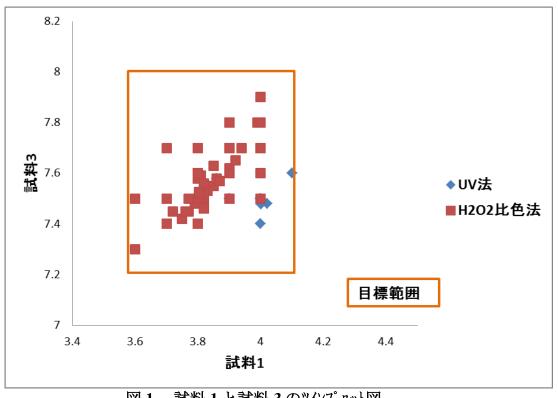
酵素法 ウリカーゼ・UV 法9 施設 (4.8%)酵素法ウリカーゼ・H2O2 比色法204 施設 (84.2%)ト・ライケミストリー法23 施設 (10.1)その他1 施設 (0.9%)

#### 【測定値の状況】 (ドライケミストリー法は除く)

1. 表 1 に液状試薬での試料 1~3 の全体及び測定原理別の 3SD 除去後平均値と CV%を示した。

	X 1 33	リテムタ	ツ十均恒(III	g/uL) C	C V /0		
	試料	· 1	試米	斗 2	試料3		
	平均值	CV%	平均值	CV%	平均值	CV%	
全体	3.84	1.9	5.31	1.4	7.55	1.2	
UV 法	3.98	1.9	5.36	0.9	7.50	0.9	
H ₂ O ₂ 比色法	3.84	1.8	5.31	1.4	7.6	1.2	

表 1 3SD 除去後の平均値(mg/dL) と CV%


2. 1~3の目標値(目標範囲)は、試料 1:3.85(3.6~4.1)mg/dL、試料 2:5.33(5.0~5.6)mg/dL、試料 3:7.58(7.2~8.0)mg/dLであった。

3 試料すべて目標範囲内であった割合は 99.5%(212 施設)、試料別の目標範囲内施設割合は、試料 1 は 100%(213 施設)、試料 2 は 99.5%(212 施設)、試料 3 は 100%(213 施設)であった。

3. 表 2 に試料 1~3 の測定原理別の目標範囲達成状況を示した。 また、図 1 に試料 1 と試料 3 のツインプロットを示した。

表 2 測定原理別 目標範囲(目標値±5%)の達成状況(%)

測定原理	試料 1	(施設数)	試料 2	(施設数)	試料3	(施設数)
全体	99.6%	(236)	99.2%	(235)	99.2%	(235)
UV 法	100%	(9)	100%	(9)	100%	(9)
H ₂ O ₂ 比色法	100%	(204)	99.5%	(203)	100%	(204)



試料1と試料3のツインプロット図 図 1

#### 【基準範囲の状況】

- 1. 設定幅は男性の下限値  $0\sim4.3$ mg/dL、上限値  $6.9\sim8.5$ mg/dL、女性の下限値  $0\sim3.0$ mg/dL、 上限値 5.5~7.0mg/dL であった。
- 2. JCCLS の共用基準範囲 (M:3.7~7.8mg/dL、F: 2.6~5.5mg/dL) を採用している施設は、 37.6%(89/237)であった。前年度より、約7%増加した。

### 【ドライケミストリー法の状況】

1. 表 3 にメーカーによる測定値及び参考範囲を示した。 オーソは液状試薬の目標値と同じである。

表3 メーカーによる目標値及び参考範囲

	,	アークレイ		オーソ	富士		
	目標値 参考範囲		目標値	参考範囲	目標値	参考範囲	
	mg/dL	mg/dL	mg/dL	mg/dL	mg/dL	mg/dL	
試料 1	3.8	$3.5 \sim 4.1$	3.85	3.6~4.1	3.9	3.6~4.2	
試料 2	5.4 5.0~5.8		5.33	5.0~5.6	5.3	4.9~5.7	
試料 3	8.0	$7.4 \sim 8.6$	7.58	$7.2 \sim 8.0$	7.5	7.0~8.0	

2. 表 4 に メーカー別の平均値と参考範囲達成状況を示した。

表 4 メーカー別の平均値と参考範囲達成状況

		アークレイ		オーソ	富士		
施設数		2		4	17		
	平均值	参考範囲内施設	平均值	参考範囲内施設	平均值	参考範囲内施設	
	(mg/dL)	(%)	(mg/dL)	(%)	(mg/dL)	(%)	
試料 1	3.7	100%	3.81	100%	3.93	100%	
試料 2	5.45	100%	5.30	100%	5.36	100%	
試料 3	8.05	100%	7.48	100%	7.57	100%	

3. 図 2 にドライケミストリー法における測定値とメーカー参考範囲を示した。

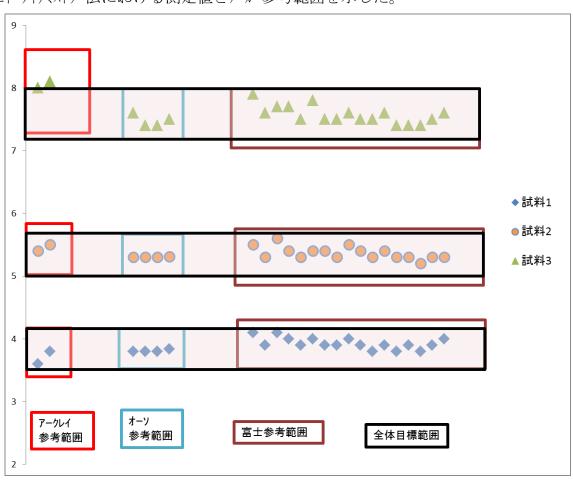



図2.ドライケミストリー法における測定値およびメーカー参考範囲

#### 【その他のコメント】

1. 液状試薬及びドライケミストリー法ともに、3試料とも目標範囲達成率もよく、特に問題ない。

3 UA 施設No.が低い順に並んでいます

施設	110.77			男性基準	<b>生</b> 節用	女性基準	<b>準範</b> 囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1001	H2O2比色法	LSIメディエンス	日立LABOSPE	3.700	7.000	2.600	7.000	○ 3.800 ○	5.300 〇	7.500
1002	H2O2比色法	協和メデックス	目立LABOSPE	3.600	8.000	2.300	5.500	○ 3.800 ○	5.300 🔾	7.600
1004	H2O2比色法	積水メディカル	日立LABOSPE	3.700	7.800	2.600	5.500	○ 4.000 ○	5.300 🔾	7.700
1006	H2O2比色法	シノテスト	日立LABOSPE	3.700	7.800	2.600	5.500	○ 3.820 ○	5.240 🔾	7.460
1010	H2O2比色法	セロテック	東芝TBA-cシリー	3.600	8.000	2.300	5.500	○ 3.800 ○	5.300 🔾	7.500
	H2O2比色法	和光純薬	日本電子JCA-B	2.100		2.100		○ 3.900 ○		
	H2O2比色法	和光純薬	日本電子JCA-B	3.700	7.800			○ 3.800 ○		
	H2O2比色法 H2O2比色法	和光純薬	日立7140-7170	3.700		2.600		○ 3.900 ○		
	H2O2比色法	協和メデックスカイノス	日本電子JCA-B 日本電子JCA-B	3.700 3.700		2.600 2.600		<ul><li>○ 3.800 ○</li><li>○ 3.850 ○</li></ul>		
	H2O2比色法	積水メディカル	日本電子JCA-B	3.600	7.000			○ 3.800 ○		
	H2O2比色法	和光純薬	日本電子JCA-B	3.700	7.800	2.600		O 3.800 O		
	H2O2比色法	積水メディカル	日立LABOSPE	3.600	7.000	2.300		○ 3.800 ○		
1026	H2O2比色法	協和メデックス	東芝25FR_Accut	3.700	7.800	2.600	5.500	○ 3.800 ○	5.300 〇	7.500
1028	H2O2比色法	積水メディカル	目立LABOSPE	3.600	7.000	2.300	7.000	○ 3.900 ○	5.400 〇	7.800
1029	H2O2比色法	LSIメディエンス	日立7140-7170	3.700	7.800	2.600	5.500	○ 3.800 ○	5.200 〇	7.500
1031	H2O2比色法	積水メディカル	東芝TBA-cシリー	3.700	7.800	2.600	5.500	○ 3.900 ○	5.400 🔾	7.600
	UV測定法	シーメンス	シーメンスHCDDim	3.700		2.500		○ 4.000 ○		
	H2O2比色法	積水メディカル	日立7140-7170	3.600	7.000			○ 3.900 ○		
	H2O2比色法	積水メディカル	日立7140-7170	3.600		2.700		O 3.900 O		
	H2O2比色法 H2O2比色法	協和メデックス 協和メデックス	日本電子JCA-B 日立LABOSPE	3.600 3.700	7.000 7.800	2.300 2.600		<ul><li>○ 3.800 ○</li><li>○ 3.800 ○</li></ul>		
	H2O2比色法	ミズホメディ	日立7140-7170	3.700		2.600		3.800 O		
	H2O2比色法	カイノス	目立LABOSPE	3.700		2.600		○ 3.900 ○		
	H2O2比色法	和光純薬	東芝25FR_Accut	3.600	7.000			O 3.800 O		
1049	H2O2比色法	和光純薬	ヘックマン・コールター	3.600	7.000	2.300		○ 3.800 ○		
1050	H2O2比色法	カイノス	日本電子JCA-B	3.700	7.800	2.600	5.500	○ 3.990 ○	5.530 〇	7.800
1051	H2O2比色法	和光純薬	日本電子JCA-B	3.700	7.000	2.500	7.000	○ 3.800 ○	5.200 〇	7.400
1054	H2O2比色法	セロテック	東芝TBA-cシリー	3.000	7.000			○ 3.800 ○	5.300 🔾	7.500
	UV測定法	シーメンス	シーメンスHCDDim	3.700	7.800	2.600	5.500	○ 4.000 ○	5.400 🔾	7.500
	H2O2比色法	シノテスト	日立7140-7170	3.600	7.000	2.300		○ 3.800 ○		
	H2O2比色法	シノテスト	東京貿易ビオリス5	3.600	7.000			0 4.000 0		
	H2O2比色法 H2O2比色法	LSIメディエンス	日本電子JCA-B 東京智見ビオリフ2	3.600	7.000			○ 3.800 ○		
	H2O2比色法	積水メディカル LSIメディエンス	東京貿易ビオナリス2 日本電子JCA-B	3.600 3.600	7.000 7.000	2.700		<ul><li>○ 3.800 ○</li><li>○ 3.800 ○</li></ul>		
	H2O2比色法	和光純薬	目立LABOSPE	3.700		2.600		O 3.800 O		
	H2O2比色法	LSIメディエンス	日本電子JCA-B	3.000		2.000		○ 3.800 ○		
1072	H2O2比色法	積水メディカル	日立LABOSPE	3.600	7.000	2.300	7.000	○ 3.800 ○	5.300 〇	7.500
1073	H2O2比色法	シノテスト	目立LABOSPE	3.600	8.000	2.300	5.500	○ 3.860 ○	5.340 🔾	7.580
1074	H2O2比色法	シノテスト	東京貿易ビオナリス2	3.600	7.000	2.700	7.000	○ 3.600 ○	5.000 🔾	7.300
	UV測定法	シーメンス	シーメンスHCDDim	3.700	7.000	2.500		○ 4.100 ○		
	H2O2比色法	和光純薬	東芝TBA-cシリー	3.700	7.800			○ 3.800 ○		
	H2O2比色法	和光純薬	東京貿易ビオサスス2	3.700	7.800			0 4.000 0		
	H2O2比色法 H2O2比色法	シノテストシノテスト	日立LABOSPE 日立7140-7170	3.600 3.700	7.000 7.800			<ul><li>○ 3.900 ○</li><li>○ 3.800 ○</li></ul>		
	H2O2比色法	デンカ生研	日立7140-7170 日立7140-7170	3.700	7.800			○ 3.700 ○		
	H2O2比色法	積水メディカル	日本電子JCA-B	2.100	6.900			○ 3.700 ○ ○ 3.900 ○		
	H2O2比色法	シノテスト	日本電子JCA-B	3.600	7.000			O 3.800 O		
	H2O2比色法	積水メディカル	東芝TBA-cシリー		7.000			○ 3.900 ○		
1102	H2O2比色法	協和メデックス	東芝TBA-cシリー	3.700	7.800	2.600	5.500	○ 3.800 ○	5.300 〇	7.500
1105	H2O2比色法	協和メデックス	ヘックマン・コールター	3.600	7.000	2.700	7.000	○ 3.800 ○	5.300 〇	7.700
1112	H2O2比色法	シノテスト	東京貿易ビオリス5	3.700	7.000	2.500	7.000	○ 3.800 ○	5.300 🔾	7.500
	H2O2比色法	カイノス	日本電子JCA-B	3.700	7.000			○ 3.900 ○		
	H2O2比色法	和光純薬	東芝TBA-cシリー	3.700	7.800			○ 3.800 ○		
	H2O2比色法	デンカ生研	東芝25FR_Accut	3.600	7.000			○ 3.600 ○		
	H2O2比色法 UV測定法	ベックマン・コー シーメンス	ベックマン・コールター シーナ/スHCDDim	3.700	7.000			○ 3.750 ○ ○ 3.860 ○		
1143	∪√例定広	√- <u>/</u> √/	シーメンスHCDDim	3.600	7.000	2.700	1.000	○ 3.860 ○	J.300 U	1.500

3 UA 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基準	準範囲	女性基準	準範囲			試料報告値	
No	例足原垤	八米ノーノー	7.交 台	下限	上限	下限	上限	試料01	試料02	試料03	_
1124	H2O2比色法	シノテスト		3.700	7.500	2.600	5.500	○ 3.700	4.300 ○	7.700	
	H2O2比色法	積水メディカル	日本電子JCA-B	3.600	7.000			○ 3.800 ○			
	H2O2比色法	シスメックス	日本電子JCA-B	3.700	7.800	2.600		O 3.800 O			
	H2O2比色法	ベックマン・コー	ヘックマン・コールター	3.600	7.000	2.700		○ 3.900 ○			
	H2O2比色法 H2O2比色法	シノテスト 積水メディカル	日本電子JCA-B 日立7140-7170	3.700 3.600	7.800 7.000	2.600 2.300		<ul><li>○ 3.900 ○</li><li>○ 3.900 ○</li></ul>			
	H2O2比色法	ベックマン・コー	ヘックマン・コールター	3.600	7.000			3.900 O			
	H2O2比色法	シノテスト	日本電子JCA-B	3.700		2.600		O 3.900 O			
	H2O2比色法	和光純薬		3.700		2.600		○ 3.830 ○			
1301	H2O2比色法	和光純薬	日本電子JCA-B	2.000	7.000	2.000	5.500	○ 3.900 ○	5.400 🔾	7.700	
1302	H2O2比色法	ベックマン・コー	ヘ゛ックマン・コールター	3.700	7.800	2.600	5.500	○ 3.700 ○	5.300 🔾	7.400	
1305	H2O2比色法	カイノス	日本電子JCA-B	3.700	7.000	2.600	7.000	○ 3.800 ○	5.300 🔾	7.500	
1308	H2O2比色法	和光純薬	東芝25FR_Accut	3.700	7.000	2.600	7.000	○ 3.900 ○	5.300 🔾	7.500	
	H2O2比色法	和光純薬	東芝TBA-200F	3.000		2.000		○ 3.800 ○			
	H2O2比色法	セロテック	日本電子JCA-B	3.600	7.000			○ 3.800 ○			
	H2O2比色法	和光純薬	日本電子JCA-B	3.700		2.600		○ 3.900 ○			
	H2O2比色法	LSIメディエンス	日本電子JCA-B	3.600		2.300		○ 3.800 ○			
	H2O2比色法 H2O2比色法	積水メディカル 和光純薬	日本電子JCA-B 日本電子JCA-B	3.700 3.700		2.600 2.600		<ul><li>○ 3.900 ○</li><li>○ 3.900 ○</li></ul>			
	H2O2比色法	協和メデックス	ベックマン・コールター	3.700	7.800	2.600		○ 3.800 ○			
	H2O2比色法	シノテスト	日本電子JCA-B	3.700		2.600		O 3.900 O			
	H2O2比色法	和光純薬	日本電子JCA-B	2.300	7.000			○ 3.800 ○			
1331	H2O2比色法	積水メディカル	東芝TBA-cシリー	2.600	7.900			○ 3.900 ○	5.400 🔾	7.800	
1337	H2O2比色法	和光純薬	日本電子JCA-B	3.700	7.800	2.600	5.500	○ 3.800 ○	5.300 🔾	7.500	
1339	H2O2比色法	LSIメディエンス	日本電子JCA-B	3.700	7.800	2.600	5.500	○ 3.800 ○	5.300 🔾	7.600	
	H2O2比色法	和光純薬	日本電子JCA-B	3.700		2.600		○ 3.800 ○			
	H2O2比色法	積水メディカル	日本電子JCA-B	3.600		2.700		○ 3.900 ○			
	H2O2比色法	シノテスト	日立LABOSPE	3.700	7.800			○ 3.800 ○			
	H2O2比色法 H2O2比色法	シノテスト 積水メディカル	日立7140-7170 日本電子JCA-B	3.700 3.600	7.800 7.000	2.600 2.300		<ul><li>○ 3.900 ○</li><li>○ 3.900 ○</li></ul>			
	H2O2比色法	ロシュ・ダイアグ	ロシュコバス8000c5	3.700		2.600		○ 3.900 ○			
	H2O2比色法	積水メディカル	東芝TBA-cシリー	2.600	7.900			○ 3.800 ○			
1349	H2O2比色法	ロシュ・ダイアグ	ロシュコハ*ス8000c5	3.700	7.800	2.600	5.500	○ 3.800 ○	5.300 🔾	7.500	
1350	H2O2比色法	積水メディカル	日本電子JCA-B	3.600	7.000	2.300	7.000	○ 3.900 ○	5.400 🔾	7.700	
1351	H2O2比色法		ヘックマン・コールター	3.700	7.800	2.600	5.500	○ 3.900 ○	5.400 🔾	7.600	
1352	H2O2比色法	和光純薬	日本電子JCA-B	3.600	7.020	2.300	7.000	○ 3.800 ○	5.200 🔾	7.500	
	H2O2比色法	和光純薬	東芝TBA-cシリー	3.700		2.600		○ 3.900 ○			
	H2O2比色法	シスメックス	日本電子JCA-B		7.800			O 3.900 O			
	H2O2比色法 H2O2比色法	和光純薬 シノテスト	目立7140-7170	3.600	7.000 7.800	2.300		<ul><li>○ 3.900 ○</li><li>○ 3.770 ○</li></ul>			
	H2O2比色法	積水メディカル	日本電子JCA-B 日本電子JCA-B	3.700 3.700	7.800			○ 3.800 ○			
	H2O2比色法	和光純薬	日本電子JCA-B	4.000	7.000			○ 3.800 ○			
	H2O2比色法	和光純薬	東芝TBA-20-3	3.700	7.800			○ 3.760 ○			
1362	H2O2比色法	ミズホメディ	ヘックマン・コールター	3.600	7.000	2.300	7.000	○ 3.900 ○	5.300 🔾	7.600	
1365	H2O2比色法	和光純薬	日立7140-7170	3.700	7.800	2.600	5.500	○ 3.900 ○	5.300 🔾	7.600	
1368	H2O2比色法	和光純薬	東芝TBA-cシリー	3.700	7.800	2.600	5.500	○ 3.800 ○	5.200 🔾	7.400	
1370	H2O2比色法	シノテスト	目立LABOSPE	3.700	7.800	2.600	5.500	○ 3.800 ○	5.300 🔾	7.600	
	H2O2比色法	協和メデックス	東京貿易ピオリス5	3.700		2.600		○ 3.800 ○			
	H2O2比色法	和光純薬	目立LABOSPE	3.700	7.800			○ 3.900 ○			
	H2O2比色法 H2O2比色法	和光純薬和光純薬	東芝25FR_Accut 東芝TBA-cシリー	3.700	7.800 7.000			<ul><li>○ 3.800 ○</li><li>○ 3.900 ○</li></ul>			
	H2O2比色法	和光純薬 シノテスト	用之1BA-cンリー 目立7140-7170	3.600 3.600	8.000			○ 4.000 ○			
	H2O2比色法	協和メデックス	東京貿易ビオリス5	3.700	7.800			○ 4.000 ○ ○ 3.700 ○			
	UV測定法	シーメンス	シーメンスHCDDim	3.700	7.000			O 3.900 O			
	H2O2比色法	シノテスト	東京貿易ピオナリス2	3.700	7.800			○ 3.800 ○			
1401	H2O2比色法	シーメンス	シーメンスHCDDim	3.700	7.800	2.600	5.500	○ 4.000 ○	5.300 🔾	7.500	
1402	H2O2比色法	シノテスト	日本電子JCA-B	3.700	7.800	2.600	5.500	○ 3.700 ○	5.200 🔾	7.500	

3 UA 施設No.が低い順に並んでいます

施設	110.73年以7月10			男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1403	H2O2比色法	ミズホメディ	日本電子JCA-B	3.700	7.000	2.600	7.000	O 3.800 (	○ 5.300 ○	7.500
1404	H2O2比色法	カイノス	東芝TBA-cシリー	3.600	7.000				○ 5.400 ○	
1407	その他		セントラル科学Picc	2.200	8.000			3.200	4.600	6.400
1411	H2O2比色法	和光純薬	日本電子JCA-B	3.700	7.800	2.600	5.500	O 3.820 (	○ 5.270 ○	7.500
1419	H2O2比色法	ベックマン・コー	ヘ゛ックマン・コールター	3.600	7.000	2.300	7.000	O 3.800 (	○ 5.400 ○	7.600
1501	H2O2比色法	積水メディカル	目立LABOSPE	3.600	7.000	2.300	7.000	O 3.900 (	○ 5.300 ○	7.500
1502	H2O2比色法	積水メディカル	日本電子JCA-B	3.600	7.000	2.300	7.000	O 3.850 (	○ 5.370 ○	7.630
1505	H2O2比色法	和光純薬	目立LABOSPE	3.700	7.000	2.600	7.000	O 3.790 (	○ 5.240 ○	7.480
1506	H2O2比色法	シノテスト	日立LABOSPE	3.700	7.000	2.500	7.000	O 3.900 (	○ 5.300 ○	7.500
1511	H2O2比色法	積水メディカル	日本電子JCA-B	3.700	7.800	2.600	5.500	O 3.900 (	○ 5.300 ○	7.500
1512	H2O2比色法	積水メディカル	日立7140-7170	3.700	7.000	2.600	7.000	○ 3.900 (	○ 5.300 ○	7.700
1513	H2O2比色法	和光純薬	目立LABOSPE	3.700	7.800	2.600	5.500	O 3.800 (	○ 5.300 ○	7.500
1514	H2O2比色法	和光純薬	目立LABOSPE	3.700	7.000	2.600	7.000	○ 3.800 (	○ 5.300 ○	7.500
1518	H2O2比色法	ミズホメディ	東京貿易ビオリス2	3.700	7.800	2.600	5.500	○ 3.800 (	○ 5.200 ○	7.600
1519	H2O2比色法	カイノス	東芝25FR_Accut	3.700	7.800	2.600	5.500	○ 3.900 (	○ 5.400 ○	7.700
1528	H2O2比色法	和光純薬	日立7140-7170	3.700	7.800	2.600	5.500	O 4.000 (	○ 5.500 ○	7.800
1529	H2O2比色法	和光純薬	目立LABOSPE	3.600	7.000	2.300	7.000	○ 3.800 (	○ 5.300 ○	7.600
1530	H2O2比色法	和光純薬	日本電子JCA-B	3.700	7.800	2.600	5.500	O 3.800 (	○ 5.300 ○	7.500
1531	UV測定法	シーメンス	シーメンスHCDDim	3.600	8.000	2.300	5.500	O 4.020 (	○ 5.390 ○	7.480
1532	H2O2比色法	カイノス	日立7140-7170	3.700	7.800	2.600	5.500	○ 3.900 (	○ 5.390 ○	7.620
1533	UV測定法	シーメンス	シーメンスHCDDim	3.700	7.800	2.600	5.500	O 4.000 (	○ 5.400 ○	7.500
1538	H2O2比色法	和光純薬	東京貿易ビオリス2	3.700		2.600	5.500	○ 3.800 (	○ 5.200 ○	7.500
1540	H2O2比色法	シノテスト	日本電子JCA-B	3.700	7.800	2.600	5.500	○ 3.800 (	○ 5.300 ○	7.500
	H2O2比色法	シノテスト	東芝25FR_Accut	3.600	7.000	2.300	7.000	○ 3.900 (	○ 5.400 ○	7.600
	H2O2比色法	積水メディカル	日立7140-7170	3.700	7.000	2.500			○ 5.400 ○	
	H2O2比色法	カイノス	東芝25FR_Accut	3.600	7.000		7.000	O 3.700 (	○ 5.200 ○	7.400
	H2O2比色法	積水メディカル	目立7140-7170	3.600	7.000				○ 5.600 ○	
	H2O2比色法	シノテスト		3.700	7.000				○ 5.400 ○	
	H2O2比色法	和光純薬	日本電子JCA-B	3.700		2.600			5.200 C	
	H2O2比色法	シノテスト	日本電子JCA-B	3.700	7.800				5.300 €	
	H2O2比色法	和光純薬	ベックマン・コールター	3.600	7.000				5.400 €	
	H2O2比色法	積水メディカル	日本電子JCA-B	3.600		2.700			5.300 C	
	H2O2比色法	積水メディカル ミズホメディ	日立7600Dモジュ	3.700	7.000	2.500			5.200 C	
	H2O2比色法 H2O2比色法	ミズホメディ	目 立LABOSPE ベックマン・コールター	3.600 3.600	7.000 7.000				○ 5.300 ○ ○ 5.300 ○	
	H2O2比色法	和光純薬	日本電子JCA-B	3.700	7.800				5.300 C	
	H2O2比色法	和光純薬	日立LABOSPE	3.600	7.000				5.300 C	
	H2O2比色法	ミズホメディ	日立3100	3.600	7.000				5.300 C	
	H2O2比色法	積水メディカル	目立7140-7170	3.700	7.000				5.200 C	
	H2O2比色法	積水メディカル	日立7140-7170	3.700	7.000				5.300 C	
	H2O2比色法	協和メデックス	ベックマン・コールター	3.700	7.000				○ 5.300 C	
	H2O2比色法	関東化学	東芝TBA-200F	2.000	7.000				5.400 C	
	H2O2比色法	積水メディカル	ヘ゛ックマン・コールター	3.700	7.000				5.300 C	
1930	H2O2比色法	和光純薬	ヘックマン・コールター	3.600	7.000		7.000	O 3.800 (	○ 5.300 ○	7.500
	H2O2比色法	和光純薬	ヘックマン・コールター	3.600	7.000				5.200 €	
1932	H2O2比色法	積水メディカル	日本電子JCA-B	3.600	7.000	2.700			○ 5.400 ○	
1934	H2O2比色法	和光純薬	ヘ・ックマン・コールター	3.600	7.000	2.300	7.000	O 3.800 (	○ 5.200 ○	7.400
1935	H2O2比色法	積水メディカル	目立7140-7170	3.600	7.000	2.700	7.000	O 3.800 (	○ 5.400 ○	7.600
	H2O2比色法	ミズホメディ	日本電子JCA-B	3.000	7.500	2.600			○ 5.300 ○	
1937	H2O2比色法		日本電子JCA-B	3.600	7.000	2.300	7.000	O 3.900 (	○ 5.400 ○	7.600
2002	H2O2比色法	和光純薬	日本電子JCA-B	3.700	7.800	2.600	5.500	O 3.900 (	○ 5.300 ○	7.600
2006	H2O2比色法	協和メデックス	目立LABOSPE	3.500	7.000	2.500	7.000	O 3.800 (	○ 5.200 ○	7.500
2008	H2O2比色法	シノテスト	ロシュコハ*ス8000c7	3.700	7.800	2.600	5.500	O 3.900 (	○ 5.400 ○	7.700
2009	H2O2比色法	カイノス	日本電子JCA-B	3.500	7.500	2.600	6.000	O 3.900 (	○ 5.300 ○	7.600
2010	H2O2比色法	カイノス	日立7140-7170	3.700	7.000	2.500	7.000	O 3.800 (	○ 5.400 ○	7.700
2011	H2O2比色法	和光純薬	ベックマン・コールター	3.600	7.000	2.300	7.000	O 3.800 (	○ 5.300 ○	7.500
3001	H2O2比色法	協和メデックス	日本電子JCA-B	3.700	7.800	2.600	5.500	O 3.720 (	⊃ 5.190 ⊂	7.450

3 UA 施設No.が低い順に並んでいます

放き性性   大学・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	施設	201 ch FE 78	-1. ( :ti:4.=	T4K 00	男性基準筆	6囲	女性基	準範囲			試料報告値
301	No	測疋原埋	試楽メーガー	機器	下限 上	:限	下限	上限	試料01	試料02	試料03
302   日202性色性   スポッディ	3013	UV測定法	シーメンス	シーメンスHCDDim	3.700 7.	000	2.500	7.000	○ 3.900 ○	5.400 〇	7.500
320   1202比色性	3018	H2O2比色法	ベックマン・コー	ヘックマン・コールター	4.000 7.	000	3.000	5.500	○ 3.900 ○	5.400 〇	7.700
3048   日202比色性   和光純潔	3022	H2O2比色法	ミズホメディ	日本電子JCA-B	3.700 7.	800	2.600	5.500	○ 3.810 ○	5.310 〇	7.590
3058   1202性色性   現代ア   日本電子ICAB   3.700   7.800   2.600   5.500   3.800   5.200   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700   7.700	3027	H2O2比色法	積水メディカル	目立7600Dモジュ	3.700 7.	000	2.500	7.000	○ 3.900 ○	5.200 〇	7.500
305   日202比色法   期東化学   日本電子)CA-B   3.700   7.800   2.600   3.800   3.800   7.400   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600	3048	H2O2比色法	和光純薬	日本電子JCA-B	3.700 7.	800	2.600	5.500	○ 3.800 ○	5.200 〇	7.500
390   日202比色法   スペボゲィ   日本電子   CA-B   3.700   7.800   2.600   3.800   5.200   7.500   7.500   4002   1202比色法   オイス   日本電子   CA-B   3.700   7.800   2.600   3.900   3.800   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500	3055	H2O2比色法	カイノス	日本電子JCA-B	3.700 7.	800	2.600	5.500	○ 3.900 ○	5.400 〇	7.700
4002   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202	3056	H2O2比色法	関東化学	日本電子JCA-B	3.700 7.	800	2.600	5.500	○ 3.800 ○	5.200 〇	7.400
403   H2O2比色法	3907	H2O2比色法	ミズホメディ	日本電子JCA-B	3.700 7.	800	2.600	5.500	○ 3.800 ○	5.200 🔾	7.500
40日   日20日色語	4002	H2O2比色法	カイノス	日本電子JCA-B	3.700 7.	800	2.600	5.500	○ 3.900 ○	5.300 〇	7.500
4902 日202比色法	4039	H2O2比色法		東芝25FR_Accut	3.600 7.	000	2.300	7.000	○ 3.700 ○	5.200 〇	7.500
5003 日202比色法	4040	H2O2比色法	ベックマン・コー	ヘックマン・コールター	3.700 7.	000	2.500	7.000	○ 3.800 ○	5.300 〇	7.500
505   日20生性色法   ジボメディ   日本電子ICA-B   3.700   7.600   2.600   3.800   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600	4902	H2O2比色法	ミズホメディ	目立7140-7170	3.600 7.	000	2.300	7.000	○ 3.700 ○	5.100 〇	7.400
5006 日20生性色法   3人の大不か   日本電子ICA-B   3.700   3.800   2.600   3.800   3.800   7.520   7.520   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500   7.500	5003	H2O2比色法	シノテスト	日立7140-7170	2.200 7.	000	2.200	7.000	○ 3.900 ○	5.400 〇	7.600
5010   日20生性色法   積水メディカル   日本電子JCA-B   3.70   7.800   2.600   3.900   5.500   7.800   7.600   6.000   H20と性色法   シノテスト   東芝5BR-Accut   3.000   7.800   2.500   3.900   5.300   7.600   7.600   7.600   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.00	5005	H2O2比色法	ミズホメディ	日本電子JCA-B	3.700 7.	800	2.600	5.500	○ 3.800 ○	5.300 〇	7.600
6006   H2O2比色法   東洋紡績 東芝TBA-200F   3.000   7.800   2.500   3.800   3.800   3.400   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600   7.600	5006	H2O2比色法	シノテスト	日本電子JCA-B	3.700 7.	800	2.600	5.500	○ 3.820 ○	5.300 〇	7.520
6008   H2O2比色法   東洋紡績   東芝TBA-200F   3.700   7.800   2.800   3.900   3.900   3.400   7.700   7.000   6015   H2O2比色法   協和メデックス   日立LABOSPE   3.000   7.000   2.300   3.800   3.800   5.400   7.600   7.600   7.000   1H2O2比色法   協和メデックス   日本電子JCA-B   3.700   7.800   2.000   7.000   3.900   5.400   7.600   7.600   7.000   1H2O2比色法   セロテック   日本電子JCA-B   3.700   7.800   2.300   5.500   3.800   5.300   7.570   7.570   7.000   1H2O2比色法   東洋紡績   東芝TBA-2少り   3.700   7.800   2.300   7.500   3.800   5.300   7.500   7.500   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000   7.000	5010	H2O2比色法	積水メディカル	日本電子JCA-B	3.700 7.	800	2.600	5.500	○ 3.900 ○	5.500 〇	7.800
6015   日202比色法	6006	H2O2比色法	シノテスト	東芝25FR_Accut	3.000 7.	800	2.500	6.800	○ 3.800 ○	5.300 🔾	7.600
6016   日202比色法   協和メデックス	6008	H2O2比色法	東洋紡績	東芝TBA-200F	3.700 7.	800	2.600	5.500	○ 3.900 ○	5.400 〇	7.700
700   H2O2比色法	6015	H2O2比色法	協和メデックス	目立LABOSPE	3.000 7.	200	2.100	6.000	○ 3.800 ○	5.400 〇	7.600
日本電子   日本   日本   日本   日本   日本   日本   日本   日	6016	H2O2比色法	協和メデックス	東芝TBA-200F	3.600 7.	000	2.300	7.000	○ 3.900 ○	5.400 〇	7.600
7007   日202比色法   和光純薬	7001	H2O2比色法	セロテック	日本電子JCA-B	2.000 7.	000	2.000	7.000	○ 3.800 ○	5.300 〇	7.400
7011   日202比色法 東洋紡績 東芝TBA-cシリー 3.700	7002	H2O2比色法	シノテスト	日本電子JCA-B	3.700 7.	800	2.600	5.500	○ 3.870 ○	5.370 🔾	7.570
7025   日202比色法	7007	H2O2比色法	和光純薬	ヘ゛ックマン・コールター	3.600 7.	000	2.300	7.000	○ 3.900 ○	5.300 🔾	7.500
R2O2比色法	7011	H2O2比色法	東洋紡績	東芝TBA-cシリー	3.700 7.	800	2.600	5.500	○ 3.900 ○	5.400 〇	7.600
8004 日202比色法 協和メデックス 目本電子JCA-B 4.00 8.00 2.60 6.00 3.80 5.20 7.500 9004 日202比色法 協和メデックス 日立7140-7170	7025	H2O2比色法	ニットーボー	日本電子JCA-B	3.600 7.	000	2.300	5.500	○ 3.800 ○	5.300 〇	7.600
9004 日202比色法         協和メデックス         日立7140-7170         「3.800 ○ 5.300 ○ 7.600           9008 日202比色法         シノテスト         日立7140-7170         「3.800 ○ 5.300 ○ 7.500           9009 日202比色法         にSiメディエンス         日立7140-7170         4.300         7.700         2.900         5.500 ○ 3.820 ○ 5.330 ○ 7.560           9012 日202比色法         デンカ生研         日立7140-7170         4.000         7.000         3.000 ○ 5.200 ○ 7.500           9014 日202比色法         ニットーボー         日立7140-7170         4.000         7.000         3.000 ○ 5.300 ○ 7.600           9022 日202比色法         河水ボディ         日立7140-7170         4.000         7.000         3.000 ○ 5.300 ○ 7.500           9023 日202比色法         利光純薬         日立7140-7170         4.000         7.000         3.800 ○ 5.300 ○ 7.500           9024 日202比色法         関東化学         日本電子JCA-B         7.000         7.000 ○ 3.800 ○ 5.300 ○ 7.500           9033 日202比色法         横水メディカル         積水EV800         7.000 ○ 3.800 ○ 5.300 ○ 7.500         7.500           9043 日202比色法         積水メディカル         積水EV800         7.000 ○ 3.800 ○ 5.300 ○ 7.500         7.500           9044 日202比色法         東京イイアグラスを含むした。         アンエ・ダイアグラスを含むした。         7.000 ○ 3.800 ○ 5.300 ○ 7.500         7.500           9046 日202比色法         株研化学         日立7140-7170	7901	H2O2比色法	LSIメディエンス	目立LABOSPE	3.600 7.	000	2.300	7.000	○ 3.800 ○	5.300 〇	7.600
9008 H2O2比色法       シノテスト       日立7140-7170       4.300       7.700       2.900       5.500       3.800       5.330       7.560         9012 H2O2比色法       デンカ生研       日立7140-7170       4.000       7.000       3.000       5.500       3.700       5.200       7.500         9014 H2O2比色法       デンカ生研       日立7140-7170       4.000       7.000       3.000       5.500       3.800       5.300       7.500         9022 H2O2比色法       ニットーボー       日立7140-7170       4.000       7.000       3.000       5.500       3.800       5.300       7.500         9023 H2O2比色法       和光純薬       日立7140-7170       4.000       7.000       3.000       5.500       3.800       5.300       7.500         9024 H2O2比色法       関東化学       日本電子JCA-B       7.000       7.000       3.800       5.300       7.500         903 H2O2比色法       積水メデイカル       積水EV800       7.000       3.000       5.500       3.800       5.300       7.500         904 H2O2比色法       日ンュ・ダイアグ       ロシューバス8000c5       アンコーバス8000c5       アンコーバス8000c5       3.800       5.500       3.800       5.200       7.500         904 H2O2比色法       協和メデックス       日立7140-7170       4.000       7.000       3.000	8004	H2O2比色法	協和メデックス	日本電子JCA-B	4.000 8.	000	2.600	6.000	○ 3.800 ○	5.200 🔾	7.500
9009   H2O2比色法	9004	H2O2比色法	協和メデックス	目立7140-7170					○ 3.800 ○	5.300 🔾	7.600
9012 H2O2比色法       デンカ生研       日立7140-7170       4.000       7.000       3.000       5.500       3.700 ○ 5.200 ○ 7.500         9014 H2O2比色法       ニットーボー       日立7140-7170       4.000       7.000       3.000       5.500 ○ 3.800 ○ 5.300 ○ 7.600         9022 H2O2比色法       ミズホメディ       日立7140-7170       4.000       7.000       5.500 ○ 3.800 ○ 5.300 ○ 7.500         9024 H2O2比色法       関東化学       日本電子JCA-B       7.000 ○ 3.800 ○ 5.300 ○ 7.600         9033 H2O2比色法       極東製薬       日本電子JCA-B       4.000       7.000 ○ 3.000       5.500 ○ 3.800 ○ 5.300 ○ 7.500         9035 H2O2比色法       積水メディカル       積水EV800       7.000 ○ 3.000       5.500 ○ 3.800 ○ 5.200 ○ 7.500         9044 H2O2比色法       ロシュ・ダイアグ       ロシューバス8000c5       アンコーバス8000c7       3.800 ○ 5.200 ○ 7.527         9046 H2O2比色法       栄研化学       日立7140-7170       4.000       7.000 ○ 3.000       5.500 ○ 3.804 ○ 5.250 ○ 7.527         9047 H2O2比色法       協和メデックス       ベックマン・コールター       4.000       7.000 ○ 3.000       5.500 ○ 3.800 ○ 5.300 ○ 7.600         9049 H2O2比色法       協和メデックス       イックマン・コールター       4.000 ○ 7.000       3.000 ○ 5.500 ○ 3.800 ○ 5.300 ○ 7.600         9049 H2O2比色法       シスメックス       日立7140-7170       4.000 ○ 7.000 ○ 3.000 ○ 5.500 ○ 3.800 ○ 5.300 ○ 7.600	9008	H2O2比色法	シノテスト	目立7140-7170					○ 3.800 ○	5.300 🔾	7.500
9014 H2O2比色法       ニットーボー       日立7140-7170       4.000       7.000       3.800 ○ 5.300 ○ 7.600         9022 H2O2比色法       ミズホメディ       日立7140-7170       4.000       7.000       3.000       5.500 ○ 3.800 ○ 5.300 ○ 7.500         9023 H2O2比色法       和光純薬       日立7140-7170       7.000       7.000 ○ 3.800 ○ 5.300 ○ 7.600         9034 H2O2比色法       関東化学       日本電子JCA-B       4.000       7.000 ○ 3.000 ○ 5.300 ○ 7.500         9035 H2O2比色法       積水メディカル       積水EV800       7.000 ○ 3.000 ○ 5.300 ○ 7.650         9043 H2O2比色法       ロシュ・ダイアグ       ロシュコハ′ス8000c5       7.000 ○ 3.805 ○ 5.294 ○ 7.520         9044 H2O2比色法       栄研化学       日立7140-7170       4.000 ○ 7.000 ○ 3.000 ○ 3.000 ○ 3.940 ○ 5.420 ○ 7.700         9047 H2O2比色法       協和メデックス       ハックマン・コールター       4.000 ○ 7.000 ○ 3.000 ○ 5.000 ○ 3.800 ○ 5.300 ○ 7.400         9049 H2O2比色法       シスメックス       目立7140-7170       4.000 ○ 7.000 ○ 3.000 ○ 5.000 ○ 3.800 ○ 5.300 ○ 7.400	9009	H2O2比色法	LSIメディエンス	目立7140-7170	4.300 7.	700	2.900	5.500	○ 3.820 ○	5.330 🔾	7.560
9022 H2O2比色法       ミズホメディ       日立7140-7170       4.000       7.000       3.000       5.500       3.800       5.300       7.500         9023 H2O2比色法       和光純薬       日立7140-7170       7.000       7.000       3.800       5.300       7.500         9024 H2O2比色法       関東化学       日本電子JCA-B       7.000       7.000       3.800       5.300       7.600         9035 H2O2比色法       榎木メディカル       積水とV800       7.000       3.000       5.500       3.800       5.200       7.500         9043 H2O2比色法       ロシュ・ダイアグ       ロシューバス8000c5       7.000       3.804       5.294       7.520         9044 H2O2比色法       デ研化学       日立7140-7170       4.000       7.000       3.000       5.500       3.940       5.420       7.700         9047 H2O2比色法       協和メデックス       ペックマン・コールター       4.000       7.000       3.000       5.500       3.804       5.230       7.500         9049 H2O2比色法       協和メデックス       日立7140-7170       4.000       7.000       3.000       5.500       3.800       5.300       7.400	9012	H2O2比色法	デンカ生研	目立7140-7170	4.000 7.	000	3.000	5.500	○ 3.700 ○	5.200 🔾	7.500
9023 H2O2比色法       和光純薬       日立7140-7170       「7.000」       3.800 ○ 5.300 ○ 7.500         9024 H2O2比色法       関東化学       日本電子JCA-B       7.000 □ 3.000 ○ 3.800 ○ 5.300 ○ 7.600         903 H2O2比色法       極東製薬       日本電子JCA-B       4.000 7.000 3.000 ○ 5.300 ○ 7.500         9045 H2O2比色法       積水メディカル       積水EV800       「3.920 ○ 5.380 ○ 7.650         9043 H2O2比色法       ロシュ・ダイアグ       ロシュコハス8000c5       「3.805 ○ 5.294 ○ 7.520         9044 H2O2比色法       中ンコーバス8000c7       「3.800 ○ 5.300 ○ 7.527         9046 H2O2比色法       栄研化学       日立7140-7170       4.000 7.000 3.000 5.500 ○ 3.940 ○ 5.420 ○ 7.700         9047 H2O2比色法       協和メデックス       ベックマン・コールター       4.000 7.000 3.000 5.500 ○ 3.800 ○ 5.300 ○ 7.400         9049 H2O2比色法       シスメックス       日立7140-7170 4.000 7.000 5.000 7.000 7.000 7.000 7.000 7.000	9014	H2O2比色法	ニットーボー	目立7140-7170					○ 3.800 ○	5.300 🔾	7.600
9024 H2O2比色法       関東化学       日本電子JCA-B       7.000	9022	H2O2比色法	ミズホメディ	目立7140-7170	4.000 7.	000	3.000	5.500	○ 3.800 ○	5.300 🔾	7.500
9033 H2O2比色法       極東製薬       日本電子JCA-B       4.000 7.000 3.000 5.500 ○ 3.800 ○ 5.200 ○ 7.500         9035 H2O2比色法       積水メディカル       積水EV800       3.920 ○ 5.380 ○ 7.650         9043 H2O2比色法       ロシュ・ダイアグ       ロシューバス8000c5       □シューバス8000c7       3.804 ○ 5.250 ○ 7.527         9044 H2O2比色法       栄研化学       日立7140-7170       4.000 7.000 3.000 5.500 ○ 3.940 ○ 5.420 ○ 7.700         9047 H2O2比色法       協和メデックス       ペックマンコールター       - 3.770 ○ 5.230 ○ 7.500         9049 H2O2比色法       シスメックス       日立7140-7170       4.000 7.000 3.000 5.500 ○ 3.800 ○ 5.300 ○ 7.400	9023	H2O2比色法	和光純薬	目立7140-7170					○ 3.800 ○	5.300 🔾	7.500
9035 H2O2比色法       積水メディカル       積水とV800       3.920 ○ 5.380 ○ 7.650         9043 H2O2比色法       ロシュ・ダイアグ       ロシューバス8000c5       ○ 3.805 ○ 5.294 ○ 7.520         9044 H2O2比色法       ロシュコーバス8000c7       ○ 3.804 ○ 5.250 ○ 7.527         9046 H2O2比色法       栄研化学       日立7140-7170       4.000 7.000 3.000 5.500 ○ 3.940 ○ 5.420 ○ 7.700         9047 H2O2比色法       協和メデックス       ペックマンコールター       ○ 3.770 ○ 5.230 ○ 7.500         9049 H2O2比色法       シスメックス       日立7140-7170       4.000 7.000 3.000 5.500 ○ 3.800 ○ 5.300 ○ 7.400	9024	H2O2比色法	関東化学	日本電子JCA-B	7.	000		7.000	○ 3.800 ○	5.300 🔾	7.600
9043 H2O2比色法       ロシュ・ダイアグ       ロシュコハス8000c5       3.805 ○ 5.294 ○ 7.520         9044 H2O2比色法       ロシュコハス8000c7       3.804 ○ 5.250 ○ 7.527         9046 H2O2比色法       栄研化学       日立7140-7170       4.000 7.000 3.000 5.500 ○ 3.940 ○ 5.420 ○ 7.700         9047 H2O2比色法       協和メデックス       ペックマンコールター       0 3.770 ○ 5.230 ○ 7.500         9049 H2O2比色法       シスメックス       日立7140-7170       4.000 7.000 3.000 5.500 ○ 3.800 ○ 5.300 ○ 7.400	9033	H2O2比色法	極東製薬	日本電子JCA-B	4.000 7.	000	3.000	5.500	○ 3.800 ○	5.200 🔾	7.500
9044 H2O2比色法     ロシュコバス8000c7     3.804 ○ 5.250 ○ 7.527       9046 H2O2比色法     栄研化学     日立7140-7170     4.000     7.000     3.000     5.500 ○ 3.940 ○ 5.420 ○ 7.700       9047 H2O2比色法     協和メデックス     ペックマンコールター     - 3.770 ○ 5.230 ○ 7.500       9049 H2O2比色法     シスメックス     日立7140-7170     4.000     7.000     3.000     5.500 ○ 3.800 ○ 5.300 ○ 7.400	9035	H2O2比色法	積水メディカル	積水EV800					○ 3.920 ○	5.380 🔾	7.650
9046       H2O2比色法       栄研化学       日立7140-7170       4.000       7.000       3.000       5.500       3.940 ○ 5.420 ○ 7.700         9047       H2O2比色法       協和メデックス       ペックマン・コールター       ○ 3.770 ○ 5.230 ○ 7.500         9049       H2O2比色法       シスメックス       日立7140-7170       4.000       7.000       3.000       5.500 ○ 3.800 ○ 5.300 ○ 7.400	9043	H2O2比色法	ロシュ・ダイアグ	ロシュコハ [*] ス8000c5					○ 3.805 ○	5.294 🔾	7.520
9047 H2O2比色法 協和メデックス ペックマン・コールター ○ 3.770 ○ 5.230 ○ 7.500 9049 H2O2比色法 シスメックス 日立7140-7170 4.000 7.000 3.000 5.500 ○ 3.800 ○ 5.300 ○ 7.400	9044	H2O2比色法		ロシュコハ*ス8000c7					○ 3.804 ○	5.250 🔾	7.527
9049 H2O2比色法 シスメックス 日立7140-7170 4.000 7.000 3.000 5.500 〇 3.800 〇 5.300 〇 7.400	9046	H2O2比色法	栄研化学	目立7140-7170	4.000 7.	000	3.000	5.500	○ 3.940 ○	5.420 🔾	7.700
	9047	H2O2比色法	協和メデックス	ヘックマン・コールター					○ 3.770 ○	5.230 🔾	7.500
9050 UV測定法 シーメンス シーメンスHCDDim ○ 4.001 ○ 5.381 ○ 7.477	9049	H2O2比色法	シスメックス	目立7140-7170	4.000 7.	000	3.000	5.500	○ 3.800 ○	5.300 🔾	7.400
	9050	UV測定法	シーメンス	シーメンスHCDDim					○ 4.001 ○	5.381 🔾	7.477

83 UA(F) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基準	準範囲	女性基	準範囲			試料報告値	
No	例足原垤	武衆ノーガー	70支 有计	下限	上限	下限	上限	試料01	試料02	試料03	
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	3.000	7.000		(	⊃ 3.900 ⊂	5.300 €	7.600	
1076	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.600	7.000	2.300	7.000	○ 4.000 ○	5.400 (	7.800	
1097	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.600	7.000	2.700	7.000	⊃ 3.900 ⊂	5.400 (	7.500	
1126	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.600	7.000	2.300	7.000	⊃ 3.900 ⊂	5.300 €	7.500	
1137	ドライケミストリー法	富士フィルムメ	富士ドライケム400	3.600	7.000	2.300	7.000	○ 4.100 ○	5.600 €	7.700	
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	4.000	7.000	3.000	5.500	○ 4.000 ○	5.500 €	7.600	
1374	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.600	7.000	2.700	7.000	⊃ 3.900 ⊂	5.400 (	7.500	
1375	ドライケミストリー法	富士フィルムメ	富士ドライケム400	3.600	7.000	2.700	7.000	○ 4.000 ○	5.400 (	7.700	
1415	ドライケミストリー法	富士フィルムメ	富士ドライケム700	4.000	7.000	3.000	5.500	○ 3.800 ○	5.300 €	7.500	
1523	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.700	7.800	2.600	5.500	⊃ 3.900 ⊂	5.400 (	7.600	
1525	ドライケミストリー法	富士フィルムメ	富士ドライケム350	3.600	7.000	2.300	7.000	○ 4.100 ○	5.500 €	7.900	
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.700	7.800	2.600	5.500	○ 3.800 ○	5.300 €	7.400	
1552	ドライケミストリー法	富士フィルムメ	富士ドライケム400	4.000	7.000	3.000	5.500	⊃ 3.900 ⊂	5.300 €	7.500	
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.700	7.800	2.600	5.500	⊃ 3.900 ⊂	5.300 €	7.400	
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.700	7.800	2.600	5.500	○ 3.800 ○	5.200 🤇	7.400	
2012	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	4.000	7.000	3.000	5.500	○ 4.000 ○	5.300 €	7.600	
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	4.000	7.000	3.000	5.500	⊃ 3.900 ⊂	5.300 (	7.500	

○ 3.600 ○ 5.400 ○ 8.000

118 UA(A1)

施設No.が低い順に並んでいます

施設 男性基準範囲 女性基準範囲 試料報告値 測定原理 試薬メーカー 機器

下限 上限 下限 上限 試料01 試料02 試料03 No 9041 ドライケミストリー法 アークレイ アークレイスポットケム

148 UA(A2)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原连	武衆ノーガー	7改石计	下限 上限 下限 上限 試料01 試料02 試料03
1521	ト゛ライケミストリー法	アークレイ	アークレイスホ。ットケム	3.700 7.800 2.600 5.500 $\bigcirc$ 3.800 $\bigcirc$ 5.500 $\bigcirc$ 8.100

178 UA(O)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武架/一//	79交石计	下限 上限 下限 上限 試料01 試料02 試料03
1075	ト゛ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	3.700 7.000 2.600 7.000 $\bigcirc$ 3.800 $\bigcirc$ 5.300 $\bigcirc$ 7.600
1100	ト゛ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	$\bigcirc$ 3.800 $\bigcirc$ 5.300 $\bigcirc$ 7.400
8011	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	$3.600$ $7.000$ $2.300$ $7.000$ $\bigcirc$ $3.800$ $\bigcirc$ $5.300$ $\bigcirc$ $7.400$
9040	ドライケミストリー法	オーソ・クリニカ	オーソビトロス5600	$\bigcirc$ 3.840 $\bigcirc$ 5.310 $\bigcirc$ 7.500

### 尿素窒素 (UN)

飯塚病院 中央検査部 吉田 真紀

【参加状況】 254 施設(前回 240 施設)

### 【測定方法の状況】

アンモニア未消去法 31 施設 (12.2%)
アンモニア消去法・低濃度(アンモニア濃度 20mg/dL 以下) 74 施設 (29.1%)
アンモニア消去法・高濃度(アンモニア濃度 300mg/dL 以上) 86 施設 (33.9%)
回避法 (アンモニア濃度 80mg/dL 以上) 26 施設 (10.2%)
ト゛ライケミストリー法 36 施設 (14.2%)
その他 1 施設 (0.4%)

【測定値の状況】 (ドライケミストリー法を除く)

1. 表 1 に液状試薬での試料 1~3 の全体及び測定原理別の 3SD 除去後平均値と CV%を示した。

### 表 13SD 除去後の平均値 (mg/dL) と CV%

++										
	試彩	<del>}</del> 1	試料	2	試料 3					
	平均值	CV%	平均値	CV%	平均値	CV%				
全体	43.6	1.6	31.7	1.7	13.6	2.6				
未消去法	44.2	2.1	32.2	2.1	13.9	3.0				
低濃度・消去法	43.6	1.6	31.8	1.7	13.6	2.6				
高濃度・消去法	43.5	1.4	31.6	1.5	13.6	2.3				
回避法	43.7	1.1	31.7	1.2	13.5	2.0				

2. 試料 1~3 の目標値(目標範囲)は、試料 1:43.4(41~46)mg/dL、31.5(29~34)mg/dL、13.5 (12~15)mg/dL である。

液状試薬3試料すべて目標範囲内であった割合は98.6% (214 施設)、試料別にみると試料1は99.0% (215 施設)、試料2は99.0% (215 施設)、試料3は99.5% (216 施設)であった。

3. 表 2 に試料 1~3 の測定原理別の目標範囲達成状況を示した。

また、図1に試料1と試料3のツインプロットを示した。

表 2 測定原理別目標範囲(目標値±5%、正常域:目標値±1mg/dL) の達成状況 (%)

測定原理	試料 1	(施設数)	試料 2	(施設数)	試料 3	(施設数)
全体	98.3%	(236)	97.9%	(235)	98.8%	(237)
未消去法	100%	(29)	96.6%	(28)	96.6%	(28)
低濃度·消去法	98.8%	(65)	100%	(66)	98.5%	(65)
高濃度・消去法	98.8%	(83)	100%	(84)	100%	(84)
回避法	100%	(29)	96.6%	(28)	100%	(29)

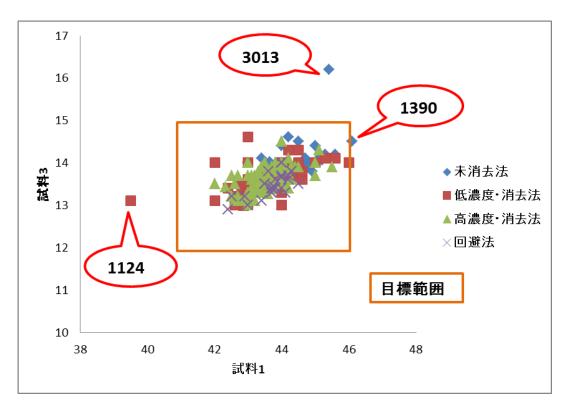



図1試料1と試料3のツインプロット図

#### 【基準範囲の状況】

- 1. 設定幅の下限値 6~9mg/dL、上限値 12~23mg/dL であった。
- 2. JCCLS の共用基準範囲(8~20mg/dL)を採用している施設は、54.7%(139/254)であった。前年度より、約6%増加した。

#### 【ドライケミストリー法の状況】

1. 表 3 にメーカーによる測定値及び参考範囲を示した。 オーソは液状試薬と同じ目標範囲である。

表 3	メーカーして	トス	測完循及	び参考範囲
AV .1	* N V	<b>-</b> (-)	4011 YE 110 72	しいグダイラ 田はけれ

メーカー名	7	ークレイ	,	オーソ	富士		
	目標値	参考範囲	目標値	参考範囲	目標値	参考範囲	
	mg/dL	mg/dL	mg/dL	mg/dL	mg/dL	mg/dL	
試料 1	43	40~46	43.4	41~46	44.1	42.3~45.9	
試料 2	31	29~33	31.5	29~34	32.0	30.0~33.3	
試料 3	14	13~15	13.5	12~15	13.8	$13.1 \sim 14.5$	

2. 表 4 に メーカー別の平均値と目標範囲達成状況を示した。

表 4 メーカー別の平均値と目標範囲達成状況

メーカー名		アークレイ		オーソ	富士 25				
施設数		5		4					
	平均値	目標範囲内施設	平均値	目標範囲内施設	平均値	目標範囲内施設			
	(mg/dL)	(%)	(mg/dL)	(%)	(mg/dL)	(%)			
試料 1	43.8	80%	46.3	75%	43.9	92%			
試料 2	30.4	80%	33.5	75%	32.1	100%			
試料 3	13.2	80%	14.4	75%	13.8	96%			

3. 図 2 にドライケミストリー法における測定値とメーカー参考範囲を示した。

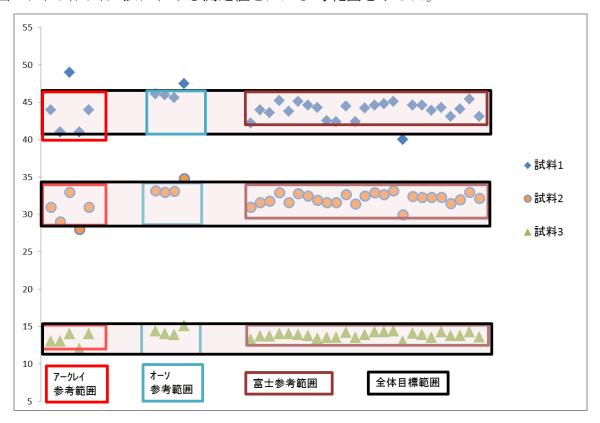



図 2. ドライケミストリー法における測定値およびメーカー参考範囲

### 【その他のコメント】

1. 上位標準物質別の平均値及び目標値 Bias を表 5 に示した。昨年は、上位標準物質が ReCCS である標準物質のうち、和光純薬工業㈱の血清マルチキャリブレーター(ワコー)使用施設の平均値が 3 試料とも目標値より低値傾向であったが、今年は改善されている。この理由として、以前の和光純薬工業㈱では ReCCS の Lot 間差を懸念し、社内一次標準物質の値付けを継代していたが、今回より Lot 毎に値付けを行う手順に変更となったことが確認できた。

「M-キャリブ」は未消去法試薬用のため、高値傾向となっている。

表 5 上位標準物質別の平均値及び目標値 Bias

試	料1	試	料2	試料3			
目標値	目標範囲	目標値	目標範囲	目標値	目標範囲		
43.4	41~46	31.5	29~34	13.5	12~15		

上位標準物質 NIST		試	料1	試	料2	試料3		
標準物質名	メーカー名	平均値	Bias	平均値	Bias	平均値	Bias	
BUN標準液(30mg/d1)	シノテスト	43.59	0.19	31.78	0.28	13.54	0.04	
デタミナー標準液尿素窒素測定用	協和	43.5	0.1	31.73	0.23	13.55	0.05	
マルチキャリフ゛レーターB	和光純薬	43.64	0.24	31.74	0.24	13.56	0.06	
多項目標準血清	シノテスト	43.14	-0.26	31.51	0.01	13.43	-0.07	
セロノルム・マルチキャリフ・レーター	積水	43.77	0.37	31.8	0.3	13.42	-0.08	

上位標準物質 ReCCS		試	料1	試	料2	試	料3
標準物質名	メーカー名	平均值	Bias	平均値	Bias	平均値	Bias
マルチキャリフ゛・3M	関東化学	43.8	0.4	31.78	0.28	13.51	0.01
血清マルチキャリブレーター(ワコー)	和光純薬	43.52	0.12	31.49	-0.01	13.45	-0.05
血清マルチキャリフ゛レーター(カイノス)	カイノス	43.54	0.14	31.63	0.13	13.72	0.22
自動分析用キャリブレーターⅡ	ロシュ	43.56	0.16	31.71	0.21	13.56	0.06
生化学マルチキャリブレーター	LSI	43.86	0.46	31.88	0.08	13.65	0.15
AUマルチキャリフ゛レーター	ヘ゛ックマンコールター	43.53	102 0.13	31.58	0.08	13.5	0
M-キャリフ゛	ミス゛ホメテ゛ィー	43.96	0.56	31.92	0.42	13.51	0.01

2.ドライケミストリー法では、アークレイ使用施設において、2試料メーカー参考範囲より低めに外れた施設が1施設 (1521)、オーソ使用施設において、3試料ともメーカー参考範囲より高めに外れた施設が1施設(9040)、富士使用施設で2試料メーカー参考範囲より低めに外れた施設が1施設(1523)あった。

4 BUN 施設No.が低い順に並んでいます

施設	ITO.N PAT MATE	· <del></del>		田州甘	准公田	<i>+</i> -₩±3	准公田	<b>建料 和 生 / 估</b>
旭叔 No	測定原理	試薬メーカー	機器	下限	上限	女性基 ⁱ 下限	上限	試料報告値 試料01 試料02 試料03
-	冰土沙 古神庄/	<b>4</b> / 17	E + LADOCDE			1 193	工版	
	消去法・高濃度(		目立LABOSPE	8.000	20.00			○ 43.20 ○ 31.50 ○ 13.40 ○ 43.00 ○ 31.10 ○ 13.50
	消去法·低濃度( 回避法	協和メデックス	目立LABOSPE	8.000	22.00			○ 42.90 ○ 31.10 ○ 13.50 ○ 44.00 ○ 33.00 ○ 14.00
	凹壁伝 消去法・高濃度(	セロテック	目立LABOSPE	8.000	20.00			○ 44.00 ○ 32.00 ○ 14.00 ○ 43.60 ○ 31.60 ○ 13.60
1010	消去法・低濃度(		東芝TBA-cシリー	8.000	22.00	8 000	22.00	○ 43.10 ○ 31.50 ○ 13.40
1010	消去法・高濃度(		日本電子JCA-B	8.000	22.00	8.000		○ 43.70 ○ 31.60 ○ 13.40
	消去法•低濃度(	協和メデックス	日本電子JCA-B	8.000	20.00			○ 43.30 ○ 31.50 ○ 13.50
	消去法・高濃度(		目立7140-7170	8.000	20.00	0.000	20.00	○ 43.20 ○ 31.40 ○ 13.40
	消去法・高濃度(		日本電子JCA-B	8.000	20.00			○ 43.50 ○ 31.20 ○ 13.50
	消去法・高濃度(		日本電子JCA-B	8.000	20.00	8.000	20.00	○ 43.70 ○ 31.80 ○ 13.90
1021	消去法•低濃度(	セロテック	日本電子JCA-B	8.000	20.00			○ 43.60 ○ 32.00 ○ 13.60
1023	消去法•低濃度(		日本電子JCA-B	8.000	20.00			○ 43.90 ○ 32.00 ○ 13.60
1024	消去法•低濃度(	セロテック	日立LABOSPE	8.000	22.00			○ 43.20 ○ 31.50 ○ 13.40
1026	消去法・高濃度(	カイノス	東芝25FR_Accut	8.000	20.00			○ 44.30 ○ 32.00 ○ 13.90
1028	消去法•高濃度(	積水メディカル	目立LABOSPE	8.000	22.00			$\bigcirc$ 42.50 $\bigcirc$ 31.10 $\bigcirc$ 13.20
1029	回避法	LSIメディエンス	日立7140-7170	8.000	20.00	8.000	20.00	$\bigcirc$ 43.40 $\bigcirc$ 30.90 $\bigcirc$ 13.10
1031	回避法	積水メディカル	東芝TBA-cシリー	8.000	20.00			$\bigcirc$ 44.50 $\bigcirc$ 32.20 $\bigcirc$ 13.50
1032	未消去法	シーメンス	シーメンスHCDDim	8.000	22.00			$\bigcirc$ 43.90 $\bigcirc$ 32.20 $\bigcirc$ 13.70
1033	消去法•低濃度(	セロテック	日立7140-7170	8.000	20.00	8.000	20.00	$\bigcirc$ 43.60 $\bigcirc$ 32.10 $\bigcirc$ 13.60
1034	消去法•低濃度(		日立7140-7170	8.000	20.00	8.000	20.00	$\bigcirc$ 45.60 $\bigcirc$ 33.00 $\bigcirc$ 14.10
1035	消去法・低濃度(	セロテック	日本電子JCA-B	8.000	22.00			$\bigcirc$ 44.60 $\bigcirc$ 32.10 $\bigcirc$ 13.60
1038	消去法・高濃度(	和光純薬	日立LABOSPE	8.000	22.00			$\bigcirc$ 43.20 $\bigcirc$ 31.30 $\bigcirc$ 13.10
1039	消去法•低濃度(		日立7140-7170	8.000	20.00			○ 44.00 ○ 32.00 ○ 14.00
1040	消去法・高濃度(		日立LABOSPE	8.000	20.00			○ 45.00 ○ 32.00 ○ 14.00
1046	消去法・高濃度(		東芝25FR_Accut	8.000	22.00			○ 43.40 ○ 31.40 ○ 13.60
1049	消去法・高濃度(		ヘックマン・コールター	8.000	22.00			○ 43.90 ○ 31.30 ○ 13.50
1050	消去法・高濃度(		日本電子JCA-B	8.000	20.00	8.000		○ 42.32 ○ 31.11 ○ 13.43 ○ 42.70 ○ 31.00 ○ 13.30
	消去法·低濃度( 消去法·高濃度(		日本電子JCA-B 東芝TBA-cシリー	8.000 8.000	22.00 22.00	8.000	22.00	○ 42.70 ○ 31.00 ○ 13.20 ○ 43.10 ○ 31.00 ○ 13.20
	未消去法	シーメンス	シーメンスHCDDim	8.000	20.00			○ 43.00 ○ 31.00 ○ 13.20 ○ 43.00 ○ 32.00 ○ 14.00
		ミズホメディ	目立7140-7170	8.000	22.00	8 000	22.00	○ 43.30 ○ 31.60 ○ 13.70
1057	消去法•低濃度(		東京貿易ビオリス5	8.000	20.00	0.000	22.00	○ 43.60 ○ 31.30 ○ 13.60
	回避法	LSIメディエンス	日本電子JCA-B	8.000	22.00			○ 44.00 ○ 32.00 ○ 14.00
1059	消去法•低濃度(		東京貿易ビオリス2	8.000	20.00	8.000	20.00	○ 43.70 ○ 31.60 ○ 13.40
1060	未消去法	LSIメディエンス	日本電子JCA-B	8.000	12.00			○ 42.90 ○ 31.00 ○ 13.20
1062	消去法•低濃度(	和光純薬	日立LABOSPE	8.000	20.00	8.000	20.00	○ 43.90 ○ 31.80 ○ 13.60
1064	回避法	LSIメディエンス	日本電子JCA-B	7.000	23.00	7.000	23.00	○ 44.00 ○ 32.10 ○ 13.40
1072	回避法	積水メディカル	目立LABOSPE	8.000	22.00	8.000	22.00	○ 44.20 ○ 32.30 ○ 13.60
1073	消去法•低濃度(	シノテスト	日立LABOSPE	8.000	22.00	8.000	22.00	○ 43.30 ○ 31.40 ○ 13.60
1074	消去法•低濃度(	シノテスト	東京貿易ピオリス2	8.000	20.00	8.000	20.00	$\bigcirc$ 42.80 $\bigcirc$ 31.20 $\bigcirc$ 13.50
1077	未消去法	シーメンス	シーメンスHCDDim	8.000	22.00	8.000	22.00	$\bigcirc$ 43.40 $\bigcirc$ 32.40 $\bigcirc$ 14.10
	消去法・高濃度(		東芝TBA-cシリー	8.000	20.00			$\bigcirc$ 42.60 $\bigcirc$ 30.90 $\bigcirc$ 13.10
	消去法・高濃度(		東京貿易ビオッリス2	8.000	20.00			○ 45.50 ○ 32.80 ○ 13.90
1088	消去法・低濃度(		日立LABOSPE	8.000	22.00			○ 43.50 ○ 31.70 ○ 13.50
	消去法・低濃度(		日立7140-7170	8.000	20.00			○ 43.90 ○ 31.90 ○ 13.50
	消去法・低濃度(		日立7140-7170	8.000	20.00			○ 43.00 ○ 31.80 ○ 13.70
1093	回避法	関東化学	日本電子JCA-B	8.000	20.00	8.000	20.00	○ 43.50 ○ 31.60 ○ 13.50 ○ 43.00 ○ 33.00 ○ 14.00
	消去法・高濃度(		日本電子JCA-B 東茶TRA-OVIII-	8.000	22.00	0 000	20.00	○ 43.00 ○ 32.00 ○ 14.00 ○ 43.40 ○ 31.80 ○ 13.60
	その他(上記以 消去法・高濃度(	和光純薬	東芝TBA-cシリー 東芝TBA-cシリー	8.000 8.000	20.00	0.000	20.00	○ 43.40 ○ 31.80 ○ 13.60 ○ 43.80 ○ 31.80 ○ 13.80
	何去伝·向優及( 回避法	ベックマン・コー	来之 TBA-Cシリー ヘックマン・コールター	8.000	20.00			○ 43.80 ○ 31.80 ○ 13.80 ○ 43.10 ○ 31.70 ○ 13.60
	消去法・低濃度(		東京貿易ビオリス5	6.000	20.00	6 000	20.00	○ 43.10 ○ 31.70 ○ 13.00 ○ 43.00 ○ 31.00 ○ 13.20
	消去法・高濃度(		日本電子JCA-B	8.000	22.00			○ 44.00 ○ 31.80 ○ 13.80
	消去法・高濃度(		東芝TBA-cシリー	8.000	20.00	5.000		○ 43.40 ○ 31.30 ○ 13.30 ○ 43.40 ○ 31.30 ○ 13.30
	消去法・高濃度(		東芝25FR_Accut	8.000	22.00	8.000	22.00	○ 42.50 ○ 31.00 ○ 13.70
	回避法		ヘックマン・コールター	8.000	22.00			○ 43.73 ○ 31.33 ○ 13.39
	未消去法	シーメンス	シーメンスHCDDim	8.000	20.00			$\bigcirc$ 43.65 $\bigcirc$ 31.70 $\bigcirc$ 14.02

4 BUN 施設No.が低い順に並んでいます

「田学師」   2000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	施設				男性基	準範囲	女性基	準範囲				試料報告値
13.1   日本日本機関		測定原理	試薬メーカー	機器					試米	\$01	試料02	
12		20년 - 24 - 7년 2曲 라드 /	3.35-91				1 121					
1989   神田北京   1999   日本地正に作用   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   19			ンノアスト	n 1.45.7 vo. n								
1939   東京												
1.50   清井赤			シスメックス				8.000	20.00				
133												
1.33				日本電子JCA-B	8.000	20.00	8.000	20.00	O 43	3.70 ○	31.60 🔾	13.40
13-31   清上が「成素で   70次年間で	1134	消去法•低濃度(	セロテック	目立7140-7170	8.000	22.00	8.000	22.00	O 42	2.60 🔾	31.10 🔾	13.00
1200   前去世・南傷寒   一大空寒   日本電子以下   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200	1135	未消去法		ヘ゛ックマン・コールター	8.000	22.00			O 42	2.70 🔾	30.90 🔾	13.10
18-11   高土法・高病疾   70-98年度   70-9	1136	消去法•低濃度(	シノテスト	日本電子JCA-B	8.000	20.00			O 44	1.20 🔾	32.10 🔾	13.70
1902   日遊生	1300	消去法・高濃度(	和光純薬		8.000	20.00			O 43	3.59 ○	30.98 🔾	13.27
1945   高井浩・高横原	1301	消去法・高濃度(	和光純薬	日本電子JCA-B	8.000	20.00			O 43	8.60 🔾	31.70 🔾	13.50
1908   本語・高機能   本語を   本語を	1302	回避法		ベックマン・コールター	8.000	20.00			O 44	1.30 🔾	31.50 🔾	13.80
1310   諸去歩・高機症   お土地   大地   大地   大地   大地   大地   大地   大地	1305	消去法・高濃度(	カイノス	日本電子JCA-B	8.000	20.00			O 43	3.40 🔾	31.60 〇	13.90
1313   清土井・高横電	1308	消去法・高濃度(	和光純薬	東芝25FR_Accut	8.000	20.00			O 44	.20 🔾	31.90 🔾	13.40
1815   南北大・高濃仮(	1310	消去法・高濃度(	和光純薬	東芝TBA-200F	8.000	17.00	8.000	17.00	O 43	3.30 🔾	31.30 〇	13.40
1316   回遊弦	1313	消去法・高濃度(	和光純薬	日本電子JCA-B	8.000	22.00			O 42	2.80 🔾	31.00 〇	13.10
1327   清井井・低濃度( 地・地・地・   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   1	1315	消去法・高濃度(	和光純薬	日本電子JCA-B	8.000	20.00	8.000	20.00	O 43	3.00 🔾	31.00 〇	13.00
1328   南玄法・高濃度( へ・グ・ゲ・・・・	1316	回避法	LSIメディエンス	日本電子JCA-B	8.000	22.00			O 44	.20 🔾	32.10 〇	13.70
1227   神法計・高濃度   光光純栗   日本電子ICA-B   8.000   20.00   8.000   20.00   0.43.90   31.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.0	1325	消去法•低濃度(	セロテック	日本電子JCA-B	8.000	20.00	8.000	20.00	O 43	3.00 🔾	31.00 〇	13.00
1328   清去法・高濃度(			和光純薬			20.00	8.000					
日本語・高濃度												
日本語・高濃度( 和光純薬   日本電子JCA-B   8.000   22.00   3.1.00   31.30   13.30   13.31   間が上・高濃度( 和光純薬   日本電子JCA-B   8.000   20.00   3.1.00   31.70   13.50   31.70   13.50   31.30   31.70   13.50   31.30   31.70   31.50   31.30   31.70   31.50   31.30   31.70   31.50   31.30   31.30   31.50   31.80   31.30   31.50   31.80   31.30   31.50   31.80   31.30   31.50   31.80   31.30   31.50   31.80   31.30   31.50   31.80   31.30   31.50   31.80   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.30   31.50   31.50   31.30   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50   31.50			シノテスト				8.000	20.00				
1331   清去法・高濃度( 和光純栗   東で下BA-cシリー 8.000   20.00   1 0 4.10   31.70   13.50   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80   13.80												
1337   開去法・高濃度( 和光純薬												
1339   同遊法												
1341   消去法・高濃度(   一・・・・・・・・・   日本電子」CA-B												
1342							8 000	20.00				
1343 末帯去族 シノデスト 日立LABOSPE 8.000 20.00												
1344   消去法・高濃度( シノテスト   日立7140-7170   8.000   2.000   8.000   2.000   3.100   3.150   13.30   13.50   13.50   13.40   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.61   13.6							0.000	20.00				
1346   消去法・高濃度( 中シェ・ダイア)   ロシュ・ダイアの   ロシュ・グスの000c5   8.000   20.00   1.3.00   13.50   13.40   13.50   13.40   13.50   13.40   13.50   13.40   13.50   13.40   13.50   13.40   13.50   13.40   13.50   13.40   13.50   13.40   13.50   13.40   13.50   13.40   13.50   13.40   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.50   13.5							0.000	20.00				
1347   消去法・低濃度( ロンュ・タイアグ							8.000	20.00				
1348   消去法・高濃度   和光純薬 東芝TBA-cツー   8.000   2.00   3.000   3.000   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3.180   3												
1349   消去法・低濃度( ロシュ・ダイアグ ロシュの												
1350   消去法・低濃度( セロテック   日本電子JCA-B   8.000   22.00   43.00   31.00   13.40   1351   回避法												
1351 回避法							8.000	20.00				
1352   消去法・高濃度( 和光純薬 日本電子JCA-B			セロテック									
1355 消去法・低濃度( シノテスト   東芝TBA-cシリー   8.000   20.00   20.00   4.000   3.000   14.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00   13.00												
1356   消去法・低濃度( シノテスト 日本電子JCA-B   8.000   20.00   20.00   20.00   20.00   3.000   13.00   13.50   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55					8.000							
1357   消去法・高濃度   和光純薬   日立7140-7170   8.000   22.00   22.00   43.20   31.50   13.50     1358   消去法・低濃度   ジノテスト   日本電子JCA-B   8.000   20.00   20.00   42.86   31.19   12.99     1359   消去法・低濃度   七ロテック   日本電子JCA-B   8.000   20.00   20.00   40.00   31.90   13.30     1360   消去法・高濃度   和光純薬   日本電子JCA-B   8.000   20.00   20.00   43.10   31.20   13.30     1361   消去法・低濃度   和光純薬   東芝TBA-20-3   8.000   20.00   20.00   44.00   31.90   13.30     1362   末清法法   ジズホメディ   ベックマン・コールケー   8.000   20.00   20.00   44.10   31.90   13.40     1363   消去法・高濃度   和光純薬   東芝TBA-20-7   8.000   20.00   20.00   44.10   31.90   13.90     1364   消去法・低濃度   和光純薬   東芝TBA-20-7   8.000   20.00   20.00   44.10   31.90   13.90     1370   消去法・低濃度   シノテスト   日立LABOSPE   8.000   20.00   20.00   44.00   31.00   31.20   13.60     1371   消去法・高濃度   協和メデックス   東京貿易ビオリス   8.000   20.00   20.00   42.00   31.00   31.00   13.00     1382   消去法・高濃度   日立LABOSPE   8.000   20.00   20.00   43.00   31.00   13.30     1383   消去法・高濃度   日立LABOSPE   8.000   20.00   20.00   43.00   31.00   13.30     1384   消去法・高濃度   東京貿易ビオリス   8.000   20.00   20.00   20.00   43.50   32.30   14.00     1394   消去法・低濃度   統和メデックス   東京貿易ビオリス   8.000   20.00   20.00   20.00   44.90   33.50   14.50     1395   消法法・低濃度   協和メデックス   東京貿易ビオリス   8.000   20.00   20.00   20.00   43.00   31.00   31.00   14.00     1394   消去法・低濃度   協和メデックス   東京貿易ビオリス   8.000   20.00   20.00   20.00   44.90   32.40   13.80     1395   未消去法   後妻氏   後却大がアックス   東京貿易ビオリス   8.000   20.00   20.00   20.00   44.90   32.40   13.80     1306   未消去法   後妻氏   光純菜   東京貿易ビオリス   8.000   20.00   20.00   20.00   44.90   32.40   13.80     1307   13.00   14.00   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40	1355	消去法•低濃度(	シノテスト	東芝TBA-cシリー	8.000	20.00	8.000					
1358   消去法・低濃度( シノテスト 日本電子JCA-B   8.000   20.00   20.00   44.00   31.10   12.99   13.59   消去法・低濃度( セロテック 日本電子JCA-B   8.000   20.00   8.000   20.00   44.00   31.90   13.30   13.60   消去法・高濃度( 和光純薬 東芝TBA-20-3   8.000   20.00   20.00   44.00   31.20   13.30   13.62   未消去法   ミズホメディ ペックマン・コールター   8.000   22.00   20.00   44.10   31.30   13.40   13.40   13.63   13.45   13.55   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   14.35   13.55   13.55   14.35   13.55   13.55   14.35   13.55   13.55   13.55   14.35   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55   13.55	1356	消去法•低濃度(	シノテスト	日本電子JCA-B	8.000	20.00	8.000	20.00	O 44	1.00 🔾	32.00 🔾	13.00
1359   消去法・低濃度( セロテック 日本電子JCA-B	1357	消去法・高濃度(	和光純薬	日立7140-7170	8.000	22.00	8.000	22.00	O 43	3.20 🔾	31.50 🔾	13.50
1360   消去法・高濃度( 和光純薬	1358	消去法•低濃度(	シノテスト	日本電子JCA-B	8.000	20.00			O 42	2.86 🔾	31.19 🔾	12.99
1361   消去法・低濃度( 和光純薬 東芝TBA-20-3   8.000   20.00   44.20   32.50   14.30     1362 末消去法   ミズホメディ ハックマン・コールケー   8.000   22.00   8.000   20.00   44.10   31.30   13.40     1365 消去法・高濃度( 和光純薬 東芝TBA-cシリー   8.000   20.00   8.000   20.00   44.10   31.90   13.90     1368 消去法・低濃度( 和光純薬 東芝TBA-cシリー   8.000   20.00   8.000   20.00   42.90   31.10   13.20     1370 消去法・低濃度( 協和メデックス 東京貿易ビオリス5   8.000   20.00   8.000   20.00   42.00   31.20   13.60     1371 消去法・高濃度( 協和メデックス 東京貿易ビオリス1   8.000   21.00   42.00   33.00   14.00     1382 消去法・高濃度( 財産経費 東京貿易ビオリス1   8.000   21.00   44.20   32.20   14.10     1383 消去法・高濃度( 和光純薬 東芝25FRAccut   8.000   20.00   43.00   31.00   13.30     1385 消去法・高濃度( 和米純薬 東芝25FRAccut   8.000   20.00   43.50   32.30   14.00     1390 末消去法   積水メディカル 東芝TBA-cシリー   8.000   22.00   8.000   22.00   46.10   33.50   14.50     1391 消去法・低濃度( 協和メデックス 東京貿易ビオリス5   8.000   20.00   20.00   43.00   31.40   13.40     1394 消去法・低濃度( 協和メデックス 東京貿易ビオリス5   8.000   20.00   40.00   31.40   13.40     1396 末消去法   シーメンス シーメンス ウーメンストCDDim   8.000   20.00   8.000   20.00   44.90   32.40   13.80     1400 消去法・低濃度( シノテスト 東京貿易ビオリス2   8.000   20.00   8.000   20.00   44.90   32.40   13.80     1400 消去法・低濃度( シノテスト 東京貿易ビオリス2   8.000   20.00   8.000   20.00   44.90   32.40   13.80     1400 消去法・低濃度( シノテスト 東京貿易ビオリス2   8.000   20.00   8.000   20.00   44.90   32.40   13.80     1400 消去法・低濃度( シノテスト 東京貿易ビオリス2   8.000   20.00   8.000   20.00   44.90   32.40   13.80     1400 消去法・低濃度( シノテスト 東京貿易ビオリス2   8.000   20.00   8.000   20.00   44.90   32.40   13.80     1400 消去法・低濃度( シノテスト 東京貿易ビオリス2   8.000   20.00   8.000   20.00   44.90   32.40   13.80     1400 消去法・低濃度( シノテスト 東京貿易ビオリス2   8.000   20.00   8.000   20.00   44.90   32.40   13.80     1400 消去法・低濃度( シノテスト 東京貿易ビオリス2   8.000   20.00   8.000   20.00   44.90   32.40   13.80     1400 消去法・低濃度( シノテスト 東京貿易ビオリス2   8.000   20.00   8.000   20.00   44.90   32.40   13.80     1400 消毒を持続したいまた。 日本のよりに対しまた。 日本のよりに対しまた	1359	消去法•低濃度(	セロテック	日本電子JCA-B	8.000	20.00	8.000	20.00	O 44	.00 〇	31.90 🔾	13.30
1362 未消去法   ミズホメディ   ヘ'ックマン・コールター   8.000   22.00   2.00   43.40   31.30   13.40   1365   消去法・高濃度( 和光純薬   日立7140-7170   8.000   20.00   8.000   20.00   44.10   31.90   13.90   13.90   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   13.60   1	1360	消去法・高濃度(	和光純薬	日本電子JCA-B	8.000	20.00	8.000	20.00	O 43	3.10 🔾	31.20 🔾	13.30
1365 消去法・高濃度( 和光純薬 日立7140-7170	1361	消去法•低濃度(	和光純薬	東芝TBA-20-3	8.000	20.00			O 44	1.20 〇	32.50 🔾	14.30
1368   消去法・低濃度( 和光純薬 東芝TBA-cシリー   13.00   20.00   20.00   20.00   42.90   31.10   13.20   13.60   13.70   13.25   13.65   13.71   13.25   13.65   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75   13.75	1362	未消去法	ミズホメディ	ヘックマン・コールター	8.000	22.00			O 43	3.40 〇	31.30 🔾	13.40
1370 消去法・低濃度( シノテスト 日立LABOSPE   8.000 20.00 8.000 20.00 43.00 31.20 13.60   1371 消去法・低濃度( 協和メデックス 東京貿易ピオリス5 8.000 20.00	1365	消去法・高濃度(	和光純薬	目立7140-7170	8.000	20.00	8.000	20.00	O 44	1.10 〇	31.90 🔾	13.90
1371   消去法・低濃度( 協和メデックス 東京貿易ピオリス1   8.000   20.00   42.00   33.00   14.00   14.00   1373   消去法・高濃度( 関東化学 東京貿易ピオリス1   8.000   21.00   44.20   32.20   14.10   1382   消去法・高濃度( 和光純薬 東芝25FR Accut   8.000   20.00   43.00   31.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.30   14.00   13.40   13.90   13.90   14.00   13.40   13.90   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40   13.40	1368	消去法・低濃度(	和光純薬	東芝TBA-cシリー	8.000	20.00			O 42	2.90 🔾	31.10 🔾	13.20
1373   消去法・高濃度( 関東化学 東京貿易ピオリス1   8.000   21.00   44.20   32.20   14.10     1382   消去法・高濃度( 日立LABOSPE   8.000   20.00   43.00   31.00   13.30     1385   消去法・高濃度( 和光純薬 東芝25FRAccut   8.000   20.00   43.50   32.30   14.00     1390   未消去法   積水メディカル 東芝TBA-cシリー   8.000   22.00   8.000   22.00   46.10   33.50   14.50     1391   消去法・低濃度( シノテスト 日立7140-7170   8.000   22.00   8.000   22.00   43.00   31.00   14.00     1394   消去法・低濃度( 協和メデックス 東京貿易ピオリス5   8.000   20.00   20.00   44.90   32.40   13.40     1396   未消去法   シーメンス   シーメンス   シーメンスHCDDim   8.000   20.00   8.000   20.00   44.90   32.40   13.80     1400   消去法・低濃度( シノテスト   東京貿易ピオリス2   8.000   20.00   8.000   20.00   44.50   31.80   13.70     1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410	1370	消去法・低濃度(	シノテスト	日立LABOSPE	8.000	20.00	8.000	20.00	O 43	3.00 🔾	31.20 🔾	13.60
1373   消去法・高濃度( 関東化学 東京貿易ピオリス1   8.000   21.00   44.20   32.20   14.10     1382   消去法・高濃度( 日立LABOSPE   8.000   20.00   43.00   31.00   13.30     1385   消去法・高濃度( 和光純薬 東芝25FRAccut   8.000   20.00   43.50   32.30   14.00     1390   未消去法   積水メディカル 東芝TBA-cシリー   8.000   22.00   8.000   22.00   46.10   33.50   14.50     1391   消去法・低濃度( シノテスト 日立7140-7170   8.000   22.00   8.000   22.00   43.00   31.00   14.00     1394   消去法・低濃度( 協和メデックス 東京貿易ピオリス5   8.000   20.00   20.00   44.90   32.40   13.40     1396   未消去法   シーメンス   シーメンス   シーメンスHCDDim   8.000   20.00   8.000   20.00   44.90   32.40   13.80     1400   消去法・低濃度( シノテスト   東京貿易ピオリス2   8.000   20.00   8.000   20.00   44.50   31.80   13.70     1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410   1410	1371	消去法•低濃度(	協和メデックス	東京貿易ビオリス5	8.000	20.00			O 42	2.00 🔾	33.00 〇	14.00
1382   消去法・高濃度( 日立LABOSPE			関東化学	東京貿易ビオリス1	8.000	21.00			O 44	1.20 〇	32.20 🔾	14.10
1385     消去法・高濃度(     和光純薬     東芝25FR_Accut     8.000     20.00     43.50 ○ 32.30 ○ 14.00       1390     未消去法     積水メディカル     東芝TBA-cシリー     8.000     22.00     8.000     22.00     46.10 ○ 33.50 ○ 14.50       1391     消去法・低濃度(     シノテスト     日立7140-7170     8.000     22.00     8.000     22.00 ○ 43.00 ○ 31.00 ○ 14.00       1394     消去法・低濃度(     協和メデックス     東京貿易上 オリス5     8.000     20.00     ○ 43.00 ○ 31.40 ○ 13.40       1396     未消去法     シーメンス     シーメンスHCDDim     8.000     20.00     8.000     20.00 ○ 44.90 ○ 32.40 ○ 13.80       1400     消去法・低濃度(     シノテスト     東京貿易上 オリス2     8.000     20.00     8.000     20.00 ○ 43.50 ○ 31.80 ○ 13.70	1382	消去法・高濃度(		目立LABOSPE	8.000	20.00			O 43	3.00 🔾	31.00 〇	13.30
1390 未消去法     積水メディカル     東芝TBA-cシリー     8.000     22.00     8.000     22.00     46.10 ○ 33.50 ○ 14.50       1391 消去法・低濃度(     シノテスト     日立7140-7170     8.000     22.00     8.000     22.00 ○ 43.00 ○ 31.00 ○ 14.00       1394 消去法・低濃度(     協和メデックス     東京貿易上 オリス5     8.000     20.00     ○ 43.00 ○ 31.40 ○ 13.40       1396 未消去法     シーメンス     シーメンスHCDDim     8.000     20.00     8.000     20.00 ○ 44.90 ○ 32.40 ○ 13.80       1400 消去法・低濃度(     シノテスト     東京貿易上 オリス2     8.000     20.00     8.000     20.00 ○ 43.50 ○ 31.80 ○ 13.70			和光純薬									
1391 消去法・低濃度( シノテスト     日立7140-7170     8.000     22.00     22.00     43.00 ○ 31.00 ○ 14.00       1394 消去法・低濃度( 協和メデックス 1394 洗剤法法 シーメンス     東京貿易ビオリス5     8.000     20.00     ○ 43.00 ○ 31.40 ○ 13.40       1400 消去法・低濃度( シノテスト     東京貿易ビオリス2     8.000     20.00     8.000     20.00     ○ 44.90 ○ 32.40 ○ 13.80       1400 消去法・低濃度( シノテスト     東京貿易ビオリス2     8.000     20.00     8.000     20.00     ○ 43.50 ○ 31.80 ○ 13.70							8.000	22.00				
1394 消去法・低濃度( 協和メデックス 東京貿易ビオリス58.000 20.00○ 43.00 ○ 31.40 ○ 13.401396 未消去法 シーメンス シーメンスHCDDim 1400 消去法・低濃度( シノテスト 東京貿易ビオリス28.000 20.00 8.000 20.00 ○ 44.90 ○ 32.40 ○ 13.80												
1396 未消去法 シーメンス シーメンスHCDDim 8.000 20.00 8.000 20.00 ○ 44.90 ○ 32.40 ○ 13.80 1400 消去法・低濃度( シノテスト 東京貿易ピオ┦ス2 8.000 20.00 8.000 ○ 43.50 ○ 31.80 ○ 13.70												
1400 消去法・低濃度( シノテスト 東京貿易ピオサリス2 8.000 20.00 8.000 20.00 ○ 43.50 ○ 31.80 ○ 13.70							8,000	20.00				
1101 AND 20.00 20.00 0.000 20.00 ∪ 11.00 ∪ 11.00 U 11.00												
	1101	\N111414	- /4/	V /V/HODDIII	0.000	20.00	0.000	20.00	U 11		J2.00 O	11.00

4 BUN 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲				試料報告値
No	例足原垤	武楽ノーカー	79文百百	下限	上限	下限	上限	試料	斗01	試料02	試料03
1402	消去法•低濃度(	シノテスト	日本電子JCA-B	8.000	20.00			O 43	.10 🔾	31.40 〇	13.70
1403	消去法・高濃度(	ミズホメディ	日本電子JCA-B	8.000	20.00	8.000	20.00	O 43	.60 🔾	31.60 〇	13.50
1404	消去法・高濃度(	カイノス	東芝TBA-cシリー	8.000	22.00			O 44	.40 🔾	32.30 〇	13.90
1405	消去法・高濃度(	関東化学	東京貿易ビオリス1	8.000	20.00	8.000	20.00	O 44	.00 🔾	32.40 〇	14.50
1407	その他(上記以		セントラル科学Picc	7.000	22.00			40	.00	28.00 🔾	13.00
1411	消去法・高濃度(	和光純薬	日本電子JCA-B	8.000	20.00	8.000	20.00	O 43	.70 🔾	31.70 🔾	13.60
1419	未消去法		ヘックマン・コールター	8.000	22.00	8.000	22.00	O 43	.10 🔾	31.50 〇	13.40
1501	回避法	関東化学	目立LABOSPE	8.000	22.00	8.000	22.00	O 44	.00 🔾	31.90 🔾	13.70
1502	未消去法	和光純薬	日本電子JCA-B	8.000	22.00	8.000	22.00	O 45	.20 🔾	33.04 🔾	14.06
1505	消去法・高濃度(		目立LABOSPE	8.000	20.00			O 42	.70 🔾	31.00 〇	13.20
1506	消去法•低濃度(	シノテスト	目立LABOSPE	8.000	22.00	8.000	22.00	O 43	.60 🔾	31.70 〇	13.40
1511	消去法•低濃度(	セロテック	日本電子JCA-B	8.000	20.00			O 45	.00 🔾	32.80 🔾	14.00
1512	消去法•低濃度(	セロテック	日立7140-7170	8.000	20.00	8.000	20.00	O 43	.80 🔾	31.80 〇	13.60
1513	消去法•低濃度(	和光純薬	目立LABOSPE	8.000	20.00			O 42	.00 🔾	30.60 〇	13.10
1514	消去法・高濃度(		目立LABOSPE	8.000	20.00	8.000	20.00	O 43	.10 🔾	31.50 〇	13.40
1518	未消去法	ミズホメディ	東京貿易ビオリス2	8.000	20.00	8.000	20.00	O 43	.00 🔾	31.00 〇	13.00
1519	消去法・高濃度(	カイノス	東芝25FR_Accut	8.000	20.00			O 44	.50 🔾	32.30 🔾	13.90
1528	消去法・高濃度(	和光純薬	目立7140-7170	8.000	20.00	8.000	20.00	O 45	.00 🔾	32.60 〇	13.70
1529	消去法・高濃度(	和光純薬	目立LABOSPE	8.000	22.00	8.000	22.00	O 43	.00 🔾	31.40 〇	13.30
1530	消去法・高濃度(	和光純薬	日本電子JCA-B	8.000	20.00	8.000	20.00	O 42	.90 🔾	31.30 〇	13.10
1531	未消去法	シーメンス	シーメンスHCDDim	8.000	22.00	8.000	22.00	O 44	.00 🔾	32.60 〇	14.40
1532	消去法・高濃度(	カイノス	目立7140-7170	8.000	20.00	8.000	20.00	O 45	.10 🔾	32.70 〇	14.30
1533	消去法•低濃度(	シーメンス	シーメンスHCDDim	8.000	20.00			O 44	.50 🔾	32.90 🔾	14.50
1534	消去法・高濃度(	カイノス	東京貿易ビオリス2	8.000	20.00			O 44	.00 🔾	31.90 〇	13.80
1538	消去法•低濃度(	シノテスト	東京貿易ビオリス2	8.000	20.00			O 44	.20 🔾	32.40 〇	13.90
1540	消去法•低濃度(	シノテスト	日本電子JCA-B	8.000	20.00	8.000	20.00	O 42	.80 🔾	31.10 〇	13.40
1541	消去法•低濃度(	シノテスト	東芝25FR_Accut	8.000	22.00			O 44	.20 🔾	32.00 〇	13.70
1542	回避法	関東化学	目立7140-7170	8.000	22.00			O 43	.80 🔾	31.90 〇	13.40
1543	消去法・高濃度(	カイノス	東芝25FR_Accut	8.000	22.00	8.000	22.00	O 42	.00 🔾	31.00 〇	13.50
1549	回避法	積水メディカル	東京貿易ビオリス2	8.000	22.00			O 42	.40 🔾	30.90 〇	12.90
1550	未消去法	和光純薬	目立7140-7170	8.000	20.00			O 44	.20 🔾	32.80 〇	14.60
1554	消去法•低濃度(	シノテスト		8.000	22.00	8.000	22.00	O 44	.30 🔾	32.10 〇	13.70
1558	消去法・高濃度(	和光純薬	日本電子JCA-B	8.000	20.00	8.000	20.00	O 42	.50 🔾	31.00 〇	13.20
1562	消去法•低濃度(	シノテスト	日本電子JCA-B	8.000	20.00	8.000	20.00	O 43	.00 🔾	31.20 〇	13.10
1901	消去法・高濃度(	和光純薬	ヘックマン・コールター	8.000	22.00	8.000	22.00	O 43	.20 🔾	32.00 〇	13.70
1902	消去法•低濃度(	セロテック	日本電子JCA-B	8.000	20.00			O 43	.70 🔾	31.60 〇	13.40
1903	回避法	関東化学	目立7600Dモジュ	8.000	22.00			O 43	.50 🔾	31.70 〇	13.50
1909	未消去法	ミズホメディ	目立LABOSPE	8.000	22.00			O 44	.20 🔾	32.30 〇	14.00
1911	未消去法	ミズホメディ	ヘックマン・コールター	8.000	22.00			O 44	.80 🔾	32.10 〇	13.90
1916	未消去法	和光純薬	日本電子JCA-B	8.000	22.00			O 45	.30 🔾	33.20 〇	14.20
1917	未消去法	和光純薬	目立LABOSPE	8.000	22.00	8.000	22.00	O 43	.80 🔾	31.80 〇	13.90
1920	未消去法	ミズホメディ	目立3100	8.000	22.00			O 44	.70 🔾	32.60 〇	14.10
1922	回避法	関東化学	目立7140-7170	8.000	22.00			O 44	.10 🔾	31.70 〇	13.30
1923	回避法	関東化学	目立7140-7170	8.000	22.00			O 43	.70 🔾	32.00 〇	13.30
1925	消去法・高濃度(	セロテック	ヘックマン・コールター	8.000	22.00	8.000	22.00	O 44	.00 🔾	32.00 〇	13.00
1926	消去法•低濃度(		東芝TBA-200F	8.000	22.00	8.000	22.00	O 43	.50 🔾	31.70 〇	13.50
1928	回避法	関東化学	ヘックマン・コールター	8.000	22.00			O 43	.70 🔾	31.60 〇	13.30
1930	消去法・高濃度(	和光純薬	ヘックマン・コールター	8.000	22.00	8.000	22.00	O 43	.50 🔾	31.30 〇	13.70
1931	消去法・高濃度(	和光純薬	ヘックマン・コールター	8.000	22.00	8.000	22.00	O 43	.10 🔾	31.10 〇	13.30
1932	消去法・低濃度(	セロテック	日本電子JCA-B	8.000	20.00			O 43	.50 🔾	31.50 〇	13.60
1934	消去法・高濃度(	和光純薬	ヘックマン・コールター	8.000	22.00			O 43	.50 🔾	31.00 〇	13.30
1935	消去法•低濃度(	セロテック	日立7140-7170	8.000	20.00	8.000	20.00	O 43	.90 🔾	31.80 〇	13.60
1936	未消去法	ミズホメディ	日本電子JCA-B	8.000	21.00	8.000	21.00	O 45	.60 🔾	33.00 〇	14.20
1937	消去法•低濃度(	シノテスト	日本電子JCA-B	8.000	21.00	8.000	21.00	O 44	.20 🔾	32.30 〇	13.80
2002	消去法・高濃度(	カイノス	日本電子JCA-B	8.000	20.00			O 42	.70 🔾	31.20 〇	13.70
2006	消去法・高濃度(	カイノス	目立LABOSPE	8.000	20.00			O 43	.10 🔾	31.20 〇	13.40
2008	消去法・高濃度(	シノテスト	ロシュコハ ス8000c7	8.000	20.00	8.000	20.00	O 43	.60 🔾	31.70 〇	13.60

4 BUN 施設No.が低い順に並んでいます

色設	2016-57	4. ( MATALE	Trk nn	男性基準	<b>準範囲</b>	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
2009	消去法・高濃度(	カイノス	日本電子JCA-B	8.000	20.00	8.000	20.00	O 43.30 C	31.50 〇	13.70
2010	消去法・高濃度(	カイノス	目立7140-7170	8.000	22.00	8.000	22.00	○ 43.30 ○	31.50 🔾	13.50
011	消去法・高濃度(	和光純薬	ヘ゛ックマン・コールター	8.000	22.00	8.000	22.00	O 43.20 C	31.20 🔾	13.40
001	消去法・高濃度(	和光純薬	日本電子JCA-B	8.000	20.00	8.000	20.00	O 43.73 C	31.54 🔾	13.39
013	未消去法	シーメンス	シーメンスHCDDim	7.400	19.50			○ 45.40	34.80	16.20
018	消去法•低濃度(		ヘ゛ックマン・コールター	8.000	20.00			O 43.70 C	31.70 〇	13.40
022	消去法・高濃度(	和光純薬	日本電子JCA-B	8.000	20.00	8.000	20.00	O 44.00 C	32.00 🔾	13.50
027	回避法	関東化学	目立7600Dモジュ	8.000	22.00			○ 43.80 ○	31.50 🔾	13.60
048	消去法・高濃度(	和光純薬	日本電子JCA-B	8.000	20.00	8.000	20.00	○ 43.10 ○	31.20 〇	13.30
055	消去法•低濃度(	シスメックス	日本電子JCA-B	8.000	20.00			O 45.30 C	32.80 🔾	14.10
056	回避法	協和メデックス	日本電子JCA-B	8.000	20.00	8.000	20.00	○ 43.00 ○	31.80 🔾	13.50
907	未消去法	ミズホメディ	日本電子JCA-B	8.000	20.00	8.000	20.00	O 44.30 C	32.00 🔾	13.80
002	消去法・高濃度(	カイノス	日本電子JCA-B	8.000	20.00			○ 43.80 ○	31.90 🔾	14.00
039	消去法•低濃度(		東芝25FR_Accut	8.400	21.00	8.400	21.00	○ 44.50 ○	32.60 〇	14.30
040			ヘックマン・コールター	8.000	22.00			○ 43.40 ○	31.80 🔾	13.60
902	消去法・高濃度(	カイノス	目立7140-7170	8.000	20.00			O 44.00 C	33.00 🔾	14.00
003	消去法•低濃度(	シノテスト	目立7140-7170	9.000	19.00	9.000	19.00	○ 43.80 ○	31.80 🔾	13.60
005	消去法・高濃度(	ミズホメディ	日本電子JCA-B	8.000	20.00			○ 43.80 ○	31.80 🔾	13.50
006	消去法•低濃度(	シノテスト	日本電子JCA-B	8.000	20.00	8.000	20.00	○ 42.40 ○	31.70 🔾	13.40
010	消去法•低濃度(	協和メデックス	日本電子JCA-B	8.000	20.00	8.000	20.00	○ 44.60 ○	32.10 🔾	13.80
006	消去法•低濃度(	シノテスト	東芝25FR_Accut	6.000	20.00			○ 43.00 ○	32.00 🔾	14.60
800	消去法・高濃度(	ニットーボー	東芝TBA-200F	8.000	20.00			O 44.10 C	32.00 🔾	13.50
015	回避法	協和メデックス	目立LABOSPE	9.000	21.00			○ 43.10 ○	31.50 🔾	13.40
016	消去法・高濃度(	カイノス	東芝TBA-200F	8.000	22.00	8.000	22.00	○ 43.90 ○	32.20 🔾	13.90
001	消去法・高濃度(	カイノス	日本電子JCA-B	9.000	23.00	9.000	23.00	○ 43.00 ○	31.00 🔾	14.00
002	消去法・高濃度(	シノテスト	日本電子JCA-B	8.000	20.00			○ 43.30 ○	31.50 🔾	13.80
007	消去法・高濃度(	カイノス	ヘックマン・コールター	8.000	20.00	8.000	20.00	O 44.30 C	31.90 🔾	13.60
011	消去法・高濃度(		東芝TBA-cシリー	8.000	20.00			O 44.10 C	32.10 🔾	13.80
025	消去法・高濃度(	ニットーボー	日本電子JCA-B	8.000	22.00			○ 43.10 ○	31.30 🔾	13.60
901	回避法	LSIメディエンス	目立LABOSPE	8.000	22.00			○ 44.30 ○	32.20 🔾	13.80
004	消去法•低濃度(	シスメックス	日本電子JCA-B	7.000	21.00			○ 43.00 ○	32.00 🔾	14.00
004	消去法•低濃度(	協和メデックス	目立7140-7170					○ 44.50 ○	32.30 🔾	14.00
800	消去法•低濃度(	シノテスト	日立7140-7170					○ 42.90 ○	31.40 〇	13.50
009	回避法	LSIメディエンス	日立7140-7170	8.000	20.00			○ 44.00 ○	31.95 🔾	13.65
012	消去法・高濃度(	デンカ生研	日立7140-7170	8.000	20.00	8.000	20.00	○ 43.60 ○	31.50 🔾	13.80
014	消去法・高濃度(	ニットーボー	日立7140-7170					○ 43.50 ○	31.50 🔾	13.70
022	消去法・高濃度(	ミズホメディ	目立7140-7170	8.000	20.00			○ 44.00 ○	31.90 🔾	13.60
023	消去法・高濃度(	和光純薬	日立7140-7170					○ 43.30 ○	31.50 🔾	13.40
024	回避法	関東化学	日本電子JCA-B	8.000	22.00	8.000	22.00	○ 43.70 ○	31.70 🔾	13.40
033	消去法•低濃度(	極東製薬	日本電子JCA-B	8.000	20.00			○ 43.10 ○	31.40 〇	13.50
035	回避法	積水メディカル	積水EV800					○ 43.76 ○	31.77 🔾	13.44
043	消去法•低濃度(	ロシュ・ダイアグ	ロシュコハ ス8000c5					○ 43.08 ○	31.38 🔾	13.44
044	消去法•低濃度(		ロシュコハ ス8000c7					O 44.23 C	32.16 🔾	13.78
046	消去法・高濃度(	栄研化学	日立7140-7170	8.000	20.00	8.000	20.00	○ 43.74 ○	31.56 🔾	13.41
047	未消去法	ベックマン・コー	ヘックマン・コールター					○ 43.70 ○	31.70 🔾	13.50
049	消去法•低濃度(	シスメックス	日立7140-7170	8.000	20.00			○ 43.50 ○	31.60 〇	13.70
	未消去法	シーメンス	シーメンスHCDDim					O 43.85 (	32.23 〇	13.98

84 BUN(F) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足原生	政衆/ //	17交合计	下限	上限	下限	上限	試料01	試料02	試料03
1044	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	8.000	23.00			O 45.40 (	33.00 €	14.30
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	8.000	22.00			O 43.60 (	31.80 €	13.70
1076	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	22.00			O 42.40 (	31.60 €	13.50
1097	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	20.00	8.000	20.00	O 44.50 (	32.70 €	14.20
1104	ト・ライケミストリー法	富士フィルムメ	富士ドライケム350	8.000	23.00			42.20	31.00 €	13.30
1126	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	22.00	8.000	22.00	O 42.40 (	31.40 €	13.50
1133	ドライケミストリー法	富士フィルムメ	富士ドライケム400	8.000	23.00			O 45.20 (	32.90 €	14.00
1137	ト・ライケミストリー法	富士フィルムメ	富士ドライケム400	8.000	22.00	8.000	22.00	O 43.80 (	31.60 €	14.00
1326	ト・ライケミストリー法	富士フィルムメ	富士ドライケム400	8.000	20.00	8.000	20.00	O 45.10 (	32.80 €	13.90
1335	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	23.00	8.000	22.00	O 44.20 (	32.50 €	13.90
1336		富士フィルムメ	富士ドライケム700	8.000	23.00			O 44.90 (	32.80 €	14.10
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	23.00			O 44.60 (	32.90 €	) 14.30
1374	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	20.00	8.000	20.00	O 44.80 (	32.70 €	14.30
1375	ト・ライケミストリー法	富士フィルムメ	富士ドライケム400	8.000	20.00			O 44.60 (	32.50 €	13.80
1393	ト・ライケミストリー法	富士フィルムメ	富士ドライケムNX5	8.000	22.00	8.000	22.00	O 43.10 (	32.20 €	13.60
1415	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	23.00	8.000	23.00	O 45.10 (	33.20 €	14.40
1523	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	20.00			40.00	30.00	13.00
1525	ドライケミストリー法	富士フィルムメ	富士ドライケム350	8.000	22.00			O 44.00 (	31.60 €	13.70
1545	ドライケミストリー法	富士フィルムメ	富士ドライケム400	8.000	20.00			O 44.30 (	31.90 €	13.40
1546	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	23.00			O 44.60 (	32.40 €	) 14.10
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	20.00	8.000	20.00	O 44.60 (	32.30 €	13.90
1552	ドライケミストリー法	富士フィルムメ	富士ドライケム400	8.000	23.00			O 42.50 (	31.60 €	13.50
1557		富士フィルムメ	富士ドライケム700	8.000	23.00			O 45.00 (	33.00 €	14.40
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	20.00	8.000	20.00	O 43.90 (	32.30 €	13.50
1560	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	23.00			O 44.30 (	32.30 €	14.30
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	20.00	8.000	20.00	O 43.10 (	31.50 €	13.80
9038	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	23.00			O 44.10 (	32.00 €	13.80

#### 119 BUN(A1)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例是原生 內架/ //	79文台计	下限 上限 下限 上限 試料01 試料02 試料03	
1065	ト・ライケミストリー法	アークレイ	アークレイスホ°ットケム	○ 44.00 ○ 31.00 ○ 13.00
1317	ト・ライケミストリー法	アークレイ	アークレイスポットケム	8.000 20.00 8.000 20.00 $\bigcirc$ 41.00 $\bigcirc$ 29.00 $\bigcirc$ 13.00
1378	ト゛ライケミストリー法	アークレイ	アークレイスポットケム	8.000 22.00 $49.00 \bigcirc 33.00 \bigcirc 14.00$
9041	ドライケミストリー法	アークレイ	アークレイスポットケム	$\bigcirc$ 44.00 $\bigcirc$ 31.00 $\bigcirc$ 14.00

149 BUN(A2)

施設	測定原理 試薬メーカー	機器	男性基準	男性基準範囲 女性基準範囲				試料報告値		
No			下限	上限	下限	上限	試料01	試料02	試料03	
1521	ト゛ライケミストリー法	アークレイ	アークレイスポットケム	8.000	20.00	8.000	20.00	O 41.00	28.00	12.00

#### 179 BUN(O)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武衆/一//	79交石计	下限 上限 下限 上限 試料01 試料02 試料03
1075	ト゛ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	$8.000$ $20.00$ $8.000$ $20.00$ $46.10 \bigcirc 33.20 \bigcirc 14.40$
1100	ト゛ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	46.00 $\bigcirc$ 33.00 $\bigcirc$ 14.00
8011	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	8.000 $22.00$ $8.000$ $22.00$ $0$ $45.60$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$
9040	ドライケミストリー法	オーソ・クリニカ	オーソビトロス5600	47.50 34.80 15.10

### 総ビリルビン (TB)

久留米大学病院 臨床検査部 井上 賢二

#### 【参加状况】

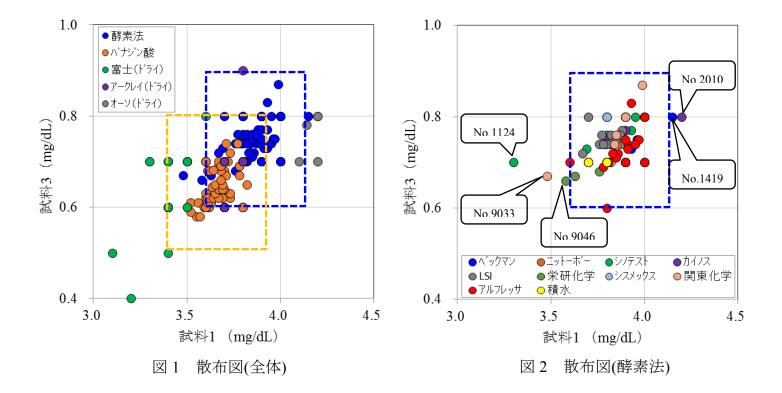
参加施設 247 施設 (前回 235 施設)

#### 【測定方法の状況】

- 1. バナジン酸法が最も多く 118 施設(47.8%)、酵素法が 96 施設(38.9%)、ドライケミストリー法が 33 施設(13.4%)であった。
- 2. 検量方法別では、血清ベースの標準液を使用している施設が最も多く 211 施設(85.4%)、その他が 29 施設(11.7%)、市販管理血清を使用している施設が 7 施設(2.8%)であった。

#### 【測定値の状況】

1. 試料 1~試料 3 における 3SD 除去後の全体 CV%は 4.5~9.9%であった。 試料 1~試料 3 における各測定法の平均値および CV%を表 1 に、酵素法試薬メーカー別の平均値および CV%を表 2 示す。


試料1および試料3の散布図を図1に、酵素法の各メーカー別の散布図を図2に示す。

	X1. 1 M/CIA + 4 IE(ING 42) /4 6 ( 6 C + 7 ( 6 B 2   M = 12))							
	施設数	試料 1		試料	斗 2	試料 3		
例是伍	旭臤剱	平均値	CV%	平均値	CV%	平均値	CV%	
バナジン酸法	118	3.66	1.8%	2.44	2.4%	0.64	7.1%	
酵素法	96	3.85	2.6%	2.59	3.1%	0.74	6.3%	
ト゛ライケミフトリーシキム	33	3 55	7.8%	2 35	6.8%	0.65	14 7%	

表 1. 各測定法の平均値(mg/dL)および CV%(3SD 除去後)

表 2	酵素法試薬	メーカー出しの	亚均值(r	ng/dI)t	こトアド	$CV^{0/6}$
1X Z.	<b>野光(な��)</b>	ァール カコマン		112/01/12/	りみしい	$\mathbf{v} \cdot \mathbf{v} \neq 0$

				₹ ID (	,		
   測定法	施設数	試料 1		試料	斗 2	試米	斗 3
侧		平均値	CV%	平均値	CV%	平均値	CV%
ニットーホ゛ー	3	3.96	1.9%	2.63	2.2%	0.78	4.4%
ヘ゛ックマンコールター	11	3.94	2.4%	2.64	3.2%	0.73	5.4%
カイノス	4	3.93	4.7%	2.61	2.5%	0.77	3.5%
アルフレッサ	30	3.88	2.3%	2.60	3.3%	0.72	6.1%
シスメックス	4	3.83	2.5%	2.58	2.2%	0.76	6.5%
関東化学	6	3.81	4.6%	2.57	4.8%	0.76	9.5%
LSIメテ゛ィエンス	20	3.80	2.0%	2.56	2.2%	0.75	4.8%
シノテスト	13	3.80	4.4%	2.53	6.8%	0.75	6.2%
ニフ゜ロ	2	3.75	-%	2.55	-%	0.70	<b>-</b> %
栄研化学	3	3.66	2.5%	2.47	2.4%	0.67	1.5%



- 2. 目標値は試料 1:3.84 (3.6~4.1) mg/dL、試料 2:2.58 (2.4~2.8) mg/dL、試料 3:0.74(0.6~0.9) mg/dLである。またバナジン酸法の目標値は試料 1:3.63 (3.4~3.9) mg/dL、試料 2:2.41 (2.2~2.6) mg/dL、試料 3:0.63 (0.5~0.8) mg/dL である。
- 3. 各試料における測定原理別の目標範囲達成率を表 3 に示す。 バナジン酸法を使用している施設では、いずれの試料においても目標範囲を外れている施設はなかった。酵素法を使用している施設では、試料 1 で 5 施設(低値傾向 3 施設、高値傾向 2 施設)、試料 2 で 2 施設(いずれも低値傾向)が目標範囲を外れている。試料 1~試料 3 の全試料が目標範囲内の施設は、バナジン酸法を使用している群では、118 施設中 118 施設(100.0%)、酵素法を使用している群では、96 施設中 91 施設(94.8%)であった。

表 3. バナジン酸法および酵素法 目標範囲達成率

	* *			
	施設数	試料 1	試料 2	試料 3
バナジン酸法	118	100.0%	100.0%	100.0%
酵素法	96	94.8%	97.9%	100.0%

4. ドライケミストリー法におけるメーカー別の平均値および CV%を表 4 に示す。昨年度同様、富士ドライケ ムがやや低めに、オーソビトロスがやや高めに測定されている。

表 4. ドライケミストリー法の平均値(mg/dL)および CV%

	施設数	試料 1		試料	斗 2	試料 3	
	旭政剱	平均値	CV%	平均値	CV%	平均値	CV%
富士ドライケム	24	3.40	2.9%	2.29	3.7%	0.63	13.7%
アークレイスホ。ットケム	5	3.74	1.5%	2.38	3.5%	0.70	17.5%
オーソヒ゛トロス	4	4.16	1.2%	2.71	3.1%	0.75	7.1%

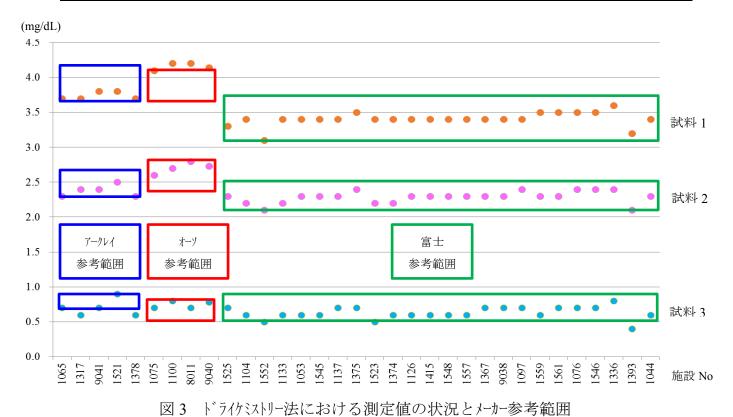

5. ドライケミストリー法におけるメーカー別の参考値および参考範囲を表 5 および図 3 に、メーカー参考値による各試料の参考範囲達成率を表 6 に示す。

表 5. ドライケミストリー法における各メーカー参考値および参考範囲(mg/dL)

	試料 1	試料 2	試料 3
	参考値 (参考範囲)	参考値 (参考範囲)	参考値 (参考範囲)
富士ドライケム	3.4 (3.1~3.7)	2.3 (2.1~2.5)	$0.7  (0.5 \sim 0.9)$
アークレイスホ。ットケム	$3.9  (3.6 \sim 4.2)$	$2.5  (2.3 \sim 2.7)$	$0.8  (0.7 \sim 0.9)$
オーソヒ゛トロス	液状試薬同様	液状試薬同様	液状試薬同様

表 6. 各試料におけるメーカー参考範囲達成率

	施設数	試料 1	試料 2	試料 3
富士ドライケム	24	100.0%	100.0%	95.8%
アークレイスホ゜ットケム	5	100.0%	100.0%	60.0%
オーソヒ゛トロス	4	25.0%	100.0%	100.0%



【基準範囲の状況】

1. 基準範囲の上限値に JCCLS 共用基準範囲の 1.5mg/dL を採用している施設が 97 施設 (39.3%)で昨年と比較すると 17 施設増加している。また、臨床判断値である 1.2mg/dL を 採用している施設が 115 施設(46.6%)で昨年よりも 5 施設減少している。

#### 【その他のコメント】

1. バナジン酸法と酵素法の測定値に差が認められるため、目標値をそれぞれ別に設定している。

5 T-BIL 施設No.が低い順に並んでいます

施設	No. 7 Per Merc		Lett men	男性基準	準範囲	女性基準	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	
1002	酵素法	LSIメディエンス	目立LABOSPE	0.300	1.500			○ 3.790 ○	2.530 🔾	0.740
1004	酵素法	アルフレッサファ	目立LABOSPE	0.400	1.500	0.400	1.500	○ 4.000 ○	2.700 🔾	0.800
1006	酵素法	LSIメディエンス	日立LABOSPE	0.400	1.500			$\bigcirc$ 3.870 $\bigcirc$	2.610 🔾	0.760
1010	酵素法	アルフレッサファ	東芝TBA-cシリー	0.300	1.500	0.300	1.500	○ 3.900 ○	2.600 🔾	0.700
1012	酵素法	シノテスト	日本電子JCA-B	0.400	1.500	0.400	1.500	○ 3.950 ○	2.670 🔾	0.800
	酵素法	カイノス	東芝25FR_Accut	0.400	1.500			○ 3.820 ○		
	酵素法	カイノス	目立LABOSPE		1.200			○ 3.800 ○		
	酵素法	アルフレッサファ	目立7140-7170 東茶955D A sout		1.500	0.200	1 000	O 3.600 O		
	酵素法 酵素法	アルフレッサファ LSIメディエンス	東芝25FR_Accut 日本電子JCA-B	0.300	1.200 1.200			<ul><li>○ 3.910 ○</li><li>○ 3.880 ○</li></ul>		
	酵素法	シノテスト	東芝TBA-cシリー		1.000	0.300	1.200	○ 3.900 ○		
	酵素法	アルフレッサファ	目立7140-7170		1.200	0.300	1.200	○ 3.850 ○		
	酵素法	シノテスト	東京貿易ビオナリス5	0.300	1.200			○ 3.930 ○		
1058	酵素法	LSIメディエンス	日本電子JCA-B	0.300	1.200			○ 3.770 ○	2.560 〇	0.760
1060	酵素法	LSIメディエンス	日本電子JCA-B	0.300	1.200			○ 3.700 ○	2.500 🔾	0.700
1072	酵素法	積水メディカル	日立LABOSPE	0.300	1.200	0.300	1.200	$\bigcirc$ 3.700 $\bigcirc$	2.500 〇	0.700
1089	酵素法	シノテスト	日立7140-7170	0.400	1.500	0.400	1.500	○ 3.800 ○	2.500 🔾	0.700
1090	酵素法	デンカ生研	日立7140-7170	0.400	1.500	0.400	1.500	○ 3.900 ○	2.600 🔾	0.700
	酵素法	ニットーボー	ヘックマン・コールター	0.300	1.200			○ 3.960 ○		
	酵素法	シノテスト	東京貿易ピオリス5		1.000			○ 3.690 ○		
	酵素法	デンカ生研	東芝25FR_Accut	0.300	1.200	0.300		O 3.800 O		
	酵素法 酵素法	ベックマン・コー シノテスト	ヘ [*] ックマン・コールター 日立7020-7080	0.300 0.400	1.200 1.500	0.300	1.200	3.930 O	2.000 🔾	
	酵素法	シスメックス	日本電子JCA-B		1.500	0.400	1 500	○ 3.700 ○		
	酵素法	ベックマン・コー	ベックマン・コールター		1.200	0.100	1.000	○ 3.900 ○		
	酵素法	アルフレッサファ	日本電子JCA-B	0.400	1.500	0.400	1.500	○ 3.800 ○		
1135	酵素法	ベックマン・コー	ヘックマン・コールター	0.300	1.200			○ 3.800 ○	2.500 〇	0.700
1302	酵素法	ベックマン・コー	ヘ゛ックマン・コールター	0.400	1.500			○ 4.000 ○	2.700 🔾	0.700
1305	酵素法	シノテスト	日本電子JCA-B	0.400	1.200			$\bigcirc$ 3.900 $\bigcirc$	2.600 〇	0.800
	酵素法	LSIメディエンス	日本電子JCA-B	0.400	1.500	0.400	1.500	○ 3.800 ○	2.600 🔾	0.800
	酵素法	LSIメディエンス	日本電子JCA-B	0.300	1.500			○ 3.900 ○		
	酵素法	ニットーボー	ヘックマン・コールター		1.500			○ 3.900 ○		
	酵素法	LSIメディエンス	日本電子JCA-B		1.500			○ 3.850 ○		
	酵素法 酵素法	LSIメディエンス ロシュ・ダイアグ	日立LABOSPE ロシュコハ*ス8000c5	0.400 0.400	1.500 1.500			<ul><li>○ 3.800 ○</li><li>○ 3.900 ○</li></ul>		
	酵素法	ロシュ・ダイアグ	ロシュコハブス8000c5		1.500	0.400	1 500	○ 3.800 ○		
	酵素法	ニットーボー	ヘックマン・コールター		1.500			O 4.000 O		
	酵素法	アルフレッサファ	東芝TBA-cシリー		1.500			○ 3.800 ○		
	酵素法	アルフレッサファ	日本電子JCA-B	0.400	1.500		1.500	○ 3.950 ○	2.650 〇	0.740
1357	酵素法	アルフレッサファ	目立7140-7170	0.300	1.200	0.300	1.200	○ 4.000 ○	2.700 🔾	0.700
1371	酵素法	アルフレッサファ	東京貿易ビオリス5	0.400	1.500			$\bigcirc$ 4.000 $\bigcirc$	2.700 🔾	0.700
1373	酵素法	ニプロ	東京貿易ビオナリス1	0.400	1.400			○ 3.840 ○		
	酵素法	シノテスト	日立7140-7170	0.300	1.500	0.300	1.500	○ 3.800 ○		
	酵素法	関東化学	東京貿易ピオリス5	0.400	1.500	0.400	1 500	○ 3.850 ○		
	酵素法	シノテスト	東京貿易ビオリス2		1.500			O 3.800 O		
	酵素法 酵素法	LSIメディエンス ニプロ	日本電子JCA-B 東京貿易ビオリス1	0.400 0.300	1.200 1.200			○ 3.700 ○ ○ ○ 3.820 ○		
	酵素法	ベックマン・コー	ベックマン・コールター	0.300	1.200		1.200	4.150 🔾		
	酵素法	LSIメディエンス	目立LABOSPE		1.200	0.000	1.200	○ 3.760 ○		
	酵素法	関東化学	日立LABOSPE		1.200	0.300	1.200	○ 3.900 ○		
	酵素法	アルフレッサファ	目立LABOSPE		1.500			○ 3.970 ○		
1514	酵素法	LSIメディエンス	目立LABOSPE	0.400	1.200	0.400	1.200	○ 3.820 ○	2.600 〇	0.760
1532	酵素法	アルフレッサファ	日立7140-7170	0.400	1.500	0.400	1.500	○ 3.900 ○	2.610 〇	0.750
1538	酵素法	アルフレッサファ	東京貿易ビオリス2	0.400	1.500			○ 3.810 ○	2.550 🔾	0.700
	酵素法	LSIメディエンス	日本電子JCA-B		1.500	0.400	1.500	○ 3.780 ○		
	酵素法	シノテスト	東芝25FR_Accut	0.300	1.200			○ 3.800 ○		
1543	酵素法	シスメックス	東芝25FR_Accut	0.300	1.200	0.300	1.200	○ 3.800 ○	2.600 🔾	0.800

5 T-BIL 施設No.が低い順に並んでいます

施設	201 ch rs: 70	4. ( tht 4.	Lat. 0.0	男性基	準範囲	女性基	準範囲			試料報告值
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1554	酵素法	シノテスト	日立7140-7170		1.000		1.000	○ 3.800 ○	2.500 〇	0.700
1562	酵素法	アルフレッサファ	日本電子JCA-B	0.400	1.500	0.400	1.500	○ 3.830 ○	2.570 🔾	0.720
1926	酵素法	LSIメディエンス	東芝TBA-200F	0.200	1.200	0.200	1.200	○ 3.700 ○	2.500 〇	0.700
1936	酵素法	アルフレッサファ	日本電子JCA-B	0.200	1.200	0.200	1.200	○ 3.780 ○	2.520 〇	0.690
1937	酵素法	アルフレッサファ	日本電子JCA-B	0.200	1.200	0.200	1.200	○ 3.930 ○	2.800 〇	0.830
2008	酵素法	LSIメディエンス	ロシュコハ*ス8000c7	0.400	1.500	0.400	1.500	○ 3.700 ○	2.400 〇	0.700
2009	酵素法	シノテスト	日本電子JCA-B	0.200	1.000	0.200	1.000	○ 3.800 ○	2.560 〇	0.760
2010	酵素法	カイノス	日立7140-7170	0.300	1.200	0.300	1.200	4.200 ○	2.700 🔾	0.800
3018	酵素法	ベックマン・コー	ヘ、ックマン・コールター	0.200	1.300			○ 3.900 ○	2.600 〇	0.700
3022	酵素法	LSIメディエンス	日本電子JCA-B	0.400	1.500	0.400	1.500	○ 3.670 ○	2.480 🔾	0.720
3055	酵素法	アルフレッサファ	日本電子JCA-B	0.400	1.500			○ 4.000 ○	2.700 🔾	0.800
3056	酵素法	栄研化学	日本電子JCA-B	0.400	1.500	0.400	1.500	○ 3.630 ○	2.450 🔾	0.670
3907	酵素法	アルフレッサファ	日本電子JCA-B	0.400	1.500	0.400	1.500	○ 3.800 ○	2.500 〇	0.700
4002	酵素法	LSIメディエンス	日本電子JCA-B	0.400	1.500			○ 3.900 ○	2.600 〇	0.800
4039	酵素法	ニットーボー	東芝25FR_Accut	0.300	1.100	0.300	1.100	○ 4.000 ○	2.700 🔾	0.800
4040	酵素法	ベックマン・コー	ヘ・ックマン・コールター	0.300	1.200			○ 4.000 ○	2.700 🔾	0.800
4902	酵素法	アルフレッサファ	日立7140-7170	0.200	1.000			○ 3.800 ○	2.500 🔾	0.600
5005	酵素法	栄研化学	日本電子JCA-B	0.400	1.500			○ 3.760 ○	2.540 〇	0.680
5006	酵素法	アルフレッサファ	日本電子JCA-B	0.400	1.500	0.400	1.500	○ 3.910 ○	2.640 🔾	0.740
5010	酵素法	LSIメディエンス	日本電子JCA-B	0.400	1.500	0.400	1.500	○ 3.900 ○	2.600 〇	0.800
6006	酵素法	シスメックス	東芝25FR_Accut	0.200	1.000			○ 3.900 ○	2.630 🔾	0.740
6008	酵素法	アルフレッサファ	東芝TBA-200F	0.400	1.500			○ 3.900 ○	2.600 〇	0.700
6015	酵素法	カイノス	目立LABOSPE	0.200	1.200			○ 3.900 ○	2.620 🔾	0.770
6016	酵素法	アルフレッサファ	東芝TBA-200F	0.300	1.200	0.300	1.200	○ 3.900 ○	2.600 〇	0.700
7002	酵素法	LSIメディエンス	日本電子JCA-B	0.400	1.500			○ 3.800 ○	2.600 〇	0.700
7011	酵素法	アルフレッサファ	東芝TBA-cシリー	0.400	1.500			○ 3.900 ○	2.600 〇	0.700
7025	酵素法	ニットーボー	日本電子JCA-B	0.300	1.200			○ 4.000 ○	2.600 〇	0.800
8004	酵素法	アルフレッサファ	日本電子JCA-B	0.200	1.200			○ 4.000 ○	2.700 🔾	0.800
9008	酵素法	シノテスト	日立7140-7170					○ 3.900 ○	2.600 〇	0.800
9009	酵素法	LSIメディエンス	日立7140-7170	0.200	1.200			○ 3.830 ○	2.570 🔾	0.750
9012	酵素法	デンカ生研	日立7140-7170	0.220	1.200	0.220	1.200	○ 3.900 ○	2.600 〇	0.700
9014	酵素法	ニットーボー	日立7140-7170					○ 3.870 ○	2.600 〇	0.740
9024	酵素法	関東化学	日本電子JCA-B	0.200	1.200	0.200	1.200	○ 3.990 ○	2.730 🔾	0.870
	酵素法	極東製薬	日本電子JCA-B	0.200	1.200			3.480	2.350 🔾	
	酵素法	積水メディカル	積水EV800					○ 3.800 ○	2.600 〇	0.700
9043	酵素法	ロシュ・ダイアグ	ロシュコハ [*] ス8000c5					○ 3.857 ○	2.587 🔾	0.720
9046	酵素法	栄研化学	日立7140-7170	0.200	1.000	0.200	1.000	3.580 ○	2.430 🔾	0.660
9047	酵素法	ニットーボー	ヘックマン・コールター					○ 3.840 ○	2.560 🔾	0.720
9049	酵素法	シスメックス	日立7140-7170	0.200	1.200			○ 3.900 ○	2.600 〇	0.800

35 T-BIL(V) 施設No.が低い順に並んでいます

施設			745 00	男性基	準範囲	女性基	準範囲			試料報告値	
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03	
1001	バナジン酸法	和光純薬	目立LABOSPE	0.400	1.500			○ 3.600 ○	2.400 〇	0.600	
1011	バナジン酸法	和光純薬	日本電子JCA-B	0.200	1.100	0.200	1.100	○ 3.600 ○	2.400 〇	0.700	
1013	バナシン酸法	和光純薬	目立7140-7170	0.400	1.500			○ 3.700 ○	2.500 🔾	0.600	
	バナジン酸法	和光純薬	日本電子JCA-B	0.400	1.500			○ 3.700 ○			
	バナジン酸法	和光純薬	日本電子JCA-B	0.400	1.500			○ 3.690 ○			
	バナジン酸法 バナジン酸法	和光純薬	日本電子JCA-B	0.300	1.200	0.300		○ 3.600 ○			
	バナシン酸伝	和光純薬 和光純薬	日本電子JCA-B 日立LABOSPE	0.400 0.300	1.500 1.200			<ul><li>○ 3.670 ○</li><li>○ 3.720 ○</li></ul>			
	バナシン酸法	和光純薬	日立7140-7170	0.400	1.500	0.400		3.590 O			
	バナシン酸法	和光純薬	東芝TBA-cシリー	0.400	1.500			○ 3.670 ○			
	バナシン酸法	和光純薬	シーメンスHCDDim	0.300	1.200			○ 3.670 ○			
1033	バナジン酸法	和光純薬	目立7140-7170	0.300	1.200	0.300	1.200	○ 3.800 ○	2.500 〇	0.600	
1034	バナシン酸法	和光純薬	目立7140-7170	0.300	1.200	0.300	1.200	○ 3.600 ○	2.400 〇	0.700	
1035	バナジン酸法	和光純薬	日本電子JCA-B	0.300	1.200			○ 3.520 ○	2.340 🔾	0.610	
	バナシン酸法	和光純薬	目立LABOSPE	0.400	1.500			○ 3.700 ○			
	バナジン酸法	和光純薬	目立LABOSPE	0.400	1.500			○ 3.700 ○			
	バナジン酸法	和光純薬	ベックマン・コールター	0.300	1.200			○ 3.700 ○			
	バナジン酸法 バナジン酸法	和光純薬 和光純薬	日本電子JCA-B シーメンスHCDDim	0.400 0.400	1.500 1.500	0.400		○ 3.641 ○ ○ 3.700 ○			
	バナシン酸伝	和光純薬	東京貿易ビオリス2	0.300	1.200	0.300		3.620 O			
	バナシン酸法	和光純薬	目立LABOSPE	0.400				O 3.600 O			
	バナシン酸法	和光純薬	日本電子JCA-B	0.200	1.200	0.200		○ 3.600 ○			
1073	バナシン酸法	和光純薬	目立LABOSPE	0.300	1.200	0.300	1.200	○ 3.730 ○	2.510 〇	0.720	
1074	バナジン酸法	和光純薬	東京貿易ビオリス2	0.300	1.200	0.300	1.200	○ 3.670 ○	2.530 🔾	0.690	
1077	バナジン酸法	和光純薬	シーメンスHCDDim	0.300	1.200	0.300	1.200	○ 3.800 ○	2.600 〇	0.600	
	バナジン酸法	和光純薬	東芝TBA-cシリー	0.400	1.500	0.400	1.500	○ 3.640 ○	2.410 🔾	0.620	
	バナシン酸法	和光純薬	東京貿易ビオリス2	0.400	1.500			○ 3.600 ○			
	バナジン酸法	和光純薬	日立LABOSPE	0.300	1.200			○ 3.700 ○			
	バナジン酸法 バナジン酸法	和光純薬 和光純薬	日本電子JCA-B 日本電子JCA-B	0.200 0.300	1.300 1.200	0.200		<ul><li>○ 3.630 ○</li><li>○ 3.600 ○</li></ul>			
	バナシン酸法	和光純薬	東芝TBA-cシリー	0.200		0.200		3.600 O			
	バナシン酸法	和光純薬	東芝TBA-cシリー	0.400	1.500			○ 3.600 ○			
1116	バナシン酸法	和光純薬	日本電子JCA-B	0.300	1.200	0.300	1.200	○ 3.560 ○	2.370 🔾	0.610	
1120	バナジン酸法	和光純薬	東芝TBA-cシリー	0.400	1.500			○ 3.630 ○	2.380 〇	0.610	
1123	バナジン酸法	和光純薬	シーメンスHCDDim	0.300	1.200	0.300	1.200	○ 3.610 ○	2.480 🔾	0.680	
	バナシン酸法	和光純薬	日本電子JCA-B	0.300	1.200			○ 3.700 ○			
	バナジン酸法	和光純薬	日立7140-7170	0.300	1.200	0.300		○ 3.630 ○			
	バナジン酸法 バナジン酸法	和光純薬	日本電子JCA-B	0.400	1.500			○ 3.690 ○			
	バナシン酸伝	和光純薬 和光純薬	日本電子JCA-B	0.400	1.500 1.100			<ul><li>○ 3.610 ○</li><li>○ 3.600 ○</li></ul>			
	バナシン酸法	和光純薬	東芝25FR_Accut	0.400	1.200			3.730 O			
	バナシン酸法	和光純薬	東芝TBA-200F	0.200	0.800	0.200		○ 3.620 ○			
1313	バナシン酸法	和光純薬	日本電子JCA-B	0.300	1.200			○ 3.600 ○	2.400 〇	0.600	
1325	バナシン酸法	和光純薬	日本電子JCA-B	0.400	1.500	0.400	1.500	○ 3.600 ○	2.400 〇	0.600	
1327	バナジン酸法	和光純薬	日本電子JCA-B	0.400	1.500	0.400	1.500	○ 3.680 ○	2.450 🔾	0.660	
	バナシン酸法	和光純薬	日本電子JCA-B	0.400	1.500	0.400		○ 3.800 ○			
	バナジン酸法	和光純薬	日本電子JCA-B	0.300	1.200			O 3.620 O			
	バナジン酸法	和光純薬	東芝TBA-cシリー	0.200	1.000			○ 3.600 ○			
	バナジン酸法 バナジン酸法	和光純薬 和光純薬	日本電子JCA-B 日本電子JCA-B	0.400 0.400	1.500 1.500	0.400		<ul><li>○ 3.670 ○</li><li>○ 3.700 ○</li></ul>			
	バナシン酸伝	和光純薬	日本電子JCA B	0.300	1.200			3.500 O			
	バナシン酸法	和光純薬	日立7140-7170	0.400	1.500			3.700 O			
	バナシン酸法	和光純薬	日本電子JCA-B	0.200	1.200			○ 3.700 ○			
1348	バナジン酸法	和光純薬	東芝TBA-cシリー	0.200	1.000			○ 3.600 ○	2.400 〇	0.600	
1350	バナジン酸法	和光純薬	日本電子JCA-B	0.300	1.200			○ 3.600 ○	2.400 〇	0.600	
	バナシン酸法	和光純薬	日本電子JCA-B	0.300	1.200	0.300		○ 3.780 ○			
1358	バナジン酸法	和光純薬	日本電子JCA-B	0.400	1.500			○ 3.650 ○	2.430 🔾	0.650	

35 T-BIL(V) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基準	<b>準範囲</b>	女性基	準範囲		試料報告値
No	网儿小生		1/2/1117	下限	上限	下限	上限	試料01	試料02 試料03
1359	バナジン酸法	和光純薬	日本電子JCA-B	0.400	1.500	0.400	1.500	○ 3.700 ○	2.500 ○ 0.700
	バナシン酸法	和光純薬	日本電子JCA-B	0.300	1.200	0.300			2.470 ○ 0.670
	バナジン酸法	和光純薬	東芝TBA-20-3		1.500				2.370 ○ 0.580
	バナジン酸法	和光純薬	ベックマン・コールター	0.300	1.200	0.400			2.400 ○ 0.700
	バナジン酸法	和光純薬	目立7140-7170 東英TPA-03/II-	0.400	1.500	0.400	1.500		2.440 ○ 0.640
	バナジン酸法 バナジン酸法	和光純薬 和光純薬	東芝TBA-cシリー 日立LABOSPE	0.400 0.400	1.500 1.500	0.400	1 500		2.300 ○ 0.590 2.500 ○ 0.700
	バナシン酸法	和光純薬	日立LABOSPE	0.400	1.500	0.400			2.400 ○ 0.700
	バナシン酸法	和光純薬	東芝25FR_Accut	0.400	1.500				2.400 ○ 0.600
	バナシン酸法	和光純薬	東芝TBA-cシリー	0.300	1.200	0.300	1.200	○ 3.700 ○	2.500 ○ 0.600
1396	バナジン酸法	和光純薬	シーメンスHCDDim	0.400	1.200	0.400	1.200	○ 3.800 ○	2.400 🔾 0.600
1401	バナジン酸法	シーメンス	シーメンスHCDDim	0.400	1.500	0.400	1.500	○ 3.770 ○	2.500 ○ 0.740
1402	バナシン酸法	和光純薬	目本電子JCA-B	0.400	1.500			○ 3.600 ○	2.400 🔾 0.600
1404	バナジン酸法	和光純薬	東芝TBA-cシリー	0.300	1.200			○ 3.730 ○	2.480 ○ 0.630
	バナシン酸法	和光純薬	日本電子JCA-B		1.500				2.430 🔾 0.690
	バナジン酸法	和光純薬	目立LABOSPE	0.300					2.530 ○ 0.670
	バナジン酸法	和光純薬	日本電子JCA-B	0.300	1.200	0.300			2.360 ○ 0.580
	バナジン酸法 バナジン酸法	和光純薬 和光純薬	日本電子JCA-B 日立7140-7170	0.400 0.400	1.500 1.200	0.400			2.400 ○ 0.600 2.500 ○ 0.600
	バナシン酸法	和光純薬	東京貿易ビオリス2	0.400	1.500				2.500 ○ 0.000
	バナシン酸法	和光純薬	東芝25FR_Accut	0.400	1.500	0.100			2.390 ○ 0.610
	バナシン酸法	和光純薬	日立7140-7170	0.400	1.500	0.400			2.450 ○ 0.640
1529	バナシン酸法	和光純薬	目立LABOSPE	0.300	1.200	0.300	1.200	○ 3.700 ○	2.470 🔾 0.640
1530	バナジン酸法	和光純薬	日本電子JCA-B	0.400	1.500	0.400	1.500	○ 3.600 ○	2.400 🔾 0.600
1531	バナシン酸法	和光純薬	シーメンスHCDDim	0.300	1.500	0.300	1.500	○ 3.710 ○	2.550 ○ 0.740
1533	バナジン酸法	和光純薬	シーメンスHCDDim	0.400	1.500			○ 3.820 ○	2.530 🔾 0.650
	バナシン酸法	和光純薬	目立7140-7170	0.300	1.200				2.500 ○ 0.600
	バナジン酸法	和光純薬	東京貿易ビオリス2		1.200				2.600 ○ 0.700
	バナジン酸法 バナジン酸法	和光純薬 和光純薬	日立7140-7170 日本電子JCA-B	0.300 0.400	1.200 1.500	0.400	1 500		2.400 ○ 0.600 2.400 ○ 0.700
	バナシン酸法	和光純薬	ヘ、ックマン・コールター	0.300		0.300			2.500 ○ 0.700
	バナシン酸法	和光純薬	日本電子JCA-B	0.300	1.200				2.470 ○ 0.680
	バナシン酸法	和光純薬	目立7600Dモジュ	0.300	1.200			○ 3.600 ○	2.400 🔾 0.600
1909	バナジン酸法	和光純薬	目立LABOSPE	0.300	1.200			○ 3.600 ○	2.400 🔾 0.600
1911	バナシン酸法	和光純薬	ベックマン・コールター	0.300	1.200			○ 3.600 ○	2.400 🔾 0.600
1916	バナジン酸法	和光純薬	日本電子JCA-B	0.400	1.500			○ 3.620 ○	2.410 🔾 0.680
	バナシン酸法	和光純薬	目立LABOSPE		1.200	0.300			2.400 ○ 0.600
	バナジン酸法	和光純薬	日立3100		1.200				2.500 ○ 0.700
	バナジン酸法 バナジン酸法	和光純薬	日立7140-7170 日立7140-7170	0.300	1.200				2.500 ○ 0.600 2.400 ○ 0.600
	バナシン酸伝	和光純薬 和光純薬	ヘックマン・コールター		1.200 1.100	0.200			2.400 ○ 0.000
	バナシン酸法	和光純薬	ベックマン・コールター		1.200	0.200			2.400 ○ 0.600
	バナシン酸法	和光純薬	ヘックマン・コールター	0.300	1.200	0.300			2.400 ○ 0.700
1931	バナシン酸法	和光純薬	ヘックマン・コールター	0.300	1.200	0.300			2.500 ○ 0.700
1932	バナジン酸法	和光純薬	日本電子JCA-B	0.300	1.200			○ 3.700 ○	2.500 ○ 0.700
1934	バナシン酸法	和光純薬	ベックマン・コールター	0.300	1.200			○ 3.800 ○	2.500 ○ 0.700
	バナシン酸法	和光純薬	日立7140-7170	0.300	1.200	0.300			2.500 🔾 0.700
	バナシン酸法	和光純薬	日本電子JCA-B	0.400	1.500				2.500 ○ 0.700
	バナジン酸法	和光純薬	目立LABOSPE	0.200	1.200	0.200			2.400 ○ 0.600
	バナジン酸法 バナジン酸法	和光純薬 和光純薬	ベックマン・コールター 日本電子JCA-B		1.200 1.500				2.400 ○ 0.700 2.422 ○ 0.645
	バナジン酸法	和光純薬	ロ本電子JCA-B シーメンスHCDDim	0.400	1.200	0.400			2.500 ○ 0.600
	バナシン酸法	和光純薬	日立7600Dモジュ	0.300	1.200				2.400 \( \) 0.600
	バナシン酸法	和光純薬	日本電子JCA-B		1.500	0.400			2.430 ○ 0.630
	バナシン酸法	和光純薬	目立7140-7170		1.100				2.500 🔾 0.700
7001	バナジン酸法	和光純薬	日本電子JCA-B	0.300	1.100	0.300	1.100	○ 3.600 ○	2.400 🔾 0.600
7007	バナジン酸法	和光純薬	ヘックマン・コールター	0.200	1.100	0.200	1.100	○ 3.700 ○	2.480 🔾 0.680

35 T-BIL(V)

施設	測定原理	試薬メーカー	機器	男性基準	範囲	女性基	準範囲			試料報告値
No	例足原生	政衆/ //	17交布計	下限	上限	下限	上限	試料01	試料02	試料03
7901	バナジン酸法	和光純薬	目立LABOSPE	0.300	1.100			O 3.700 C	2.500	0.700
9023	バナジン酸法	和光純薬	日立7140-7170					○ 3.700 ○	2.400	0.600
9044	バナジン酸法	和光純薬	ロシュコハ ス8000c7					○ 3.693 ○	2.460	0.637
9050	バナジン酸法	和光純薬	シーメンスHCDDim					○ 3.800 ○	2.600	0.600

85 T-BIL(F) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲				試料報告値
No	例是原理	<b>武栗</b> 人 八	17交合计	下限	上限	下限	上限	試	料01	試料02	試料03
1044	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	0.100	1.200			O 3.	.400 🔾	2.300 〇	0.600
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	0.200	1.000			O 3.	.400 🔾	2.300 〇	0.600
1076	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.300	1.200			O 3.	.500 🔾	2.400 〇	0.700
1097	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.300	1.200	0.300	1.200	O 3.	.400 🔾	2.400 〇	0.700
1104	ドライケミストリー法	富士フィルムメ	富士ドライケム350	0.100	1.200			O 3.	.400 🔾	2.200 〇	0.600
1126	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.300	1.200	0.300	1.200	O 3.	.400 🔾	2.300 〇	0.600
1133	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	0.100	1.200			O 3.	.400 🔾	2.200 🔾	0.600
1137	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	0.300	1.200	0.300	1.200	O 3.	.400 🔾	2.300 🔾	0.700
1336	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	0.100	1.200			O 3.	.600 🔾	2.400 〇	0.800
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.100	1.200			O 3.	.400 🔾	2.300 〇	0.700
1374	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.300	1.200	0.300	1.200	O 3.	.400 🔾	2.200 🔾	0.600
1375	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	0.300	1.200			O 3.	.500 🔾	2.400 〇	0.700
1393	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	0.300	1.200	0.300	1.200	O 3.	.200 🔾	2.100	0.400
1415	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.100	1.200	0.100	1.200	O 3.	.400 🔾	2.300 〇	0.600
1523	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.400	1.500			O 3.	.400 🔾	2.200 🔾	0.500
1525	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム350	0.300	1.200			O 3.	.300 🔾	2.300 🔾	0.700
1545	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	0.400	1.500			O 3.	.400 🔾	2.300 🔾	0.600
1546	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.100	1.200			O 3.	.500 🔾	2.400 〇	0.700
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.400	1.500	0.400	1.500	O 3.	.400 🔾	2.300 〇	0.600
1552	ドライケミストリー法	富士フィルムメ	富士ドライケム400	0.100	1.200			O 3.	.100 🔾	2.100 〇	0.500
1557	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.100	1.200			O 3.	.400 🔾	2.300 〇	0.600
1559	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	0.400	1.500	0.400	1.500	O 3.	.500 🔾	2.300 🔾	0.600
1561	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	0.400	1.500	0.400	1.500	O 3.	.500 🔾	2.300 🔾	0.700
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.100	1.200			O 3.	.400 🔾	2.300 〇	0.700

120 T-BIL(A1)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原生	叫来/ //	77发 台计	下限 上限 下限 上限 試料01 試料02 試料03
1065	ト゛ライケミストリー法	アークレイ	アークレイスポットケム	○ 3.700 ○ 2.300 ○ 0.700
1317	ト゛ライケミストリー法	アークレイ	アークレイスホットケム	$0.300$ $1.200$ $0.300$ $1.200$ $\bigcirc$ $3.700$ $\bigcirc$ $2.400$ $\bigcirc$ $0.600$
1378	ト゛ライケミストリー法	アークレイ	アークレイスホットケム	$0.300  1.200 \qquad \bigcirc \ 3.700 \bigcirc \ 2.300 \bigcirc \ 0.600$
9041	ドライケミストリー法	アークレイ	アークレイスホ°ットケム	$\bigcirc \ 3.800 \bigcirc \ 2.400 \bigcirc \ 0.700$

150 T-BIL(A2)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原理	武楽 ノー カー		下限 上限 下限 上限 試料01 試料02 試料03
1521 h	、ライケミストリー法	アークレイ	アークレイスホットケム	0.400 1.500 0.400 1.500 🔾 3.800 🔾 2.500 🔾 0.900

180 T-BIL(O)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武架/一//	7交 台	下限 上限 下限 上限 試料01 試料02 試料03
1075	ト゛ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	0.400 1.500 0.400 1.500 🔾 4.100 🔾 2.600 🔾 0.700
1100	ト゛ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	$4.200 \bigcirc 2.700 \bigcirc 0.800$
8011	ト゛ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	$0.200  1.200  0.200  1.200 \qquad 4.200  \  2.800 \bigcirc \ 0.700$
9040	ドライケミストリー法	オーソ・クリニカ	オーソビトロス5600	$4.140 \bigcirc 2.730 \bigcirc 0.780$

### 直接ビリルビン(DB)

久留米大学病院 臨床検査部 井上 賢二

47.7%

9.1%

0.22

0.17

1.13

1.05

59.3%

33.8%

#### 【参加状况】

参加施設 173 施設 (前回 162 施設)

#### 【測定方法の状況】

- 1. バナジン酸法が最も多く 97 施設(56.1%)、酵素法が 71 施設(41.0%)、ドライケミストリー法が 5 施設 (2.9%)であった。
- 2. 酵素法を使用している 71 施設において  $\delta$  ビリルビンを測り込まない方法を使用している施設が 39 施設(54.9%)、 $\delta$  ビリルビンを測り込む方法を使用している施設が 32 施設(45.1%)であった。
- 3. 検量方法別では、血清ベースの標準液を使用している施設が最も多く 163 施設(94.2%)、市販管理血清を使用している施設が 6 施設(3.5%)、その他が 4 施設(2.3%)であった。

#### 【測定値の状況】

ドライケミストリー法

全施設

1. 試料 1~試料 3 における各測定法の平均値を表 1 に、酵素法試薬メーカー別の平均値および CV%を表 2 に示す。また試料 1 および試料 3 の全体の散布図を図 1 に、酵素法試薬メーカー 別の散布図を図 2 に示す。試料中の δ ビリルビン、添加されているジタウロビリルビンに対する反応性が異なるため、各方法間で測定値に乖離が見られる。

	施設数	試彩	<b>∤</b> 1	試料	¥ 2	試彩	<del>+</del> 3
	旭政毅	平均値	CV%	平均値	CV%	平均値	CV%
バナジン酸法	97	1.75	3.2%	1.10	3.5%	0.20	3.9%
酵素法							
δビリルビンを測り込まない	39	1.42	7.7%	0.91	5.6%	0.09	20.4%
δビリルビンを測り込む	32	1.75	6.7%	1.07	7.5%	0.15	29.2%

1.76

1.68

5

173

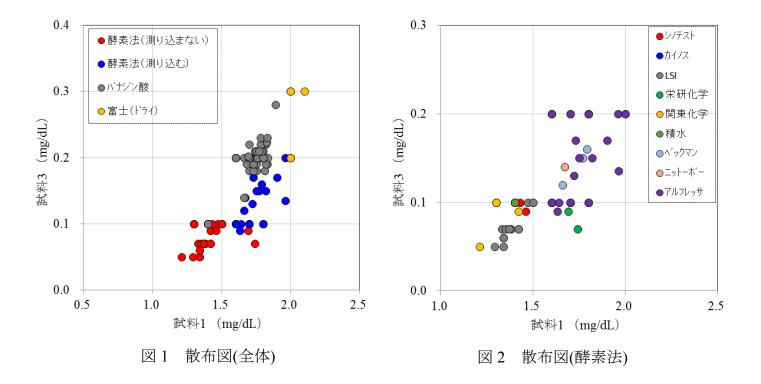

表 1. 各測定法の 3SD 除去後の平均値(mg/dL)および CV%

	表 2.	酵素法試薬メーカー別の平均値(mg/dL)および CV%(n≥3)	)
--	------	-----------------------------------	---

34.3%

10.2%

	施設数	試料	<u></u>	試料	斗 2	試米	料 3	
	旭政奴	平均値	CV%	平均値	CV%	平均值	CV%	
ヘ゛ックマンコールター	5	1.76	3.4%	1.08	3.8%	0.13	22.2%	
アルフレッサ	25	1.75	7.4%	1.07	8.3%	0.15	30.0%	
栄研化学	3	1.67	5.2%	0.94	5.0%	0.08	17.7%	
シノテスト	7	1.46	5.1%	0.94	4.8%	0.10	3.8%	
カイノス	3	1.45	9.2%	0.93	7.6%	0.08	27.2%	
LSIメテ、ィエンス	19	1.38	4.0%	0.90	4.9%	0.08	23.1%	
関東化学	3	1.31	5.2%	0.86	7.8%	0.08	33.1%	



2. ドライケミストリー法(富士ドライケム)の平均値および CV%を表 3 に示す。

表 3. ドライケミストリー法の平均値(mg/dL)および CV%

	施設数	試米	斗 1	試米	斗 2	試料 3		
	旭畝剱	平均値	CV%	平均値	CV%	平均値	CV%	
富士ドライケム	4	2.03	2.5%	1.38	3.6%	0.28	18.2%	

#### 【基準範囲の状況】

1. 基準範囲上限を 0.4mg/dL としている施設が最も多く 103 施設(59.5%)であった。

#### 【その他のコメント】

1. 試料中の  $\delta$  ビリルビンに対する反応性が使用する試薬によって異なるため、自施設で使用している試薬の特性を理解しておくことが重要である。

6 D-BIL 施設No.が低い順に並んでいます

施設	INO. A PAN PAN	- <u></u> /0 (1 & )		男性事	準範囲	女性基	准統囲			試料報告値
Mu fi文 No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
	*L.\.\.\	五小伙子	E 41 ADOCEDE	1 1/1		1 194	—PK			
	バナジン酸法	和光純薬	目立LABOSPE		0.400			1.700	1.100	0.200
	酵素法δビリルビ	LSIメディエンス	目立LABOSPE		0.200		0.000	1.420	0.950	0.070
	酵素法δビリルビ	アルフレッサファ	目立LABOSPE		0.300		0.300	2.000	1.200	0.200
	酵素法δビリルビ	LSIメディエンス	目立LABOSPE		0.300	0.400		1.370	0.890	0.070
	酵素法δビリルビ	アルフレッサファ	東芝TBA-cシリー	0.100	0.300	0.100	0.300	1.600	1.000	0.100
	酵素法δビリルビ	シノテスト	日本電子JCA-B		0.200		0.200	1.460	0.950	0.090
	バナジン酸法	和光純薬	日立7140-7170		0.400			1.800	1.100	0.200
	バナジン酸法	和光純薬	日本電子JCA-B	0.100			0.000	1.700	1.100	0.200
	バナジン酸法	和光純薬	日本電子JCA-B		0.200		0.200	1.750	1.120	0.210
	バナジン酸法	和光純薬	日本電子JCA-B		0.400		0.400	1.750	1.110	0.210
	バナシン酸法	和光純薬	日本電子JCA-B		0.400			1.780	1.150	0.220
	バナジン酸法	和光純薬	目立LABOSPE		0.400			1.760	1.130	0.200
	酵素法δビリルビ	カイノス	東芝25FR_Accut		0.400	0.400		1.420	0.920	0.070
	酵素法δビリルビ	アルフレッサファ	目立7140-7170	0.100	0.400	0.100	0.400	1.730	1.100	0.170
	バナジン酸法	和光純薬	東芝TBA-cシリー	0.100	0.400			1.830	1.170	0.230
	バナジン酸法	和光純薬	日立7140-7170		0.400		0.400	1.800	1.100	0.200
	バナジン酸法	和光純薬	日立7140-7170	0.000	0.400		0.400	1.800	1.100	0.200
	バナジン酸法	和光純薬	日本電子JCA-B	0.100	0.300			1.730	1.100	0.200
	バナジン酸法	和光純薬	目立LABOSPE	0.000	0.300			1.700	1.100	0.200
	酵素法δビリルビ	アルフレッサファ	日立7140-7170	0.100	0.500	0.050	0.400	1.700	1.000	0.100
	バナジン酸法	和光純薬	目立LABOSPE	0.050		0.050	0.400	1.800	1.100	0.200
	酵素法δビリルビ	アルフレッサファ	東芝25FR_Accut		0.500		0.500	1.630	0.980	0.090
	バナジン酸法	和光純薬	日本電子JCA-B		0.400		0.400	1.825	1.132	0.223
	酵素法δビリルビ	シノテスト	東芝TBA-cシリー		0.400			1.400	0.900	0.100
	酵素法δビリルビ	LSIメディエンス	日本電子JCA-B		0.500			1.290	0.830	0.050
	酵素法δビリルビ	LSIメディエンス	日本電子JCA-B		1.200		0.400	1.400	0.900	0.100
	バナジン酸法	和光純薬	日立LABOSPE	0.100	0.400	0.100	0.400	1.700	1.100	0.200
	バナジン酸法	和光純薬	日本電子JCA-B	0.100	0.400	0.100	0.400	1.700	1.100	0.200
	酵素法δビリルビ	積水メディカル	目立LABOSPE		0.400		0.400	1.400	0.900	0.100
	バナジン酸法	和光純薬	日立LABOSPE		0.400		0.400	1.730	1.090	0.180
	バナジン酸法	和光純薬	東京貿易ピオリス2		0.400		0.400	1.890	1.210	0.280
	バナジン酸法	和光純薬	東芝TBA-cシリー		0.400		0.400	1.750	1.100	0.210
	バナジン酸法	和光純薬	日立LABOSPE		0.300		0.300	1.700	1.100	0.200
	酵素法δビリルビ	シノテスト	日立7140-7170		0.200		0.200	1.600	1.000	0.100
	バナジン酸法	和光純薬	日本電子JCA-B		0.300		0.400	1.800	1.100	0.200
	バナジン酸法	和光純薬	東芝TBA-cシリー		0.400		0.400	1.800	1.100	0.200
	バナジン酸法	和光純薬	東芝TBA-cシリー		0.300			1.700	1.100	0.200
	酵素法δビリルビ	ニットーボー	ベックマン・コールター		0.400			1.660	1.010	0.120
	バナジン酸法	和光純薬	東芝TBA-cシリー		0.400			1.750	1.110	0.200
	バナジン酸法	和光純薬	日本電子JCA-B		0.400		0.400	1.700	1.100	0.200
	酵素法などリルビ	ユニチカ	日本電子JCA-B		0.400		0.400	1.300	0.900	0.100
	酵素法δビリルビ	アルフレッサファ	日本電子JCA-B		0.400		0.400	1.700	1.000	0.200
	バナジン酸法	和光純薬	日立7140-7170		0.300		0.300	1.660	1.030	0.140
	バナジン酸法	和光純薬	日本電子JCA-B	1 000	0.400			1.730	1.080	0.190
	バナジン酸法	和光純薬	日本電フロルト	1.000	0.400			1.740	1.100	0.210
	バナジン酸法	和光純薬	日本電子JCA-B	0.100	0.400			1.770	1.100	0.200
	酵素法δビリルビ	ベックマン・コー	ヘックマン・コールター	0.100				1.800	1.100	0.100
	酵素法δビリルビ	シノテスト	日本電子JCA-B		0.400			1.400	0.900	0.100
	バナジン酸法	和光純薬	東芝25FR_Accut	0.100	0.400	0.100	0.000	1.810	1.130	0.180
	バナジン酸法	和光純薬	東芝TBA-200F	0.100		0.100	0.300	1.730	1.090	0.190
	バナジン酸法	和光純薬	日本電子JCA-B		0.400		0.400	1.800	1.100	0.200
	酵素法δビリルビ	LSIメディエンス	日本電子JCA-B		0.400		0.400	1.400	1.000	0.100
	酵素法δビリルビ	LSIメディエンス	日本電子JCA-B		0.200		0.400	1.400	0.900	0.100
	バナジン酸法	和光純薬	日本電子JCA-B		0.400		0.400	1.700	1.100	0.200
	バナジン酸法	和光純薬	日本電子JCA-B		0.400		0.400	1.790	1.120	0.220
	バナジン酸法	和光純薬	日本電子JCA-B		0.300		0.300	1.800	1.100	0.200
1330	バナジン酸法	和光純薬	日本電子JCA-B		0.200			1.820	1.140	0.220

6 D-BIL 施設No.が低い順に並んでいます

	.NO.//~IEAV //IEAC	-亚/U C V · よ y		田小士	Sittle Fefe 1777	/ . Lul. +1+ 3/	He fefe IIII			=1 14 14 14 14 14 14 14 14 14 14 14 14 14
包設	測定原理	試薬メーカー	機器	男性基		女性基準		t o l2k4-€	00 lak4#	試料報告値 ₹4/(100
Vo				下限	上限	下限	上限	試料01	試料02	試料03
331	バナシン酸法	和光純薬	東芝TBA-cシリー		0.400			1.700	1.100	0.200
	バナジン酸法	和光純薬	日本電子JCA-B		0.500			1.770	1.120	0.210
339	酵素法δビリルビ	LSIメディエンス	日本電子JCA-B		0.200			1.380	0.900	0.070
	バナジン酸法	和光純薬	日本電子JCA-B		0.400		0.400	1.800	1.100	0.200
	バナジン酸法	和光純薬	日本電子JCA-B		0.400		0.400	1.700	1.100	0.200
	酵素法δビリルビ	LSIメディエンス	目立LABOSPE		0.400			1.340	0.860	0.060
	バナジン酸法	和光純薬	日本電子JCA-B		0.200			1.800	1.200	0.200
	酵素法δビリルビ	ロシュ・ダイアグ	ロシュコハ ス8000c5		0.400			1.600	1.000	0.200
	バナジン酸法	和光純薬	東芝TBA-cシリー		0.400			1.700	1.100	0.200
	酵素法δビリルビ	ロシュ・ダイアグ	ロシュコハ ス8000c5		0.600		0.600	1.700	1.060	0.200
	バナジン酸法	和光純薬	日本電子JCA-B		0.400		0.400	1.780	1.130	0.230
	酵素法δビリルビ	アルフレッサファ	日本電子JCA-B		0.400		0.400	1.820	1.100	0.150
	酵素法δビリルビ	アルフレッサファ	目立7140-7170		0.400		0.400	1.800	1.100	0.200
	バナジン酸法	和光純薬	日本電子JCA-B		0.400			1.790	1.140	0.210
	バナジン酸法	和光純薬	日本電子JCA-B		0.400		0.400	1.700	1.100	0.200
	バナジン酸法	和光純薬	日本電子JCA-B		0.400		0.400	1.710	1.080	0.200
	バナジン酸法	和光純薬	東芝TBA-20-3					1.830	1.150	0.190
	バナジン酸法	和光純薬	ヘックマン・コールター		0.400			1.700	1.100	0.200
365	バナジン酸法	和光純薬	目立7140-7170		0.400		0.400	1.730	1.100	0.190
	バナジン酸法	和光純薬	東芝TBA-cシリー	0.010	0.450			1.700	1.090	0.200
370	バナジン酸法	和光純薬	目立LABOSPE		0.300		0.300	1.400	0.900	0.100
371	酵素法δビリルビ	アルフレッサファ	東京貿易ビオリス5		0.400			2.000	1.300	0.200
382	バナシン酸法	和光純薬	目立LABOSPE		0.400			1.800	1.100	0.200
385	バナシン酸法	和光純薬	東芝25FR_Accut		0.400			1.800	1.100	0.200
390	バナシン酸法	和光純薬	東芝TBA-cシリー		0.400		0.400	1.700	1.100	0.200
391	酵素法δビリルビ	シノテスト	日立7140-7170		0.200		0.200	1.400	0.900	0.100
401	バナジン酸法	シーメンス	シーメンスHCDDim		0.400		0.400	1.770	1.080	0.200
	バナジン酸法	和光純薬	日本電子JCA-B		0.300			1.800	1.100	0.200
403	酵素法δビリルビ	LSIメディエンス	日本電子JCA-B		0.400		0.400	1.300	0.900	0.100
	バナジン酸法	和光純薬	東芝TBA-cシリー	0.100	0.300			1.750	1.100	0.180
411	バナシン酸法	和光純薬	日本電子JCA-B	0.100	0.400	0.100	0.400	1.760	1.090	0.210
419	酵素法δビリルビ	ニットーボー	ヘックマン・コールター		0.200		0.200	1.770	1.090	0.150
501	バナジン酸法	和光純薬	日立LABOSPE		0.400		0.400	1.730	1.090	0.190
502	バナシン酸法	和光純薬	日本電子JCA-B		0.400		0.400	1.680	1.070	0.190
505	酵素法δビリルビ	LSIメディエンス	目立LABOSPE		0.200			1.350	0.870	0.070
506	酵素法δビリルビ	関東化学	目立LABOSPE		0.400		0.400	1.300	0.900	0.100
511	バナジン酸法	和光純薬	日本電子JCA-B	0.100	0.400			1.700	1.100	0.200
	バナジン酸法	和光純薬	日立7140-7170		0.400		0.400	1.700	1.100	0.200
	酵素法δビリルビ	アルフレッサファ	目立LABOSPE		0.400			1.640	1.060	0.100
	酵素法δビリルビ	LSIメディエンス	目立LABOSPE		0.200		0.200	1.330	0.860	0.070
	バナジン酸法	和光純薬	東京貿易ビオリス2		0.400		0.400	1.800	1.200	0.200
	バナジン酸法	和光純薬	東芝25FR_Accut		0.400			1.820	1.140	0.190
	バナジン酸法	和光純薬	日立7140-7170		0.300		0.300	1.800	1.160	0.210
	バナジン酸法	和光純薬	目立LABOSPE		0.400		0.400	1.700	1.070	0.180
530	バナジン酸法	和光純薬	日本電子JCA-B		0.400		0.400	1.800	1.100	0.200
532	酵素法δビリルビ	アルフレッサファ	日立7140-7170		0.400		0.400	1.750	1.080	0.150
	バナジン酸法	和光純薬	日立7140-7170		0.400			1.800	1.100	0.200
	バナジン酸法	和光純薬	日本電子JCA-B		0.400		0.400	1.700	1.100	0.200
562	酵素法δビリルビ	アルフレッサファ	日本電子JCA-B	0.100	0.400	0.100	0.400	1.900	1.140	0.170
901	バナジン酸法	和光純薬	ベックマン・コールター		0.400		0.400	1.700	1.000	0.200
902	バナジン酸法	和光純薬	日本電子JCA-B		0.400			1.700	1.090	0.220
903	バナジン酸法	和光純薬	目立7600Dモシ゛ュ		0.400			1.800	1.100	0.200
909	バナジン酸法	和光純薬	目立LABOSPE		0.400			1.600	1.000	0.200
911	バナジン酸法	和光純薬	ベックマン・コールター		0.400			1.700	1.100	0.200
916	バナジン酸法	和光純薬	日本電子JCA-B	0.010	0.300			1.660	1.030	0.200
		of the factor					0.400	1 500		
917	バナシン酸法	和光純薬	目立LABOSPE		0.400		0.400	1.700	1.100	0.200

6 D-BIL 施設No.が低い順に並んでいます

	110.73-127 沙良代	- <u>北</u> /していより		田山士	idde fefe 1777	1 . W. ++ We A	eAe ITITI			-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
施設	測定原理	試薬メーカー	機器		準範囲	女性基準筆		+ ∧ l2±4∉	oo lw4∉	試料報告値
No				下限	上限	下限 」	上限	試料01	試料02	試料03
	バナジン酸法	和光純薬	日立7140-7170		0.400			1.800	1.100	0.200
	酵素法δビリルビ	LSIメディエンス	東芝TBA-200F		0.400	0.	.400	1.300	0.900	0.100
1928	バナジン酸法	和光純薬	ヘックマン・コールター		0.400			1.800	1.100	0.200
1930	バナジン酸法	和光純薬	ヘ゛ックマン・コールター		0.400	0.	.400	1.600	1.000	0.200
1931	バナシン酸法	和光純薬	ヘ゛ックマン・コールター		0.400	0.	.400	1.700	1.100	0.200
1932	バナジン酸法	和光純薬	日本電子JCA-B		0.400			1.700	1.100	0.200
1934	バナジン酸法	和光純薬	ヘ゛ックマン・コールター		0.400			1.600	1.000	0.200
1935	バナジン酸法	和光純薬	目立7140-7170		0.400	0.	.400	1.700	1.100	0.200
1936	酵素法δビリルビ	LSIメディエンス	日本電子JCA-B		0.300	0.	.300	1.340	0.880	0.050
1937	酵素法δビリルビ	アルフレッサファ	日本電子JCA-B		0.300	0.	.300	1.960	1.210	0.200
2002	バナシン酸法	和光純薬	日本電子JCA-B	0.100	0.300			1.700	1.100	0.200
2006	バナシン酸法	和光純薬	目立LABOSPE		0.400			1.700	1.100	0.200
	酵素法δビリルビ	LSIメディエンス	ロシュコハ ス8000c7		0.300	0.	.300	1.500	1.000	0.100
	酵素法δビリルビ	シノテスト	日本電子JCA-B		0.400		.400	1.430	0.930	0.100
	酵素法δビリルビ	カイノス	日立7140-7170		0.400		.400	1.600	1.000	0.100
	バナジン酸法	和光純薬	ベックマン・コールター		0.400		.400	1.700	1.100	0.200
	バナシン酸伝	和光純薬	日本電子JCA-B		0.400		.800	1.693	1.070	0.202
	バナシン酸伝		シーメンスHCDDim			0.	.500		1.200	0.202
		和光純薬			0.400	0	300	1.800		
	酵素法δビリルビ	LSIメディエンス	日本電子JCA-B		0.300	0.	.300	1.370	0.880	0.070
	バナジン酸法	和光純薬	日立7600Dモジュ		0.400	_	200	1.800	1.100	0.200
	バナジン酸法	和光純薬	日本電子JCA-B		0.300	0.	.300	1.770	1.120	0.210
	酵素法δビリルビ	アルフレッサファ	日本電子JCA-B		0.300			1.800	1.100	0.100
	酵素法δビリルビ	栄研化学	日本電子JCA-B		0.300		.300	1.740	0.980	0.070
3907	酵素法δビリルビ	アルフレッサファ	日本電子JCA-B		0.300	0.	.300	1.800	1.100	0.200
4002	酵素法δビリルビ	LSIメディエンス	日本電子JCA-B		0.200			1.400	0.900	0.100
4040	酵素法δビリルビ	ベックマン・コー	ヘックマン・コールター		0.400			1.800	1.100	0.100
4902	酵素法δビリルビ	アルフレッサファ	日立7140-7170		0.400			1.800	1.100	0.200
	酵素法δビリルビ	栄研化学	日本電子JCA-B		0.300			1.690	0.960	0.090
5006	酵素法δビリルビ	アルフレッサファ	日本電子JCA-B	0.100	0.300	0.100 0.	.300	1.720	1.040	0.130
5010	酵素法δビリルビ	LSIメディエンス	日本電子JCA-B					1.400	0.900	0.100
6008	酵素法δビリルビ	アルフレッサファ	東芝TBA-200F	0.100	0.700			1.600	1.000	0.200
6015	酵素法δビリルビ	カイノス	目立LABOSPE		0.400			1.340	0.860	0.060
6016	酵素法δビリルビ	アルフレッサファ	東芝TBA-200F		0.400	0.	.400	1.600	1.000	0.100
7001	バナジン酸法	和光純薬	日本電子JCA-B		0.300	0.	.300	1.800	1.100	0.200
7002	酵素法δビリルビ	LSIメディエンス	日本電子JCA-B		0.200			1.400	0.900	0.100
	バナジン酸法	和光純薬	ベックマン・コールター		0.400	0.	.400	1.750	1.080	0.190
	酵素法δビリルビ	アルフレッサファ	東芝TBA-cシリー		0.500			1.600	0.900	0.100
	酵素法δビリルビ	ニットーボー	日本電子JCA-B		0.300			1.800	1.100	0.200
	バナジン酸法	和光純薬	日立LABOSPE		0.300			1.700	1.000	0.200
	酵素法δビリルビ	アルフレッサファ	日本電子JCA-B		0.400			1.700	1.000	0.100
	酵素法δビリルビ	シノテスト	日立7140-7170		0.100			1.500	1.000	0.100
	酵素法δビリルビ	LSIメディエンス	日立7140-7170		0.200			1.470	0.950	0.100
	酵素法δビリルビ	デンカ生研	日立7140-7170	0.050	0.300	0.050 0	.300	1.700	1.000	0.100
		フンル生研ニットーボー	日立7140-7170	0.000	0.500	v.vJU U.	.500			
	酵素法δビリルビ		_					1.670	1.010	0.140
	バナジン酸法	和光純薬	日立7140-7170		0.000	_	200	1.800	1.100	0.200
	酵素法δビリルビ	関東化学	日本電子JCA-B		0.200	0.	.200	1.420	0.890	0.090
	酵素法δビリルビ	極東製薬	日本電子JCA-B		0.200			1.210	0.780	0.050
	酵素法δビリルビ	積水メディカル	積水EV800					1.400	0.900	0.100
	酵素法δビリルビ	ロシュ・ダイアグ	ロシュコハ ス8000c5					1.963	1.174	0.135
	バナジン酸法	和光純薬	ロシュコハ ス8000c7					1.783	1.133	0.200
9046	酵素法δビリルビ	栄研化学	日立7140-7170		0.400	0.	.400	1.570	0.890	0.880
9047	酵素法δビリルビ	ニットーボー	ベックマン・コールター					1.790	1.110	0.160
9049	酵素法δビリルビ	ユニチカ	目立7140-7170		0.200			1.500	1.000	0.100
9050	バナジン酸法	和光純薬	シーメンスHCDDim					1.833	1.200	0.200

86 D-BIL(F)

施設	測定原理	試薬メーカー	機器	男性基	男性基準範囲 女性基準範囲			試料報告値			
No		武衆/一//		下限	上限	下限	上限	試料01	試料02	試料03	
1053	ト・ライケミストリー法	富士フィルムメ	富士ドライケム400		0.400			O 2.000 (	1.400 (	0.200	
1375	ドライケミストリー法	富士フィルムメ	富士ドライケム400		0.400			○ 2.000 ○	1.400 (	0.300	
1525	ドライケミストリー法	富士フィルムメ	富士ドライケム350		0.400			○ 2.100 ○	1.400 (	0.300	
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.100	0.400			○ 2.000 ○	1.300 (	0.300	

181 D-BIL(O)

施設No.が低い順に並んでいます

 施設 No
 測定原理 No
 試薬メーカー 機器
 男性基準範囲 ケ性基準範囲 下限 上限 下限 上限 試料の1 試料の2 試料の3
 試料の3

 9040 トプライケミストリー法 オーソ・クリニカ オーソビトロス5600
 カーソビトロス5600
 0.680 0.170

### 無機リン(IP)

佐賀県医療センター好生館 検査部 新開 幸夫

#### 【参加状況】

参加施設数 170 施設(前年度 161 施設)

#### 【測定方法の状況】(表1参照)

酵素法の参加施設が増加している。

表 1 測定方法別施設数

( )内は前年度

測定原理	酵素法	リンモリフ゛デン酸法	ドライケミストリー法
施設数	128(116)	37(39)	5(5)
割合(%)	72.5(75.3)	24.4(21.8)	3.1(2.9)

#### 【測定値の状況】(表2参照)

- 1. 試料 1~3 のドライケミストリー法以外の全体の 3SD 除去後の CV%は、1.4~2.0%であった。
- 2. 測定原理別では、3SD 除去後の CV%は、酵素法 1.6~2.0%、リンモリブ・デン酸法 1.4~1.7%、あった。
- 3.各試料の測定値は、ドライケミストリー法を除くと、差のない結果となっている。
- 4.ドライケミストリー法での測定値は、使用するメーカーにより違いが見られる。

表 2 測定原理別集計(3SD 除去後)

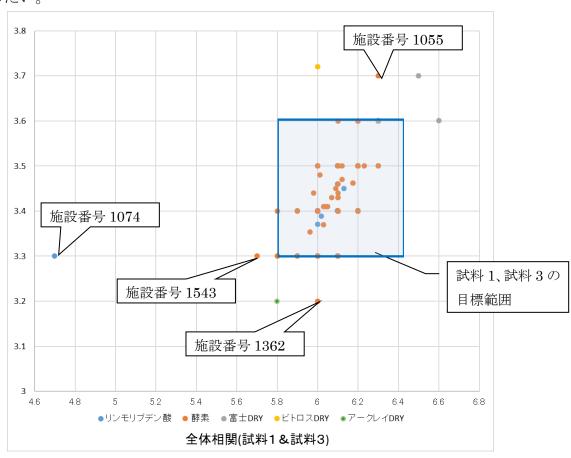
測定	試	施設	平均値	CD.	CV/0/	測定	試	施設	平均値	CD	CV/0/
原理	料	数	(mg/dL)	SD	CV%	原理	料	数	(mg/dL)	SD	CV%
全体	1	159	6.10	0.087	1.4	アークレイ	1	1	5.8	-	-
(ドライ法	2	164	5.02	0.080	1.6	SP/SD	2	1	4.9	-	-
以外)	3	162	3.43	0.069	2.0	ドライ法	3	1	3.2	-	-
	1	126	6.09	0.099	1.6	富士	1	3	6.47	0.153	2.36
酵素法	2	127	5.03	0.081	1.6	フィルム	2	3	5.20	0.100	1.92
	3	125	3.44	0.067	2.0	ドライ法	3	3	3.63	0.058	1.59
リハエリフド	1	37	6.08	0.084	1.4	オーソ	1	1	6.21	-	-
デン酸法	2	37	5.01	0.076	1.5		2	1	5.22	_	-
	3	37	3.39	0.057	1.7		3	1	3.72	-	-

#### 【基準範囲の状況】(報告施設:157施設)

基準範囲として、JCCLS 共用基準範囲の  $2.7\sim4.6$  mg/dL を使用している施設は、49.0%(77 施設)となっており、増加傾向となっている。(表 3 参照)

表 3 JCCLS 共用基準範囲採用状況推移

	平成 27 年度	平成 28 年度	平成29年度
基準範囲回答施設数	151	152	157
共用基準範囲使用施設数	37	58	77
採用割合(%)	24.5%	38.2%	49.0%

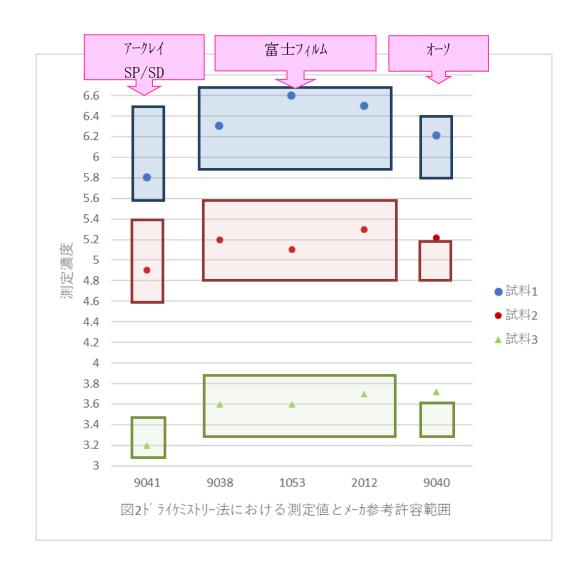

#### 【解析コメント】

・3 つの試料ともに目標範囲に入る施設は、ドライケミストリー法も含め 162 施設(98.8%)で昨年(152 施設 94.4%)と同様の結果となっている。各試料別の目標範囲内達成率は、表 4 を参照。

表 4 試料別目標範囲達成率

24€	目標値	目標範囲	日無終囲法武家			
武শ	(mg/dL)	(mg/dL)	目標範囲達成率			
1	6.09	5.8~6.4	97.4%(166 施設)			
2	5.02	4.8~5.2	98.8%(168 施設)			
3	3.43	3.3~3.6	97.1%(165 施設)			

- ・目標域から外れた施設は、再度、正確性の確認をお願いしたい。 (図1全体相関 試料1&試料3 を参照)
- ・施設番号1074は、2年連続で、目標範囲から外れている。正確性の検証をお願いしたい。
- ・検量方法の選択で間違って登録されているものが多数みられた。使用しているものが、 標準物質なのか管理血清なのか、その組成が血清ベースなのか溶媒ベースなのか再度確認を お願いしたい。




・ ドライケミストリー各社の目標値と参考許容範囲は、表 5 を参照ください。

表 5 ドライケミストリー各社の目標値と参考許容範囲(mg/dL)

試		アークレイ SP/SD	)		富士フィルム		オーソ			
料料	参加	加施設数:15	拖設	参加	加施設数:3	施設	参加施設数:1施設			
14	目標値	許容範囲	達成率	目標値	許容範囲	達成率	目標値	許容範囲	達成率	
1	6.0	5.6~6.5	100%	6.3	5.9~6.7	100%	6.09	5.8~6.4	100%	
2	5.0	4.6~5.4	100%	5.2	4.8~5.6	100%	5.02	4.8~5.2	0%	
3	3.3	3.1~3.5	100%	3.6	3.3~3.9	100%	3.43	3.3~3.6	0%	

・ト、ライケミストリー法での各メーカー参考許容範囲と測定値の状況については、図2ト、ライケミストリー法における測定値とメーカー参考許容範囲を参照していただきたい。



7 IP 施設No.が低い順に並んでいます

	INO. WENT PARCE	(並ん)		田州甘	准公田	<del>小</del> 州甘乡	准公田		₹¥! ## ## #	<b>5</b>
施設	測定原理	試薬メーカー	機器	男性基準		女性基準		-t 10 13/4-5	試料報告値	<u> </u>
No				下限	上限	下限	上限	武小101 武	式料02 試料03 ————————————————————————————————————	
	酵素法	協和メデックス	日立LABOSPE	2.700	4.600				5.000 ○ 3.400	
	酵素法	協和メデックス	日立LABOSPE	2.500	4.700				5.000 ○ 3.400	
	酵素法	和光純薬	日立LABOSPE	2.700	4.600	2.700	4.600		1.900 ○ 3.300	
	酵素法	東洋紡績	日立LABOSPE	2.700	4.600				5.020 ○ 3.450	
	酵素法	セロテック	東芝TBA-cシリー	2.500	4.700				5.000 🔾 3.400	
	酵素法	協和メデックス	日本電子JCA-B	2.700	4.600	2.700	4.600		1.900 ○ 3.400	
	酵素法	和光純薬	日立7140-7170	2.700	4.600				5.000 ○ 3.500	
	酵素法	協和メデックス	日本電子JCA-B	2.700	4.600	0.700	4.000		5.000 ○ 3.400	
	酵素法	協和メデックス	日本電子JCA-B	2.700	4.600				1.900 🔾 3.400	
	リンモリファン酸法 酵素法	積水メディカル 和光純薬	日本電子JCA-B 日本電子JCA-B	2.500 2.700	4.500 4.600	2.500	4.500		5.000 ○ 3.400 5.000 ○ 3.400	
	リンモリファン酸法								5.000 ○ 3.400	
	酵素法	積水メディカル 協和メデックス	日立LABOSPE 東芝25FR_Accut	2.500 2.700	4.700 4.600				5.100 ○ 3.500	
	酵素法	LSIメディエンス	日立7140-7170	2.700	4.600	2.700	4 600		1.900 ○ 3.400	
	酵素法	ニットーボー	東芝TBA-cシリー	2.700	4.600	2.100	1.000		5.000 ○ 3.400	
	リンモリフ・テン酸法	シーメンス	シーメンスHCDDim	2.400	4.300				5.100 ○ 3.500	
	リンモリファン酸法	積水メディカル	日立7140-7170	2.500	4.500	2 500	4 500		1.900 ○ 3.300	
	酵素法	協和メデックス	日本電子JCA-B	2.500	4.700	2.000	1.000		5.000 ○ 3.400	
	酵素法	協和メデックス	目立LABOSPE	2.700	4.600				1.900 ○ 3.400	
	酵素法	セロテック	日立7140-7170	2.700	4.600				5.000 ○ 3.400	
	酵素法	セロテック	日立LABOSPE	2.700	4.600	2.700	4.600		1.900 ○ 3.300	
1046	酵素法	カイノス	東芝25FR_Accut	2.500	4.700				1.900 ○ 3.400	
	酵素法	協和メデックス	東芝TBA-cシリー	2.500	4.500				5.100 ○ 3.500	
	酵素法	和光純薬	シーメンスHCDDim	2.700	4.600			○ 6.300 ○ 5	5.200 3.700	
1058	酵素法	LSIメディエンス	日本電子JCA-B		4.700				5.100 ○ 3.600	
1060	酵素法	LSIメディエンス	日本電子JCA-B		0.400			○ 6.000 ○ 5	5.000 🔾 3.500	
1062	酵素法	和光純薬	目立LABOSPE	2.700	4.600	2.700	4.600	○ 6.200 ○ 5	5.100 🔾 3.600	
1064	酵素法	LSIメディエンス	日本電子JCA-B	2.700	4.400	2.700	4.400	○ 6.000 ○ 5	5.000 🔾 3.500	
1072	リンモリフ・テン酸法	積水メディカル	目立LABOSPE	2.500	4.700	2.500	4.700	○ 6.000 ○ 5	5.000 ○ 3.400	
1073	酵素法	関東化学	目立LABOSPE	2.500	4.700	2.500	4.700	○ 6.030 ○ 4	1.960 ○ 3.410	
1074	リンモリファン酸法	積水メディカル	東京貿易ビオปス2	2.500	4.500	2.500	4.500	4.700 🔾	4.900 ○ 3.300	
1077	酵素法	和光純薬	シーメンスHCDDim	2.400	4.300	2.400	4.300	○ 6.200 ○ 5	5.100 ○ 3.400	
1081	酵素法	シノテスト	東芝TBA-cシリー	2.700	4.600	2.700	4.600	○ 6.300 ○ 5	5.200 🔾 3.500	
1084	酵素法	和光純薬	東京貿易ビオナリス2	2.700	4.600	2.700	4.600	○ 6.100 ○ 5	5.000 ○ 3.500	
1088	酵素法	和光純薬	日立LABOSPE	2.500	4.700	2.500	4.700	○ 6.100 ○ 5	5.000 ○ 3.400	
1094	酵素法	セロテック	日本電子JCA-B	2.500	4.700			○ 6.100 ○ 5	5.000 ○ 3.400	
1101	リンモリファン酸法	積水メディカル	東芝TBA-cシリー	2.500	4.500	2.500	4.500	○ 5.900 ○ 4	1.900 ○ 3.300	
1102	酵素法	ニットーボー	東芝TBA-cシリー	2.700	4.600			○ 6.100 ○ 5	5.000 🔾 3.400	
	酵素法	シノテスト	東京貿易ビオナリス5	2.400	4.300	2.400	4.300		5.000 🔾 3.400	
	酵素法	和光純薬	東芝TBA-cシリー	2.700	4.600				5.100 🔾 3.500	
	酵素法	シスメックス	日本電子JCA-B	2.700	4.600				1.900 ○ 3.300	
	リンモリファン酸法	積水メディカル	日本電子JCA-B	2.700	4.600	2.700	4.600		5.000 ○ 3.400	
	酵素法	和光純薬	- 1	2.700	4.600				1.950 ○ 3.430	
	酵素法	和光純薬	日本電子JCA-B	2.400	4.500				5.030 🔾 3.500	
	酵素法	ベックマン・コー	ベックマン・コールター	2.700	4.600				5.000 🔾 3.300	
	酵素法	協和メデックス	日本電子JCA-B	2.700	4.600				1.900 🔾 3.400	
	酵素法	シノテスト	東芝25FR_Accut	2.700	4.600	0.700	4 400		5.000 ○ 3.400	
	酵素法	和光純薬	東芝TBA-200F	2.700	4.400	2.700	4.400		5.200 ○ 3.500	
	酵素法	和光純薬	日本電子JCA-B	2.500	4.700	9 700	4 600		5.100 ○ 3.500	
	酵素法 酵素法	協和メデックス	日本電子JCA-B 日本電子JCA-B	2.700	4.600	4.700	4.000		5.000 \( \times \) 3.400	
		LSIメディエンス	日本電子JCA-B	2.500	4.700	9 700	4 600		5.000 ○ 3.400	
	リンモリブデン酸法酵素法	積水メディカル 和光純薬	日本電子JCA-B 日本電子JCA-B	2.700 2.700	4.600 4.600				5.100 \( \times \) 3.500 5.100 \( \times \) 3.500	
	酵素法 酵素法	和元純楽 協和メデックス	日本電子JCA-B	2.700	4.600				5.100 \( \times \) 3.500 5.100 \( \times \) 3.500	
	酵素法	和光純薬	日本電子JCA-B	2.700	4.700	2.100	1.000		5.100 🔾 3.500	
	リンモリファン酸法	関東化学	東芝TBA-cシリー	2.500	4.700				5.000 🔾 3.400	
	酵素法	和光純薬	日本電子JCA-B	2.700	4.600				5.000 ○ 3.400	
1001	D4 2/3 Im	17 G / G / C	,	200	1.500			3 5.100 0 1	0 0.100	

7 IP 施設No.が低い順に並んでいます

施設	INO. W EN PARCE	-並ん(( よ)		男性基準	進範囲	女性基	進節囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1339	酵素法	LSIメディエンス	日本電子JCA-B	2.700	4.600			○ 6.000 ○	5.000 〇	3.500
1341	酵素法	和光純薬	日本電子JCA-B	2.700	4.600	2.700		○ 6.200 ○		
1343	酵素法	LSIメディエンス	日立LABOSPE	2.700	4.600			○ 6.100 ○	5.100 〇	3.500
1344	酵素法	シノテスト	日立7140-7170	2.700	4.600	2.700	4.600	○ 6.100 ○	5.000 〇	3.430
1346	酵素法	シノテスト	日本電子JCA-B	2.500	4.700			○ 6.100 ○	5.000 〇	3.400
1347	リンモリフ゛テ゛ン酸法	ロシュ・ダイアグ	ロシュコハ [*] ス8000c5	2.700	4.600			○ 6.200 ○	5.100 🔾	3.400
1348	リンモリフ゛テ゛ン酸法	積水メディカル	東芝TBA-cシリー	2.500	4.500			○ 6.100 ○	5.000 🔾	3.400
1352	酵素法	和光純薬	日本電子JCA-B	2.500	4.700	2.500	4.700	○ 6.000 ○	5.000 🔾	3.500
1355	酵素法	協和メデックス	東芝TBA-cシリー	2.700	4.600	2.700	4.600	○ 6.200 ○	5.100 🔾	3.500
	リンモリファン酸法	積水メディカル	日本電子JCA-B	2.700	4.600	2.700	4.600	○ 5.900 ○	4.900 🔾	3.400
	酵素法	カイノス	ヘックマン・コールター	2.500	4.700			○ 6.000 ○		3.200
	酵素法	和光純薬	日立7140-7170	2.700	4.600	2.700		○ 6.200 ○		
	酵素法	和光純薬	東芝TBA-cシリー	2.700	4.600			0 6.100 0		
	酵素法	協和メデックス	目立LABOSPE	2.700	4.600	2.700		0 6.100 0		
	酵素法	協和メデックス	東京貿易ビオリス5	2.700	4.600			○ 5.800 ○		
	酵素法 リンモリフ・デン酸法	和光純薬	目立LABOSPE	2.700	4.600	2 500		○ 6.300 ○		
	酵素法	関東化学 シノテスト	東芝TBA-cシリー 日立7140-7170	2.500 2.500	4.700 4.700			○ 6.300 ○ ○ 6.000 ○		
	酵素法	シーメンス	シーメンスHCDDim	2.700	4.600			0 6.200 0		
	酵素法	協和メデックス	日本電子JCA-B	2.700	4.600	2.100		0 6.000 0		
	酵素法	ミズホメディ	日本電子JCA-B	2.700	4.600	2.700		○ 6.000 ○		
1404	酵素法	協和メデックス	東芝TBA-cシリー	2.500	7.400			○ 6.100 ○	5.000 〇	3.400
1411	酵素法	和光純薬	日本電子JCA-B	2.700	4.600	2.700	4.600	○ 6.070 ○	4.990 ○	3.430
1419	酵素法	ベックマン・コー	ヘ゛ックマン・コールター	2.500	4.700	2.500	4.700	○ 6.200 ○	5.100 🔾	3.500
1501	リンモリフ゛テ゛ン酸法	和光純薬	日立LABOSPE	2.500	4.700	2.500	4.700	○ 6.200 ○	5.100 🔾	3.400
1502	リンモリフ゛テ゛ン酸法	積水メディカル	日本電子JCA-B	2.500	4.700	2.500	4.700	○ 6.130 ○	5.060 🔾	3.450
1505	酵素法	和光純薬	日立LABOSPE	2.700	4.600			○ 6.050 ○	5.020 🔾	3.410
	酵素法	和光純薬	日立LABOSPE	2.400	4.300	2.400	4.300	○ 6.200 ○		
	リンモリフ・テン酸法	積水メディカル	日本電子JCA-B	2.700	4.600			0 6.000 0		
	リンモリブデン酸法酵素法	積水メディカル	日立7140-7170	2.700	4.600	2.700	4.600	0 6.000 0		
	酵素法	和光純薬和光純薬	目立LABOSPE 目立LABOSPE	2.700 2.700	4.600 4.600	2 700	4 600	○ 6.100 ○ ○ 6.100 ○		
	酵素法	カイノス	東芝25FR_Accut	2.700	4.600	2.100		0 6.100 0		
	酵素法	和光純薬	目立7140-7170	2.700	4.600	2.700		0 6.300 0		
	酵素法	和光純薬	日立LABOSPE	2.500	4.700			O 6.100 O		
1530	酵素法	和光純薬	日本電子JCA-B	2.700	4.600	2.700	4.600	○ 6.000 ○	5.000 〇	3.400
1531	リンモリフ゛テ゛ン酸法	シーメンス	シーメンスHCDDim	2.400	4.300	2.400	4.300	○ 6.100 ○	5.100 🔾	3.500
1533	酵素法	和光純薬	シーメンスHCDDim	2.700	4.600			○ 6.200 ○	5.100 🔾	3.500
1540	酵素法	シノテスト	日本電子JCA-B	2.700	4.600	2.700	4.600	○ 6.000 ○	4.900 🔾	3.400
	酵素法	シノテスト	東芝25FR_Accut	2.500	4.700			○ 6.200 ○	5.100 🔾	3.500
	リンモリフ・テン酸法	和光純薬	日立7140-7170	2.400	4.300			○ 6.200 ○		
	酵素法	カイノス	東芝25FR_Accut	2.500	4.700	2.500	4.700		4.800 🔾	
	酵素法	たましょうべっとっ	F	0.500	4.500			0 6.030 0		
	リンモリファデン酸法 酵素法	積水メディカル 和光純薬	日立7140-7170	2.500 2.700	4.500	2.700		○ 6.100 ○ ○ 6.100 ○		
	酵素法	協和メデックス	日本電子JCA-B 日本電子JCA-B	2.700	4.600 4.600			0.1000		
	リンモリフ・テン酸法	和光純薬	ベックマン・コールター	2.500	4.700			0 6.100 0		
	リンモリフ・デン酸法	積水メディカル	日本電子JCA-B	2.500	4.500			0 6.100 0		
	リンモリファン酸法	和光純薬	目立7600Dモジュ	2.400	4.300			0 6.100 0		
	酵素法	和光純薬	目立LABOSPE	2.500	4.700			○ 6.200 ○		
1911	酵素法	カイノス	ヘックマン・コールター	2.500	4.700			○ 6.100 ○	5.000 🔾	3.400
1916	酵素法	和光純薬	日本電子JCA-B	2.700	4.600			○ 6.200 ○	5.100 🔾	3.600
1917	リンモリフ゛テ゛ン酸法	和光純薬	目立LABOSPE	2.500	4.700	2.500	4.700	○ 6.100 ○	5.100 🔾	3.400
	リンモリフ゛テ゛ン酸法	和光純薬	日立7140-7170	2.400	4.300			○ 6.200 ○		
	リンモリフ・テン酸法	和光純薬	日立7140-7170	2.400	4.300			○ 6.100 ○		
	リンモリフ・テン酸法	和光純薬	ヘックマン・コールター	2.400	4.300	0.500		0 6.000 0		
1930	リンモリフ・テン酸法	和光純薬	ヘックマン・コールター	2.500	4.700	2.500	4.700	○ 6.100 ○	ნ.000 ⊖	3.300

7 IP 施設No.が低い順に並んでいます

施設	p_1, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	男性基準範		男性基準範囲 女		女性基準範囲			試料報告値	
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1931	リンモリフ・テン酸法	和光純薬	ヘ、ックマン・コールター	2.500	4.700	2.500	4.700	○ 6.100 ○	4.900 〇	3 300
	リンモリフ・テン酸法	積水メディカル	日本電子JCA-B	2.500	4.500	2.000	11100	0 6.100 0		
	リンモリフ・テン酸法	和光純薬	ヘックマン・コールター	2.500	4.700			0 6.100 0		
	リンモリフ・テン酸法	積水メディカル	日立7140-7170	2.500	4.500	2.500	4.500	○ 6.100 ○		
	酵素法	協和メデックス	日本電子JCA-B	3.000	4.500	3.000		○ 6.100 ○		
2002	酵素法	協和メデックス	日本電子JCA-B	2.700	4.600			○ 6.000 ○		
2006	酵素法	協和メデックス	日立LABOSPE	2.500	4.700			○ 6.100 ○		
2008	酵素法	シノテスト	ロシュコハ*ス8000c7	2.700	4.600	2.700	4.600	○ 6.100 ○	5.000 〇	3.400
2010	酵素法	カイノス	日立7140-7170	2.400	4.300	2.400	4.300	○ 6.000 ○	5.000 〇	3.400
2011	リンモリフ゛テ゛ン酸法	和光純薬	ヘ・ックマン・コールター	2.500	4.700	2.500	4.700	○ 6.100 ○	5.000 〇	3.400
3001	酵素法	協和メデックス	日本電子JCA-B	2.700	4.600	2.700	4.600	○ 6.100 ○	5.000 〇	3.460
3013	酵素法	和光純薬	シーメンスHCDDim	2.400	4.300			○ 6.200 ○	5.100 〇	3.500
3018	酵素法	ベックマン・コー	ヘ゛ックマン・コールター	2.500	4.500			○ 6.200 ○	5.100 〇	3.400
3022	酵素法	協和メデックス	日本電子JCA-B	2.700	4.600	2.700	4.600	○ 6.100 ○	5.000 〇	3.440
3027	リンモリフ゛テ゛ン酸法	和光純薬	日立7600Dモシ゛ュ	2.400	4.300			○ 6.100 ○	5.000 〇	3.400
3048	酵素法	和光純薬	日本電子JCA-B	2.700	4.600	2.700	4.600	○ 6.100 ○	5.100 〇	3.400
3055	酵素法	協和メデックス	日本電子JCA-B	2.700	4.600			○ 6.200 ○	5.000 〇	3.400
3056	酵素法	協和メデックス	日本電子JCA-B	2.700	46.00	2.700	4.600	○ 5.900 ○	4.900 〇	3.300
3907	酵素法	協和メデックス	日本電子JCA-B	2.700	4.600	2.700	4.600	○ 6.000 ○	5.000 〇	3.400
4002	酵素法	セロテック	日本電子JCA-B	2.700	4.600			○ 6.100 ○	5.000 〇	3.400
4902	酵素法	協和メデックス	日立7140-7170	2.700	4.700			○ 6.000 ○	5.000 〇	3.400
5003	酵素法		日立7140-7170	2.500	4.500	2.500	4.500	○ 6.000 ○	5.000 〇	3.400
5005	酵素法	ミズホメディ	日本電子JCA-B	2.700	4.600			○ 6.200 ○	5.100 🔾	3.500
5006	酵素法	協和メデックス	日本電子JCA-B	2.700	4.600	2.700	4.600	○ 6.120 ○	5.090 🔾	3.470
6008	酵素法	協和メデックス	東芝TBA-200F	2.700	4.600			○ 6.100 ○	5.100 〇	3.500
6015	酵素法	協和メデックス	日立LABOSPE	2.500	4.300			○ 6.200 ○	5.100 🔾	3.500
6016	酵素法	協和メデックス	東芝TBA-200F	2.500	4.700	2.500	4.700	○ 6.200 ○	5.100 🔾	3.400
7001	酵素法	ニットーボー	日本電子JCA-B	2.300	4.000	2.800	4.400	○ 6.100 ○	5.000 🔾	3.400
7002	酵素法	LSIメディエンス	日本電子JCA-B	2.700	4.600			○ 6.100 ○	5.100 🔾	3.500
7007	酵素法	協和メデックス	ヘックマン・コールター	2.300	4.000	2.900	4.400	○ 5.900 ○	4.900 ○	3.300
7011	酵素法	和光純薬	東芝TBA-cシリー	2.700	4.600			○ 6.100 ○	5.000 🔾	3.500
	酵素法	協和メデックス	日本電子JCA-B	2.500	4.700			○ 6.100 ○		
	酵素法	協和メデックス	日立LABOSPE	2.500	4.700			○ 6.000 ○		
	酵素法	協和メデックス	日本電子JCA-B	2.500	4.700			○ 6.100 ○		
	酵素法	協和メデックス	目立7140-7170					0 6.000 0		
	酵素法	シノテスト	日立7140-7170					0 6.000 0		
	酵素法	LSIメディエンス	目立7140-7170		4.500			0 6.010 0		
	酵素法	デンカ生研	日立7140-7170	2.200	4.100	2.200	4.100	0 6.200 0		
	酵素法	ニットーボー	目立7140-7170	0.500	. =			O 6.200 O		
	酵素法	ミズホメディ	日立7140-7170	2.500	4.500			0 6.100 0		
	酵素法	和光純薬	日立7140-7170	0.500	4.500	0.500	4.500	0 6.100 0		
	酵素法	関東化学	日本電子JCA-B	2.500		2.500	4.700	○ 6.200 ○		
	酵素法	極東製薬	日本電子JCA-B	2.500	4.500			0 6.200 0		
	リンモリフ・テン酸法	積水メディカル	積水EV800					0 6.000 0		
	リンモリブデン酸法	ロシュ・ダイアグ	ロシュコハ ス8000c5					○ 6.020 ○		
	酵素法	<b>党</b>	ロシュコハ ス8000c7	2 200	4 200	2 200	4 200	○ 5.962 ○ ○ 6.230 ○		
	酵素法	栄研化学 ベックマン・コー	日立7140-7170 ヘックマン・コールター	3.200	4.300	3.200	4.300	○ 6.230 ○		
	酵素法 酵素法			9 500	4.500			○ 5.980 ○ ○ 6.040 ○		
		シスメックス	目立7140-7170 シーメンスHCDDim	۵.500	4.500					
9000	酵素法	和光純薬	√ √√√□○□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□					○ 6.175 ○	J.104 U	0.400

87 IP(F)

施設	測定原理	試薬メーカー	機器	男性基	男性基準範囲					試料報告値	
No	例足原生	<b>叫来</b> / //		下限	上限	下限	上限	試料01	試料02	試料03	
1053	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	2.500	4.500			O 6.600 C	5.100 (	3.600	
2012	ト゛ライケミストリー法	富士フィルムメ	富士ドライケムNX5	2.600	4.400	2.600	4.400	○ 6.500 ○	5.300	3.700	
9038	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	2.600	4.400			○ 6.300 ○	5.200	3.600	

122 IP(A1)

施設No.が低い順に並んでいます

施設 測定原理 試薬メーカー 機器 男性基準範囲 女性基準範囲 試料報告値 下限 上限 下限 上限 試料01 試料02 試料03

9041 ドライケミストリー法 アークレイ アークレイスポットケム ○ 5.800 ○ 4.900 ○ 3.200

182 IP(O)

施設No.が低い順に並んでいます

 施設 測定原理
 測定原理 試薬メーカー 機器
 男性基準範囲 女性基準範囲 対料を信値

 No
 下限 上限 下限 上限 試料01 試料02 試料03

9040 ト'ライケミストリー法 オーソ・クリニカ オーソヒ'トロス5600 ○ 6.210 ○ 5.220 3.720

# 血清鉄(Fe)

佐賀県医療センター好生館 検査部 新開 幸夫

#### 【参加状況】

参加施設数 181 施設(前年度 169 施設)

#### 【測定方法の状況】(表1参照)

参加施設の増加により、ニトロン PSAP 法の採用施設の増加となっているが、割合としては、 昨年と同様の結果となっている。

ハ゛ソフェナンスロリンスルホン酸 ニトロソ PSAP 法 ト゛ライケミストリー法 測定原理 フェレン法 Na 塩法 施設数 23(22) 149(137) 7(6) 2(1) 割合(%) 12.7(13.3) 1.1(0.6) 82.3(82.5) 3.9(3.6)

表 1 測定方法別施設数

( )内は、前年度

#### 【測定値の状況】(表2参照)

- 1. 試料 1~3 の全体の 3SD 除去後の CV%は、2.3~2.4%であった。3 つの試料とも同じくらいのバラツキとなっている。
- 2. 測定原理別の CV%では、3SD 除去後のバソフェナンスロリンスルホン酸 Na 塩法は 2.1~3.4%、ニトロソ PSAP 法は 2.3%、フェレン法は、1.6~1.8%で、全体的に良好な結果となっている。

表 2									
測定原理	試料	施設数	平均値	SD	CV%				
100元///	H- A/I-1	76 HX 9X	(mg/dL)						
全体	1	179	91.8	2.13	2.3				
	2	179	105.1	2.46	2.3				
(ドライケミストリー法を除く)	3	179	124.8	2.97	2.4				
	1	23	91.6	1.90	2.1				
バソフェナンスロリンスルホン酸 Na 塩法	2	23	104.4	2.64	2.5				
	3	23	123.0	2.92	3.4				
	1	149	92.0	2.14	2.3				
ニトロソ PSAP 法	2	149	105.3	2.41	2.3				
	3	149	125.2	2.90	2.3				
	1	7	89.7	1.60	1.8				
フェレン法	2	7	102.9	1.68	1.6				
	3	7	123.7	2.22	1.8				
オーソ	1	2	92.0	2.83	3.1				
	2	2	112.0	0.00	0.0				
Γ /1/\ΔΓΣ 1Δ 	3	2	142.8	0.28	0.2				

表 2 測定原理別集計(3SD 除去後)

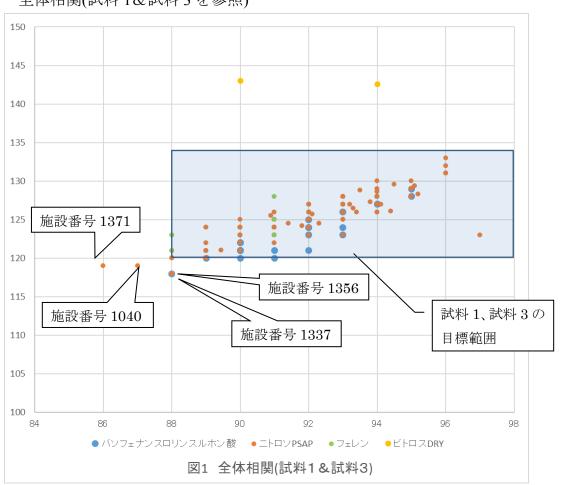
#### 【基準範囲の状況】(報告施設:171施設)

基準範囲として、JCCLS 共用基準範囲の  $40\sim188$ μg/dL を使用している施設は、48.0%(82 施設)となっており、増加傾向となっている。(表 3 参照)

表 3 JCCLS 共用基準範囲採用状況推移

	平成 27 年度	平成 28 年度	平成 29 年度
基準範囲回答施設数	166	162	171
共用基準範囲使用施設数	43	64	82
採用割合(%)	25.9%	40.0%	48.0%

#### 【解析コメント】


・3 つの試料ともに目標範囲に入る施設は、174 施設(97.2%)で昨年(161 施設、95.3%)より 良好な結果となっている。各試料別の目標域範囲達成率は、表 4 を参照。

目標値 目標範囲 試料 目標範囲達成率 (mg/dL)(mg/dL)93.1 88~98 97.8%(177 施設) 1 97.8%(177 施設) 2 106.5 101~112 3 120~134 96.7%(175 施設) 127.0

表 4 試料別目標範囲達成率

- ・今回、目標域から外れた施設は、再度、正確性の確認をお願いしたい。
- ・施設番号1362については、試料2のみで目標域から外れている。

(図1 全体相関(試料1&試料3を参照)



- ・検量方法の選択で間違って登録されているものが多数みられた。使用しているものが、 標準物質なのか管理血清なのか、その組成が血清ベースなのか溶媒ベースなのか再度確認を お願いしたい。
- ・試薬と分析器の組み合わせ別に集計した結果、クイックオートネオ(シノテスト)と日本電子の組み合わせは、他の組み合わせに比べ高値傾向が認められた。(表 5 参照)

表5採用施設数が多い試薬と測定分析機別集計

試薬名/試薬メーカー L タイプワコー/和光純薬 クイックオートネオ /シノテス									
(測定方法	(n°)	ノフェナンスロリン			(=\ny PSAP 法)				
分析機メーカー	試料	施設数	平均値	SD	CV%	施設数	平均値	SD	CV%
	1	20	91.3	1.66	1.8	119	92. 2	2. 07	2. 2
全体	2	20	104. 1	2.46	2.4	119	105.6	2. 29	2. 2
	3	20	122. 5	2.50	2.0	119	125. 6	2. 68	2. 1
ヘ゛ックマン	1	0	_	_	_	16	90.8	1. 56	1. 7
コールター	2	0	_	_	_	16	104.0	1.64	1.6
1 1/7	3	0	_	-	-	16	124. 3	2. 12	1.7
	1	7	91.6	1.40	1.5	12	91.3	1.07	1.2
東芝	2	7	104.6	2.88	2.8	12	104. 7	1.30	1. 2
	3	7	122.6	2.76	2.3	12	124. 5	1. 31	1. 1
	1	9	90.9	1.83	2.0	41	93.8	1. 59	1.7
日本電子	2	9	103.6	2.40	2. 3	41	107. 4	1. 99	1.8
	3	9	122. 2	2.77	2.3	41	127.8	2.30	1.8
	1	4	91.8	1.89	2. 1	44	91.8	1.71	1.9
日立	2	4	104. 3	2. 22	2. 1	44	105. 1	1.88	1.8
	3	4	122.8	1.89	1.5	44	124. 7	2.02	1.6

・ト ゙ ライケミストリー法のオーソ社は、目標値と参考許容範囲は、液状試薬と共通となっているが、試料3の測定結果は、参加2施設とも高値傾向となり、許容範囲からは外れる結果となっている。

8 FE 施設No.が低い順に並んでいます

施設	加令店用		<del>1</del> 4% <b>D</b> D	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1001	比色法(除蛋白	シノテスト	目立LABOSPE	40.00	188.0			○ 92.00 ○	105.0 🔾	124.0
1002	比色法(除蛋白	シノテスト	日立LABOSPE	80.00	199.0	70.00	179.0	○ 91.00 ○	104.0 🔾	123.0
	比色法(除蛋白	シノテスト	目立LABOSPE	40.00	188.0	40.00	188.0	○ 91.00 ○		
	比色法(除蛋白	シノテスト	日立LABOSPE	40.00	188.0			O 92.30 C		
	比色法(除蛋白	セロテック	東芝TBA-cシリー	80.00	199.0	70.00		O 92.00 C		
	比色法(除蛋白	シノテスト	日本電子JCA-B 日本7140-7170	40.00	188.0	40.00	188.0	O 95.10 C		
	比色法(除蛋白 比色法(除蛋白	和光純薬 協和メデックス	日立7140-7170 日本電子JCA-B	40.00 40.00	188.0 188.0			○ 93.00 ○ ○ 94.00 ○		
	比色法(除蛋白	協和メデックス	日本電子JCA-B	40.00	188.0	40.00	188.0	O 94.00 C		
	比色法(除蛋白	シノテスト	日本電子JCA-B	60.00	210.0	50.00		O 95.00 C		
	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0			○ 94.00 ○		
1024	比色法(除蛋白	シノテスト	目立LABOSPE	60.00	210.0	50.00	170.0	○ 93.00 ○	106.0 〇	126.0
1026	比色法(除蛋白	シノテスト	東芝25FR_Accut	40.00	188.0			○ 90.00 ○	103.0 🔾	123.0
1029	比色法(除蛋白	栄研化学	日立7140-7170	40.00	188.0	40.00	188.0	○ 89.00 ○	102.0 🔾	121.0
1031	比色法(除蛋白	和光純薬	東芝TBA-cシリー	40.00	188.0			○ 92.00 ○	105.0 🔾	125.0
	比色法(除蛋白	シーメンス	シーメンスHCDDim	54.00	200.0	48.00		○ 91.00 ○		
	比色法(除蛋白	シノテスト	日立7140-7170	60.00	210.0	50.00	170.0	○ 93.00 ○		
	比色法(除蛋白	セロテック	日本電子JCA-B	80.00	180.0			O 92.00 C		
	比色法(除蛋白	シノテスト	日立LABOSPE	40.00	188.0			O 94.00 C		
	比色法(除蛋白 比色法(除蛋白	シノテスト セロテック	目立7140-7170 日立LABOSPE	40.00 40.00	188.0 188.0	40.00	188.0	○ 91.00 ○ 87.00	104.0 🔾	119.0
	比色法(除蛋白	シノテスト	東芝25FR_Accut	62.00	185.0	52.00		○ 91.00 ○		
	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0	40.00		O 93.50 C		
	比色法(除蛋白	シノテスト	東芝TBA-cシリー	80.00	200.0			○ 93.00 ○		
	比色法(除蛋白	シーメンス	シーメンスHCDDim	40.00	188.0			○ 88.00 ○		
1057	比色法(除蛋白	シノテスト	東京貿易ビオリス5	60.00	210.0	50.00	170.0	○ 88.00 ○	101.0 〇	120.0
1058	比色法(除蛋白	LSIメディエンス	日本電子JCA-B	50.00	200.0	40.00	180.0	○ 90.00 ○	103.0 🔾	123.0
1062	比色法(除蛋白	シノテスト	目立LABOSPE	40.00	188.0	40.00	188.0	○ 91.00 ○	104.0 🔾	124.0
	比色法(除蛋白	シノテスト	日本電子JCA-B	55.00	163.0			○ 94.00 ○		
	比色法(除蛋白	シノテスト	日立LABOSPE	54.00		48.00		○ 88.00 C		
	比色法(除蛋白	シノテスト	目立LABOSPE	54.00		48.00		O 91.00 C		
	比色法(除蛋白 比色法(除蛋白	和光純薬 シノテスト	東芝TBA-cシリー 日立LABOSPE	40.00 50.00	188.0 170.0	40.00		○ 90.00 ○ ○ 91.00 ○		
	比色法(除蛋白	シノテスト	日立7140-7170	40.00	188.0	40.00		0 92.10 0		
	比色法(除蛋白	シノテスト	日立7140-7170	40.00	188.0	40.00		O 91.00 C		
	比色法(除蛋白	シノテスト	日本電子JCA-B	80.00		80.00		○ 93.00 ○		
1094	比色法(除蛋白	協和メデックス	日本電子JCA-B	54.00	181.0	43.00	172.0	○ 94.00 ○	108.0 🔾	128.0
1101	比色法(除蛋白	シノテスト	東芝TBA-cシリー	60.00	210.0	50.00	170.0	○ 90.00 ○	104.0 〇	124.0
1102	比色法(除蛋白	協和メデックス	東芝TBA-cシリー	40.00	188.0			○ 92.00 ○	106.0 🔾	126.0
1105	比色法(除蛋白	シノテスト	ヘ゛ックマン・コールター	60.00	210.0	50.00	170.0	○ 91.00 ○	105.0 🔾	125.0
	比色法(除蛋白	シノテスト	東京貿易ビオナリス5	54.00	200.0			○ 90.00 ○		
	比色法(除蛋白	和光純薬	日本電子JCA-B	54.00	200.0	48.00	154.0	O 93.00 C		
	比色法(除蛋白	和光純薬	東芝TBA-cシリー ベックマン・コールター	40.00	188.0	19.00	154.0	○ 90.00 ○ ○ 91.40 ○		
	比色法(除蛋白 比色法(除蛋白	シノテスト シノテスト	日本電子JCA-B	54.00 60.00	200.0 210.0			○ 95.00 ○		
	比色法(除蛋白	シスメックス	日本電子JCA-B	40.00		40.00		O 94.00 C		
	比色法(除蛋白	シノテスト	日立7140-7170	53.00	187.0	26.00		O 95.00 C		
	比色法(除蛋白	シノテスト	ヘックマン・コールター	51.00	198.0	45.00		O 92.00 C		
	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0			○ 94.00 ○		
1300	比色法(除蛋白	シノテスト		40.00	188.0			○ 94.40 ○	105.2 🔾	126.1
1301	比色法(除蛋白	和光純薬	日本電子JCA-B	80.00	180.0			○ 90.00 ○	101.0 🔾	121.0
1302	比色法(除蛋白	シノテスト	ヘ゛ックマン・コールター	40.00	188.0			○ 89.00 ○	104.0 🔾	124.0
	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0			○ 95.00 ○		
	比色法(除蛋白	シスメックス	東芝25FR_Accut	40.00	188.0	40.05	150	O 94.00 C		
	比色法(除蛋白	和光純薬	東芝TBA-200F	62.00	216.0			O 91.00 C		
	比色法(除蛋白	セロテック	日本電子JCA-B	65.00		52.00		O 92.00 C		
1313	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0	40.00	100.0	○ 94.00 ○	100.0 🔾	141.0

8 FE 施設No.が低い順に並んでいます

施設	INO. A EN PER	<u>-</u>		男性其法	准統囲	女性基	准备田	試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01 試料02 試料03
1316	比色法(除蛋白	シノテスト	日本電子JCA-B	70.00	190.0	60.00	170.0	○ 95.00 ○ 109.0 ○ 129.0
1325	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0	40.00	188.0	$\bigcirc$ 92.00 $\bigcirc$ 107.0 $\bigcirc$ 127.0
1327	比色法(除蛋白	和光純薬	日本電子JCA-B	40.00	188.0	40.00	188.0	$\bigcirc$ 92.00 $\bigcirc$ 105.0 $\bigcirc$ 123.0
1329	比色法(除蛋白	和光純薬	日本電子JCA-B	40.00	188.0	40.00	188.0	$\bigcirc$ 94.00 $\bigcirc$ 108.0 $\bigcirc$ 127.0
1330	比色法(除蛋白	和光純薬	日本電子JCA-B	80.00	199.0			$\bigcirc$ 90.00 $\bigcirc$ 102.0 $\bigcirc$ 121.0
1331	比色法(除蛋白	シノテスト	東芝TBA-cシリー	50.00	210.0			$\bigcirc$ 91.00 $\bigcirc$ 103.0 $\bigcirc$ 123.0
1337	比色法(除蛋白	和光純薬	日本電子JCA-B	40.00	188.0			○ 88.00 ○ 101.0 118.0
1339	比色法(除蛋白	LSIメディエンス	日本電子JCA-B	40.00	188.0			$\bigcirc$ 92.00 $\bigcirc$ 105.0 $\bigcirc$ 127.0
1341	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0	40.00	188.0	$\bigcirc$ 91.00 $\bigcirc$ 105.0 $\bigcirc$ 123.0
1343	比色法(除蛋白	シノテスト	目立LABOSPE	40.00	188.0			$\bigcirc$ 91.00 $\bigcirc$ 104.0 $\bigcirc$ 124.0
1344	比色法(除蛋白	シノテスト	目立7140-7170	57.00	191.0	44.00	150.0	$\bigcirc$ 91.00 $\bigcirc$ 105.0 $\bigcirc$ 125.0
1346	比色法(除蛋白	シノテスト	日本電子JCA-B	60.00	210.0	50.00	160.0	$\bigcirc$ 93.00 $\bigcirc$ 107.0 $\bigcirc$ 126.0
1347	比色法(除蛋白	ロシュ・ダイアグ	ロシュコハ [*] ス8000c5	40.00	188.0			$\bigcirc$ 88.00 $\bigcirc$ 103.0 $\bigcirc$ 121.0
1348	比色法(除蛋白	シノテスト	東芝TBA-cシリー	60.00	210.0	50.00	170.0	$\bigcirc$ 92.00 $\bigcirc$ 105.0 $\bigcirc$ 125.0
1349	比色法(除蛋白	ロシュ・ダイアグ	ロシュコハ [*] ス8000c5	40.00	188.0	40.00	188.0	$\bigcirc$ 92.00 $\bigcirc$ 106.0 $\bigcirc$ 124.0
1350	比色法(除蛋白	シノテスト	日本電子JCA-B	60.00	120.0	50.00	70.00	$\bigcirc$ 96.00 $\bigcirc$ 110.0 $\bigcirc$ 133.0
1352	比色法(除蛋白	和光純薬	日本電子JCA-B	55.00	163.0	50.00	139.0	$\bigcirc$ 90.00 $\bigcirc$ 104.0 $\bigcirc$ 122.0
1355	比色法(除蛋白	シノテスト	東芝TBA-cシリー	40.00	188.0	40.00	188.0	$\bigcirc$ 91.00 $\bigcirc$ 105.0 $\bigcirc$ 124.0
1356	比色法(除蛋白	ニットーボー	目本電子JCA-B	40.00	188.0	40.00	188.0	○ 88.00 ○ 101.0 118.0
1357	比色法(除蛋白	シノテスト	目立7140-7170	40.00	200.0	40.00	200.0	$\bigcirc$ 93.00 $\bigcirc$ 107.0 $\bigcirc$ 126.0
1358	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0			$\bigcirc$ 94.00 $\bigcirc$ 107.5 $\bigcirc$ 128.6
1359	比色法(除蛋白	シノテスト	目本電子JCA-B	40.00	188.0	40.00	188.0	$\bigcirc$ 96.00 $\bigcirc$ 110.0 $\bigcirc$ 131.0
1361	比色法(除蛋白	和光純薬	東芝TBA-20-3	40.00	188.0			$\bigcirc$ 92.00 $\bigcirc$ 109.0 $\bigcirc$ 124.0
1362	比色法(除蛋白	シノテスト	ヘックマン・コールター	57.00	191.0	44.00	150.0	○ 88.00 100.0 ○ 120.0
1368	比色法(除蛋白	和光純薬	東芝TBA-cシリー	40.00	188.0			$\bigcirc$ 94.00 $\bigcirc$ 108.0 $\bigcirc$ 127.0
1370	比色法(除蛋白	シノテスト	目立LABOSPE	40.00	188.0	40.00	188.0	$\bigcirc$ 90.00 $\bigcirc$ 104.0 $\bigcirc$ 124.0
1371	比色法(除蛋白	シノテスト	東京貿易ビオリス5	40.00	188.0			86.00 🔾 101.0 119.0
1382	比色法(除蛋白	和光純薬	目立LABOSPE	40.00	188.0			$\bigcirc$ 90.00 $\bigcirc$ 103.0 $\bigcirc$ 122.0
1385	比色法(除蛋白	和光純薬	東芝25FR_Accut	40.00	188.0			○ 92.00 ○ 103.0 ○ 121.0
1390	比色法(除蛋白	シノテスト	東芝TBA-cシリー	50.00	210.0	50.00	210.0	$\bigcirc$ 90.00 $\bigcirc$ 103.0 $\bigcirc$ 123.0
1391	比色法(除蛋白	シノテスト	日立7140-7170	54.00	181.0	43.00	172.0	$\bigcirc$ 92.00 $\bigcirc$ 107.0 $\bigcirc$ 127.0
1394	比色法(除蛋白	協和メデックス	東京貿易ビオリス5	40.00	188.0			○ 89.00 ○ 101.0 ○ 121.0
1401	比色法(除蛋白	シーメンス	シーメンスHCDDim	40.00	188.0	40.00	188.0	$\bigcirc$ 91.00 $\bigcirc$ 106.0 $\bigcirc$ 128.0
1402	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0			$\bigcirc$ 91.00 $\bigcirc$ 105.0 $\bigcirc$ 126.0
1403	比色法(除蛋白	セロテック	日本電子JCA-B	40.00	188.0	40.00	188.0	○ 89.00 ○ 102.0 ○ 120.0
1404	比色法(除蛋白	協和メデックス	東芝TBA-cシリー	54.00	181.0	43.00	172.0	$\bigcirc$ 93.00 $\bigcirc$ 106.0 $\bigcirc$ 126.0
1411	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0	40.00	188.0	$\bigcirc$ 94.50 $\bigcirc$ 108.7 $\bigcirc$ 129.6
1419	比色法(除蛋白	シノテスト	ベックマン・コールター	54.00	181.0	43.00	172.0	$\bigcirc$ 94.00 $\bigcirc$ 107.0 $\bigcirc$ 128.0
1501	比色法(除蛋白	シノテスト	目立LABOSPE	54.00	200.0	48.00	154.0	○ 90.00 ○ 102.0 ○ 121.0
1502	比色法(除蛋白	シノテスト	日本電子JCA-B	65.00	160.0	65.00	160.0	○ 94.00 ○ 108.0 ○ 128.0
1505	比色法(除蛋白	和光純薬	目立LABOSPE	40.00	188.0			○ 95.00 ○ 108.0 ○ 128.0
1506	比色法(除蛋白	シノテスト	目立LABOSPE	54.00	200.0	48.00	154.0	$\bigcirc$ 92.00 $\bigcirc$ 105.0 $\bigcirc$ 125.0
1511	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0			$\bigcirc$ 94.00 $\bigcirc$ 107.0 $\bigcirc$ 128.0
	比色法(除蛋白	シノテスト	日立7140-7170	40.00	188.0	40.00	188.0	$\bigcirc$ 91.00 $\bigcirc$ 106.0 $\bigcirc$ 125.0
1513	比色法(除蛋白	シノテスト	目立LABOSPE	40.00	188.0			○ 95.00 ○ 108.0 ○ 128.0
1519	比色法(除蛋白	カイノス	東芝25FR_Accut	40.00	188.0			○ 89.00 ○ 102.0 ○ 121.0
1528	比色法(除蛋白	和光純薬	目立7140-7170	40.00	188.0	40.00	188.0	○ 89.00 ○ 101.0 ○ 120.0
1529	比色法(除蛋白	和光純薬	目立LABOSPE	65.00	157.0	65.00	157.0	○ 95.00 ○ 109.0 ○ 129.0
	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0		188.0	$\bigcirc$ 97.00 $\bigcirc$ 102.0 $\bigcirc$ 123.0
	比色法(除蛋白	シーメンス	シーメンスHCDDim	54.00	200.0		200.0	$\bigcirc$ 91.00 $\bigcirc$ 103.0 $\bigcirc$ 125.0
1532	比色法(除蛋白	シノテスト	目立7140-7170	40.00	188.0	40.00	188.0	○ 93.30 ○ 106.0 ○ 126.5
	比色法(除蛋白	シーメンス	シーメンスHCDDim	40.00	188.0			○ 88.00 ○ 101.0 ○ 123.0
	比色法(除蛋白	シノテスト	東京貿易ビオリス2	40.00	188.0			$\bigcirc$ 90.00 $\bigcirc$ 104.0 $\bigcirc$ 125.0
	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0	40.00		$\bigcirc$ 92.00 $\bigcirc$ 106.0 $\bigcirc$ 126.0
	比色法(除蛋白	シノテスト	東芝25FR_Accut	54.00		43.00		$\bigcirc$ 92.00 $\bigcirc$ 106.0 $\bigcirc$ 125.0
	比色法(除蛋白	シノテスト	日立7140-7170	54.00	200.0	48.00	154.0	$\bigcirc$ 93.00 $\bigcirc$ 106.0 $\bigcirc$ 126.0
1543	比色法(除蛋白	協和メデックス	東芝25FR_Accut	54.00	181.0	43.00	172.0	○ 92.00 ○ 105.0 ○ 124.0

8 FE 施設No.が低い順に並んでいます

施設	御亭店型	-4. (动t/4g	146 1111	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1549	比色法(除蛋白	シノテスト	東京貿易ビオリス2	51.00	198.0	45.00	167.0	○ 89.00 ○	103.0 〇	122.0
1550	比色法(除蛋白	シノテスト	目立7140-7170	60.00	210.0	50.00	170.0	○ 95.00 ○	108.0 〇	128.0
1554	比色法(除蛋白	シノテスト		51.00	178.0	45.00	167.0	○ 92.00 ○	105.0 〇	127.0
1558	比色法(除蛋白	和光純薬	日本電子JCA-B	40.00	188.0	40.00	188.0	○ 91.00 ○	102.0 〇	121.0
1562	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0	40.00	188.0	○ 93.00 ○	108.0 〇	128.0
1901	比色法(除蛋白	シノテスト	ヘ゛ックマン・コールター	51.00	198.0	45.00	167.0	○ 93.00 ○	106.0 〇	127.0
1902	比色法(除蛋白	シノテスト	日本電子JCA-B	60.00	210.0	50.00	170.0	○ 93.00 ○	107.0 🔾	127.0
1903	比色法(除蛋白	シノテスト	目立7600Dモジュ	54.00	200.0	48.00	154.0	○ 92.00 ○	105.0 〇	124.0
1909	比色法(除蛋白	シノテスト	日立LABOSPE	54.00	181.0	43.00	172.0	○ 93.00 ○	107.0 〇	126.0
1911	比色法(除蛋白	シノテスト	ヘ゛ックマン・コールター	57.00	191.0	44.00	150.0	○ 91.00 ○	104.0 〇	124.0
1916	比色法(除蛋白	和光純薬	日本電子JCA-B	40.00	188.0			○ 90.00 ○	103.0 〇	121.0
1917	比色法(除蛋白	和光純薬	日立LABOSPE	55.00	200.0	45.00	180.0	○ 92.00 ○	105.0 〇	124.0
1926	比色法(除蛋白	シノテスト	東芝TBA-200F	55.00	200.0	45.00	180.0	○ 92.00 ○	105.0 〇	126.0
1928	比色法(除蛋白	シノテスト	ベックマン・コールター	54.00	200.0	48.00	154.0	○ 92.00 ○	104.0 〇	126.0
1930	比色法(除蛋白	シノテスト	ヘ゛ックマン・コールター	51.00	198.0	45.00	167.0	○ 90.00 ○	104.0 〇	123.0
1931	比色法(除蛋白	シノテスト	ベックマン・コールター	51.00	198.0	45.00	167.0	○ 89.00 ○	102.0 〇	121.0
1932	比色法(除蛋白	シノテスト	日本電子JCA-B	60.00	210.0	50.00	170.0	○ 95.00 ○	109.0 🔾	128.0
1934	比色法(除蛋白	シノテスト	ヘ゛ックマン・コールター	51.00	198.0	45.00	167.0	○ 90.00 ○	102.0 〇	122.0
1935	比色法(除蛋白	シノテスト	日立7140-7170	60.00	210.0	50.00	170.0	○ 94.00 ○	108.0 🔾	128.0
1936	比色法(除蛋白	セロテック	日本電子JCA-B	51.00	181.0	43.00	172.0	○ 88.00 ○	101.0 〇	120.0
1937	比色法(除蛋白	シノテスト	日本電子JCA-B	54.00	181.0	43.00	172.0	○ 91.00 ○	105.0 〇	124.0
2002	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0			○ 94.00 ○	108.0 〇	128.0
2006	比色法(除蛋白	シノテスト	目立LABOSPE	54.00	200.0	48.00	154.0	○ 93.00 ○	105.0 〇	125.0
2008	比色法(除蛋白	ロシュ・ダイアグ	ロシュコハ、ス8000c7	40.00	188.0	40.00	188.0	○ 90.00 ○	102.0 〇	124.0
2009	比色法(除蛋白	シノテスト	日本電子JCA-B	54.00	200.0	48.00	154.0	○ 96.00 ○	110.0 〇	132.0
2010	比色法(除蛋白	シノテスト	目立7140-7170	54.00	200.0	48.00	154.0	○ 90.00 ○	104.0 〇	124.0
2011	比色法(除蛋白	シノテスト	ヘ゛ックマン・コールター	51.00	198.0	45.00	167.0	○ 90.00 ○	104.0 〇	123.0
3001	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0	40.00	188.0	○ 93.20 ○	106.0 〇	127.0
3013	比色法(除蛋白	シーメンス	シーメンスHCDDim	54.00	200.0	48.00	154.0	○ 88.00 ○	103.0 🔾	123.0
3018	比色法(除蛋白	ベックマン・コー	ヘ゛ックマン・コールター	54.00	181.0	43.00	172.0	○ 92.00 ○	105.0 〇	125.0
3022	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0	40.00	188.0	○ 95.20 ○	107.9 🔾	128.3
3027	比色法(除蛋白	シノテスト	日立7600Dモジュ	54.00	200.0	48.00	154.0	○ 92.00 ○	104.0 〇	124.0
3048	比色法(除蛋白	積水メディカル	日本電子JCA-B	40.00	188.0	40.00	188.0	○ 92.00 ○	105.0 〇	125.0
3055	比色法(除蛋白	協和メデックス	日本電子JCA-B	40.00	188.0			○ 89.00 ○	101.0 🔾	121.0
3056	比色法(除蛋白	栄研化学	日本電子JCA-B	40.00	188.0	40.00	188.0	○ 96.00 ○	111.0 🔾	131.0
3907	比色法(除蛋白	セロテック	日本電子JCA-B	40.00	188.0	40.00	188.0	○ 90.00 ○	102.0 🔾	121.0
4002	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0			○ 94.00 ○	108.0 🔾	128.0
4902	比色法(除蛋白	ニットーボー	日立7140-7170	49.00	219.0			○ 93.00 ○	105.0 〇	123.0
	比色法(除蛋白	シノテスト	日立7140-7170	54.00	200.0	48.00	154.0	○ 91.00 ○	104.0 〇	124.0
5005	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0			○ 93.00 ○	107.0 🔾	128.0
5006	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0	40.00	188.0	○ 96.00 ○	110.0 〇	131.0
5010	比色法(除蛋白	シノテスト	日本電子JCA-B	40.00	188.0	40.00	188.0	○ 93.80 ○	107.6 🔾	127.3
6008	比色法(除蛋白	シノテスト	東芝TBA-200F	40.00	188.0			○ 91.00 ○	104.0 〇	124.0
6015	比色法(除蛋白	シノテスト	日立LABOSPE	64.00	187.0	40.00	162.0	○ 91.00 ○	104.0 〇	125.0
6016	比色法(除蛋白	協和メデックス	東芝TBA-200F	54.00	181.0	43.00	172.0	○ 91.00 ○	103.0 🔾	123.0
7001	比色法(除蛋白	ニットーボー	日本電子JCA-B	50.00	173.0	40.00		○ 91.00 ○		
7002	比色法(除蛋白	LSIメディエンス	日本電子JCA-B	40.00	188.0			○ 93.00 ○	107.0 🔾	128.0
7007	比色法(除蛋白	シノテスト	ヘックマン・コールター	80.00	200.0	70.00	180.0	○ 90.00 ○	104.0 〇	124.0
	比色法(除蛋白	シノテスト	東芝TBA-cシリー	80.00	180.0	70.00	160.0	○ 93.00 ○	107.0 🔾	127.0
	比色法(除蛋白	ニットーボー	日本電子JCA-B	50.00		40.00		○ 89.00 ○		
	比色法(除蛋白	シノテスト	日立LABOSPE	50.00	173.0			○ 90.00 ○		
	比色法(除蛋白	カイノス	日本電子JCA-B	60.00	176.0	50.00		○ 93.00 ○		
	比色法(除蛋白	協和メデックス	日立7140-7170					○ 91.00 ○		
	比色法(除蛋白	シノテスト	日立7140-7170					○ 93.00 ○		
	比色法(除蛋白	ニットーボー	日立7140-7170					○ 89.00 ○		
	比色法(除蛋白	和光純薬	日立7140-7170					○ 93.00 ○		
9024	比色法(除蛋白	関東化学	日本電子JCA-B	80.00	200.0	70.00	180.0	○ 95.00 ○	109.0 🔾	130.0

8 FE 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	松松马马	男性基 機器		女性基	女性基準範囲			試料報告値
No	例足原垤	武衆/一//	1992 111	下限	上限	下限	上限	試料01	試料02	試料03
9033	比色法(除蛋白	極東製薬	日本電子JCA-B	55.00	163.0	50.00	139.0	O 89.00 C	103.0 (	) 124.0
9035	比色法(除蛋白	積水メディカル	積水EV800					○ 90.00 ○	103.0 (	) 123.0
9043	比色法(除蛋白	ロシュ・ダイアグ	ロシュコハ [*] ス8000c5					O 94.11 C	107.5	127.0
9044	比色法(除蛋白		ロシュコハ ス8000c7					○ 89.44 ○	102.0	121.0
9046	比色法(除蛋白	栄研化学	日立7140-7170	54.00	181.0	43.00	172.0	○ 93.40 ○	106.6	126.0
9047	比色法(除蛋白	シノテスト	ヘックマン・コールター					○ 90.90 ○	104.4	125.5
9049	比色法(除蛋白	シスメックス	日立7140-7170	44.00	192.0	29.00	164.0	○ 91.80 ○	105.0 (	124.2
9050	比色法(除蛋白	シーメンス	シーメンスHCDDim					○ 91.00 ○	103.0 🤇	123.0

#### 183 FE(O)

施設測定原理		試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	No	PART N	75交布计	下限 上限 下限 上限 試料01 試料02 試料03
1075	ト゛ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	40.00 188.0 40.00 188.0 $\bigcirc$ 90.00 $\bigcirc$ 112.0 143.0
9040	ドライケミストリー法	オーソ・クリニカ	オーソヒ・トロス5600	○ 94.00 ○ 112.0 142.6

## カルシウム(Ca)

佐賀県医療センター好生館 検査部 新開 幸夫

【参加状況】参加施設数 226 施設(前年度 212 施設)

【測定方法の状況】(表1参照)

o-CPC 法が減り、酵素法、アルセナゾⅢ法が増加している

#### 表 1 測定方法別施設数

( )内は前年度

測定方法	o-CPC 法	MXB 法	酵素法	アルセナソ゛Ⅲ法	クロロホスホナゾ <b>Ⅲ</b> 法	ト゛ライ ケミストリー法	その他
施設数	21(29)	20(18)	62(58)	82(77)	14(13)	26(21)	1(1)
割合(%)	9.3(13.0)	8.8(8.5)	27.4(27.4)	36.3(34.0)	6.2(6.1)	11.5(9.9)	0.4(0.5)

#### 【測定値の状況】(表2参照)

Ⅲ法

3 | 14 | 9.71

- 1. 試料 1~3 の 3SD 除去後の全体の CV%は、1.4~1.8%であった。
- 2. 測定原理別の 3SD 除去後の CV%では、o-CPC 法 1.0~2.5%、MXB 法 1.0~2.0%、酵素 法 1.2~1.5%、アルセナゾⅢ法 1.4~1.6%、クロロホスナゾⅢ法 0.9~1.7%であった。昨年に比べバラツキは、小さくなっている。
- 3. 平均値では、ドライケミストリー法を除き、クロロホスナゾⅢ法が他法より高値傾向となっている。

	表 2	測定原理別集計(3SD	除去後)
--	-----	-------------	------

冲点十分	試	施設	平均値	GD.	CV 70/	细点十次	試	施設	平均値	GD.	CV 10/
測定方法	料	数	(mg/dL)	SD	CV%	測定方法	料	数	(mg/dL)	SD	CV%
全体	1	199	7.26	0.133	1.8		1	1	7.50	-	-
(ドライケミストリー	2	197	8.18	0.128	1.6	その他	2	1	8.30	-	-
法以外)	3	198	9.56	0.138	1.4		3	1	9.60	-	-
	1	21	7.19	0.176	2.5	アークレイ	1	3	6.60	0.265	4.0
o-CPC 法	2	21	8.12	0.166	2.0	SP	2	3	7.07	0.513	7.3
	3	20	9.44	0.093	1.0	ドライ法	3	3	7.50	0.346	4.6
	1	20	7.25	0.143	2.0	アークレイ	1	1	7.6	-	-
MXB 法	2	20	8.14	0.153	1.9	SD	2	1	9.0	-	-
	3	19	9.45	0.092	1.0	ドライ法	3	1	9.9	-	-
	1	62	7.25	0.107	1.5	富士	1	19	6.77	0.264	3.9
酵素法	2	62	8.21	0.104	1.3	フィルム	2	19	7.68	0.272	3.5
	3	62	9.62	0.120	1.2	ドライ法	3	19	9.28	0.322	3.5
コルナル	1	82	7.24	0.119	1.6	+ 11	1	3	7.13	0.076	1.1
アルセナソ゛	2	81	8.16	0.112	1.4	オーソ ト゛ライ法	2	3	8.23	0.026	0.3
Ⅲ法	3	82	9.56	0.132	1.4		3	3	9.62	0.015	0.2
Эпп	1	14	7.45	0.098	1.3						
ホスホナソ゛	2	14	8.36	0.138	1.7						

0.9

0.090

- 4.ドライケミストリー法は、オーソ社は、液状試薬とほぼ変わりない結果となっているが、アークレイ社の SP、SD 法、富士フィルム社については、液状試薬とは違う結果となっている。
- 5.富士フィルム社については、バラツキガ非常に大きくなっている。機器や試薬の取り扱い、 機器メンテナンスなど再度見直しをしていただきたい。

#### 【基準範囲の状況】 (表3参照)(報告施設:216施設)

基準範囲として JCCLS 共用基準範囲の  $8.8\sim10.1$  mg/dL を使用している施設は、44.9%(97 施設)となっており、年々増加傾向となっている。

	20 000=0 ) () (12 1 +2 H 2) () (17 1 )									
	平成 27 年度	平成 28 年度	平成 29 年度							
基準範囲回答施設数	205	203	216							
共用基準範囲使用施設数	47	76	97							
採用割合(%)	22.9%	37.4%	44.9%							

表 3 JCCLS 共用基準範囲採用状況

#### 【解析コメント】

・3 つの試料ともに目標範囲に入る施設は、178 施設(90.4%)で昨年(180 施設 95.7%)と比較すると少なくなっている。各試料の目標範囲達成率は、表 4 を参照ください。

		. 13.1 - 1.0	/ Ne : : = 1: • : • /		
試料	目標値	目標範囲	目標範囲達成率		
叶介	(mg/dL)	(mg/dL)	口係軋団建以平		
1	7.24	7.0~7.5	97.0%(191 施設)		
2	8.22	8.0~8.5	94.9%(187 施設)		
3	9.61	9.4~9.9	92.9%(183 施設)		

表 4 試料別目標範囲達成率(ドライケミストリー法は除く)

・測定方法別の目標範囲達成率では、o-CPC 法、MXB 法がその他の方法と比較して悪い結果となった。o-CPC 法は、試薬の変性によるバラツキが一番の原因と考えられる。これは、臨床の検体を測定する時も同様の傾向が考えられ、その他の比色法や酵素法への試薬の変更を考慮していただきたい。(表 5 参照)

測定方法	試料1	試料 2	試料3
全体(ドライケミストリー法以外)	97.0%	94.9%	92.9%
o-CPC 法	85.7%	81.0%	76.2%
MXB 法	95.0%	90.0%	85.0%
酵素法	100.0%	100.0%	100.0%
アルセナソ゛Ⅲ法	98.8%	96.3%	92.7%
クロロホスホナゾⅢ法	85.7%	92.9%	100.0%

表 5 測定原理別の各試料の目標範囲達成率

- ・測定方法別の測定値の分布としては、例年と同様の傾向がみられ、系統誤差が示唆される。特に、o-CPC 法、MXB 法を使用している施設は、試薬の変性の確認を含めぜひ行っていただきたい。
- ・検量方法の選択で間違って登録されているものが多数みられた。使用しているものが、 標準物質なのか管理血清なのか、その組成が血清ベースなのか溶媒ベースなのか再度確認を お願いしたい。

・ ドライケミストリー法については、系統誤差が認められ、富士フィルム社、アークレイ社は低値傾向となっている。(図1 全体相関 試料1&試料3参照)

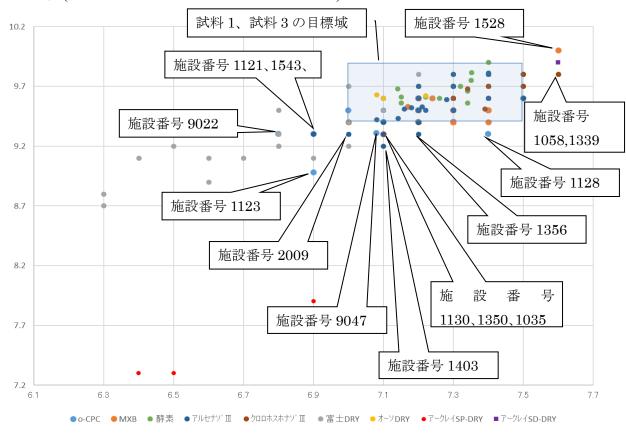



図1 全体相関(試料1&試料3)

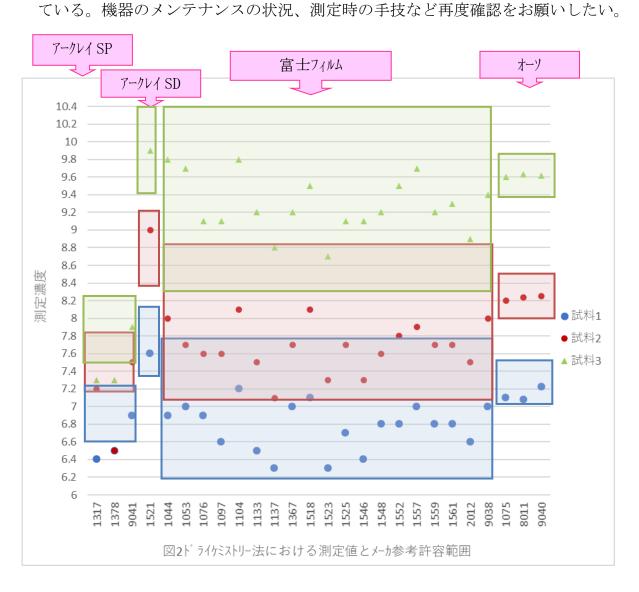

- ・目標範囲から外れている施設は、原因の調査及び是正を行ってください。 特に施設番号 1403、1528、2009、9022 は、2 年連続で外れており精度の確認を是非お願いしたい。
- ・施設番号1134、1916、3056の施設は、試料2のみ目標範囲から外れている。
- ・ ドライケミストリー各社の目標値とメーカー参考許容範囲は、表6を参照ください。

表 6 ドライケミストリー各社の目標値と参考許容範囲(mg/dL)

						//		
試料		アークレイ SP		アークレイ SD				
	参加	加施設数:3加	拖設	参加施設数:1施設				
	目標値	許容範囲	達成率	目標値	許容範囲	達成率		
1	6.0	6.6~7.2	66.7%	7.7	7.3~8.1	100%		
2	7.5	7.1~7.9	66.7%	8.8	8.4~9.2	100%		
3	7.9	7.5~8.3	33.3%	9.9	9.4~10.4	100%		

4.5		富士フィルム			オーソ	
試	参加	施設数:18	施設	参加	加施設数:3	施設
料	目標値	許容範囲	達成率	目標値	許容範囲	達成率
1	7.0	6.2~7.8	100%	7.24	7.0~7.5	100%
2	8.0	7.1~8.9	100%	8.22	8.0~8.5	100%
3	9.4	8.3~10.5	100%	9.61	9.4~9.9	100%

- ・富士フィルム社、アークレイ社のSP法は、トレーサビリティー体系において二次標準物質を測定するリファレ ンス法にo-CPC法が用いられており、酵素法などへの変更を検討していただきたい。
- ・富士フィルム社、アークレイ社は、各試料の許容範囲において、ホーバーラップが認められる。 許容範囲の設定方法について見直しをお願いしたい。 (図2ドライケミストリー法における測定値とメーカー参考許容範囲を参照)



9 CA 施設No.が低い順に並んでいます

施設	INO.N PEN MARC			男性基準	準範囲	女性基準	<b>準範囲</b>			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1001	アルセナゾⅢ法	カイノス	目立LABOSPE	8.800	10.10			○ 7.300 ○	8.200 〇	9.600
1002	クロロホスホナソ <b>˙Ⅲ</b>	LSIメディエンス	目立LABOSPE	8.700	10.30			○ 7.500 ○	8.300 〇	9.700
1004	酵素法	シノテスト	日立LABOSPE	8.800	10.10	8.800	10.10	○ 7.400 ○	8.400 〇	9.800
1006	酵素法	シノテスト	日立LABOSPE	8.800	10.10			○ 7.350 ○	8.340 🔾	9.750
1010	アルセナソ゛Ⅲ法	セロテック	東芝TBA-cシリー	8.700	10.30	8.700	10.30	○ 7.200 ○	8.100 🔾	9.500
	酵素法	シノテスト	日本電子JCA-B	8.200	10.50	8.200	10.50	○ 7.200 ○	8.200 🔾	9.500
	アルセナゾⅢ法	ニプロ	日本電子JCA-B	8.800	10.10	8.800		○ 7.220 ○		
	酵素法	和光純薬	日立7140-7170	8.800	10.10			○ 7.400 C		
	アルセナゾⅢ法	カイノス	日本電子JCA-B	8.800	10.10	0.000		○ 7.400 C		
	アルセナゾⅢ法 アルセナゾⅢ法	カイノスセロテック	日本電子JCA-B 日本電子JCA-B	8.800 8.600	10.10 10.20			○ 7.300 C ○ 7.100 C		
	酵素法	和光純薬	日本電子JCA-B	8.800	10.20	0.000		○ 7.100 C		
	比色法(MXB)	和光純薬	日立LABOSPE	8.700	10.10			○ 7.300 C		
	アルセナゾⅢ法	カイノス	東芝25FR_Accut	8.800	10.10			○ 7.400 C		
	比色法(MXB)	和光純薬	日立7140-7170	8.800	10.10	8.800		○ 7.400 ○		
1031	クロロホスホナソ [*] Ⅲ	LSIメディエンス	東芝TBA-cシリー	8.800	10.10			○ 7.300 ○	8.200 〇	9.600
1032	比色法(o-CPC)	シーメンス	シーメンスHCDDim	8.500	10.20			○ 7.200 ○	8.100 〇	9.500
1033	アルセナゾⅢ法	セロテック	日立7140-7170	8.600	10.20	8.600	10.20	○ 7.200 ○	8.200 〇	9.600
1034	アルセナゾⅢ法	セロテック	日立7140-7170	8.600	10.20	8.600	10.20	○ 7.400 ○	8.300 🔾	9.700
1035	アルセナゾⅢ法	セロテック	日本電子JCA-B	8.700	10.30			○ 7.100 ○	8.100	9.300
1038	アルセナソ゛Ⅲ法	カイノス	日立LABOSPE	8.800	10.10			○ 7.300 ○	8.400 🔾	9.700
	アルセナソ゛Ⅲ法	セロテック	日立7140-7170	8.800	10.10			○ 7.200 ○		
	アルセナゾⅢ法	カイノス	日立LABOSPE	8.800	10.10			○ 7.200 C		
	アルセナゾⅢ法	カイノス	東芝25FR_Accut	8.700	10.30			O 7.100 C		
	アルセナゾⅢ法	カイノス	ヘックマン・コールター	8.700	10.30			○ 7.200 C		
	アルセナソ˙Ⅲ法	カイノス	日本電子JCA-B	8.800	10.10			○ 7.210 C		
	クロロホスホナソ・Ⅲ 酵素法	LSIメディエンス シノテスト	日本電子JCA-B 東芝TBA-cシリー	8.500 8.700	10.20 11.00	0.000		○ 7.500 ○ 7.300 ○		
	比色法(o-CPC)	シーメンス	シーメンスHCDDim	8.800	10.10			○ 7.300 C		
	クロロホスホナゾⅢ	LSIメディエンス	目立7140-7170	8.700	10.30	8.700		○ 7.400 C		
	酵素法	シノテスト	東京貿易ピオリス5	8.200	10.00			○ 7.400 ○		
1058	クロロホスホナソ [*] Ⅲ	LSIメディエンス	日本電子JCA-B	8.700	10.30			7.600 ℂ	8.500 🔾	9.800
1059	アルセナゾⅢ法	セロテック	東京貿易ビオナリス2	8.600	10.20	8.600	10.20	○ 7.160 ○	8.130 🔾	9.510
1060	クロロホスホナソ <b>˙Ⅲ</b>	LSIメディエンス	日本電子JCA-B	8.600	10.20			○ 7.500 ○	8.500 〇	9.800
1062	酵素法	シノテスト	日立LABOSPE	8.800	10.10	8.800	10.10	○ 7.200 ○	8.200 🔾	9.600
1064	クロロホスホナソ [*] Ⅲ	LSIメディエンス	日本電子JCA-B	8.600	10.40	8.600	10.40	○ 7.500 ○	8.500 🔾	9.700
1072	アルセナソ゛Ⅲ法	カイノス	日立LABOSPE	8.700	10.30	8.700	10.30	○ 7.200 ○	8.100 🔾	9.500
	クロロホスホナソ゛Ⅲ	関東化学	日立LABOSPE	8.700	10.30	8.700		○ 7.340 ○		
	アルセナゾⅢ法	セロテック	東京貿易ビオリス2	8.200	10.00			○ 7.300 C		
	比色法(o-CPC)	シーメンス	シーメンスHCDDim	8.900	10.20			○ 7.200 C		
	酵素法 比色法(MXB)	和光純薬	東芝TBA-cシリー 東京貿易ピオーリス2	8.800	10.10 10.10			○ 7.300 ○ 7.400 ○		
	酵素法	和光純薬 シノテスト	日立LABOSPE	8.800 8.700	10.10			○ 7.400 C		
	酵素法	シノテスト	日立7140-7170	8.800	10.10			○ 7.200 C		
	酵素法	シノテスト	目立7140-7170	8.800	10.10			○ 7.000 C		
	酵素法	東洋紡績	日本電子JCA-B	8.700	10.30			○ 7.400 ○		
	酵素法	シノテスト	東芝TBA-cシリー	8.200	10.00	8.200	10.00	○ 7.100 ○	8.200 〇	9.600
1102	酵素法	東洋紡績	東芝TBA-cシリー	8.800	10.10			○ 7.400 ○	8.300 🔾	9.800
1105	アルセナソ゛Ⅲ法	ニプロ	ヘックマン・コールター	8.600	10.20			○ 7.300 ○	8.300 🔾	9.700
1112	酵素法	シノテスト	東京貿易ビオナリス5	8.700	11.00	8.700	11.00	○ 7.100 ○	8.100 〇	9.500
1116	アルセナゾⅢ法	カイノス	日本電子JCA-B	8.500	10.20	8.500	10.20	○ 7.200 ○	8.100 🔾	9.500
1120	酵素法	和光純薬	東芝TBA-cシリー	8.800	10.10			○ 7.200 ○	8.200 🔾	9.600
	比色法(o-CPC)	デンカ生研	東芝25FR_Accut	8.700	10.30		10.30	6.900	7.900	9.300
	アルセナゾⅢ法	ニプロ	ヘックマン・コールター	8.500	10.20			○ 7.280 ○		
	比色法(o-CPC)	シーメンス	シーメンスHCDDim	8.700	10.30		10.30	6.900	7.780	8.980
	比色法(o-CPC)	シスメックス	日本電子JCA-B	8.800	10.10			○ 7.400 C		9.300
1130	比色法(MXB)	和光純薬	日本電子JCA-B	8.800	10.10	8.800	10.10	○ 7.100 C	8.000	9.300

9 CA 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例是水柱	P(3)(2)	19英市政	下限	上限	下限	上限	試料01	試料02	試料03
1134	アルセナゾⅢ法	セロテック	日立7140-7170	8.700	10.30	8.700	10.30	○ 7.080	7.930 🔾	9.420
1135	アルセナゾⅢ法	ニプロ	ヘ゛ックマン・コールター	8.700	10.30			○ 7.400 ○	8.400 🔾	9.800
1136	酵素法	シノテスト	日本電子JCA-B	8.800	10.10			○ 7.200 ○	8.100 🔾	9.600
1300	酵素法	シノテスト		8.800	10.10			○ 7.340 ○	8.190 🔾	9.660
1301	比色法(MXB)	和光純薬	日本電子JCA-B	9.000	11.00			○ 7.170 ○	8.040	9.530
1302	アルセナゾⅢ法	ニプロ	ヘ゛ックマン・コールター	8.800	10.10			○ 7.300 ○	8.100 🔾	9.500
1305	アルセナゾⅢ法	カイノス	日本電子JCA-B	8.800	10.10			○ 7.300 ○	8.200 🔾	9.600
1308	酵素法	シノテスト	東芝25FR_Accut	8.800	10.10			○ 7.300 ○	8.300 🔾	9.800
1310	酵素法	和光純薬	東芝TBA-200F	8.700	10.30	8.700	10.30	○ 7.300 ○	8.300 🔾	9.600
1313	アルセナゾⅢ法	セロテック	日本電子JCA-B	8.700	10.30			○ 7.200 ○	8.000 🔾	9.400
1315	酵素法	シノテスト	日本電子JCA-B	8.800	10.10	8.800	10.10	○ 7.300 C	8.300 🔾	9.600
1316	クロロホスホナソ [*] Ⅲ	LSIメディエンス	日本電子JCA-B	8.700	10.30			○ 7.500 ○	8.400 🔾	9.700
	アルセナゾⅢ法	カイノス	日本電子JCA-B	8.800	10.10	8.800		○ 7.200 ○		
	比色法(MXB)	和光純薬	日本電子JCA-B	8.800	10.10	8.800	10.10	○ 7.300 ○	8.100 🔾	9.400
	アルセナゾⅢ法	ニプロ	ヘ・ックマン・コールター	8.800	10.10			○ 7.400 ○	8.300 🔾	9.700
	酵素法	シノテスト	日本電子JCA-B	8.800	10.10	8.800	10.10	○ 7.300 ○	8.200 🔾	9.600
	比色法(MXB)	和光純薬	日本電子JCA-B	8.700	10.30			○ 7.000 ○		
	酵素法	シノテスト	東芝TBA-cシリー	8.200	10.00			○ 7.300 ○		
	酵素法	シノテスト	日本電子JCA-B	8.800	10.10			○ 7.200 ○		
	クロロホスホナソ <b>゙Ⅲ</b>	LSIメディエンス	日本電子JCA-B	8.800	10.10			7.600	8.600 🔾	
	酵素法	東洋紡績	日本電子JCA-B	8.800	10.10			○ 7.100 C		
	アルセナゾⅢ法	セロテック	日本電子JCA-B	8.600	10.20	8.600		○ 7.200 C		
	アルセナゾⅢ法	カイノス	目立LABOSPE	8.800	10.10			○ 7.200 C		
	アルセナゾⅢ法	カイノス	日立7140-7170	8.800	10.10	8.800		○ 7.200 C		
	アルセナゾⅢ法	セロテック	日本電子JCA-B	8.400	10.20			O 7.100 C		
	アルセナゾⅢ法	カイノス	ロシュコハ ス8000c5	8.800	10.10			○ 7.400 C		
	酵素法	シノテスト	東芝TBA-cシリー	8.700	10.30			○ 7.200 C		
	アルセナゾⅢ法	カイノス	ロシュコハ ス8000c5	8.800	10.10	8.800		○ 7.300 C		
	比色法(MXB)	和光純薬	日本電子JCA-B	8.700	10.30	0.000		○ 7.100 C		9.300
	比色法(o-CPC)	ベックマン・コー	ヘックマン・コールター	8.800	10.10			○ 7.100 C		
	比色法(MXB)	和光純薬	日本電子JCA-B	8.700	10.30			○ 7.300 C		
	比色法(MXB)	和光純薬	東芝TBA-cシリー	8.800	10.10			○ 7.200 C		
	アルセナゾⅢ法	ニプロ	日本電子JCA-B	8.800	10.10	8.800		○ 7.200 C		9.300
	酵素法	シノテスト	日本電子JCA-B	8.800	10.10	0 000		○ 7.320 C		
	アルセナゾⅢ法 比色法(o-CPC)	セロテック	日本電子JCA-B ベックマン・コールター	8.800 8.700	10.10 10.30	0.000		○ 7.000 C		
	比色法(MXB)	LSIメディエンス 和光純薬	目立7140-7170	8.800		8.800		○ 7.200 ○ ○ 7.200 ○		
	比色法(MXB)	和光純薬	東芝TBA-cシリー	8.800	10.10	0.000		○ 7.200 C		
	アルセナゾⅢ法	カイノス	目立LABOSPE	8.800	10.10	8 800		○ 7.000 C		
	アルセナゾⅢ法	カイノス	東京貿易ビオリス5	8.800	10.10	0.000		○ 7.300 C		
	酵素法	和光純薬	目立LABOSPE	8.800	10.10			○ 7.300 C		
	酵素法	和光純薬	東芝25FR_Accut	8.800	10.10			○ 7.200 C		
	酵素法	シノテスト	東芝TBA-cシリー	8.700	10.30	8.700		○ 7.100 C		
	酵素法	シノテスト	日立7140-7170	8.200	9.700			○ 7.200 C		
	アルセナゾⅢ法	カイノス	東京貿易ビオリス5	8.800	10.10	0.200		○ 7.300 C		
	酵素法	シノテスト	東京貿易ビオリス2	8.800	10.10	8.800		○ 7.400 C		
	比色法(o-CPC)	シーメンス	シーメンスHCDDim	8.800	10.10			○ 7.400 C		
	酵素法	シノテスト	日本電子JCA-B	8.800	10.10			○ 7.300 C		
	アルセナゾⅢ法	セロテック	日本電子JCA-B	8.800	10.10	8.800		<ul><li>7.100</li></ul>	7.900	9.200
	酵素法	東洋紡績	東芝TBA-cシリー	8.700	10.30			○ 7.500 C		
	酵素法	関東化学	東京貿易ビオリス1	8.200	10.00	8.200		○ 7.400 C		
	その他	242141014	セントラル科学Picc	8.000	10.30			○ 7.500 C		
	酵素法	和光純薬	日本電子JCA-B	8.800	10.10	8.800		○ 7.340 C		
	アルセナゾⅢ法	ニプロ	ベックマン・コールター	8.700	10.30			○ 7.510 C		
	アルセナゾⅢ法	セロテック	目立LABOSPE	8.700	10.30			○ 7.400 C		
	比色法(MXB)	和光純薬	日本電子JCA-B	8.700	10.30			○ 7.240 C		
	酵素法	2 = 0 9215	目立LABOSPE	8.800	10.10			○ 7.150 C		
	D4 2/2 IPO			0.000	10.10			00 C		

9 CA 施設No.が低い順に並んでいます

施設	.110.18   P. A. P. A. C.	ш. го ст ос у		男性基	進節用	女性基	進新用			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
-	酵素法	シノテスト	目立LABOSPE	8.500	10.20			○ 7.300 ○		9 700
	比色法(MXB)	和光純薬	日本電子JCA-B	8.800	10.10	0.000	10.20	O 7.200 O		
	比色法(MXB)	和光純薬	日立7140-7170	8.800	10.10	8.800	10.10	○ 7.300 ○		
	酵素法	シノテスト	目立LABOSPE	8.800	10.10			○ 7.300 ○		
1514	酵素法		目立LABOSPE	8.800	10.10	8.800	10.10	○ 7.200 ○	8.300 〇	9.500
1519	アルセナゾⅢ法	カイノス	東芝25FR_Accut	8.800	10.10			○ 7.400 ○	8.300 〇	9.700
1528	比色法(MXB)	和光純薬	日立7140-7170	8.800	10.10	8.800	10.10	7.600	8.600	10.00
1529	酵素法	和光純薬	日立LABOSPE	8.700	10.30	8.700	10.30	○ 7.200 ○	8.200 〇	9.500
1530	比色法(MXB)	和光純薬	日本電子JCA-B	8.800	10.10	8.800	10.10	○ 7.200 ○	8.200 🔾	9.600
1531	比色法(o-CPC)	シーメンス	シーメンスHCDDim	8.700	10.30	8.700	10.30	○ 7.200 ○	8.100 🔾	9.500
	アルセナゾⅢ法	カイノス	日立7140-7170	8.800	10.10	8.800	10.10	○ 7.200 ○		
	比色法(o-CPC)	シーメンス	シーメンスHCDDim	8.800	10.10			○ 7.300 ○		
	アルセナゾⅢ法	カイノス	東京貿易ピオリス2	8.800	10.10			○ 7.200 ○		
	酵素法	シノテスト	日本電子JCA-B	8.800	10.10	8.800	10.10	○ 7.200 ○		
	酵素法	シノテスト	東芝25FR_Accut	8.700	10.30			○ 7.300 ○		
	アルセナゾⅢ法 アルセナゾⅢ法	セロテック カイノス	日立7140-7170 東芝25FR_Accut	8.500 8.700	10.20	8.700	10.30	○ 7.400 ○ 6.900 ○		9.300
	アルセナゾⅢ法	セロテック	日立7140-7170	8.200	10.00	0.700	10.30	0.900 0		
	酵素法	和光純薬	日本電子JCA-B	8.800	10.10	8 800	10 10	0 7.100 0		
	酵素法	シノテスト	日本電子JCA-B	8.800	10.10			0 7.200 0		
	アルセナゾⅢ法	カイノス	ヘ、ックマン・コールター	8.700	10.30			○ 7.300 ○		
	アルセナゾⅢ法	セロテック	日本電子JCA-B	8.600	10.20			○ 7.180 ○		
1903	アルセナゾⅢ法	セロテック	日立7600Dモジュ	8.500	10.20			○ 7.300 ○	8.200 〇	9.600
1909	アルセナゾⅢ法	カイノス	目立LABOSPE	8.700	10.30			○ 7.400 ○	8.300 〇	9.800
1911	比色法(o-CPC)	LSIメディエンス	ヘ、ックマン・コールター	8.700	10.30			○ 7.200 ○	8.100 〇	9.500
1916	比色法(MXB)	和光純薬	日本電子JCA-B	8.800	10.10			○ 7.400	7.900 🔾	9.500
1917	比色法(o-CPC)	和光純薬	日立LABOSPE	8.700	10.30	8.700	10.30	○ 7.300 ○	8.100 🔾	9.400
	アルセナソ™法	セロテック	日立7140-7170	8.500	10.20			○ 7.300 ○		
	アルセナソ・Ⅲ法	セロテック	日立7140-7170	8.500	10.20			○ 7.300 ○		
	比色法(o-CPC)	関東化学	東芝TBA-200F	8.700		8.700	10.30	○ 7.500 ○		
	アルセナゾⅢ法	セロテック	ベックマン・コールター	8.500	10.20	0.500	10.00	○ 7.300 ○		
	アルセナゾⅢ法 アルセナゾⅢ法	カイノス	ヘックマン・コールター ヘックマン・コールター	8.700	10.30			○ 7.200 ○ ○ 7.300 ○		
	アルセナナ 皿法	カイノス セロテック	日本電子JCA-B	8.700 8.600	10.30 10.20	8.700	10.30	0 7.100 0		
	アルセナゾⅢ法	カイノス	ヘックマン・コールター	8.700	10.20			○ 7.300 ○		
	アルセナゾⅢ法	セロテック	日立7140-7170	8.600	10.20	8.600	10.20	0 7.100 0		
	比色法(o-CPC)		日本電子JCA-B	8.000	10.40			○ 7.200 ○		
1937	アルセナゾⅢ法		日本電子JCA-B	8.000	10.40	8.000	10.40	○ 7.200 ○	8.200 〇	9.600
2002	アルセナゾⅢ法	カイノス	日本電子JCA-B	8.800	10.10			○ 7.400 ○	8.200 〇	9.600
2006	アルセナゾⅢ法	カイノス	目立LABOSPE	8.000	10.00			○ 7.200 ○	8.200 〇	9.600
2008	酵素法	シノテスト	ロシュコハ [*] ス8000c7	8.800	10.10	8.800	10.10	○ 7.100 ○	8.200 〇	9.600
2009	アルセナゾⅢ法	カイノス	日本電子JCA-B	8.400	10.20	8.400	10.20	○ 7.000 ○	8.000	9.300
2010	アルセナソ™法	カイノス	日立7140-7170	8.500	10.20	8.500	10.20	○ 7.400 ○	8.300 🔾	9.700
	アルセナソ゛Ⅲ法	カイノス	ヘ、ックマン・コールター	8.700	10.30			○ 7.200 ○		
	アルセナソ・Ⅲ法	カイノス	日本電子JCA-B	8.800		8.800	10.10	○ 7.400 ○		
	比色法(o-CPC)	シーメンス	シーメンスHCDDim	8.700	10.10			○ 7.300 ○		
	アルセナゾⅢ法	ニプロ	ヘックマン・コールター	8.600	10.10	0.000	10.10	○ 7.400 ○		
	酵素法 アルセナゾIII 注	東洋紡績	日本電子JCA-B 日立7600Dモジョ	8.800 8.500		8.800	10.10	○ 7.150 ○ 7.400 ○		
	アルセナゾⅢ法 酵素法	セロテック 和光純薬	日立7600Dモジュ 日本電子JCA-B	8.500 8.800	10.20 10.10	8 800	10 10	○ 7.400 ○ ○ 7.200 ○		
	時系伝 酵素法	和元純 <del>栄</del> シノテスト	日本電子JCA-B	8.800	10.10	0.000	10.10	○ 7.300 ○		
	アルセナゾⅢ法	カイノス	日本電子JCA-B	8.800	10.10	8,800	10.10		7.800 🔾	
	アルセナゾⅢ法	セロテック	日本電子JCA-B	8.800				○ 7.200 ○		
	アルセナゾⅢ法	セロテック	日本電子JCA-B	8.800	10.10			0 7.400 0		
	アルセナゾⅢ法	ニプロ	ヘックマン・コールター	8.500	10.20			○ 7.300 ○		
4902	アルセナソ゛Ⅲ法	カイノス	目立7140-7170	8.300	10.40			○ 7.100 ○		
5003	酵素法		目立7140-7170	8.700	10.30	8.700	10.30	○ 7.400 ○	8.200 〇	9.600

9 CA 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	166 BB	男性基準	準範囲	女性基	準範囲				試料報告值
No	侧足原理	武楽 グーガー	機器	下限	上限	下限	上限	試米	∤01	試料02	試料03
5005	酵素法	シノテスト	日本電子JCA-B	8.800	10.10			O 7.1	00 0	8.100 〇	9.500
5006	酵素法	シノテスト	日本電子JCA-B	8.800	10.10	8.800	10.10	O 7.1	40 🔾	8.200 〇	9.680
5010	酵素法	シノテスト	日本電子JCA-B	8.800	10.10	8.800	10.10	O 7.2	200 🔾	8.100 〇	9.500
6008	酵素法	東洋紡績	東芝TBA-200F	8.800	10.10			O 7.4	100 🔾	8.400 〇	9.800
6015	酵素法	東洋紡績	目立LABOSPE	8.500	10.50			O 7.3	300 🔾	8.300 〇	9.800
6016	酵素法	東洋紡績	東芝TBA-200F	8.700	10.30	8.700	10.30	O 7.3	300 🔾	8.200 〇	9.600
7001	アルセナソ゛Ⅲ法	セロテック	日本電子JCA-B	8.600	10.20	8.600	10.20	O 7.2	200 🔾	8.100 〇	9.500
7002	アルセナソ゛Ⅲ法	セロテック	日本電子JCA-B	8.800	10.10			O 7.1	00 🔾	8.100 〇	9.500
7007	アルセナソ゛Ⅲ法	カイノス	ヘ゛ックマン・コールター	8.400	10.30	8.400	10.30	O 7.1	00 🔾	8.100 〇	9.400
7011	アルセナソ゛Ⅲ法	セロテック	東芝TBA-cシリー	8.800	10.10			O 7.2	200 🔾	8.100 〇	9.400
7025	アルセナゾⅢ法	ニプロ	日本電子JCA-B	8.600	10.30			O 7.3	300 🔾	8.200 〇	9.500
7901	比色法(MXB)	和光純薬	日 立LABOSPE	8.700	10.30			O 7.3	300 🔾	8.100 〇	9.500
8004	酵素法	小野薬品	日本電子JCA-B	8.700	10.30			O 7.2	200 🔾	8.100 〇	9.500
9008	酵素法	シノテスト	日立7140-7170					O 7.0	000 🔾	8.000 〇	9.400
9009	クロロホスホナソ゛Ⅲ	LSIメディエンス	日立7140-7170	8.200	10.20			O 7.3	390 O	8.240 〇	9.510
9012	比色法(o-CPC)	デンカ生研	日立7140-7170	8.600	10.10	8.600	10.10	O 7.0	000 🔾	8.000 〇	9.500
9014	クロロホスホナソ゛Ⅲ	ニットーボー	目 立7140-7170					O 7.3	300 🔾	8.100 〇	9.600
9022	比色法(o-CPC)	ミズホメディ	日立7140-7170	8.400	10.20			6.8	300	7.800	9.300
9023	比色法(MXB)	和光純薬	日立7140-7170					O 7.2	200 🔾	8.200 〇	9.400
9024	クロロホスホナソ゛Ⅲ	関東化学	日本電子JCA-B	8.700	10.30	8.700	10.30	O 7.5	500 🔾	8.400 〇	9.800
9033	クロロホスホナソ゛Ⅲ	関東化学	日本電子JCA-B	8.700	10.30			O 7.4	100 🔾	8.300 〇	9.700
9035	酵素法	積水メディカル	積水EV800					O 7.2	220 🔾	8.200 〇	9.610
9043	アルセナゾⅢ法	カイノス	ロシュコハ [*] ス8000c5					O 7.1	41 🔾	8.094 🔾	9.434
9044	酵素法		ロシュコハ ス8000c7					O 7.3	352 🔾	8.333 🔾	9.817
9046	酵素法	栄研化学	日立7140-7170	8.600	10.10	8.600	10.10	O 7.2	260 🔾	8.230 🔾	9.600
9047	比色法(o-CPC)	ベックマン・コー	ヘックマン・コールター					O 7.0	080	7.980	9.310
9049	比色法(o-CPC)	シスメックス	日立7140-7170	8.600	10.20			O 7.3	300 🔾	8.200 〇	9.400
9050	比色法(o-CPC)	シーメンス	シーメンスHCDDim					O 7.2	200 🔾	8.100 🔾	9.500

89 CA(F) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足尽生	内来/ //	17交布计	下限	上限	下限	上限	試料01	試料02	試料03
1044	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	8.400	10.20		(	6.900	○ 8.000 ○	9.800
1053	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	8.700	11.00		(	7.000	7.700 €	9.700
1076	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.700	10.30		(	6.900	7.600 €	9.100
1097	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	8.600	10.20	8.600	10.20	6.600	7.600 €	9.100
1104	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム350	8.400	10.20		(	7.200	8.100 C	9.800
1133	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	8.400	10.20		(	6.500	7.500 €	9.200
1137	ドライケミストリー法	富士フィルムメ	富士ドライケム400	8.700	10.30	8.700	10.30	6.300	7.100 €	8.800
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.400	10.20		(	7.000	7.700 €	9.200
1518	ドライケミストリー法	富士フィルムメ	富士ドライケム350	8.800	10.10	8.800	10.10	7.100	○ 8.100 ○	9.500
1523	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.800	10.10		(	6.300	7.300 €	8.700
1525	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム350	8.700	10.30		(	6.700	7.700 €	9.100
1546	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.400	10.20		(	6.400	7.300 €	9.100
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.800	10.10	8.800	10.10	6.800	7.600 €	9.200
1552	ドライケミストリー法	富士フィルムメ	富士ドライケム400	8.400	10.20		(	6.800	7.800 €	9.500
1557	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.400	10.20		(	7.000	7.900 €	9.700
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.800	10.10	8.800	10.10	6.800	7.700 €	9.200
1561	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	8.800	10.10	8.800	10.10	6.800	7.700 €	9.300
2012	ト゛ライケミストリー法	富士フィルムメ	富士ドライケムNX5	8.400	10.20	8.400	10.20	6.600	7.500 €	8.900
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.400	10.20		(	7.000	○ 8.000 ○	9.400

#### 124 CA(A1)

施	型 測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値	
No	例足原生)	四条/ //	70克台	下限 上限 下限 上限 試料01 試料02 試料03	
13	17 ドライケミストリー法	アークレイ	アークレイスポットケム	8.200 10.00 8.200 10.00 6.400 7.200 7.300	
13	78 ドライケミストリー法	アークレイ	アークレイスホットケム	$8.700  10.30 \qquad \bigcirc 6.500  6.500  7.300$	
90	41 ドライケミストリー法	アークレイ	アークレイスホットケム	$\bigcirc$ 6.900 $\bigcirc$ 7.500 $\bigcirc$ 7.900	

154 CA(A2)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武衆/一//	7% 台	下限 上限 下限 上限 試料01 試料02 試料03
1521	、・ライケミストリー法	アークレイ	アークレイスポットケム	8.800 10.10 8.800 10.10 \( \cap 7.600 \) \( \cap 9.000 \) \( \cap 9.900 \)

#### 184 CA(O)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足亦生	四条/ //	7次2、台台	下限 上限 下限 上限 試料01 試料02 試料03
1075	ト・ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	8.800 10.10 8.800 10.10 $\bigcirc$ 7.100 $\bigcirc$ 8.200 $\bigcirc$ 9.600
8011	ト・ライケミストリー法	オーソ・クリニカ	オーソヒトロス250_3	8.400 10.20 8.400 10.20 $\bigcirc$ 7.080 $\bigcirc$ 8.240 $\bigcirc$ 9.630
9040	ト・ライケミストリー法	オーソ・クリニカ	オーソビトロス5600	$\bigcirc$ 7.220 $\bigcirc$ 8.250 $\bigcirc$ 9.620

## マグネシウム(Mg)

佐賀県医療センター好生館 検査部 新開 幸夫

#### 【参加状況】

その他

参加施設数 91 施設(前年度 85 施設)

#### 【測定方法の状況】(表1参照)

キシリジルブルー法が減少し、酵素法の増加がみられた。

測定方法別施設数 ()内は前年度 測定原理 キシリジルブルー法 酵素法 ドライケミストリー法 その他 施設数 68(58) 3(4) 2(1) 18(22) 割合(%) 19.8(25.9) 74.7(68.2) 3.3(4.7) 2.2(1.2)

## 【測定値の状況】(表2参照)

1.試料 1~3 の全体の 3SD 除去後の CV%は、2.2~3.1%であった。

3.80

2.28

2

0.000

0.024

0.0

1.0

表 1

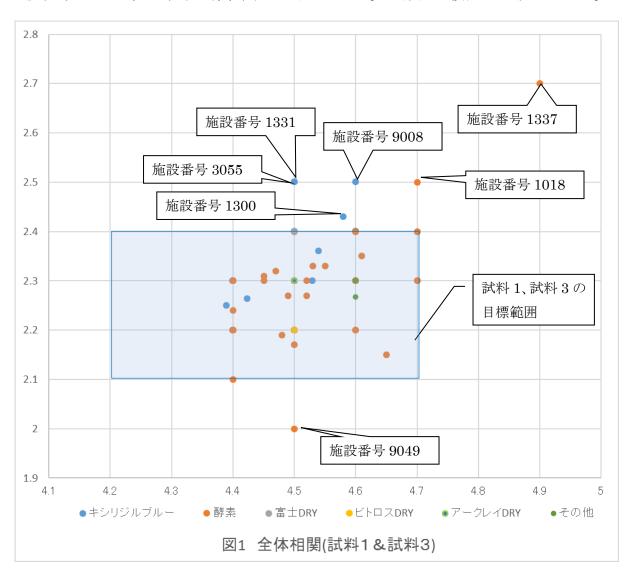
- 2.測定原理別では、3SD 除去後の CV%は、キシリジルブルー法 1.7~2.2%、酵素法 1.8~2.8%であ った。
- 3.試料の測定値は、液状試薬法とドライケミストリー法に大きな差は認められなかった。

	衣 2 例 足原理別集計(38D 除去俊)											
測定原理	試	施設	平均値	SD	CV%	測定原理	試	施設	平均値	SD	CV%	
例足原生	料	数	(mg/dL)	SD	C V 70	例足原垤	料	数	(mg/dL)	SD	C V 70	
全体	1	87	4.52	0.079	2.2	アークレイ	1	1	4.7	-	-	
(ドライケ法	2	87	3.68	0.072	72 2.2	SP	2	1	3.7	-	-	
以外)	3	86	2.29	0.082	3.1	ドライ法	3	1	2.3	-	-	
キシリシ゛ルフ゛ルー法	1	18	4.52	0.077	1.7	富士	1	1	4.5	-	-	
	2	18	3.69	0.076	2.1	フィルム	2	1	3.8	-	-	
) N (G	3	18	2.36	0.096	2.2	ドライ法	3	1	2.4	-	-	
	1	67	4.51	0.079	1.8	4-11	1	1	4.5	-	-	
酵素法	2	67	67 3 68 0 069 1 9 7-7		2	1	3.7	-	-			
11 / 14	3	65	2.28	0.024	2.8	1 /114	3	1	2.3	-	-	
	1	2	4.60	0.000	0.0							
1	1		ı	ı	ı	I						

測定原理別集計(3SD 除去後)

#### 【基準範囲の状況】(報告施設:81 施設)

上限値、下限値の組み合わせでは、 $1.8\sim2.4$ mg/dL を使用している施設が一番多く 30.0%(27 施設)で使用している。

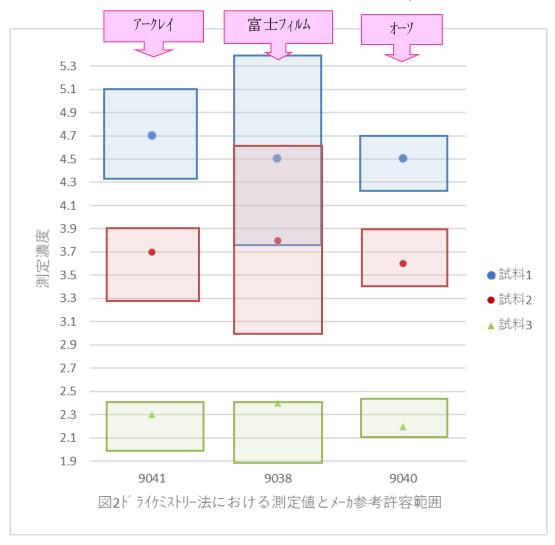

#### 【解析コメント】

・3 つの試料ともに目標範囲に入る施設は、75 施設(85.2%)で昨年(82 施設、96.5%)に比べ 悪くなっている。各試料別の目標範囲達成率は、表3を参照。

	Д.		
試料	目標値	目標範囲	目標範囲達成率
配介子	(mg/dL)	(mg/dL)	口惊軋团建双夺
1	4.48	4.2~4.7	93.2%(82 施設)
2	3.66	3.4~3.9	97.7%(86 施設)
3	2.28	2.1~2.4	89.8%(79 施設)

表 3 試料別目標範囲達成率

- ・目標域から外れた施設は、再度、正確性の確認をお願いしたい。 (図1 全体相関試料1&試料3参照)
- ・施設番号1300は、昨年も目標範囲から外れている。正確性の検証をお願いしたい。




- ・検量方法の選択で間違って登録されているものが多数みられた。使用しているものが、 標準物質なのか管理血清なのか、その組成が血清ベースなのか溶媒ベースなのか再度確認を お願いしたい。
- ・ドライケミストリー各社の目標値と参考許容範囲は、表4を参照ください。

表4 ドライケミストリー各社の目標値と参考許容範囲(mg/dL)

4.€		アークレイ			富士フィルム		オーソ			
試料	参加	加施設数:15	拖設	参加	加施設数:17	施設	参加	参加施設数:1施設		
14	目標値	許容範囲	達成率	目標値	許容範囲	達成率	目標値	許容範囲	達成率	
1	4.7	4.3~5.1	100%	4.5	3.6~5.4	100%	4.48	4.2~4.7	100%	
2	3.6	3.3~3.9	100%	3.8	3.0~4.6	100%	3.66	3.4~3.9	100%	
3	2.2	2.0~2.4	100%	2.4	1.9~2.9	100%	2.28	2.1~2.4	100%	

- ・富士フィルム社は、各試料の許容範囲において、オーバーラップが認められる。 許容範囲の設定方法について見直しをお願いしたい。
  - (図2ドライケミストリー法における測定値とメーカー参考許容範囲を参照)



10 MG 施設No.が低い順に並んでいます

施設	ITO.N EN MATC	(並ん)		男性基準	准公田	女性基	淮公田			試料報告値
加設 No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01 試	: co.læ4	
-						1.197	工版			<del></del>
	酵素法	LSIメディエンス	日立LABOSPE	1.800	2.400			O 4.500 O 3		
	酵素法	カイノス	日立LABOSPE	1.800	2.300	1.800	2.300	O 4.400 O 3		
	酵素法	セロテック	日立LABOSPE	1.800	2.700			O 4.530 O 3		
	酵素法	セロテック	東芝TBA-cシリー	1.800	2.400	1.800	2.400	O 4.400 O 3		
	酵素法	和光純薬	目立7140-7170	1.900	2.500			○ 4.500 ○ 3		
	酵素法	和光純薬	日本電子JCA-B	1.800	2.600			○ 4.500 ○ 3		
	酵素法	カイノス	日本電子JCA-B	1.700		1.700	2.400	○ 4.700 ○ 3		2.500
	酵素法	セロテック	東芝25FR_Accut	1.800	2.400			○ 4.500 ○ 3		
	酵素法	セロテック	日本電子JCA-B	1.700	2.500			○ 4.600 ○ 3		
	キシリシ・ルブルー法 酵素法	ロシュ・ダイアグセロテック	ロシュコハ、ス8000c5 日立7140-7170	1.510 1.800	2.210 2.400			○ 4.400 ○ 3 ○ 4.500 ○ 3		
	酵素法	ニットーボー	目立LABOSPE	2.000		2 000	2 600	○ 4.500 ○ 3 ○ 4.500 ○ 3		
	酵素法	LSIメディエンス	東芝TBA-cシリー	1.800	2.600 2.500	2.000	2.000	○ 4.600 ○ 3		
	酵素法	LSIメディエンス	日本電子JCA-B	1.700	2.600			○ 4.500 ○ 3		
	酵素法	和光純薬	目立LABOSPE	1.800	2.400	1 800	2 400	○ 4.700 ○ 3		
	酵素法	カイノス	目立LABOSPE	1.800	2.300			O 4.500 O 3		
	酵素法	和光純薬	東芝TBA-cシリー	1.800		1.800		○ 4.500 ○ 3	_	
	酵素法	カイノス	日本電子JCA-B	1.700	2.600	1.000	2.000	○ 4.500 ○ 3		
	酵素法	和光純薬	東芝TBA-cシリー	1.800	2.600			O 4.500 O 3		
	酵素法	ニットーボー	日本電子JCA-B	1.700	2.600			O 4.400 O 3		
	キシリシ゛ルフ゛ルー法	積水メディカル	A. L. Paga Jos. 1 B	1.900	2.900			O 4.580 O 3		2.430
	酵素法	和光純薬	日本電子JCA-B	1.800	2.400			O 4.450 O 3		
	酵素法	ニットーボー	日本電子JCA-B	1.900	2.500			O 4.600 O 3		
	酵素法	和光純薬	日本電子JCA-B	1.800	2.400	1.800	2.400	O 4.500 O 3		
	酵素法	LSIメディエンス	日本電子JCA-B	1.800	2.400			○ 4.500 ○ 3		
1329	酵素法	和光純薬	日本電子JCA-B	1.200	2.600	1.200	2.600	○ 4.500 ○ 3	3.600 〇	2.200
1330	酵素法	和光純薬	日本電子JCA-B	1.800	2.400			○ 4.500 ○ 3	3.700 🔾	2.300
1331	キシリシ゛ルフ゛ルー法	積水メディカル	東芝TBA-cシリー	1.700	2.600			○ 4.500 ○ 3	3.800	2.500
1337	酵素法	和光純薬	日本電子JCA-B	1.800	2.600			4.900 4	1.200	2.700
1339	酵素法	LSIメディエンス	日本電子JCA-B	1.800	2.400			○ 4.500 ○ 3	3.700 🔾	2.300
1341	酵素法	ニットーボー	日本電子JCA-B	1.800	2.500	1.800	2.500	○ 4.600 ○ 3	8.600 🔾	2.200
1343	酵素法	LSIメディエンス	日立LABOSPE	1.900	2.500			○ 4.500 ○ 3	3.700 🔾	2.300
1355	酵素法	和光純薬	東芝TBA-cシリー	1.800	2.400	1.800	2.400	○ 4.500 ○ 3	3.700 🔾	2.300
1362	酵素法	カイノス	日本電子JCA-B	1.800	2.500			○ 4.400 ○ 3	3.600 ○	2.200
1368	酵素法	和光純薬	東芝TBA-cシリー	1.900	2.500			○ 4.500 ○ 3	3.700 🔾	2.400
1391	酵素法	和光純薬	日立7140-7170	1.800	2.400	1.800	2.400	○ 4.400 ○ 3	3.600 ○	2.300
1404	酵素法	セロテック	東芝TBA-cシリー	1.800	2.400			○ 4.600 ○ 3	3.800 ○	2.400
1501	キシリシ゛ルフ゛ルー法	和光純薬	目立LABOSPE	1.800	2.600	1.800	2.600	○ 4.600 ○ 3	3.800 ○	2.400
1505	酵素法	和光純薬	日立LABOSPE	1.800	2.400			O 4.520 O 3	3.690 ○	2.300
	キシリシ・ルフ・ルー法	積水メディカル	日本電子JCA-B	1.600	2.800			O 4.500 O 3		
	酵素法	和光純薬	日立LABOSPE	1.800	2.600			O 4.400 O 3		
	酵素法	和光純薬	日立7140-7170	1.800	2.400			O 4.600 O 3		
	酵素法	和光純薬	目立LABOSPE	1.800	2.400			○ 4.500 ○ 3		
	酵素法	シスメックス	日本電子JCA-B	1.600	2.400			○ 4.700 ○ 3		
	キシリシ・ルブルー法	和光純薬	ヘックマン・コールター	1.900	2.500	1.900	2.500	○ 4.500 ○ 3		
	キシリシ・ルブルー法	積水メディカル	日本電子JCA-B	1.700	2.600			O 4.540 O 3		
	キシリシ・ルブルー法	和光純薬	目立7600Dモジュ	1.800	2.600			○ 4.600 ○ 3		
	酵素法	和光純薬	日立LABOSPE 日本電子ICA-P	1.800	2.400			○ 4.500 ○ 3		
	酵素法 酵素法	カイノス和光純薬	日本電子JCA-B 日本電子JCA-B	1.800 1.900	2.500 2.400			○ 4.400 ○ 3 ○ 4.470 ○ 3		
	時系伝 キシリシ・ルフ・ルー法	7日月1世代	日本電子JCA-B 東芝TBA-200F	1.700	2.400	1 700	2 600	0 4.470 0 3 0 4.400 0 3		
	キシリシルブルー法	積水メディカル	日本電子JCA-B	1.700	2.600	1.700	2.000	○ 4.400 ○ 3 ○ 4.500 ○ 3		
	キシリシルブルー法	積水メディカル	日立7140-7170	1.700		1.700	2 600	○ 4.600 ○ 3		
	酵素法	カイノス	日本電子JCA-B	1.800	2.300	1.100	2.000	○ 4.500 ○ 3		
	酵素法	カイノス	目立LABOSPE	1.800	2.600			○ 4.400 ○ 3		
	酵素法	LSIメディエンス	ロシュコハ、ス8000c7	1.800	2.400	1.800	2.400	○ 4.400 ○ 3 ○ 4.550 ○ 3		
	酵素法	協和メデックス	日本電子JCA-B	1.800				○ 4.490 ○ 3		
2001							0		- 10 0	-

10 MG 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例是水生	PG	1灰中	下限	上限	下限	上限	試料01	試料02	試料03
3013	その他	シーメンス	シーメンスHCDDim	1.800	2.600		(	O 4.600 C	3.800 €	2.300
3022	酵素法	和光純薬	日本電子JCA-B	1.800	2.400	1.800	2.400	○ 4.400 ○	3.590 €	2.240
3027	キシリシ゛ルフ゛ルー法	和光純薬	日 立7600Dモジュ	1.800	2.600		(	3.600	3.700 €	2.400
3048	酵素法	和光純薬	日本電子JCA-B	1.800	2.400	1.800	2.400	3.450	3.640 €	2.310
3055	キシリシ゛ルフ゛ルー法	和光純薬	日本電子JCA-B	1.700	2.300		(	<b>4.500</b> (	3.700	2.500
3056	酵素法	協和メデックス	日本電子JCA-B	1.700	2.600	1.700	2.600	3.480	3.620 €	2.190
3907	キシリシ゛ルフ゛ルー法	積水メディカル	日本電子JCA-B	1.800	2.800	1.800	2.800	3.600	3.700 €	2.300
4002	酵素法	セロテック	日本電子JCA-B	1.500	2.500		(	○ 4.400 ○	3.700 €	2.300
5003	酵素法		日立7140-7170	1.800	2.300	1.800	2.300	3.610	3.780 €	2.350
5006	酵素法	デンカ生研	日本電子JCA-B	1.800	2.300	1.800	2.300	○ 4.400 ○	3.600 €	2.200
6008	酵素法	LSIメディエンス	東芝TBA-200F	1.800	2.300		(	○ 4.500 ○	3.600 €	2.300
6016	酵素法	ニットーボー	東芝TBA-200F	1.900	3.100	1.900	3.100	○ 4.700 ○	3.700 €	2.300
7001	酵素法	ニットーボー	日本電子JCA-B	1.900	2.600	1.900	2.600	○ 4.500 ○	3.700 €	2.300
7002	酵素法	LSIメディエンス	日本電子JCA-B	1.800	2.400		(	○ 4.500 ○	3.700 €	2.300
7007	酵素法	ニットーボー	ヘックマン・コールター	1.800	2.400	1.800	2.400	○ 4.500 ○	3.600 €	2.200
7011	酵素法	セロテック	東芝TBA-cシリー	1.900	2.500		(	○ 4.500 ○	3.700 €	2.300
7025	酵素法	ニットーボー	日本電子JCA-B	1.700	2.600		(	○ 4.500 ○	3.600 €	2.200
7901	酵素法	LSIメディエンス	目 立LABOSPE	1.700	2.600		(	○ 4.500 ○	3.600 €	2.200
8004	酵素法	カイノス	日本電子JCA-B	1.450	2.710		(	○ 4.650 ○	3.850 €	2.150
9004	酵素法	協和メデックス	目 立7140-7170				(	3.600	3.700 €	2.300
9008	キシリシ゛ルフ゛ルー法	シノテスト	日 立7140-7170				(	○ 4.600 ○	3.800	2.500
9009	酵素法	LSIメディエンス	日 立7140-7170	1.800	2.400		(	○ 4.520 ○	3.670 €	2.270
9012	酵素法	デンカ生研	日立7140-7170	1.800	2.300	1.800	2.300	○ 4.500 ○	3.700	2.000
9014	酵素法	ニットーボー	日 立7140-7170				(	○ 4.500 ○	3.620 €	2.170
9023	酵素法	和光純薬	日 立7140-7170				(	○ 4.500 ○	3.700 €	2.300
9024	酵素法	関東化学	日本電子JCA-B	1.800	2.400	1.800	2.400	○ 4.700 ○	3.800 €	2.400
9035	キシリシ゛ルフ゛ルー法	積水メディカル	積水EV800				(	○ 4.530 ○	3.690 €	2.300
9043	キシリシ゛ルフ゛ルー法	ロシュ・ダイアグ	ロシュコハ [*] ス8000c5				(	○ 4.423 ○	3.609 €	2.264
9047	キシリシ゛ルフ゛ルー法	ベックマン・コー	ヘ゛ックマン・コールター				(	○ 4.390 ○	3.560 €	2.250
9049	酵素法	シスメックス	日立7140-7170	1.800	2.400		(	○ 4.500 ○	3.600 €	2.200
9050	その他	シーメンス	シーメンスHCDDim				(	<b>4.600</b> C	3.800 €	2.267

90 MG(F)

施設	测空原理	試薬メーカー	機器	男性基	男性基準範囲 女性基					試料報告値	
No	測定原理			下限	上限	下限	上限	試料01	試料02	試料03	
9038 ドライケミストリー法		富士フィルムメ	富士ドライケム700	1.800	2.400			O 4.500 (	3.800 (	2.400	<u></u>

125 MG(A1)

施設No.が低い順に並んでいます

施設 測定原理 試薬メーカー 機器 男性基準範囲 女性基準範囲 試料報告値 下限 上限 下限 上限 試料01 試料02 試料03

9041 ドライケミストリー法 アークレイ アークレイスポットケム ○ 4.700 ○ 3.700 ○ 2.300

185 MG(O)

施設No.が低い順に並んでいます

施設 測定原理 試薬メーカー 機器 男性基準範囲 女性基準範囲 試料報告値 下限 上限 下限 上限 試料01 試料02 試料03

No 下限 上限 下限 上限 試料01 試料02 試料03 9040 ドライケミストリー法 オーソ・クリニカ オーソビトロス5600 ○ 4.500 ○ 3.600 ○ 2.200

#### ナトリウム (Na)

琉球大学医学部附属病院 検査・輸血部 山内 恵

#### 【参加状况】

参加施設 242 施設 (前回 230 施設)

#### 【測定方法の状況】

イおン選択電極法は 207 施設(86%)、 ドライケミストリー法は 35 施設 (14%)であった。 イオン選択電極法のうち希釈法は 185 施(89%)、直接法は 22 施設(11%)であった。 ドライケミストリー法のメーカー別内訳は富士フィルムが 26 施設、アークレイが 5 施設、オーソが 4 施設であった。

#### 【測定値の状況】

1. 付か選択電極法の全体 CV%は 0.8~9.3%、3SD 除去後 CV%はいずれも 0.7%であった(表 1)。 原理別における全データ平均値はいずれの試料も希釈法に比べて直接法は低値にあった。 さらに、方法内変動 CV%および 3SD 除去率%についても直接法が高かった。(表 2)。

					-		
	試料	n	平均値	SD	CV%	最小	最大
	1	207	127.4	0.98	0.8	124.0	130.7
全データ	2	207	131.6	12.23	9.3	3.5	135.8
	3	207	141.1	3.81	2.7	88.4	143.7
	1	204	127.4	0.91	0.7		_
3SD 除去	2	202	132.8	0.88	0.7		
	3	206	141.4	1.01	0.7		

表 1. イオン選択電極法の試料別集計結果

表2	/オン選択電極法の原理別集計(3SD 除	二二/

試料	原理別		全データ			3SD 除去		3SD
武作	原 连 加	n	平均值	CV%	n	平均値	CV%	除去率%
	全 体	207	127.4	8.0	204	127.4	0.7	1.5
1	希釈法	185	127.4	0.7	184	127.5	0.6	0.5
	直接法	22	127.2	1.4	20	127.2	1.2	9.1
	全 体	207	131.6	9.3	202	132.8	0.7	2.4
2	希釈法	185	132.2	6.7	184	132.9	0.6	0.5
	直接法	22	126.5	21.2	18	132.5	0.8	18.2
	全 体	207	141.1	2.7	206	141.4	0.7	0.5
3	希釈法	185	141.4	0.7	185	141.4	0.7	0.0
	直接法	22	138.8	8.0	21	141.2	1.1	4.5

直接法のメーカー別分布を**図1**に示す。目標範囲から 外れた施設の多くはいずれの試料も低値域に分布し ていた。メーカーおよび機種による明らかな分布の偏り は認められなかった。

2. ドライケミストリー法のメーカー別 CV%は 0.3~1.6%であった。 平均値は電極法に比べて高い傾向にあった(表 3)。

図 1. 直接法のメーカー別分布図

表 3.	゛ライケミストリ法のメーカー	-別集計
------	----------------	------

試料	測定法	n	平均值	SD	CV%
	富士フィルム	26	129.1	0.73	0.6
1	アークレイ	5	127.4	1.02	0.8
1	オーソ	4	126.8	0.45	0.4
	電極法	204	127.4	0.91	0.7
	富士フィルム	26	134.9	0.55	0.4
2	アークレイ	5	133.6	0.80	0.6
	オーソ	4	134.2	0.77	0.6
	電極法	202	132.8	0.88	0.7
	富士フィルム	26	143.9	0.62	0.4
3	アークレイ	5	142.6	2.24	1.6
3	オーソ	4	144.8	0.45	0.3
	電極法	206	141.4	1.02	0.7

電極法: 3SD 除去後データ

3. 目標範囲は、電極法で試料 1 および試料 2 は最小報告幅(1.0mmol/L)、試料 3 は目標値設定施設の 2SD (1.2mmol/L)とした。ドライケミストリー法はオーソが電極法と同一の目標値および目標範囲とし、その他はメーカー設定の目標値および目標範囲(富士フィルム:3%、アークレイ:5%)を用いた。

目標達成率は電極法全体では 92.3~94.2%であったが、直接法が 63.6~72.7%と希釈法に比べて低かった。ドライケミストリー法全体で 94.3~100%であった。ホーソの試料 2 で 50%(2/4 施設)以外はすべて 100%の達成率であった (表 4)

		<b>Д</b> т.	口尔里巴四	<b>建</b> /风旭000	秋40 A O A					
					目標範	囲達成				
測定	三法	n		施設数 達成率(%)						
			試料1 試料2 試料3 試料1 試料2							
電極法	全体	207	194	94 195 191		93.7	94.2	92.3		
	希釈法	185	180	179	176	97.3	96.8	95.1		
	直接法	22	14	16	15	63.6	72.7	68.2		
ト゛ライケミストリー法	全体	35 35 33		33	35	100.0	94.3	100.0		
	富士フィルム	26	26	26	26	100.0	100.0	100.0		
	アークレイ	5	5	5	5	100.0	100.0	100.0		
	オーソ	4	4	2	4	100.0	50.0	100.0		

表 4. 目標範囲達成施設数および達成率

#### 【基準範囲】

JCCLS 共用基準範囲  $138\sim145$  mmol/L の採用は 95 施設であった (平成 28 年度 81 施設、平成 27 年度 54 施設、平成 26 年度 2 施設)。次いで  $138\sim146$  mmol/L が 49 施設であった。

11 NA 施設No.が低い順に並んでいます

施設	INO. W PART	===.70 (1 & )		男性基	準範囲	女性基	進範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1001	イオン選択電極法	積水メディカル	日立LABOSPE	138.0	145.0			O 128.0 C	134.0 〇	142.0
	イオン選択電極法	和光純薬	目立LABOSPE	138.0	146.0			○ 128.0 ○		
1004	イオン選択電極法	積水メディカル	目立LABOSPE	138.0	145.0	138.0	145.0	○ 129.0 ○	134.0 〇	142.0
1006	イオン選択電極法	積水メディカル	目立LABOSPE	138.0	145.0			○ 127.5 ○	132.8 🔾	141.4
1010	イオン選択電極法	デンカ生研	東芝TBA-cシリー	132.0	147.0	132.0	147.0	○ 127.0 ○	133.0 🔾	141.0
1012	イオン選択電極法		日本電子JCA-B	138.0	145.0	138.0	145.0	O 127.1 C	132.5 🔾	140.7
1013	イオン選択電極法	和光純薬	日立7140-7170	138.0	145.0			○ 127.0 ○	133.0 🔾	141.0
1015	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0			○ 127.0 ○	133.0 🔾	141.0
1018	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0	138.0	145.0	○ 126.5 ○	131.5 🔾	140.1
1021	イオン選択電極法	日本電子	日本電子JCA-B	135.0	145.0	135.0	145.0	○ 128.0 ○	133.2 🔾	141.6
1023	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0			○ 127.0 ○	132.0 🔾	141.0
1024	イオン選択電極法	積水メディカル	日立LABOSPE	138.0	146.0			○ 128.2 ○	133.7 🔾	142.1
1026	イオン選択電極法	東芝メディカル	東芝25FR_Accut	138.0	145.0			O 127.8 C	132.6 🔾	141.3
1028	イオン選択電極法	積水メディカル	日立LABOSPE	138.0	146.0			○ 128.0 ○	133.0 🔾	141.0
1029	イオン選択電極法	和光純薬	日立7140-7170	138.0	145.0	138.0	145.0	○ 129.0 ○	133.0 🔾	143.0
	イオン選択電極法	東芝メディカル	東芝TBA-cシリー	138.0	145.0			○ 126.0 ○	132.0 🔾	141.2
	イオン選択電極法	シーメンス	シーメンスHCDDim	136.0	147.0			O 126.3 C		139.7
	イオン選択電極法	積水メディカル	日立7140-7170	135.0	145.0			○ 129.0 ○		
	イオン選択電極法	積水メディカル	日立7140-7170	135.0	145.0	135.0		O 129.0	135.0 🔾	
	イオン選択電極法	*** L ) == " ) .	日本電子JCA-B	138.0	146.0			O 128.0 C		
	イオン選択電極法	積水メディカル	日立LABOSPE	138.0	145.0			O 128.0 C		
	イオン選択電極法	和光純薬	日立7140-7170	138.0	145.0	100.0		O 128.0 C		
	イオン選択電極法	積水メディカル	目立LABOSPE	138.0	145.0			O 128.0 C		
	イオン選択電極法	東芝メディカル	東芝25FR_Accut	138.0	146.0			O 126.9 C		
	イオン選択電極法	ベックマン・コー	ヘ、ックマン・コールター ロ 大電 フ・ICA-D	138.0	146.0			O 127.0 C		
	イオン選択電極法イオン選択電極法	日本電子	日本電子JCA-B 日本電子JCA-B	138.0 136.0	145.0 147.0			○ 128.3 C ○ 127.9 C		
	イオン選択電極法	デンカ生研	東芝TBA-cシリー	135.0	147.0	150.0		O 127.9 C		
	イオン選択電極法	シーメンス	シーメンスHCDDim	138.0	145.0			O 126.0 C		
	イオン選択電極法	積水メディカル	目立7140-7170	138.0	146.0	138.0		O 128.0 C		
	イオン選択電極法	DA.10. 7   1747	東京貿易ビオリス5	135.0	145.0	100.0		O 127.0 C		
	イオン選択電極法		日本電子JCA-B	138.0	146.0			O 127.0 C		
	イオン選択電極法		東京貿易ビオリス2	135.0	145.0	135.0		O 127.3 C		
	イオン選択電極法		日本電子JCA-B	135.0	145.0			O 127.0 C		
1062	イオン選択電極法	積水メディカル	目立LABOSPE	138.0	145.0	138.0	145.0	○ 127.0 ○	133.0 🔾	142.0
1064	イオン選択電極法	日本電子	日本電子JCA-B	135.0	150.0	135.0	150.0	○ 128.0 ○	134.0 〇	142.0
1072	イオン選択電極法	積水メディカル	日立LABOSPE	138.0	146.0	138.0	146.0	○ 126.0 ○	132.0 〇	140.0
1073	イオン選択電極法	和光純薬	日立LABOSPE	138.0	146.0	138.0	146.0	○ 126.5 ○	131.9 🔾	140.8
1074	イオン選択電極法		東京貿易ビオปス2	135.0	145.0	135.0	145.0	○ 128.8 ○	133.9 🔾	141.9
1077	イオン選択電極法	シーメンス	シーメンスHCDDim	136.0	147.0	136.0	147.0	○ 126.0 ○	131.0	139.0
1079	イオン選択電極法		常光EX-Z/Zs/					○ 128.0	3.530	88.40
1081	イオン選択電極法	デンカ生研	東芝TBA-cシリー	138.0	145.0	138.0	145.0	O 127.1 C	132.8 🔾	142.1
1084	イオン選択電極法		東京貿易ビオปス2	138.0	145.0	138.0	145.0	125.0	130.0	139.0
	イオン選択電極法		日立LABOSPE	138.0	146.0			○ 129.0 ○		
1089	イオン選択電極法	積水メディカル	日立7140-7170	138.0	145.0	138.0		O 128.6 C		
	イオン選択電極法	和光純薬	日立7140-7170	138.0	145.0	138.0		O 128.0 C		
	イオン選択電極法		日本電子JCA-B	138.0	146.0			O 127.0 C		
	イオン選択電極法	デンカ生研	東芝TBA-cシリー	135.0	145.0	135.0	145.0		131.0 🔾	
	イオン選択電極法	東芝メディカル	東芝TBA-cシリー	138.0	145.0			O 127.0 C		
	イオン選択電極法	ロシュ・ダイアグ	ロシュ91XXシリース*	135.0	145.0				132.0 🔾	
	イオン選択電極法	告业	ベックマン・コールター	135.0	145.0	196.0		O 127.2 C		
	イオン選択電極法	常光	常光EX-Z/Zs/	136.0	147.0			O 126.0 C		
	イオン選択電極法イオン選択電極法	デンカ生研	日本電子JCA-B 東芝TBA-cシリー	136.0	147.0 145.0	0.061		○ 126.0 C ○ 127.0 C		139.6
	イオン選択電極法	アンガ生研 東芝メディカル	東芝25FR_Accut	138.0 138.0	145.0	138.0		O 127.0 C		
	イオン選択電極法	ペックマン・コー	来之25FR_Accut ベックマン・コールター	136.0	146.0			O 127.0 C		
		シーメンス	シーメンスHCDDim	135.0	145.0			O 127.1 C		
1140	144 公1/1 电1图位	· / · / ·	. /*/110001111	100.0	1 10.0	100.0	110.0	J 121.1 C	100.0	

11 NA 施設No.が低い順に並んでいます

施設	110.77			男性基	準範囲	女性基	進範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1127	イオン選択電極法	エイアンドティー	日本電子JCA-B	135.0	145.0			○ 128.0 ○	133.0 🔾	142.0
1128	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0	138.0	145.0	○ 126.0 ○	131.0	139.0
1129	イオン選択電極法	ベックマン・コー	ヘックマン・コールター	135.0	145.0			○ 128.0 ○	133.0 🔾	141.0
1130	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0	138.0	145.0	○ 128.2 ○	132.7 🔾	141.4
1134	イオン選択電極法	積水メディカル	日立7140-7170	138.0	146.0	138.0	146.0	○ 128.0 ○	134.0 〇	142.0
	イオン選択電極法	ベックマン・コー	ヘックマン・コールター	138.0	146.0			○ 127.0 ○		
	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0			O 127.0 O		
	イオン選択電極法	日本電子	D-1-67-104-D	138.0	145.0			0 128.3 0		
	イオン選択電極法	日本電子	日本電子JCA-B	137.0	146.0			0 127.5 0		
	イオン選択電極法 イオン選択電極法	エイアンドティー	ヘックマン・コールター ロ大電フ・ICA-D	138.0	145.0			○ 127.0 ○ ○ 127.0 ○		
	イオン選択電極法	東芝メディカル	日本電子JCA-B 東芝25FR_Accut	138.0 138.0	145.0 145.0			0 128.2 0		
	イオン選択電極法	東芝メディカル	東芝TBA-200F	138.0		138.0	146.0	0 127.8 0		
	イオン選択電極法	日本電子	日本電子JCA-B	138.0	146.0	100.0	110.0	0 128.0 0		
	イオン選択電極法	HATTE I	日本電子JCA-B	138.0		138.0	145.0	0 127.0 0		
	イオン選択電極法	日本電子	日本電子JCA-B	138.0	146.0			O 128.0 O		
	イオン選択電極法	日本電子	日本電子JCA-B	138.0		138.0	145.0	○ 128.0 ○		
1327	イオン選択電極法	エイアンドティー	日本電子JCA-B	138.0	145.0	138.0	145.0	○ 129.0 ○	134.0 〇	143.0
1328	イオン選択電極法		ヘ゛ックマン・コールター	138.0	145.0			○ 128.0 ○	134.0 〇	140.0
1329	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0	138.0	145.0	○ 127.0 ○	133.0 🔾	141.0
1330	イオン選択電極法	日本電子	日本電子JCA-B	138.0	146.0			○ 128.0 ○	133.0 🔾	142.0
1331	イオン選択電極法	東芝メディカル	東芝TBA-cシリー	135.0	145.0			○ 127.0 ○	133.0 🔾	141.0
1335	イオン選択電極法		エイアント・ティーEA0	138.0	146.0			○ 128.0 ○	133.0 🔾	142.0
	イオン選択電極法	エイアンドティー	日本電子JCA-B	138.0	145.0			○ 127.0 ○		
	イオン選択電極法	エイアンドティー	日本電子JCA-B	138.0	145.0			O 127.0 O		
	イオン選択電極法		日本電子JCA-B	138.0		138.0		O 128.0 O		
	イオン選択電極法	<b>五</b> 以 64. 145	日本電子JCA-B	135.0		135.0	145.0	0 126.0 0		
	イオン選択電極法	和光純薬	日立LABOSPE	138.0	145.0	120 0	145.0	0 127.5 0		
	イオン選択電極法イオン選択電極法	積水メディカル 日本電子	日立7140-7170 日本電子JCA-B	138.0 135.0	146.0	138.0	145.0	0 128.0 0	134.0 🔾	
	イオン選択電極法	常光	常光EX-Z/Zs/	138.0	145.0			0 129.0 0		
	イオン選択電極法	東芝メディカル	東芝TBA-cシリー	135.0	147.0			0 127.0 0		
	イオン選択電極法	ロシュ・ダイアグ	ロシュコハ、ス8000c5	138.0		138.0	145.0	0 128.0 0		
	イオン選択電極法		日本電子JCA-B	138.0	146.0			O 128.0 O		
	イオン選択電極法	常光	常光EX-Z/Zs/	138.0		138.0	145.0		133.3 🔾	
1352	イオン選択電極法	日本電子	日本電子JCA-B	138.0	146.0	138.0	146.0	○ 126.0 ○	133.0 〇	141.0
1355	イオン選択電極法	デンカ生研	東芝TBA-cシリー	138.0	145.0	138.0	145.0	○ 127.0 ○	133.0 🔾	141.0
1356	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0	138.0	145.0	○ 126.8 ○	131.8 🔾	140.7
1357	イオン選択電極法	和光純薬	目立7140-7170	138.0	146.0	138.0	146.0	○ 128.0 ○	133.0 🔾	142.0
1358	イオン選択電極法	エイアンドティー	日本電子JCA-B	138.0	145.0			○ 127.4 ○	132.7 🔾	141.8
1359	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0	138.0	145.0	○ 127.0 ○	132.0 🔾	141.0
	イオン選択電極法		常光EX-Z/Zs/	138.0	145.0			○ 126.0 ○		139.0
	イオン選択電極法	ベックマン・コー	ヘックマン・コールター	138.0	146.0			O 127.0 O		
	イオン選択電極法	和光純薬	日立7140-7170	138.0		138.0	145.0	0 128.5	135.1	143.7
	イオン選択電極法	東芝メディカル	東芝TBA-cシリー	138.0	145.0	100.0	1.45.0	0 127.0 0		
	イオン選択電極法	和光純薬	目立LABOSPE 東京贸見がおります。	138.0		138.0	145.0	0 127.0 0		
	イオン選択電極法 イオン選択電極法	関東化学	東京貿易ビオナリス5 東京貿易ビオナリス1	138.0 138.0	145.0 145.0			○ 127.0 ○ ○ 128.0 ○		
	イオン選択電極法	和光純薬	目立LABOSPE	138.0	145.0			0 127.0 0		
	イオン選択電極法	東芝メディカル	東芝25FR_Accut	138.0	145.0			0 128.1		143.6
	イオン選択電極法	デンカ生研	東芝TBA-cシリー	138.0		138.0	146.0	0 126.0 0		
	イオン選択電極法	積水メディカル	日立7140-7170	138.0		138.0		O 128.0 O		
	イオン選択電極法	常光	常光EX-Z/Zs/	138.0	145.0	·		124.4		139.6
	イオン選択電極法		テクノメディカGAST	138.0		138.0	145.0	○ 126.0 ○		
1400	イオン選択電極法	常光	東京貿易ビオリス2	138.0		138.0	145.0	○ 128.0 ○	133.0 〇	143.0
1401	イオン選択電極法	シーメンス	シーメンスHCDDim	138.0	145.0	138.0	145.0	○ 127.0 ○	132.0 🔾	140.0
1402	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0			○ 128.0 ○	133.0 🔾	141.0

11 NA 施設No.が低い順に並んでいます

施設	110.W  ZIV / RIC			男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1403	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0	138.0	145.0	○ 127.0 ○	133.0 🔾	141.0
1404	イオン選択電極法	デンカ生研	東芝TBA-cシリー	138.0	146.0			○ 129.0 ○	134.0 〇	143.0
1405	イオン選択電極法	関東化学	東京貿易ビオリス1	135.0	145.0	135.0	145.0	○ 129.0 ○	134.0 🔾	142.0
1408	イオン選択電極法	常光	常光EX-Z/Zs/	135.0	145.0	135.0	145.0	125.0	130.0	139.0
1411	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0	138.0	145.0	○ 128.4 ○	133.7 🔾	142.2
	イオン選択電極法	ベックマン・コー	ヘ、ックマン・コールター	138.0	146.0	138.0		○ 126.4 ○		
	イオン選択電極法	シスメックス	日立LABOSPE	138.0	146.0			O 127.0 C		
	イオン選択電極法	日本電子	日本電子JCA-B	138.0	146.0	138.0		O 126.7 C		
	イオン選択電極法	和光純薬	日立LABOSPE	138.0	145.0	100.0		O 128.0 C		
	イオン選択電極法イオン選択電極法	日本電子	日立LABOSPE 日本電子JCA-B	136.0 138.0	147.0 145.0	136.0		○ 128.0 ○ ○ 127.6 ○		
	イオン選択電極法	積水メディカル	日立7140-7170	138.0	145.0	138.0		0 128.0 0		
	イオン選択電極法	シスメックス	目立LABOSPE	138.0	145.0	150.0		O 128.3 C		
	イオン選択電極法	和光純薬	日立LABOSPE	138.0	145.0	138.0		0 127.0 0		
	イオン選択電極法	エイアンドティー	エイアント・ティーEA0	138.0	145.0			○ 128.0 ○		
1519	イオン選択電極法	東芝メディカル	東芝25FR_Accut	138.0	145.0			○ 127.0 ○	133.0 〇	142.0
1523	イオン選択電極法		テクノメデ [*] ィカSTAX	138.0	145.0			○ 127.0 ○	133.0 🔾	143.0
1525	イオン選択電極法	エイアンドティー	エイアント・ティーEA0	138.0	146.0			○ 127.0 ○	132.0 🔾	140.0
1528	イオン選択電極法	和光純薬	目立7140-7170	138.0	145.0	138.0	145.0	129.4	135.0 🔾	143.0
1529	イオン選択電極法	和光純薬	日立LABOSPE	138.0	146.0	138.0	146.0	○ 127.7 ○	133.6 🔾	142.4
1530	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0	138.0	145.0	○ 127.0 ○	132.0 🔾	141.0
1531	イオン選択電極法	シーメンス	シーメンスHCDDim	138.0	146.0	138.0	146.0	○ 126.4 ○	131.6	139.9
	イオン選択電極法		日立7140-7170	138.0	145.0	138.0		○ 128.3 ○		
	イオン選択電極法	シーメンス	シーメンスHCDDim	138.0	145.0			O 127.0 C		
	イオン選択電極法	エイアンドティー	エイアント、ティーEAO	138.0	145.0			O 127.0 C		
	イオン選択電極法	エイアンドティー	エイアントディーEAO	138.0	145.0	100.0		O 127.0 C		
	イオン選択電極法イオン選択電極法	エイアンドティー	日本電子JCA-B 東英255B Apout	138.0		138.0		○ 127.7 ○ ○ 129.0	135.0 🔾	
	イオン選択電極法	東芝メディカル シスメックス	東芝25FR_Accut 日立7140-7170	138.0 136.0	146.0 147.0			○ 129.0 ○ 127.0 ○		
	イオン選択電極法	東芝メディカル	東芝25FR_Accut	138.0	146.0	138.0	146.0	O 128.0 C		
	イオン選択電極法	2(C) 7 1777	東京貿易ビオリス2	138.0	146.0	100.0	110.0		134.0 🔾	
	イオン選択電極法	積水メディカル	日立7140-7170	135.0	145.0			○ 128.0 ○		
	イオン選択電極法		日本電子JCA-B	138.0	145.0	138.0		○ 129.0 ○		
1562	イオン選択電極法	エイアンドティー	日本電子JCA-B	138.0	145.0	138.0	145.0	○ 126.8 ○	132.5 🔾	141.2
1901	イオン選択電極法	ベックマン・コー	ヘ゛ックマン・コールター	138.0	146.0	138.0	146.0	○ 127.0 ○	132.0 〇	141.0
1902	イオン選択電極法		日本電子JCA-B	135.0	145.0			○ 127.4 ○	132.8 🔾	141.3
1903	イオン選択電極法	シスメックス	日立7600電解	136.0	147.0			○ 128.0 ○	133.0 🔾	142.0
	イオン選択電極法	和光純薬	目立LABOSPE	138.0	146.0			○ 128.0 ○	133.0 🔾	142.0
	イオン選択電極法	ベックマン・コー	ヘ、ックマン・コールター	138.0	146.0			○ 127.0 ○		
	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0			O 128.0 C		
	イオン選択電極法	和光純薬	日立LABOSPE	138.0	146.0	138.0		O 128.0 C		
	イオン選択電極法	シスメックス	目立3100	138.0	146.0			O 128.0 C		
	イオン選択電極法イオン選択電極法	シスメックス シスメックス	日立7140-7170 日立7140-7170	136.0 136.0	147.0 147.0			○ 127.0 ○ ○ 127.0 ○		
	イオン選択電極法	エイアンドティー	ヘックマン・コールター	135.0	147.0	135.0		0 127.0 0		
	イオン選択電極法	デンカ生研	東芝TBA-200F	135.0	150.0			0 127.0 0		
	イオン選択電極法	エイアンドティー	ヘックマン・コールター	136.0	147.0	100.0		O 127.0 C		
	イオン選択電極法	エイアンドティー	ヘックマン・コールター	138.0	146.0	138.0		○ 126.0 ○		
	イオン選択電極法	エイアンドティー	ヘックマン・コールター	138.0	146.0			○ 126.0 ○		
1932	イオン選択電極法	エイアンドティー	日本電子JCA-B	135.0	145.0			○ 128.0 ○		
1934	イオン選択電極法	エイアンドティー	ヘ゛ックマン・コールター	138.0	146.0			○ 127.0 ○	133.0 🔾	141.0
1935	イオン選択電極法	積水メディカル	日立7140-7170	135.0	145.0	135.0	145.0	○ 128.0 ○	133.0 🔾	142.0
1936	イオン選択電極法	日本電子	日本電子JCA-B	135.0	148.0	135.0	148.0	○ 128.0 ○	133.0 🔾	141.0
1937	イオン選択電極法		日本電子JCA-B	135.0	148.0	135.0	148.0	124.0 ○	133.0 🔾	141.0
	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0			○ 127.0 ○		
	イオン選択電極法	積水メディカル	目立LABOSPE	138.0	146.0			○ 128.0 ○		
2008	イオン選択電極法	ロシュ・ダイアグ	ロシュコハ [*] ス8000c7	138.0	145.0	138.0	145.0	○ 128.0 ○	133.0 🔾	142.0

11 NA 施設No.が低い順に並んでいます

「おかけ   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800	施設 No	測定原理	試薬メーカー	機器	男性基準範囲		女性基準範囲				試料報告個	直
147-2   147-2   147-2   147-2   147-3   147-3   147-3   147-3   147-3   148.0   143.0   143.0   143.0   143.0   143.0   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   147-3   14				7.交 台计	下限	上限	下限	上限	試料0	試料	2 試料03	
2011   イン海沢電極法 エイアンドティー	2009	イオン選択電極法		日本電子JCA-B	135.0	150.0	135.0	150.0	O 129.0	O 134.	0 ○ 142.0	
3010   イン選択電離法 エイアンドティー 日本電子ICA-B   138.0   145.0   138.0   145.0   127.0   133.1   142.1   130.1   147.8   130.1   147.8   130.1   147.0   130.7   135.8   143.6   147.0   130.7   135.8   143.6   147.0   130.7   135.8   143.6   147.0   130.7   135.8   143.6   147.0   130.7   135.8   143.6   147.0   130.7   135.0   147.0   130.7   135.0   147.0   130.7   135.0   147.0   130.7   135.0   147.0   130.7   135.0   147.0   130.7   147.0   130.7   147.0   130.7   147.0   130.7   147.0   130.7   147.0   130.7   147.0   130.7   147.0   130.7   147.0   130.7   147.0   130.7   147.0   130.7   147.0   130.7   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0   147.0	2010	イオン選択電極法	積水メディカル	日立7140-7170	136.0	147.0	136.0	147.0	O 128.0	O 134.	0 🔾 143.0	
3013   42・選択電極法 デクノメディカ	2011	イオン選択電極法	エイアンドティー	ヘ゛ックマン・コールター	138.0	146.0	138.0	146.0	O 127.0	O 133.	0 🔾 141.0	
3018   村の選択電極法	3001	イオン選択電極法	エイアンドティー	日本電子JCA-B	138.0	145.0	138.0	145.0	O 127.5	O 133.	1 🔾 142.1	
3022   分が選択電極法	3013	イオン選択電極法	テクノメディカ	テクノメディカSTAX	136.0	147.0			130.7	135.	8 143.6	
3012   イン選択電極法   シスメックス   日立7600電解   136.0   147.0   128.0   132.0   142.0   133.0   142.0   134.0   145.0   138.0   145.0   126.9   132.1   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2   141.2	3018	イオン選択電極法	ベックマン・コー	ヘ、ックマン・コールター	135.0	147.0			O 127.0	O 133	0 〇 141.0	
3058   オン選択電極法   日本電子   日本	3022	イオン選択電極法		日本電子JCA-B	138.0	145.0	138.0	145.0	O 127.8	O 132.	8 🔾 140.9	
3055 〈オン選択電極法 日本電子ICA-B 138.0 145.0 138.0 145.0 127.0 132.0 140.0 140.0 3056 〈オン選択電極法 日本電子ICA-B 138.0 145.0 138.0 145.0 127.0 132.0 140.0 141.0 141.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142.0 142	3027	イオン選択電極法	シスメックス	日立7600電解	136.0	147.0			O 128.0	O 133.	0 🔾 142.0	
3906   イナ連択電極法   日本電子JCA-B   138.0   145.0   145.0   145.0   127.0   132.3   141.1     3907   大け連択電極法   日本電子   日本電子JCA-B   138.0   145.0   145.0   145.0   145.0   127.0   133.0   141.0     4002   イナ連択電極法   日本電子   日本電子JCA-B   138.0   145.0   147.0   138.0   147.0   128.0   133.0   141.0     4039   イナ連択電極法   日本電子   日本電子JCA-B   138.0   147.0   138.0   147.0   127.0   132.0   140.0     4902   イナ連択電極法   日本電子   日本電子JCA-B   138.0   147.0   135.0   147.0   127.0   132.0   143.0     5003   イナ連択電極法   日本電子   日本電子JCA-B   138.0   147.0   135.0   147.0   129.0   134.0   143.0     5004   イナ連択電極法   日本電子   日本電子JCA-B   138.0   145.0   138.0   145.0   127.0   132.0   141.6     6006   イナ連択電極法   日本電子   日本電子JCA-B   138.0   145.0   138.0   145.0   127.0   132.0   142.0     6008   イナ連択電極法   日本電子   日本電子JCA-B   138.0   145.0   138.0   145.0   127.0   132.0   142.0     6006   イナ連択電極法   デンカ生研   東芝BFA-200F   138.0   145.0   138.0   145.0   128.0   134.0   143.0     6016   イナ連択電極法   デンカ生研   東芝BFA-200F   136.0   149.0   128.0   134.0   143.0     6016   イナ連択電極法   デンカ生研   東芝BFA-200F   135.0   149.0   128.0   134.0   143.0     6016   イナ連択電極法   デンカ生研   東芝BFA-200F   135.0   147.0   135.0   147.0   128.0   130.0   141.0     7001   イオ連択電極法   デンカ生研   東芝BFA-200F   135.0   147.0   135.0   147.0   128.0   130.0   141.0     7001   イオ連択電極法   デンカ生研   東芝BFA-200F   135.0   147.0   135.0   147.0   126.0   132.0   140.0     7011   イオ連択電極法   デンカ生研   東芝BFA-200F   135.0   145.0   145.0   127.0   132.0   140.0     7011   イオ連択電極法   デンカ生研   東芝BFA-200F   135.0   145.0   127.0   132.0   140.0     7011   イオ連択電極法   デンカ生研   東芝BFA-200F   136.0   145.0   145.0   127.0   132.0   140.0     7011   イオ連択電極法   デンカ生研   東芝BFA-200F   136.0   145.0   145.0   127.0   132.0   140.0     7011   イオ連択電極法   デンカ生研   日本電子JCA-B   138.0   145.0   145.0   127.0   132.0   140.0     7011   イオ連択電極法   デンカナー   東芝BFA-200F   136.0   145.0   127.0   132.0   140.0     7012   イオ連択電極法   デンカ生研   日本電子JCA-B   138.0   145.0   127.0   132.0   140.0     7012   イオ連択電極法   デンカナー   東芝BFA-200F   136.0   146.0	3048	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0	138.0	145.0	O 126.9	O 132.	1 🔾 141.2	
3907   付か選択電極法 日本電子 日本電子JCA-B	3055	イオン選択電極法		エイアント・ティーエレク	138.0	145.0			O 127.0	O 132.	0 ○ 140.0	
4002   付か選択電極法   日本電子   日	3056	イオン選択電極法		日本電子JCA-B	138.0	145.0	138.0	145.0	O 127.5	O 132.	3 🔾 141.1	
4039   付か選択電極法	3907	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0	138.0	145.0	O 127.0	O 133.	0 ○ 141.0	
4040 〈水ン選択電極法	4002	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0			O 128.0	O 133.	0 ○ 141.0	
4902 〈水ン選択電極法	4039	イオン選択電極法		常光EX-Z/Zs/	138.0	147.0	138.0	147.0	125.7	130.	8 139.6	
日立7140-7170   135.0   147.0   135.0   147.0   0   129.0   134.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0   143.0	4040	イオン選択電極法		ヘ、ックマン・コールター	136.0	147.0			O 127.0	O 132.	0 ○ 140.0	
5005 イオン選択電極法 日本電子 日本電子JCA-B 138.0 145.0 138.0 145.0 127.7 132.9 141.6 5010 イオン選択電極法 日本電子 日本電子JCA-B 138.0 145.0 138.0 145.0 127.7 132.9 141.6 5010 イオン選択電極法 日本電子 日本電子JCA-B 138.0 145.0 138.0 145.0 127.0 132.4 140.6 6006 イオン選択電極法 デンカ生研 東芝25FRAccut 137.0 145.0 127.0 132.4 140.6 6008 イオン選択電極法 東芝メディカル 東芝TBA-200F 138.0 145.0 127.0 132.0 143.0 143.0 143.0 145.0 127.0 132.0 143.0 143.0 145.0 128.0 134.0 143.0 143.0 145.0 128.0 134.0 143.0 143.0 145.0 128.0 134.0 143.0 143.0 145.0 128.0 134.0 143.0 143.0 145.0 128.0 134.0 143.0 143.0 145.0 147.0 145.0 128.0 134.0 143.0 143.0 145.0 147.0 145.0 128.0 134.0 143.0 145.0 145.0 147.0 145.0 147.0 145.0 147.0 145.0 147.0 145.0 147.0 145.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 1	4902	イオン選択電極法		テクノメディカSTAX	135.0	147.0			O 126.0	O 132.	0 ○ 143.0	
5006   付わ選択電極法 日本電子 日本電子JCA-B   138.0   145.0   138.0   145.0   127.7   132.9   141.6     5010   付わ選択電極法 日本電子 日本電子JCA-B   138.0   145.0   138.0   145.0   127.0   132.4   140.6     6006   付わ選択電極法 デンカ生研 東芝5FRAccut   137.0   145.0   127.0   133.0   142.0     6008   付わ選択電極法 東芝メディカル 東芝TBA-200F   138.0   145.0   127.0   133.0   142.0     6015   付わ選択電極法 シスメックス 日立LABOSPE   135.0   149.0   128.0   134.0   143.0     6016   付わ選択電極法 デンカ生研 東芝TBA-200F   135.0   147.0   126.0   132.0   140.0     7001   付わ選択電極法 日本電子 日本電子JCA-B   137.0   145.0   137.0   145.0   128.0   133.0   141.0     7002   付わ選択電極法   日本電子 日本電子JCA-B   138.0   145.0   127.0   132.0   141.0     7007   付わ選択電極法   デンカ生研 東芝TBA-cシリー   135.0   147.0   135.0   147.0   127.0   132.0   141.0     7011   付わ選択電極法   デンカ生研 東芝TBA-cシリー   138.0   145.0   127.0   132.0   141.7     7025   付わ選択電極法   ボーアンドティー 日本電子JCA-B   138.0   146.0   128.0   133.0   141.0     7091   付わ選択電極法   日本電子JCA-B   138.0   146.0   128.0   133.0   141.0     7091   付わ選択電極法   日本電子JCA-B   138.0   146.0   128.0   133.0   141.0     7093   付わ選択電極法   日本電子JCA-B   138.0   146.0   128.0   133.0   141.0     7094   付わ選択電極法   日かエルター   129.1   132.0   140.8     7094   付か選択電極法   日かエルター   135.0   146.0   128.0   133.0   141.0     7094   付か選択電極法   日かエルター   136.0   146.0   128.0   133.0   140.8     7094   付か選択電極法   日かエルター   136.0   146.0   128.0   133.0   140.8     7094   付か選択電極法   1092コバス8000c5   127.0   132.0   140.8     7094   付か選択電極法   1092   1402   1202   120.0   130.0   140.8     7094   付か選択電極法   1092   1402   1202   120.0   130.0   140.8     7094   付か選択電極法   1092   1402   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202   1202	5003	イオン選択電極法		日立7140-7170	135.0	147.0	135.0	147.0	O 129.0	O 134.	0 ○ 143.0	
5010   イオン選択電極法 日本電子 日本電子 日本電子JCA-B   138.0   145.0   138.0   145.0   127.0   132.4   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.6   140.	5005	イオン選択電極法		エイアント・ティーエレク	138.0	145.0			O 128.0	O 133.	0 🔾 142.0	
6006 イオン選択電極法 デンカ生研 東芝5FRAccut 137.0 145.0 □ 127.0 □ 133.0 □ 142.0 □ 128.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0 □ 143.0	5006	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0	138.0	145.0	O 127.7	O 132.	9 🔾 141.6	
6008 イオン選択電極法 東芝メディカル 東芝TBA-200F 138.0 145.0 ○ 128.0 ○ 134.0 ○ 143.0 ○ 16015 イオン選択電極法 シスメックス 日立LABOSPE 135.0 149.0 ○ 128.0 ○ 134.0 ○ 143.0 ○ 143.0 ○ 16016 イオン選択電極法 デンカ生研 東芝TBA-200F 135.0 147.0 135.0 147.0 ○ 126.0 ○ 132.0 ○ 140.0 ○ 1701 イオン選択電極法 日本電子 日本電子JCA-B 137.0 145.0 137.0 145.0 ○ 128.0 ○ 133.0 ○ 141.0 ○ 1702 イオン選択電極法 日本電子 日本電子JCA-B 138.0 145.0 ○ 1702 ○ 132.0 ○ 141.0 ○ 1702 ○ 132.0 ○ 141.0 ○ 1702 ○ 132.0 ○ 141.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 140.0 ○ 1702 ○ 1302 ○ 1402 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1702 ○ 1	5010	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0	138.0	145.0	O 127.0	O 132.	4 〇 140.6	
6015 イヤン選択電極法 シスメックス 日立LABOSPE 135.0 149.0	6006	イオン選択電極法	デンカ生研	東芝25FR_Accut	137.0	145.0			O 127.0	O 133.	0 ○ 142.0	
6016 イオン選択電極法 デンカ生研 東芝TBA-200F 135.0 147.0 135.0 147.0 126.0 132.0 140.0 17001 イオン選択電極法 日本電子 日本電子JCA-B 137.0 145.0 137.0 145.0 128.0 133.0 141.0 128.0 133.0 141.0 128.0 133.0 141.0 128.0 128.0 133.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 128.0 132.0 141.0 1	6008	イオン選択電極法	東芝メディカル	東芝TBA-200F	138.0	145.0			O 128.0	O 134.	0 ○ 143.0	
7001 イオン選択電極法 日本電子 日本電子JCA-B 137.0 145.0 137.0 145.0 128.0 133.0 141.0 7002 イオン選択電極法 日本電子 日本電子JCA-B 138.0 145.0 127.0 132.0 141.0 127.0 132.0 141.0 127.0 132.0 141.0 127.0 132.0 141.0 127.0 132.0 141.0 127.0 132.0 141.0 127.0 132.0 141.0 127.0 132.0 141.0 127.0 132.0 141.0 127.0 132.0 141.0 127.0 132.0 141.0 127.0 132.0 141.0 127.0 127.0 132.0 141.0 127.0 127.0 132.0 141.0 127.0 127.0 132.0 141.0 127.0 127.0 132.0 141.0 127.0 127.0 127.0 133.0 141.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0	6015	イオン選択電極法	シスメックス	目立LABOSPE	135.0	149.0			O 128.0	O 134.	0 ○ 143.0	
7002 イオン選択電極法 日本電子 日本電子JCA-B 138.0 145.0 0 127.0 0 132.0 0 141.0 7007 イオン選択電極法 ベックマン・コー ペックマン・コールター 135.0 147.0 135.0 147.0 0 127.0 0 132.0 0 140.0 7011 イオン選択電極法 デンカ生研 東芝TBA-cシリー 138.0 145.0 0 126.3 0 132.0 0 141.7 7025 イオン選択電極法 エイアンドティー 日本電子JCA-B 138.0 146.0 0 127.0 0 133.0 0 141.0 7901 イオン選択電極法 日本電子JCA-B 138.0 146.0 0 128.0 0 134.0 0 142.0 8004 イオン選択電極法 日本電子JCA-B 138.0 146.0 0 128.0 0 133.0 0 141.0 9035 イオン選択電極法 積水メディカル 積水EV800 0 128.5 0 133.8 0 142.2 9043 イオン選択電極法 ロシュ・ダイアグ ロシュコハス8000c5 0 127.4 0 132.9 0 140.8 9047 イオン選択電極法 ベックマン・コー ペックマン・コールター 125.5 13.07 138.6 9049 イオン選択電極法 シスメックス 日立7140-7170 136.0 145.0 0 126.7 0 132.7 0 141.1	6016	イオン選択電極法	デンカ生研	東芝TBA-200F	135.0	147.0	135.0	147.0	O 126.0	O 132.	0 ○ 140.0	
7007 イオン選択電極法 ベックマン・コー ベックマン・コールター 135.0 147.0 135.0 147.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 127.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 128.0 132.0 140.0 128.0 132.0 140.0 128.0 128.0 132.0 140.0 128.0 128.0 132.0 140.0 128.0 128.0 132.0 140.0 128.0 128.0 132.0 140.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.	7001	イオン選択電極法	日本電子	日本電子JCA-B	137.0	145.0	137.0	145.0	O 128.0	O 133.	0 ○ 141.0	
7011 イオン選択電極法 デンカ生研 東芝TBA-cシリー 138.0 145.0 0 126.3 0 132.0 0 141.7 7025 イオン選択電極法 エイアンドティー 日本電子JCA-B 138.0 146.0 0 127.0 0 133.0 0 141.0 7901 イオン選択電極法 和光純薬 日立LABOSPE 138.0 146.0 0 128.0 0 134.0 0 142.0 8004 イオン選択電極法 日本電子JCA-B 138.0 146.0 0 128.0 0 133.0 0 141.0 9035 イオン選択電極法 積水メディカル 積水EV800 0 128.5 0 133.8 0 142.2 9043 イオン選択電極法 ロシュ・ダイアグ ロシュコバス8000c5 0 127.4 0 132.9 0 140.8 9047 イオン選択電極法 ベックマン・コー ベックマン・コールター 125.5 13.07 138.6 9049 イオン選択電極法 シスメックス 日立7140-7170 136.0 145.0 0 126.7 0 132.7 0 141.1	7002	イオン選択電極法	日本電子	日本電子JCA-B	138.0	145.0			O 127.0	O 132.	0 ○ 141.0	
7025 イオン選択電極法 エイアンドティー 日本電子JCA-B 138.0 146.0 ○ 127.0 ○ 133.0 ○ 141.0 7901 イオン選択電極法 和光純薬 日立LABOSPE 138.0 146.0 ○ 128.0 ○ 134.0 ○ 142.0 8004 イオン選択電極法 日本電子JCA-B 138.0 146.0 ○ 128.0 ○ 133.0 ○ 141.0 ○ 128.0 ○ 133.0 ○ 141.0 ○ 128.0 ○ 133.8 ○ 142.2 8003 イオン選択電極法 積水メディカル 積水EV800 ○ 128.5 ○ 133.8 ○ 142.2 9043 イオン選択電極法 ロシュ・ダイアグ ロシュコハンス8000c5 ○ 127.4 ○ 132.9 ○ 140.8 9047 イオン選択電極法 ベックマン・コー ハックマン・コールター 125.5 13.07 138.6 9049 イオン選択電極法 シスメックス 日立7140-7170 136.0 145.0 ○ 126.7 ○ 132.7 ○ 141.1	7007	イオン選択電極法	ベックマン・コー	ベックマン・コールター	135.0	147.0	135.0	147.0	O 127.0	O 132.	0 ○ 140.0	
7901 イオン選択電極法 和光純薬 日立LABOSPE 138.0 146.0 ○ 128.0 ○ 134.0 ○ 142.0 8004 イオン選択電極法 日本電子JCA-B 138.0 146.0 ○ 128.0 ○ 133.0 ○ 141.0 9035 イオン選択電極法 積水メディカル 積水EV800 ○ 128.5 ○ 133.8 ○ 142.2 9043 イオン選択電極法 ロシュ・ダイアグ ロシュコハス8000c5 ○ 127.4 ○ 132.9 ○ 140.8 9047 イオン選択電極法 ベックマン・コー ヘックマン・コールター 125.5 13.07 138.6 9049 イオン選択電極法 シスメックス 日立7140-7170 136.0 145.0 ○ 126.7 ○ 132.7 ○ 141.1	7011	イオン選択電極法	デンカ生研	東芝TBA-cシリー	138.0	145.0			O 126.3	O 132.	0 🔾 141.7	
8004 イオン選択電極法       日本電子JCA-B       138.0       146.0       128.0       133.0       141.0         9035 イオン選択電極法       積水メディカル       積水EV800       128.5       133.8       142.2         9043 イオン選択電極法       ロシュ・ダイアグ       ロシューバス8000c5       127.4       132.9       140.8         9047 イオン選択電極法       ベックマン・コー       ベックマン・コールター       125.5       13.07       138.6         9049 イオン選択電極法       シスメックス       日立7140-7170       136.0       145.0       145.0       126.7       132.7       141.1	7025	イオン選択電極法	エイアンドティー	日本電子JCA-B	138.0	146.0			O 127.0	O 133.	0 🔾 141.0	
9035 イオン選択電極法       積水メディカル       積水とV800       0 128.5 ○ 133.8 ○ 142.2         9043 イオン選択電極法       ロシュ・ダイアグ       ロシューバス8000c5       0 127.4 ○ 132.9 ○ 140.8         9047 イオン選択電極法       ベックマン・コー       ベックマン・コールター       125.5 13.07 138.6         9049 イオン選択電極法       シスメックス       日立7140-7170       136.0 145.0       0 126.7 ○ 132.7 ○ 141.1	7901	イオン選択電極法	和光純薬	目立LABOSPE	138.0	146.0			O 128.0	O 134.	0 🔾 142.0	
9043 イオン選択電極法 ロシュ・ダイアグ ロシュコバス8000c5 ○ 127.4 ○ 132.9 ○ 140.8 9047 イオン選択電極法 ベックマン・コー ベックマン・コールター 125.5 13.07 138.6 9049 イオン選択電極法 シスメックス 日立7140-7170 136.0 145.0 ○ 126.7 ○ 132.7 ○ 141.1	8004	イオン選択電極法		日本電子JCA-B	138.0	146.0			O 128.0	O 133.	0 🔾 141.0	
9047 イオン選択電極法 ベックマン・コー ベックマン・コールター 125.5 13.07 138.6 9049 イオン選択電極法 シスメックス 日立7140−7170 136.0 145.0 ○ 126.7 ○ 132.7 ○ 141.1	9035	イオン選択電極法	積水メディカル	積水EV800					O 128.5	O 133.	8 🔾 142.2	
9049 イオン選択電極法 シスメックス 日立7140-7170 136.0 145.0 ○ 126.7 ○ 132.7 ○ 141.1	9043	イオン選択電極法	ロシュ・ダイアグ	ロシュコハ*ス8000c5					O 127.4	O 132.	9 🔾 140.8	
	9047	イオン選択電極法	ベックマン・コー	ヘ、ックマン・コールター					125.5	13.0	7 138.6	
9050 イオン選択電極法 シーメンス シーメンスHCDDim 0 126.3 0 131.4 139.6	9049	イオン選択電極法	シスメックス	日立7140-7170	136.0	145.0			O 126.7	O 132.	7 🔾 141.1	
	9050	イオン選択電極法	シーメンス	シーメンスHCDDim					O 126.3	O 131.	4 139.6	

91 NA(F) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	男性基準範囲		女性基準範囲			試料報告値
No	例是水生			下限	上限	下限	上限	試料01	試料02	試料03
1044	ト゛ライケミストリー法	富士フィルムメ	富士ドライケムNX5	136.0	149.0		(	⊃ 129.0 ⊂	135.0 〇	) 144.0
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	135.0	147.0		(	⊃ 129.0 ⊂	135.0 €	143.0
1076	ドライケミストリー法	富士フィルムメ	富士ドライケム700	138.0	146.0		(	⊃ 129.0 ⊂	134.0 〇	144.0
1091	ドライケミストリー法	富士フィルムメ	富士ドライケム800	138.0	145.0	138.0	145.0	⊃ 129.0 ⊂	135.0 €	143.0
1097	ドライケミストリー法	富士フィルムメ	富士ドライケム700	135.0	145.0	135.0	145.0	⊃ 129.0 ⊂	135.0 €	144.0
1108	ドライケミストリー法	富士フィルムメ	富士ドライケム800	138.0	146.0	138.0	146.0	⊃ 129.0 ⊂	135.0 €	144.0
1126	ドライケミストリー法	富士フィルムメ	富士ドライケム700	138.0	146.0	138.0	146.0	⊃ 129.0 ⊂	135.0 〇	144.0
1133	ドライケミストリー法	富士フィルムメ	富士ドライケム400	136.0	149.0		(	⊃ 132.0 ⊂	135.0 €	) 144.0
1137	ドライケミストリー法	富士フィルムメ	富士ドライケム400	138.0	146.0	138.0	146.0	⊃ 128.0 ⊂	134.0 〇	) 143.0
1326	ドライケミストリー法	富士フィルムメ	富士ドライケム400	135.0	145.0	135.0	145.0	⊃ 129.0 ⊂	135.0 €	) 144.0
1336	ドライケミストリー法	富士フィルムメ	富士ドライケム700	136.0	149.0		(	⊃ 129.0 ⊂	135.0 €	) 144.0
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	136.0	149.0		(	⊃ 129.0 ⊂	134.0 〇	) 143.0
1374	ドライケミストリー法	富士フィルムメ	富士ドライケム700	135.0	145.0	135.0	145.0	⊃ 130.0 ⊂	136.0 €	) 144.0
1375	ドライケミストリー法	富士フィルムメ	富士ドライケム400	135.0	145.0		(	⊃ 128.0 ⊂	136.0 €	) 145.0
1393	ト゛ライケミストリー法	富士フィルムメ	他のドライケミストリ	138.0	146.0	138.0	146.0	⊃ 129.0 ⊂	134.0 〇	) 143.0
1415	ドライケミストリー法	富士フィルムメ	富士ドライケム700	136.0	149.0	136.0	149.0	⊃ 129.0 ⊂	136.0 €	) 145.0
1545	ドライケミストリー法	富士フィルムメ	富士ドライケム700	138.0	145.0		(	⊃ 128.0 ⊂	134.0 〇	) 145.0
1546	ドライケミストリー法	富士フィルムメ	他のドライケミストリ	136.0	149.0		(	⊃ 130.0 ⊂	135.0 €	) 144.0
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	138.0	145.0	138.0	145.0	⊃ 129.0 ⊂	135.0 €	) 143.0
1552	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	136.0	149.0		(	⊃ 129.0 ⊂	135.0 €	) 145.0
1557	ドライケミストリー法	富士フィルムメ	富士ドライケム700	136.0	149.0		(	⊃ 129.0 ⊂	135.0 €	) 144.0
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	138.0	145.0	138.0	145.0	⊃ 129.0 ⊂	135.0 €	) 144.0
1560	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	136.0	149.0		(	○ 129.0 ○	135.0 €	144.0
1561	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	138.0	145.0	138.0	145.0	⊃ 129.0 ⊂	135.0 €	) 144.0
2012	ト゛ライケミストリー法	富士フィルムメ	富士ドライケムNX5	136.0	149.0	136.0	149.0	⊃ 129.0 ⊂	135.0 €	) 144.0
9038	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	136.0	149.0		(	⊃ 129.0 ⊂	135.0 €	144.0

126 NA(A1)

施設 測定原理 No	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値	
			下限 上限 下限 上限 試料01 試料02 試料03	
1317	ト゛ライケミストリー法	アークレイ	アークレイスポットケム	135.0 145.0 135.0 145.0 $\bigcirc$ 128.0 $\bigcirc$ 135.0 $\bigcirc$ 144.0
1378	ト・ライケミストリー法	アークレイ	アークレイスホットケム	138.0 146.0 $\bigcirc$ 129.0 $\bigcirc$ 133.0 $\bigcirc$ 145.0
1418	ドライケミストリー法	アークレイ	アークレイスホ。ットケム	138.0 145.0 138.0 145.0 $\bigcirc$ 126.0 $\bigcirc$ 133.0 $\bigcirc$ 139.0
9041	ト゛ライケミストリー法	アークレイ	アークレイスポットケム	○ 127.0 ○ 133.0 ○ 141.0

156 NA(A2)

施設	直設 測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値	
No	例足原垤			下限 上限 下限 上限 試料01 試料02 試料03	
1521 h	゛ライケミストリー法	アークレイ	アークレイスホ [°] ットケム	138.0 145.0 138.0 145.0 $\bigcirc$ 127.0 $\bigcirc$ 134.0 $\bigcirc$ 144.0	

186 NA(O)

施設	施設測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	四来 ハ	17交合计	下限 上限 下限 上限 試料01 試料02 試料03	
1075	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	138.0 145.0 138.0 145.0 $\bigcirc$ 127.0 135.0 145.0
1100	ト・ライケミストリー法	オーソ・クリニカ	オーソヒトロス250_3	O 127.0 O 134.0 145.0
8011	ト・ライケミストリー法	オーソ・クリニカ	オーソヒトロス250_3	135.0 150.0 135.0 150.0 126.0 $\bigcirc$ 133.0 144.0
9040	ドライケミストリー法	オーソ・クリニカ	オーソビトロス5600	○ 127.1 ○ 134.7 145.1

### カリウム (K)

琉球大学医学部附属病院 検査・輸血部 山内 恵

### 【参加状况】

参加施設 242 施設 (前回 230 施設)

### 【測定方法の状況】

イおン選択電極法は 207 施設(86%)、 ドライケミストリー法は 35 施設 (14%)であった。 イオン選択電極法のうち希釈法は 185 施(89%)、直接法は 22 施設(11%)であった。 ドライケミストリー法のメーカー別内訳は富士フィルムが 26 施設、アークレイが 5 施設、オーソが 4 施設であった。

### 【測定値の状況】

1. 付か選択電極法の全体 CV%は  $0.9\sim216.7\%$ 、3SD 除去後 CV%は  $0.7\sim1.0\%$ であった(表 1)。 原理別でみると直接法は試料 1 および試料 2 で入力以と考えられる値のために CV%は極端に大きかった。3SD 除去後の平均値で比較すると、いずれの試料も希釈法に比べて直接法は低値にあった。方法内 CV%および 3SD 除去率%も直接法が高かった。(表 2)。

		20 1.		10 11 17	• •>   •   •   •     •	1 -	
	試料	n	平均值	SD	CV%	最小	最大
	1	207	4.18	9.02	216.1	3.45	<u>133.7</u>
全データ	2	207	4.20	0.04	0.9	4.07	4.32
	3	207	5.68	6.21	109.7	4.82	<u>94.8</u>
	1	204	3.55	0.05	1.3		
3SD 除去	2	204	4.20	0.04	0.9		
	3	204	5.25	0.05	1.0		

表 1. 付り選択電極法の試料別集計結果

表 2.	イオン選択電極法の原理別集計(3SD 除去)
1 2.	

試料	原理別		全データ			3SD		
四个十		n	平均值	CV%	n	平均值	CV%	除去率%
	全 体	207	4.18	216.1	204	3.55	1.3	1.5
1	希釈法	185	3.55	1.3	184	3.55	1.2	0.5
	直接法	22	9.45	286.9	20	3.54	1.8	9.1
	全 体	207	4.20	0.9	204	4.20	0.9	1.5
2	希釈法	185	4.21	0.7	185	4.21	0.7	0.0
	直接法	22	4.16	1.6	19	4.16	1.4	13.6
	全 体	207	5.68	109.4	204	5.25	1.0	1.5
3	希釈法	185	5.25	1.1	184	5.25	0.9	0.5
	直接法	22	9.27	201.4	20	5.20	1.5	9.1

直接法のメーカー別分布を図1に示す。目標範囲から外 れた施設はいずれの試料も低値域に分布していた。 メーカーおよび機種による明らかな分布の偏りは認めら れなかった。

5.5 赤枠:目標範囲 5.4 5.3 £ 5.2 蒸 5.1 ●テクノメディカ 5.0 ■ロシュ o常光 4.9 ▲東京貿易 4.8 4.2 試料2

2. ドライケミストリー法のメーカー別 CV%は 0.4~3.0%であった (表 3)。

図 1. 直接法のメーカー別分布図

表 3. ドライケミストリ法のメーカー別集計

試料	測定法	n	平均值	SD	CV%
	富士フィルム	26	3.48	0.05	1.4
1	アークレイ	5	3.70	0.06	1.7
1	オーソ	4	3.61	0.01	0.4
	電極法	204	3.55	0.05	1.3
	富士フィルム	26	4.18	0.05	1.2
2	アークレイ	5	4.34	0.08	1.8
	オーソ	4	4.31	0.04	1.0
	電極法	204	4.20	0.04	0.9
	富士フィルム	26	5.30	0.03	0.6
3	アークレイ	5	5.44	0.16	3.0
3	オーソ	4	5.48	0.12	2.2
	電極法	204	5.25	0.05	1.0

電極法:3S

3. 目標範囲については、電極法は最小報告幅(0.1 mmol/L)とした。ドライケミストリー法はオーンが電極法

, =, · · · · · · · · · · · · · · · · · ·
と同一の目標値および目標範囲とし、その他はメーカー設定の目標値および目標範囲(富士フィルム:
2.0mmol/L、アークレイ:5%)を用いた。目標達成率は電極法全体では98.6~99.0%であり、希釈法
は 99.5~100%とほとんどの施設が達成した。直接法が 90.9~95.5%と希釈法に比べて低かった。
ドライケミストリー法全体で 91.4~100%であった。 オーソの試料 3 で 25%(1/4 施設)以外はすべて 100%の
達成率であった (表 4)
ま 4 日

目標範囲達成 施設数 測定法 達成率(%) n 試料1 試料 2 試料 3 試料 2 試料 1 試料 3 電極法 全体 207 204 205 204 98.6 99.0 98.6 希釈法 99.5 185 184 185 184 99.5 100.0 直接法 95.5 90.9 90.9 22 21 20 20 ト・ライケミストリー法 全体 35 100.0 91.4 35 35 32 100.0 富士フィルム 26 26 26 26 100.0 100.0 100.0 アークレイ 5 5 5 5 100.0 100.0 100.0 オーソ 4 4 1 100.0 100.0 25.0

目標範囲達成施設数および達成率 表 4.

### 【基準範囲】

JCCLS 共用基準範囲  $3.6\sim4.8$ mmol/L の採用施設が最も多く 93 施設であった (平成 28 年度 79 施設、平成 27 年度 52 施設、平成 26 年度 2 施設)。次いで  $3.6\sim4.9$ mmol/L の採用施設が 47 施設であった。

12 K 施設No.が低い順に並んでいます

施設	110.77	-11.0 (1 6.7)		男性基	進範囲	女性基	進範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01 討	<b>弐料02</b>	試料03
1001	イオン選択電極法	積水メディカル	目立LABOSPE	3.600	4.800			○ 3.600 ○ 4		
	イオン選択電極法	和光純薬	目立LABOSPE	3.600	4.900			3.540 O 4		
	イオン選択電極法	積水メディカル	目立LABOSPE	3.600		3.600	4.800	O 3.600 O 4		
	イオン選択電極法	積水メディカル	日立LABOSPE	3.600	4.800			○ 3.540 ○ 4		
1010	イオン選択電極法	デンカ生研	東芝TBA-cシリー	3.400	5.100	3.400	5.100	○ 3.500 ○ 4	4.200 〇	5.200
1012	イオン選択電極法		日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.550 ○ 4	4.210 〇	5.250
1013	イオン選択電極法	和光純薬	日立7140-7170	3.600	4.800			○ 3.500 ○ 4	4.200 〇	5.200
1015	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800			○ 3.500 ○ 4	4.200 〇	5.200
1018	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.510 ○ 4	4.150 〇	5.210
1021	イオン選択電極法	日本電子	日本電子JCA-B	3.500	5.000	3.500	5.000	○ 3.560 ○ 4	4.210 〇	5.260
	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800			○ 3.500 ○ 4	4.200 〇	5.200
	イオン選択電極法	積水メディカル	日立LABOSPE	3.600	4.900			O 3.570 O 4		
	イオン選択電極法	東芝メディカル	東芝25FR_Accut	3.600	4.800			O 3.550 O 4		
	イオン選択電極法	積水メディカル	日立LABOSPE	3.900	4.900	0.000	4.000	O 3.600 O 4		
	イオン選択電極法	和光純薬	日立7140-7170	3.600		3.600	4.800	○ 3.500 ○ 4		
	イオン選択電極法 イオン選択電極法	東芝メディカル シーメンス	東芝TBA-cシリー シーメンスHCDDim	3.600 3.600	4.800 5.000			$\bigcirc$ 3.530 $\bigcirc$ 4 $\bigcirc$ 3.500 $\bigcirc$ 4		
	イオン選択電極法	オルメディカル	日立7140-7170	3.500		3.500	5 000	○ 3.600 ○ 4		
	イオン選択電極法	積水メディカル	目立7140-7170	3.500				○ 3.500 ○ 4		
	イオン選択電極法	18/10/2/1907	日本電子JCA-B	3.600	4.900	0.000	0.000	○ 3.560 ○ 4		
	イオン選択電極法	積水メディカル	目立LABOSPE	6.600	8.100			○ 3.600 ○ 4		
	イオン選択電極法	和光純薬	日立7140-7170	3.600	4.800			○ 3.600 ○ 4		
1040	イオン選択電極法	積水メディカル	目立LABOSPE	3.600	4.800	3.600	4.800	○ 3.600 ○ 4	4.200 〇	5.300
1046	イオン選択電極法	東芝メディカル	東芝25FR_Accut	3.600	4.900	3.600	4.900	○ 3.540 ○ 4	4.230 〇	5.300
1049	イオン選択電極法	ベックマン・コー	ヘ、ックマン・コールター	3.600	4.900	3.600	4.900	○ 3.600 ○ 4	4.200 〇	5.200
1050	イオン選択電極法		日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.580 ○ 4	4.190 🔾	5.270
1051	イオン選択電極法	日本電子	日本電子JCA-B	3.600	5.000	3.600	5.000	○ 3.550 ○ 4	4.210 〇	5.230
1054	イオン選択電極法	デンカ生研	東芝TBA-cシリー	3.600	5.500			○ 3.600 ○ 4	4.200 〇	5.300
	イオン選択電極法	シーメンス	シーメンスHCDDim	3.600	4.800			○ 3.500 ○ 4		
	イオン選択電極法	積水メディカル	日立7140-7170	3.600		3.600	4.900	O 3.600 O 4		
	イオン選択電極法		東京貿易ピオリス5	3.500	5.000			○ 3.500 ○ 4		
	イオン選択電極法		日本電子JCA-B	3.600	4.900	0.500	E 000	○ 3.500 ○ 4		
	イオン選択電極法		東京貿易ビオリス2	3.500		3.500	5.000	O 3.570 O 4		
	イオン選択電極法イオン選択電極法	積水メディカル	日本電子JCA-B 日立LABOSPE	3.500 3.600	5.000	3.600	4 900	○ 3.500 ○ 4 ○ 3.500 ○ 4		
	イオン選択電極法	日本電子	日本電子JCA-B	3.500	5.500			○ 3.500 ○ 4		
	イオン選択電極法	口本柜 1	目立LABOSPE	3.600	4.900			○ 3.500 ○ 4		
	イオン選択電極法	和光純薬	目立LABOSPE	3.600		3.600		O 3.510 O 4		
	イオン選択電極法	IN SEA ESIC	東京貿易ビオリス2	3.500		3.500		○ 3.560 ○ 4		
1077	イオン選択電極法	シーメンス	シーメンスHCDDim	3.600		3.600		○ 3.500 ○ 4		
1079	イオン選択電極法		常光EX-Z/Zs/					133.7 🔾	4.180	94.80
1081	イオン選択電極法	デンカ生研	東芝TBA-cシリー	3.600	4.800	3.600	4.800	○ 3.540 ○ 4	4.220 〇	5.290
1084	イオン選択電極法		東京貿易ビオปス2	3.600	4.800	3.600	4.800	○ 3.500 ○ 4	4.100 〇	5.200
1088	イオン選択電極法		日立LABOSPE	3.600	4.900	3.600	4.900	○ 3.560 ○ 4	4.230 〇	5.280
1089	イオン選択電極法	積水メディカル	日立7140-7170	3.600	4.800	3.600	4.800	○ 3.590 ○ 4	4.300 〇	5.290
1090	イオン選択電極法	和光純薬	日立7140-7170	3.600	4.800	3.600	4.800	○ 3.600 ○ 4	4.200 〇	5.300
	イオン選択電極法		日本電子JCA-B	3.600	4.900			○ 3.500 ○ 4		
	イオン選択電極法	デンカ生研	東芝TBA-cシリー	3.500		3.500	5.000	O 3.500 O 4		
	イオン選択電極法	東芝メディカル	東芝TBA-cシリー	3.600	4.800			○ 3.500 ○ 4		
	イオン選択電極法		ロシュ91XXシリース*	3.500	5.000			3.500 O 4		
	イオン選択電極法	告业	ベックマン・コールター	3.500	5.000	2 600	E 000	3.500 0 4		
	イオン選択電極法イオン選択電極法	常光	常光EX-Z/Zs/ 日本電子JCA-B	3.600 3.600		3.600 3.600		$\bigcirc$ 3.500 $\bigcirc$ 4		
	イオン選択電極法	デンカ生研	東芝TBA-cシリー	3.600	4.800	5.000	5.000	3.500 C 4		
	イオン選択電極法	東芝メディカル	東芝25FR_Accut	3.600	4.900	3.600	4.900	○ 3.500 ○ 4		
	イオン選択電極法	ベックマン・コー	ベックマン・コールター	3.600		3.600		○ 3.550 ○ 4		
	イオン選択電極法	シーメンス	シーメンスHCDDim	3.500		3.500		○ 3.580 ○ 4		
		•						0		

12 K 施設No.が低い順に並んでいます

	.NO.//-145/V ///iji /C	- 业んていより								
施設	測定原理	試薬メーカー	機器	男性基準	<b>単範囲</b>	女性基	準範囲			試料報告値
No	MACANE	11/2/2	17X HH	下限	上限	下限	上限	試料01	試料02	試料03
1127	イオン選択電極法	エイアンドティー	日本電子JCA-B	3.500	5.000			○ 3.500 ○	4.200 ○	5.300
1128	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.500 ○	4.100 ○	5.200
1129	イオン選択電極法	ベックマン・コー	ヘ、ックマン・コールター	3.500	5.000			○ 3.600 ○	4.200 ○	5.200
1130	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.580 ○	4.210 ○	5.240
1134	イオン選択電極法	積水メディカル	日立7140-7170	3.600	4.900	3.600	4.900	○ 3.600 ○	4.200 ○	5.200
	イオン選択電極法	ベックマン・コー	ヘ゛ックマン・コールター	3.600	4.900			○ 3.600 ○		
	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800			○ 3.500 ○		
	イオン選択電極法	日本電子		3.600	4.800			○ 3.580 ○		
	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.900			○ 3.530 ○		
	イオン選択電極法		ヘ゛ックマン・コールター	3.600	4.800			○ 3.600 ○	4.200 ○	5.200
	イオン選択電極法	エイアンドティー	日本電子JCA-B	3.600	4.800			○ 3.500 ○		
	イオン選択電極法	東芝メディカル	東芝25FR_Accut	3.600	4.800			○ 3.550 ○		
	イオン選択電極法	東芝メディカル	東芝TBA-200F		5.100	3.800	5.100	○ 3.540 ○		
	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.900			○ 3.600 ○		
	イオン選択電極法	A-1	日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.500 ○		
	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.900	0.000	1.000	○ 3.600 ○		
	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.600 ○		
	イオン選択電極法	エイアンドティー	日本電子JCA-B	3.600	4.800			○ 3.600 ○		
	イオン選択電極法	-170174	ヘックマン・コールター	3.600	4.800	5.000	1.000	○ 3.600 ○		
	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800	3.600	4 800	○ 3.600 ○		
	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.900	5.000	1.000	○ 3.600 ○		
	イオン選択電極法	東芝メディカル	東芝TBA-cシリー		5.000			○ 3.500 ○		
	イオン選択電極法	米とバノイルル	エイアント・ティーEA0	3.600	4.900			○ 3.580 ○		
	イオン選択電極法	エイアンドティー	日本電子JCA-B					○ 3.500 ○		
	イオン選択電極法	エイアンドティー	日本電子JCA-B	3.600 3.600	4.800 4.800			○ 3.500 ○		
	イオン選択電極法	エイノンドノイー	日本電子JCA-B			2 600	4 900	○ 3.600 ○		
	イオン選択電極法		日本電子JCA-B	3.500	4.800 5.000					
						3.500	5.000	○ 3.500 ○		
	イオン選択電極法	きょくご カル	日立LABOSPE	3.600	4.800	2 600	4 900	O 3.520 O		
	イオン選択電極法	積水メディカルロオ電子	日立7140-7170	3.600	4.800	3.000	4.000	○ 3.600 ○		
		日本電子	日本電子JCA-B 党坐EV-7/7。/		5.000			○ 3.600 ○		
	イオン選択電極法	常光	常光EX-Z/Zs/ 東芝TBA-cシリー	3.600	4.800			○ 3.600 ○		
	イオン選択電極法	東芝メディカル			5.000	2 600	4.000	○ 3.500 ○		
	イオン選択電極法		ロシュコハ、ス8000c5	3.600	4.800	3.600	4.800		4.300 🔾	
	イオン選択電極法	告业	日本電子JCA-B	3.600	4.900	2 600	4.000	○ 3.500 ○		
	イオン選択電極法	常光	常光EX-Z/Zs/	3.600	4.800			O 3.470 O		
	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.900	3.600		○ 3.500 ○		
	イオン選択電極法	デンカ生研	東芝TBA-cシリー	3.600	4.800	3.600		O 3.500 O		
	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800			O 3.540 O		
	イオン選択電極法	和光純薬	日立7140-7170	3.600	4.900	3.000	4.900	○ 3.600 ○		
	イオン選択電極法	エイアンドティー	日本電子JCA-B		4.800	2 600	4.000	○ 3.540 ○ ○ 3.500 ○		
	イオン選択電極法	日本電子	日本電子JCA-B 常坐EV-7/7。/		4.800	3.000	4.000			
	イオン選択電極法	ベックマン・コー	常光EX-Z/Zs/	3.600	4.800			○ 3.470 ○ 3.600 ○	4.070	5.010
	イオン選択電極法		ヘックマン・コールター	3.600	4.900	0.000	4.000			
	イオン選択電極法	和光純薬	目立7140-7170 東茶TPA - 24世	3.600	4.800	3.600	4.800	○ 3.550 ○		
	イオン選択電極法	東芝メディカル	東芝TBA-cシリー	3.600	4.800	0.000	4.000	O 3.500 O		
	イオン選択電極法	和光純薬	目立LABOSPE 東京贸易以上1975	3.600	4.800	3.600	4.800	○ 3.600 ○		
	イオン選択電極法	<b>則市ル</b> 学	東京貿易ビオリス5	3.600	4.800			○ 3.600 ○		
	イオン選択電極法	関東化学和光純素	東京貿易ビオリス1	3.400	4.600			○ 3.600 ○		
	イオン選択電極法	和光純薬	目立LABOSPE	3.600	4.800			O 3.500 O		
	イオン選択電極法	東芝メディカル	東芝25FR_Accut	3.600	4.800	9 600	4.000	O 3.540 O		
	イオン選択電極法	デンカ生研	東芝TBA-cシリー	3.600	4.900			○ 3.500 ○		
	イオン選択電極法	積水メディカル	日立7140-7170	3.600	4.900	3.600	4.900	○ 3.600 ○		
	イオン選択電極法	常光	常光EX-Z/Zs/	3.600	4.800	0.000	4.000	○ 3.450 ○ 3.500 ○	4.090 🔾	
	イオン選択電極法	带业	テクノメディカGAST	3.600	4.800			○ 3.500 ○		
	イオン選択電極法	常光	東京貿易ビオナリス2	3.600	4.800			○ 3.500 ○		
	イオン選択電極法	シーメンス	シーメンスHCDDim	3.600	4.800	ა.600	4.800	○ 3.500 ○		
1402	イオン選択電極法		日本電子JCA-B	3.600	4.800			○ 3.600 ○	4.200 🔾	5.300

12 K 施設No.が低い順に並んでいます

施設	110.77	- <del>-</del>		男性基	準範囲	女性基	進節用		試料報告値	
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01 討	式料02 試料03	
1403	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.600 ○ 4	1.200 ○ 5.300	
	イオン選択電極法	デンカ生研	東芝TBA-cシリー	3.600	4.900				1.200 ○ 5.300	
1405	イオン選択電極法	関東化学	東京貿易ビオリス1	3.500	5.000	3.500	5.000	○ 3.500 ○ 4	1.200 ○ 5.200	
1408	イオン選択電極法	常光	常光EX-Z/Zs/	3.500	5.000	3.500	5.000	○ 3.500 ○ 4	4.100 ○ 5.100	
1411	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800	3.600	4.800	$\bigcirc$ 3.600 $\bigcirc$ 4	1.250 ○ 5.300	
1419	イオン選択電極法	ベックマン・コー	ヘックマン・コールター	3.600	4.900	3.600	4.900	○ 3.530 ○ 4	1.180 ○ 5.180	
1501	イオン選択電極法	シスメックス	日立LABOSPE	3.600	4.900	3.600	4.900	○ 3.550 ○ 4	1.200 ○ 5.200	
	イオン選択電極法		日本電子JCA-B	3.600	4.900	3.600	4.900		4.190 🔾 5.220	
	イオン選択電極法	和光純薬	目立LABOSPE	3.600	4.800				1.200 ○ 5.300	
	イオン選択電極法	ロナボフ	日立LABOSPE	3.600	5.000	3.600	5.000		1.200 ○ 5.300	
	イオン選択電極法	日本電子 きょうい	日本電子JCA-B 日本7140-7170	3.600	4.800	2 600	1 900		4.210 ○ 5.260	
	イオン選択電極法イオン選択電極法	積水メディカル シスメックス	日立7140-7170 日立LABOSPE	3.600 3.600	4.800 4.800	3.600	4.000		4.200 ○ 5.100 4.230 ○ 5.270	
	イオン選択電極法	和光純薬	目立LABOSPE	3.600	4.800	3.600	4.800		4.200 ○ 5.300	
	イオン選択電極法	エイアンドティー	エイアント・ティーEA0	3.600	4.800	3.600			1.200 ○ 5.300	
	イオン選択電極法	東芝メディカル	東芝25FR_Accut	3.600	4.800				1.200 ○ 5.200	
1523	イオン選択電極法		テクノメディカSTAX	3.600	4.800			○ 3.500 ○ 4	4.100 ○ 5.200	
1525	イオン選択電極法		エイアント・ティーEA0	3.600	4.900			○ 3.600 ○ 4	1.200 ○ 5.200	
1528	イオン選択電極法	和光純薬	日立7140-7170	3.600	4.800	3.600	4.800	$\bigcirc$ 3.590 $\bigcirc$ 4	4.260 ○ 5.290	
1529	イオン選択電極法	和光純薬	目立LABOSPE	3.600	4.900	3.600	4.900	$\bigcirc$ 3.540 $\bigcirc$ 4	1.230 ○ 5.280	
1530	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.600 ○ 4	1.200 ○ 5.200	
	イオン選択電極法	シーメンス	シーメンスHCDDim	3.600	4.900	3.600			4.230 ○ 5.250	
	イオン選択電極法		日立7140-7170	3.600	4.800	3.600	4.800		1.230 ○ 5.270	
	イオン選択電極法	シーメンス	シーメンスHCDDim	3.600	4.800				1.200 ○ 5.300	
	イオン選択電極法	エイアンドティー	エイアント・ティーEAO	3.600	4.800				1.200 ○ 5.300	
	イオン選択電極法イオン選択電極法	エイアンドティーエイアンドティー	エイアントディーEA0 日本電子JCA-B	3.600 3.600	4.800 4.800	3.600	4.800		4.200 ○ 5.200 4.240 ○ 5.300	
	イオン選択電極法	東芝メディカル	東芝25FR_Accut	3.600	4.900	5.000	4.000		1.200 \( \times 5.300	
	イオン選択電極法	シスメックス	日立7140-7170	3.600	5.000				4.200 ○ 5.300	
	イオン選択電極法	東芝メディカル	東芝25FR_Accut	3.600	4.900	3.600	4.900		1.300 ○ 5.300	
1549	イオン選択電極法		東京貿易ビオナリス2	3.600	4.900			○ 3.700 ○ 4	1.300 ○ 5.200	
1550	イオン選択電極法	積水メディカル	日立7140-7170	3.500	5.000			○ 3.500 ○ 4	1.200 ○ 5.300	
1558	イオン選択電極法		日本電子JCA-B	3.600	4.800	3.600	4.800	$\bigcirc$ 3.600 $\bigcirc$ 4	4.200 ○ 5.300	
1562	イオン選択電極法	エイアンドティー	日本電子JCA-B	3.600	4.800	3.600	4.800	$\bigcirc$ 3.540 $\bigcirc$ 4	1.200 ○ 5.210	
	イオン選択電極法	ベックマン・コー	ヘ、ックマン・コールター	3.600	4.900	3.600	4.900		1.200 ○ 5.300	
	イオン選択電極法		日本電子JCA-B	3.500	5.000				1.230 ○ 5.270	
		シスメックス	日立7600電解	3.600	5.000				1.200 ○ 5.300	
	イオン選択電極法	和光純薬	目立LABOSPE		4.900				1.200 ○ 5.300	
	イオン選択電極法イオン選択電極法	ベックマン・コー 日本電子	ヘックマン・コールター 日本電子JCA-B	3.600 3.600	4.900 4.800				4.100 ○ 5.200 4.200 ○ 5.300	
	イオン選択電極法	和光純薬	目立LABOSPE	3.600		3.600	4 900		1.200 ○ 5.300 1.200 ○ 5.300	
	イオン選択電極法	シスメックス	日立3100	3.600	4.900	0.000	11000		1.200 ○ 5.200	
	イオン選択電極法	シスメックス	日立7140-7170	3.600	5.000				1.200 ○ 5.300	
	イオン選択電極法	シスメックス	日立7140-7170	3.600	5.000				1.200 ○ 5.200	
1925	イオン選択電極法	エイアンドティー	ヘ゛ックマン・コールター	3.600	5.000	3.600	5.000	○ 3.500 ○ 4	4.200 ○ 5.200	
1926	イオン選択電極法	デンカ生研	東芝TBA-200F	3.500	5.200	3.500	5.200	$\bigcirc$ 3.500 $\bigcirc$ 4	4.200 ○ 5.200	
1928	イオン選択電極法	エイアンドティー	ヘックマン・コールター	3.600	5.000			○ 3.500 ○ 4	4.100 ○ 5.200	
	イオン選択電極法	エイアンドティー	ヘ゛ックマン・コールター	3.600	4.900				1.200 ○ 5.200	
	イオン選択電極法	エイアンドティー	ヘックマン・コールター	3.600	4.900	3.600	4.900		1.200 ○ 5.200	
	イオン選択電極法	エイアンドティー	日本電子JCA-B	3.500	5.000				1.300 ○ 5.300	
	イオン選択電極法	エイアンドティー	ヘックマン・コールター	3.600	4.900	9 500	E 000		1.200 ○ 5.200	
	イオン選択電極法イオン選択電極法	積水メディカル 日本電子	日立7140-7170 日本電子ICA-B	3.500		3.500			4.200 ○ 5.300 4.200 ○ 5.200	
	イオン選択電極法	口平电丁	日本電子JCA-B 日本電子JCA-B	3.500 3.500		3.500 3.500			1.200 \( \) 5.200 1.200 \( \) 5.300	
	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800	5.550	5.000		1.200 \( \times 5.300 \)	
	イオン選択電極法	積水メディカル	日立LABOSPE	3.600	4.900				4.200 © 5.200	
	イオン選択電極法	***	ロシュコハ ス8000c7	3.600		3.600	4.800		4.200 ○ 5.300	

12 K 施設No.が低い順に並んでいます

施設	施設	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	武楽メールー	(残石)	下限	上限	下限	上限	試料01	試料02	試料03
2009	イオン選択電極法		日本電子JCA-B	3.500	5.000	3.500	5.000	○ 3.590 ○	4.240 C	5.270
2010	イオン選択電極法	積水メディカル	目立7140-7170	3.600	5.000	3.600	5.000	○ 3.600 ○	4.300 ℂ	5.300
2011	イオン選択電極法	エイアンドティー	ヘ゛ックマン・コールター	3.600	4.900	3.600	4.900	○ 3.500 ○	4.200 ℂ	5.200
3001	イオン選択電極法	エイアンドティー	日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.560 ○	4.210 ℂ	5.270
3013	イオン選択電極法	テクノメディカ	テクノメデ [*] ィカSTAX	3.600	5.000			○ 3.680 ○	4.320 ℂ	5.310
3018	イオン選択電極法	ベックマン・コー	ヘックマン・コールター	3.400	4.800			○ 3.500 ○	4.200 ℂ	5.200
3022	イオン選択電極法		日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.550 ○	4.200 ℂ	5.230
3027	イオン選択電極法	シスメックス	日立7600電解	3.600	5.000			○ 3.600 ○	4.200 ℂ	5.300
3048	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.530 ○	4.170 ℂ	5.240
3055	イオン選択電極法		エイアント・ティーエレク	3.600	4.800			○ 3.500 ○	4.200 ℂ	5.200
3056	イオン選択電極法		日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.550 ○	4.190 ℂ	5.250
3907	イオン選択電極法		日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.600 ○	4.200 ℂ	5.300
4002	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800			○ 3.600 ○	4.200 ℂ	5.300
4039	イオン選択電極法		常光EX-Z/Zs/	3.500	5.000	3.500	5.000	○ 3.500 ○	4.100 ℂ	5.100
4040	イオン選択電極法		ヘックマン・コールター	3.600	5.000			○ 3.500 ○	4.200 ℂ	5.200
4902	イオン選択電極法		テクノメディカSTAX	3.600	5.000			○ 3.500 ○	4.200 ℂ	5.200
5003	イオン選択電極法		目立7140-7170	3.600	5.000	3.600	5.000	○ 3.500 ○	4.200 ℂ	5.300
5005	イオン選択電極法		エイアント・ティーエレク	3.600	4.800			○ 3.600 ○	4.200 ℂ	5.300
5006	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.550 ○	4.210 C	5.250
5010	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800	3.600	4.800	○ 3.500 ○	4.200 ℂ	5.200
6006	イオン選択電極法	デンカ生研	東芝25FR_Accut	3.300	4.800			○ 3.600 ○	4.200 ℂ	5.300
6008	イオン選択電極法	東芝メディカル	東芝TBA-200F	3.600	4.800			○ 3.500 ○	4.200 ℂ	5.300
6015	イオン選択電極法	シスメックス	目立LABOSPE	3.500	4.900			○ 3.600 ○	4.200 ℂ	5.300
6016	イオン選択電極法	デンカ生研	東芝TBA-200F	3.600	4.900	3.600	4.900	○ 3.500 ○	4.200 ℂ	5.200
7001	イオン選択電極法	日本電子	日本電子JCA-B	3.300	4.800	3.300	4.800	○ 3.600 ○	4.200 ℂ	5.200
7002	イオン選択電極法	日本電子	日本電子JCA-B	3.600	4.800			○ 3.600 ○	4.200 ℂ	5.200
7007	イオン選択電極法	ベックマン・コー	ヘックマン・コールター	3.500	5.000	3.500	5.000	○ 3.500 ○	4.200 ℂ	5.200
7011	イオン選択電極法	デンカ生研	東芝TBA-cシリー	3.600	4.800			○ 3.510 ○	4.180 ℂ	5.240
7025	イオン選択電極法	エイアンドティー	日本電子JCA-B	3.300	4.900			○ 3.530 ○	4.200 ℂ	5.220
7901	イオン選択電極法		目立LABOSPE	3.600	4.900			○ 3.600 ○	4.200 ℂ	5.300
8004	イオン選択電極法		日本電子JCA-B	3.500	4.900			○ 3.600 ○	4.200 ℂ	5.300
9035	イオン選択電極法	積水メディカル	積水EV800					○ 3.600 ○	4.250 ℂ	5.270
9043	イオン選択電極法		ロシュコハ ス8000c5					○ 3.503 ○	4.157 ℂ	5.153
9047	イオン選択電極法	ベックマン・コー	ヘックマン・コールター					○ 3.500 ○	4.140	4.820
9049	イオン選択電極法	シスメックス	目立7140-7170	3.400	4.500			○ 3.570 ○	4.240 ℂ	5.270
9050	イオン選択電極法	シーメンス	シーメンスHCDDim					○ 3.499 ○	4.193 ℂ	5.209

92 K(F) 施設No.が低い順に並んでいます

7 E HA		<b>二正/0 (、 65 )</b>								
施設	測定原理	試薬メーカー	機器	男性基準	隼範囲	女性基	準範囲			試料報告值
No	例足原垤	武衆/一//	7交 台	下限	上限	下限	上限	試料01	試料02	試料03
1044	ト・ライケミストリー法	富士フィルムメ	富士ドライケムNX5	3.800	5.000		(	3.500 (	4.200 €	5.300
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	3.600	5.500		(	3.500 (	4.100 (	5.300
1076	ト・ライケミストリー法	富士フィルムメ	富士トライケム700	3.600	4.900		(	3.500	4.200 €	5.300
1091	ドライケミストリー法	富士フィルムメ	富士トライケム800	3.400	4.600	3.400	4.600	3.500 (	4.200 €	5.300
1097	ドライケミストリー法	富士フィルムメ	富士トライケム700	3.500	5.000	3.500	5.000	3.500 (	4.200 €	5.300
1108	ドライケミストリー法	富士フィルムメ	富士ドライケム800	3.600	4.900	3.600	4.900	3.500	4.200 €	5.300
1126	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.600	4.900	3.600	4.900	3.500	4.200 €	5.300
1133	ドライケミストリー法	富士フィルムメ	富士トライケム400	3.800	5.000		(	3.500	4.200 €	5.300
1137	ドライケミストリー法	富士フィルムメ	富士ドライケム400	3.600	4.900	3.600	4.900	3.400 (	4.100 €	5.200
1326	ドライケミストリー法	富士フィルムメ	富士トライケム400	3.500	5.000	3.500	5.000	3.500	4.200 €	5.300
1336	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.800	5.000		(	3.500 (	4.100 €	5.300
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.800	5.000		(	3.500	4.200 €	5.300
1374	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.500	5.000	3.500	5.000	3.500	4.200 €	5.300
1375	ドライケミストリー法	富士フィルムメ	富士ドライケム400	3.500	5.000		(	3.400 (	4.200 €	5.300
1393	ドライケミストリー法	富士フィルムメ	他のドライケミストリ	3.600	4.900	3.600	4.900	3.600 (	4.300 €	5.400
1415	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.800	5.000	3.800	5.000	3.500	4.200 €	5.300
1545	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.600	4.800		(	3.400	4.100 €	5.300
1546	ドライケミストリー法	富士フィルムメ	他のドライケミストリ	3.800	5.000		(	3.500 (	4.200 €	5.300
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.600	4.800	3.600	4.800	3.400 (	4.200 €	5.300
1552	ドライケミストリー法	富士フィルムメ	富士ドライケム400	3.800	5.000		(	3.400 (	4.100 €	5.300
1557	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.800	5.000		(	3.500 (	4.200 €	5.300
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.600	4.800	3.600	4.800	3.500 (	4.200 €	5.300
1560	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.800	5.000		(	3.500 (	4.200 €	5.300
1561	ドライケミストリー法	富士フィルムメ	富士トライケム700	3.600	4.800	3.600	4.800	3.400 (	4.100 €	5.200
2012	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	3.800	5.000	3.800	5.000	3.500 (	4.200 €	5.300
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.800	5.000		(	3.500 (	4.200 €	5.300

### 127 K(A1)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	[0	79交石计	下限 上限 下限 上限 試料01 試料02 試料03	
1317	ト゛ライケミストリー法	アークレイ	アークレイスポットケム	$3.500$ $5.000$ $3.500$ $5.000$ $\bigcirc$ $3.700$ $\bigcirc$ $4.400$ $\bigcirc$ $5.400$
1378	ドライケミストリー法	アークレイ	アークレイスホットケム	$3.600  4.900 \qquad \bigcirc \ 3.700 \bigcirc \ 4.300 \bigcirc \ 5.500$
1418	ドライケミストリー法	アークレイ	アークレイスホットケム	$3.600$ $4.800$ $3.600$ $4.800$ $\bigcirc$ $3.800$ $\bigcirc$ $4.400$ $\bigcirc$ $5.400$
9041	ドライケミストリー法	アークレイ	アークレイスポットケム	$\bigcirc$ 3.600 $\bigcirc$ 4.200 $\bigcirc$ 5.200

157 K(A2)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	側足原埋			下限 上限 下限 上限 試料01 試料02 試料03
1521	・・ライケミストリー法	アークレイ	アークレイスポットケム	3.600 4.800 3.600 4.800 $\bigcirc$ 3.700 $\bigcirc$ 4.400 $\bigcirc$ 5.700

187 K(O) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武衆ノーガー	7% 台	下限 上限 下限 上限 試料01 試料02 試料03
1075	ト゛ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	3.600 4.800 3.600 4.800 🔾 3.600 🔾 4.300 5.500
1100	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	$\bigcirc$ 3.600 $\bigcirc$ 4.300 5.500
8011	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	$3.500$ $5.300$ $3.500$ $5.300$ $\bigcirc$ $3.600$ $\bigcirc$ $4.300$ $\bigcirc$ $5.400$
9040	ト・ライケミストリー法	オーソ・クリニカ	オーソビトロス5600	O 3.630 4.340 5.500

### クロール (CI)

琉球大学医学部附属病院 検査・輸血部 山内 恵

### 【参加状况】

参加施設 243 施設 (前回 230 施設)

### 【測定方法の状況】

イおン選択電極法は 207 施設(85%)、ト ライケミストリー法は 36 施設 (15%)であった。 イオン選択電極法のうち希釈法は 185 施(89%)、直接法は 22 施設(11%)であった。 ト ライケミストリー法のメーカー別内訳は富士フィルムが 27 施設、アークレイが 5 施設、オーソが 4 施設であった。

### 【測定値の状況】

1. 付か選択電極法の全体 CV%は  $0.8 \sim 9.3\%$ 、3SD 除去後 CV%はいずれも 0.7%であった(表 1)。 原理別における全データ平均値はいずれの試料も希釈法に比べて直接法は低値にあった。 さらに、方法内変動 CV%および 3SD 除去率%についても直接法が高かった。(表 2)。

·		<b>武 1</b> . 小	17 医八电压1	コップトグラン	1.13 <u>K</u> H I WH >	<b>/</b>   <b>└</b>	
	試料	n	平均值	SD	CV%	最小	最大
	1	207	91.0	3.82	4.2	86.0	142.9
全データ	2	207	95.0	6.36	6.7	5.1	100.0
	3	207	102.7	1.08	1.1	100.0	108.0
	1	202	90.9	1.13	1.2		
3SD 除去	2	199	95.4	0.95	1.0		
	3	203	102.7	0.97	0.9		

表 1. イオン選択電極法の試料別集計結果

表 2. 付が選択電極法の原理別集計(3SD除去)

⇒ NJoL			全データ		337641 (5	3SD 除去		3SD
試料	原理別	n	平均值	CV%	n	平均值	CV%	除去率%
	全 体	207	91.0	4.2	202	90.9	1.2	2.4
1	希釈法	185	91.0	1.1	185	91.0	1.1	0.0
	直接法	22	91.7	12.4	17	89.9	1.9	22.7
	全 体	207	95.0	6.7	199	95.4	1.0	3.9
2	希釈法	185	95.5	1.0	183	95.5	1.0	1.1
	直接法	22	90.5	20.7	16	94.6	0.9	27.3
	全 体	207	102.7	1.1	203	102.7	0.9	1.9
3	希釈法	185	102.8	1.0	183	102.7	0.9	9.1
	直接法	22	102.8	1.6	20	102.3	1.1	9.1

直接法のメーカー別分布を図1に示す(試料1と試料2)。 目標範囲から外れた施設の多くはいずれの試料も低 値域に分布していた。そのうち、常光は8施設中6 施設がいずれかの試料または両試料ともに目標範囲 から外れていた。

105 103 101 99 97 27 27 28 93 91 89 87 87 85 85 86 87 88 89 90 91 92 93 94 95 試料1

2. ドライケミストリー法のメーカー別 CV%は 0.3~1.6%であった。 平均値は電極法に比べて高い傾向にあった(表 3)。

図 1. 直接法のメーカー別分布図

衣 <b>)</b>	表 3.	ケミストリ法のメーカー別集計
------------	------	----------------

試料	測定法	n	平均値	SD	CV%
	富士フィルム	27	88.8	1.17	1.3
1	アークレイ	5	89.2	1.33	1.5
1	オーソ	4	90.5	0.46	0.5
	電極法	202	90.9	1.13	1.2
	富士フィルム	27	94.0	1.53	1.6
2	アークレイ	5	95.2	1.72	1.8
	オーソ	4	95.6	0.41	0.4
	電極法	199	95.4	0.95	1.0
	富士フィルム	27	101.7	1.48	1.5
3	アークレイ	5	104.8	1.94	1.9
3	オーソ	4	103.5	0.50	0.5
	電極法	203	102.7	0.97	0.9

電極法: 3SD 除去後データ

3. 目標範囲については、電極法は目標値設定施設の 2SD とした。 ドライケミストリー法はオーソが電極法と同一の目標値および目標範囲とし、その他はメーカー設定の目標値および目標範囲(富士フィルム: 4%、アークレイ:5%)を用いた。

目標達成率は電極法全体では93.2~96.1%であったが、直接法が54.5~81.8%と希釈法に比べて低かった。ドライケミストリー法全体で80.0~100%であった。アークレイの試料2で80.0%(4/5施設)以外はすべて100%の達成率であった(表 4)

		<b>ДС Т.</b>	日保範囲建成施設数40より建成中									
					目標範	囲達成						
測定	<b>三法</b>	n		施設数 達成率(%)								
			試料 1	試料 2	試料 3	試料 1	試料 2	試料 3				
電極法	全体	207	196	193	199	94.7	93.2	96.1				
	希釈法	185	184	180	181	99.5	97.3	97.8				
	直接法	22	12	13	18	54.5	59.1	81.8				
ト゛ライケミストリー法	全体	36	36	35	36	100.0	97.2	100.0				
	富士フィルム	27	27	27	27	100.0	100.0	100.0				
	アークレイ	5	5	4	5	100.0	80.0	100.0				
	オーソ	4	4	4	4	100.0	100.0	100.0				

表 4 目標範囲達成施設数および達成率

### 【基準範囲】

JCCLS 共用基準範囲  $101\sim108$ mmol/L の採用施設が最も多く 93 施設であった(平成 28 年度 80 施設、平成 27 年度 53 施設、平成 26 年度 2 施設)。次いで 99~109mmol/L の採用施設が 47 施設であった。

13 CL 施設No.が低い順に並んでいます

施設				男性基	準範囲	女性基	準範囲				試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試	料01	試料02	試料03
	/ 小 / 品 和 衛 持 / 计	キャンニ カル	□ ☆I ABOCDE								-
	イオン選択電極法	積水メディカル	目立LABOSPE	101.0	108.0					95.00 🔾	
	イオン選択電極法	和光純薬	目立LABOSPE	99.00	109.0					95.10 🔾	
	イオン選択電極法	** L ) ~ ' ) ,	H-liv apparen	404.0	1000					96.00 🔾	
	イオン選択電極法	積水メディカル	日立LABOSPE	101.0	108.0					95.30 🔾	
	イオン選択電極法	デンカ生研	東芝TBA-cシリー	97.00		97.00				95.00 🔾	
	イオン選択電極法		日本電子JCA-B	101.0		101.0				96.60 🔾	
	イオン選択電極法	和光純薬	日立7140-7170	101.0	108.0					95.00 🔾	
	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0					96.00 🔾	
1018	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0	101.0	108.0	O 9	1.40 〇	95.50 🔾	102.4
1021	イオン選択電極法	日本電子	日本電子JCA-B	98.00	108.0	98.00	108.0	O 9	1.60 〇	96.00 🔾	103.1
1023	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0			O 9	2.00 🔾	96.00 🔾	103.0
1024	イオン選択電極法	積水メディカル	目立LABOSPE	99.00	109.0			O 9	1.70 🔾	95.70 🔾	103.2
1026	イオン選択電極法	東芝メディカル	東芝25FR_Accut	101.0	108.0			O 9	0.50 🔾	95.10 🔾	102.0
1028	イオン選択電極法	積水メディカル	目立LABOSPE	99.00	109.0			O 9	1.00 〇	95.00 🔾	103.0
1029	イオン選択電極法	和光純薬	目立7140-7170	101.0	108.0	101.0	108.0	O 9	1.00 〇	94.00 🔾	103.0
1031	イオン選択電極法	東芝メディカル	東芝TBA-cシリー	101.0	108.0			8	88.70	93.90 🔾	101.3
1032	イオン選択電極法	シーメンス	シーメンスHCDDim	98.00	109.0			O 9	2.40 🔾	96.00 🔾	103.5
1033	イオン選択電極法	積水メディカル	目立7140-7170	98.00	108.0	98.00	108.0	O 9	1.00 〇	95.00 〇	102.0
1034	イオン選択電極法	積水メディカル	目立7140-7170	98.00	108.0	98.00	108.0	O 9	1.00 〇	95.00 〇	102.0
1035	イオン選択電極法		日本電子JCA-B	99.00	109.0			O 9	2.00 〇	97.00 🔾	104.0
1038	イオン選択電極法	積水メディカル	目立LABOSPE	101.0	108.0			O 9	2.00 〇	96.00 〇	104.0
1039	イオン選択電極法	和光純薬	日立7140-7170	101.0	108.0			O 9	1.00 〇	95.00 〇	103.0
1040	イオン選択電極法	積水メディカル	目立LABOSPE	101.0	108.0	101.0	108.0	O 9	1.00 〇	95.00 🔾	102.0
1046	イオン選択電極法	東芝メディカル	東芝25FR_Accut	99.00	109.0	99.00	109.0	O 8	9.50 〇	94.70 🔾	101.7
	イオン選択電極法	ベックマン・コー	ベックマン・コールター	99.00	109.0	99.00				95.00 🔾	
	イオン選択電極法		日本電子JCA-B	101.0	108.0	101.0				96.20 🔾	
	イオン選択電極法	日本電子	日本電子JCA-B	98.00	109.0	98.00				95.80 🔾	
	イオン選択電極法	デンカ生研	東芝TBA-cシリー	98.00	108.0					95.00 🔾	
	イオン選択電極法	シーメンス	シーメンスHCDDim	101.0	108.0					96.00 🔾	
	イオン選択電極法	積水メディカル	日立7140-7170	99.00	109.0	99.00				96.00 🔾	
	イオン選択電極法	134.70 7 174.	東京貿易ビオリス5	98.00	108.0	00.00	100.0			94.00 〇	
	イオン選択電極法		日本電子JCA-B	99.00	109.0					97.00 🔾	
	イオン選択電極法		東京貿易ビオリス2	98.00		98.00				95.00 🔾	
	電量滴定法(クロラ		日本電子JCA-B	98.00	108.0	30.00				96.00 🔾	
	イオン選択電極法	積水メディカル	目立LABOSPE	101.0		101.0				94.00 🔾	
	イオン選択電極法	日本電子	日本電子JCA-B	96.00	110.0	96.00				97.00 🔾	
	イオン選択電極法	口不电」	目立LABOSPE	99.00		99.00				96.00 🔾	
		手n 水体 小									
	イオン選択電極法	和光純楽	目立LABOSPE	99.00		99.00				94.80 🔾	
	イオン選択電極法	3. 35.00	東京貿易ビオリス2	98.00	108.0	98.00				96.10 🔾	
	イオン選択電極法	シーメンス	シーメンスHCDDim	98.00	109.0	98.00	109.0			96.00 🔾	
	イオン選択電極法	ニンルルザ	常光EX-Z/Zs/	101.0	100.0	101.0	100.0		42.9	5.170 🔾	
	イオン選択電極法	デンカ生研	東芝TBA-cシリー	101.0		101.0				95.10 🔾	
	イオン選択電極法		東京貿易ピオリス2	101.0		101.0	108.0		37.00	92.00 🔾	
	イオン選択電極法		日立LABOSPE	99.00		99.00				94.00 〇	
	イオン選択電極法	積水メディカル	日立7140-7170	101.0		101.0				96.40 🔾	
	イオン選択電極法	和光純薬	日立7140-7170	101.0		101.0				95.00 🔾	
	イオン選択電極法		日本電子JCA-B	99.00	109.0					94.00 🔾	
	イオン選択電極法	デンカ生研	東芝TBA-cシリー	98.00		98.00				96.00 🔾	
	イオン選択電極法	東芝メディカル	東芝TBA-cシリー	101.0	108.0					95.00 🔾	
	イオン選択電極法		ロシュ91XXシリース゛	98.00	108.0					94.00 〇	
1105	イオン選択電極法		ヘックマン・コールター	98.00	108.0			O 9	0.90 🔾	95.20 🔾	102.0
1112	イオン選択電極法	常光	常光EX-Z/Zs/	98.00	109.0	98.00	109.0	8	8.00 🔾	94.00 🔾	103.0
1116	イオン選択電極法		日本電子JCA-B	98.00	109.0	98.00	109.0	O 9	1.10 🔾	95.60 🔾	102.6
1120	イオン選択電極法	デンカ生研	東芝TBA-cシリー	101.0	108.0			0 8	9.80 🔾	94.90 🔾	102.7
1121	イオン選択電極法	東芝メディカル	東芝25FR_Accut	99.00	109.0	99.00	109.0	O 9	1.00 〇	96.00 🔾	104.0
1122	イオン選択電極法	ベックマン・コー	ヘックマン・コールター	98.00	109.0	98.00	109.0	O 9	0.60 🔾	94.20 🔾	102.5
1123	イオン選択電極法	シーメンス	シーメンスHCDDim	98.00	108.0	98.00	108.0	O 9	0.60 🔾	94.90 🔾	102.1

13 CL 施設No.が低い順に並んでいます

施設	INO. W PART			男性基準	節囲	女性基準	<b>準範囲</b>			試料報告値
No	測定原理	試薬メーカー	機器		上限	下限	上限	試料01	試料02	試料03
1127	イオン選択電極法	エイアンドティー	日本電子JCA-B	98.00	108.0			○ 90.00 ○	95.00 〇	102.0
1128	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0	101.0	108.0	○ 91.00 ○	95.00 〇	102.0
1129	イオン選択電極法	ベックマン・コー	ベックマン・コールター	98.00	108.0			○ 90.00 ○	95.00 🔾	102.0
1130	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0	101.0	108.0	○ 90.20 ○	94.20 🔾	101.9
1134	イオン選択電極法	積水メディカル	日立7140-7170	99.00	109.0	99.00	109.0	○ 90.00 ○	95.00 🔾	102.0
	イオン選択電極法	ベックマン・コー	ベックマン・コールター		109.0			O 90.00 C		
	イオン選択電極法	日本電子	日本電子JCA-B		108.0			O 92.00 C		
	イオン選択電極法	日本電子	日大電フICA D		108.0			○ 91.30 ○ ○ 90.70 ○		
	イオン選択電極法イオン選択電極法	日本電子	日本電子JCA-B ヘックマン・コールター		108.0 108.0			90.70 C		
	イオン選択電極法	エイアンドティー	日本電子JCA-B		108.0			O 91.00 C		
	イオン選択電極法	東芝メディカル	東芝25FR_Accut		108.0			O 91.00 C		
	イオン選択電極法	東芝メディカル	東芝TBA-200F			98.00		○ 89.90 ○		
1313	イオン選択電極法	日本電子	日本電子JCA-B	99.00	109.0			○ 92.00 ○	97.00 〇	104.0
1315	イオン選択電極法		日本電子JCA-B	101.0	108.0	101.0	108.0	○ 92.00 ○	97.00 〇	104.0
1316	イオン選択電極法	日本電子	日本電子JCA-B	99.00	109.0			○ 92.00 ○	96.00 〇	103.0
1325	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0	101.0	108.0	○ 91.00 ○	96.00 〇	102.0
1327	イオン選択電極法	エイアンドティー	日本電子JCA-B	101.0	108.0	101.0	108.0	○ 93.00 ○	97.00 🔾	104.0
	イオン選択電極法		ヘックマン・コールター		108.0			○ 90.00 ○		
	イオン選択電極法	日本電子	日本電子JCA-B			101.0		O 92.00 C		
	イオン選択電極法	日本電子	日本電子JCA-B		109.0			O 91.00 C		
	イオン選択電極法イオン選択電極法	東芝メディカル	東芝TBA-cシリー エイアント・ティーEA0		108.0 109.0			○ 89.00 ○ ○ 90.70 ○		100.0
1336	747 医八电影仏		富士トライケム700		105.0			○ 89.00 ○		
	イオン選択電極法	エイアンドティー	日本電子JCA-B		108.0			O 92.00 C		
	イオン選択電極法	エイアンドティー	日本電子JCA-B		108.0			O 91.00 C		
1341	イオン選択電極法		日本電子JCA-B	101.0	108.0	101.0	108.0	○ 91.00 ○	95.00 〇	103.0
1342	イオン選択電極法		日本電子JCA-B	98.00	108.0	98.00	108.0	○ 93.00 ○	98.00 〇	105.0
1343	電量滴定法(クロラ		目立LABOSPE	101.0	108.0			○ 90.30 ○	95.30 🔾	103.0
1344	イオン選択電極法	積水メディカル	目立7140-7170	101.0	108.0	101.0	108.0	○ 91.00 ○	96.00 〇	104.0
1346	イオン選択電極法	日本電子	日本電子JCA-B	98.00	108.0			○ 91.00 ○	96.00 🔾	103.0
	イオン選択電極法	常光	常光EX-Z/Zs/		108.0			○ 91.00 ○		
	イオン選択電極法	東芝メディカル	東芝TBA-cシリー		108.0	101.0		O 90.00 C		
	イオン選択電極法イオン選択電極法		ロシュコハ、ス8000c5			101.0		O 90.00 C		
	イオン選択電極法	常光	日本電子JCA-B 常光EX-Z/Zs/		109.0	101.0	108.0	○ 90.00 ○ 88.40	93.70 🔾	
	イオン選択電極法	日本電子	日本電子JCA-B					○ 92.00 ○		
	イオン選択電極法	デンカ生研	東芝TBA-cシリー					O 89.00 C		
	イオン選択電極法	日本電子	日本電子JCA-B					O 90.10 C		
1357	イオン選択電極法	和光純薬	目立7140-7170	99.00	109.0	99.00	109.0	○ 91.00 ○	95.00 〇	103.0
1358	イオン選択電極法	エイアンドティー	日本電子JCA-B	101.0	108.0			○ 93.80 ○	97.80 🔾	105.0
1359	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0	101.0	108.0	○ 92.00 ○	96.00 〇	103.0
	イオン選択電極法		常光EX-Z/Zs/	101.0	108.0			O 94.00	100.0	108.0
	イオン選択電極法	ベックマン・コー	ベックマン・コールター		109.0			O 90.00 C		
	イオン選択電極法	和光純薬	日立7140-7170			101.0		O 89.40 C		
	イオン選択電極法	東芝メディカル	東芝TBA-cシリー		108.0	101.0		○ 89.00 C		
	イオン選択電極法イオン選択電極法	和光純薬	日立LABOSPE 東京貿易ビオナリス5		108.0	101.0	108.0	93.00 87.00	99.00 92.00	106.0 100.0
	イオン選択電極法	関東化学	東京貿易ビオリス1		110.0			O 90.00 C		
	イオン選択電極法	和光純薬	日立LABOSPE		108.0			0 90.00 0		
	イオン選択電極法	東芝メディカル	東芝25FR_Accut		108.0			○ 89.90 C		
	イオン選択電極法	デンカ生研	東芝TBA-cシリー			99.00		○ 90.00 ○		
1391	イオン選択電極法	積水メディカル	日立7140-7170	99.00	109.0	99.00	109.0	○ 90.00 ○	96.00 〇	104.0
1394	イオン選択電極法	常光	常光EX-Z/Zs/	101.0	108.0			88.40 ○	94.50 〇	103.4
1396	イオン選択電極法	テクノメディカ	テクノメディカGAST	101.0	108.0	101.0	108.0	○ 92.00 ○	96.00 🔾	103.0
	イオン選択電極法	常光	東京貿易ビオナリス2					O 91.00 C		
1401	イオン選択電極法	シーメンス	シーメンスHCDDim	101.0	108.0	101.0	108.0	○ 92.00 ○	97.00 🔾	104.0

13 CL 施設No.が低い順に並んでいます

施設	测学库理		14% D.D.	男性基	準範囲	女性基準	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1402	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0			○ 92.00 ○	97.00 〇	104.0
1403	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0	101.0	108.0	○ 93.00 ○	97.00 🔾	104.0
	電量滴定法(クロラ	デンカ生研	東芝TBA-cシリー	99.00	103.0			○ 92.00 ○		
	イオン選択電極法	関東化学	東京貿易ピオリス1	98.00	108.0			○ 89.00 ○		
	イオン選択電極法	常光	常光EX-Z/Zs/	98.00		98.00	108.0	86.00	92.00 〇	
	イオン選択電極法 イオン選択電極法	日本電子 ベックマン・コー	日本電子JCA-B ヘックマン・コールター	101.0 99.00	108.0 109.0	99.00		○ 91.50 ○ ○ 90.10 ○		
	イオン選択電極法	シスメックス	目立LABOSPE	99.00	109.0	99.00		0 89.00 0		
	イオン選択電極法	日本電子	日本電子JCA-B	99.00	109.0			O 89.60 C		
1505	イオン選択電極法	和光純薬	日立LABOSPE	101.0	108.0			○ 90.00 ○		
1506	イオン選択電極法		日立LABOSPE	98.00	109.0	98.00	109.0	○ 90.00 ○	95.00 〇	101.0
1511	イオン選択電極法		日本電子JCA-B	101.0	108.0			○ 92.20 ○	96.60 🔾	104.1
1512	イオン選択電極法	積水メディカル	日立7140-7170	101.0	108.0	101.0	108.0	○ 90.00 ○	95.00 〇	103.0
	イオン選択電極法	シスメックス	日立LABOSPE	101.0	108.0			○ 92.00 ○	95.80 ○	103.6
	イオン選択電極法	和光純薬	日立LABOSPE	101.0	108.0			○ 89.00 ○		
	イオン選択電極法	エイアンドティー	エイアント・ティーEA0	101.0	108.0	101.0		O 92.00 C		
	イオン選択電極法	東芝メディカル	東芝25FR_Accut	101.0	108.0			O 90.00 C		
	イオン選択電極法 イオン選択電極法		デクノメディカSTAX エイアント・ティーEA0	101.0 99.00	108.0 109.0			○ 89.00 ○ 91.00 ○	93.00 🔾	
	イオン選択電極法	和光純薬	日立7140-7170	101.0	108.0	101.0		O 92.20 C		
	イオン選択電極法	和光純薬	目立LABOSPE	99.00	109.0			0 90.90 0		
	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0			O 91.00 C		
1531	イオン選択電極法	シーメンス	シーメンスHCDDim	99.00	109.0	99.00	109.0	○ 91.70 ○	95.60 ○	102.0
1532	イオン選択電極法		日立7140-7170	101.0	108.0	101.0	108.0	○ 91.60 ○	96.10 〇	103.3
1533	イオン選択電極法	シーメンス	シーメンスHCDDim	101.0	108.0			○ 92.00 ○	96.00 〇	104.0
1534	イオン選択電極法	エイアンドティー	エイアント・ティーEA0	101.0	108.0			○ 91.00 ○	96.00 🔾	102.0
	イオン選択電極法	エイアンドティー	エイアント・ティーEA0	101.0	108.0			O 91.00 C		
	イオン選択電極法	エイアンドティー	日本電子JCA-B	101.0		101.0		O 90.90 C		
	電量滴定法(クロラ イオン選択電極法	東芝メディカル シスメックス	東芝25FR_Accut 日立7140-7170	99.00 98.00	109.0 109.0			○ 90.00 ○ ○ 91.00 ○		
	イオン選択電極法	東芝メディカル	東芝25FR_Accut	99.00	109.0	99 00		O 89.00 C		
	イオン選択電極法	70007 7 7777	東京貿易ビオリス2	99.00	109.0	00100		O 92.00 C		
	イオン選択電極法	積水メディカル	目立7140-7170	98.00	108.0			O 91.00 C		
1557		富士フィルムメ	富士ドライケム700	98.00	108.0			○ 89.00	93.00 🔾	101.0
1558	イオン選択電極法		日本電子JCA-B	101.0	108.0	101.0	108.0	○ 91.00 ○	96.00 🔾	103.0
1562	イオン選択電極法	エイアンドティー	日本電子JCA-B	101.0	108.0	101.0	108.0	○ 91.00 ○	95.30 🔾	101.7
		ベックマン・コー	ヘ゛ックマン・コールター	99.00	109.0	99.00		○ 91.00 ○		
	イオン選択電極法		日本電子JCA-B	98.00	108.0			O 91.30 C		
	イオン選択電極法	シスメックス	日立7600電解	98.00	109.0			O 92.00 C		
	イオン選択電極法 イオン選択電極法	和光純薬 ベックマン・コー	日立LABOSPE ヘックマン・コールター	99.00 99.00	109.0 109.0			<ul><li>○ 93.00 ○</li><li>○ 90.00 ○</li></ul>		
	電量滴定法(クロラ	日本電子	日本電子JCA-B	101.0	103.0			O 92.00 C		
	イオン選択電極法	和光純薬	目立LABOSPE	99.00		99.00		0 90.00 0		
	イオン選択電極法	シスメックス	日立3100	99.00	109.0			○ 90.00 ○		
1922	イオン選択電極法	シスメックス	日立7140-7170	98.00	109.0			○ 90.00 ○	95.00 〇	103.0
1923	イオン選択電極法	シスメックス	日立7140-7170	98.00	109.0			○ 90.00 ○	95.00 🔾	102.0
1925	イオン選択電極法	エイアンドティー	ヘ゛ックマン・コールター	98.00	108.0	98.00	108.0	○ 90.00 ○	94.00 🔾	101.0
	イオン選択電極法	デンカ生研	東芝TBA-200F	96.00	110.0	96.00		○ 90.00 ○		
	イオン選択電極法	エイアンドティー	ヘックマン・コールター	98.00	109.0	00.00		O 91.00 C		
	イオン選択電極法	エイアンドティー	ヘックマン・コールター	99.00	109.0			O 91.00 C		
	イオン選択電極法イオン選択電極法	エイアンドティーエイアンドティー	ヘ、ックマン・コールター 日本電子JCA-B	99.00 98.00	109.0 108.0	99.00		○ 91.00 ○ ○ 90.00 ○		
	イオン選択電極法	エイアンドティー	「小も丁JCA-D ベックマン・コールター	99.00	109.0			0 90.00 0		
	イオン選択電極法	積水メディカル	日立7140-7170	98.00	108.0	98.00		0 90.00 0		
	イオン選択電極法	日本電子	日本電子JCA-B	98.00				O 92.00 C		
1937	イオン選択電極法		日本電子JCA-B	98.00	110.0	98.00	110.0	○ 92.00 ○	97.00 🔾	104.0
2002	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0			○ 91.00 ○	96.00 〇	103.0

13 CL 施設No.が低い順に並んでいます

施設	测学区理	学を2. も.	<del>1</del> 4% 13.11	男性基	準範囲	女性基	準範囲			試料報告值
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
2006	イオン選択電極法	積水メディカル	目立LABOSPE	99.00	109.0		(	O 91.00 C	96.00 🔾	103.0
2008	イオン選択電極法	ロシュ・ダイアグ	ロシュコハ [*] ス8000c7	101.0	108.0	101.0	108.0	O 90.00 C	95.00 🔾	102.0
2009	イオン選択電極法		日本電子JCA-B	98.00	110.0	98.00	110.0	O 94.00	99.00	106.0
2010	イオン選択電極法	積水メディカル	目立7140-7170	98.00	109.0	98.00	109.0	O 90.00 C	95.00 🔾	102.0
2011	イオン選択電極法	エイアンドティー	ヘ゛ックマン・コールター	99.00	109.0	99.00	109.0	O 91.00 C	95.00 🔾	102.0
3001	イオン選択電極法	エイアンドティー	日本電子JCA-B	101.0	108.0	101.0	108.0	O 92.20 C	96.60 🔾	104.2
3013	イオン選択電極法	テクノメディカ	テクノメディカSTAX	98.00	109.0		(	O 89.10 C	94.10	100.9
3018	イオン選択電極法	ベックマン・コー	ヘックマン・コールター	98.00	110.0		(	O 91.00 C	95.00 🔾	102.0
3022	イオン選択電極法		日本電子JCA-B	101.0	108.0	101.0	108.0	O 92.60 C	96.70 🔾	103.7
3027	イオン選択電極法	シスメックス	日立7600電解	98.00	109.0		(	O 91.00 C	96.00 🔾	103.0
3048	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0	101.0	108.0	O 91.70 C	95.70 🔾	102.6
3055	イオン選択電極法		エイアント・ティーエレク	101.0	108.0		(	O 93.00 C	97.00 🔾	104.0
3056	イオン選択電極法		日本電子JCA-B	101.0	108.0	101.0	108.0	O 92.20 C	96.30 🔾	103.7
3907	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0	101.0	108.0	O 91.00 C	95.00 🔾	102.0
4002	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0		(	O 92.00 C	97.00 🔾	104.0
4039	イオン選択電極法		常光EX-Z/Zs/	99.00	109.0	99.00	109.0	87.90	93.70 🔾	102.4
4040	イオン選択電極法		ヘ゛ックマン・コールター	98.00	109.0		(	O 91.00 C	96.00 🔾	103.0
4902	イオン選択電極法		テクノメディカSTAX	98.00	108.0			87.00	92.00	100.0
5003	イオン選択電極法		日立7140-7170	98.00	108.0	98.00	108.0	O 90.00 C	95.00 🔾	103.0
5005	イオン選択電極法		エイアント・ティーエレク	101.0	108.0		(	O 92.00 C	97.00 🔾	104.0
5006	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0	101.0	108.0	O 92.00 C	96.30 🔾	103.8
5010	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0	101.0	108.0	O 91.90 C	96.30 🔾	103.4
6006	イオン選択電極法	デンカ生研	東芝25FR_Accut	99.00	107.0		(	O 89.00 C	94.00 🔾	102.0
6008	イオン選択電極法	東芝メディカル	東芝TBA-200F	101.0	108.0		(	O 92.00 C	97.00 🔾	104.0
6015	イオン選択電極法	シスメックス	日立LABOSPE	96.00	108.0		(	O 91.00 C	95.00 🔾	103.0
6016	イオン選択電極法	デンカ生研	東芝TBA-200F	96.00	108.0	96.00	108.0	O 90.00 C	95.00 🔾	103.0
7001	イオン選択電極法	日本電子	日本電子JCA-B	99.00	107.0	99.00	107.0	O 92.00 C	97.00 🔾	104.0
7002	イオン選択電極法	日本電子	日本電子JCA-B	101.0	108.0		(	O 92.00 C	96.00 🔾	104.0
7007	イオン選択電極法	ベックマン・コー	ヘ゛ックマン・コールター	98.00	108.0	98.00	108.0	O 91.00 C	96.00 🔾	103.0
7011	イオン選択電極法	デンカ生研	東芝TBA-cシリー	101.0	108.0		(	O 89.90 C	94.10 🔾	101.7
7025	イオン選択電極法	エイアンドティー	日本電子JCA-B	99.00	109.0		(	O 92.00 C	96.00 🔾	103.0
7901	イオン選択電極法		目立LABOSPE	99.00	109.0		(	O 91.00 C	95.00 🔾	103.0
8004	イオン選択電極法		日本電子JCA-B	98.00	108.0		(	O 91.00 C	96.00 🔾	102.0
9035	イオン選択電極法	積水メディカル	積水EV800				(	O 92.60 C	96.60 🔾	103.9
9043	イオン選択電極法		ロシュコハ ス8000c5				(	○ 89.67	93.97	100.8
9047	イオン選択電極法	ベックマン・コー	ヘ゛ックマン・コールター				(	O 90.00 C	94.50 〇	101.3
9049	イオン選択電極法	シスメックス	日立7140-7170	100.0	108.0		(	○ 89.20	93.80 🔾	101.1
9050	イオン選択電極法	シーメンス	シーメンスHCDDim				(	O 92.20 C	96.30 🔾	103.4
	<del>.</del> .								_	

93 CL(F) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例是原理	政衆/ //	75%有計	下限	上限	下限	上限	試料01	試料02	試料03
1044	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	98.00	106.0			O 88.00 C	93.00 (	100.0
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	98.00	108.0			O 91.00 C	97.00 🤇	104.0
1076	ドライケミストリー法	富士フィルムメ	富士ドライケム700	99.00	109.0			O 88.00 C	92.00 (	100.0
1091	ドライケミストリー法	富士フィルムメ	富士ドライケム800	100.0	110.0	100.0	110.0	O 90.00 C	95.00 🤇	103.0
1097	ドライケミストリー法	富士フィルムメ	富士ドライケム700	98.00	108.0	98.00	108.0	O 87.00 C	93.00 🤇	101.0
1108	ドライケミストリー法	富士フィルムメ	富士ドライケム800	99.00	109.0	99.00	109.0	O 87.00 C	92.00 (	101.0
1126	ドライケミストリー法	富士フィルムメ	富士ドライケム700	99.00	109.0	99.00	109.0	O 89.00 C	96.00 (	101.0
1133	ドライケミストリー法	富士フィルムメ	富士ドライケム400	98.00	106.0			O 91.00 C	95.00 (	101.0
1137	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	99.00	109.0	99.00	109.0	O 90.00 C	95.00 (	) 103.0
1326	ドライケミストリー法	富士フィルムメ	富士ドライケム400	98.00	108.0	98.00	108.0	O 88.00 C	92.00 (	101.0
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	98.00	106.0			○ 88.00 ○	95.00 €	) 103.0
1374	ドライケミストリー法	富士フィルムメ	富士ドライケム700	98.00	108.0	98.00	108.0	O 88.00 C	93.00 (	101.0
1375	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	98.00	108.0			○ 88.00 ○	92.00 (	) 101.0
1393	ト゛ライケミストリー法	富士フィルムメ	他のドライケミストリ	99.00	109.0	99.00	109.0	O 87.00 C	92.00 (	99.00
1415	ドライケミストリー法	富士フィルムメ	富士ドライケム700	98.00	106.0	98.00	106.0	○ 88.50 ○	93.00 (	) 100.0
1545	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	101.0	108.0			O 89.00 C	94.00 (	) 101.0
1546	ドライケミストリー法	富士フィルムメ	他のドライケミストリ	98.00	106.0			O 89.00 C	95.00 (	) 102.0
1548	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	101.0	108.0	101.0	108.0	O 91.00 C	98.00 €	) 106.0
1552	ドライケミストリー法	富士フィルムメ	富士ドライケム400	98.00	106.0			O 87.00 C	93.00 (	) 101.0
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	101.0	108.0	101.0	108.0	○ 88.00 ○	94.00 (	) 101.0
1560	ドライケミストリー法	富士フィルムメ	富士ドライケム700	98.00	106.0			O 89.00 C	94.00 (	) 102.0
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	101.0	108.0	101.0	108.0	O 89.00 C	95.00 (	) 104.0
2012	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	98.00	106.0	98.00	106.0	O 89.00 C	94.00 (	) 102.0
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	98.00	106.0			O 90.00 C	95.00 (	103.0

128 CL(A1)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値	
No	例足原生	武衆ノーカー	75文 台 计	下限 上限 下限 上限 試料01 試料02 試料03	
1317	ト・ライケミストリー法	アークレイ	アークレイスポットケム	98.00 108.0 98.00 108.0 $\bigcirc$ 89.00 $\bigcirc$ 96.00 $\bigcirc$ 104.0	
1378	ドライケミストリー法	アークレイ	アークレイスホ°ットケム	99.00 109.0 $\bigcirc$ 91.00 $\bigcirc$ 97.00 $\bigcirc$ 108.0	
1521	ドライケミストリー法	アークレイ	アークレイスホ°ットケム	101.0 108.0 101.0 108.0 $\bigcirc$ 87.00 92.00 $\bigcirc$ 102.0	
9041	ドライケミストリー法	アークレイ	アークレイスホットケム	$\bigcirc$ 89.00 $\bigcirc$ 96.00 $\bigcirc$ 105.0	

158 CL(A2)

施記	型 測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原理			下限 上限 下限 上限 試料01 試料02 試料03
152	21 ト・ライケミストリー法	アークレイ	アークレイスポットケム	101.0 108.0 101.0 108.0 $\bigcirc$ 87.00 92.00 $\bigcirc$ 102.0

188 CL(O)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武架/一//	1752, 4137	下限 上限 下限 上限 試料01 試料02 試料03
1075	ト・ライケミストリー法	オーソ・クリニカ	オーソヒトロス250_3	101.0 108.0 101.0 108.0 $\bigcirc$ 90.00 $\bigcirc$ 96.00 $\bigcirc$ 103.0
1100	ト゛ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	$\bigcirc$ 90.00 $\bigcirc$ 95.00 $\bigcirc$ 103.0
8011	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	98.00 110.0 98.00 110.0 $\bigcirc$ 91.00 $\bigcirc$ 96.00 $\bigcirc$ 104.0
9040	ドライケミストリー法	オーソ・クリニカ	オーソビトロス5600	○ 90.80 ○ 95.50 ○ 104.0

### 総蛋白 (TP)

社会医療法人長門莫記念会 長門記念病院 検査科 濱野 貴磨

#### 【参加状況】

1. 参加施設数の推移を表に示す。前年度調査時と比較して13施設増加した。

年度	平成 25 年度	平成 26 年度	平成 27 年度	平成 28 年度	平成 29 年度
施設数	231	224	235	236	249

### 【測定方法の状況】

1. 測定法の推移を年度ごとに表に示す。

年度	平成 25 年度	平成 26 年度	平成 27 年度	平成 28 年度	平成 29 年度
ビューレット法	196(84.8)	200(89.3)	206(87.7)	208(88.1)	217(87.1)
ドライケミストリー法	34(14.7)	22(9.8)	28(11.9)	25(10.6)	31(12.4)
その他	0(0.0)	2(0.9)	1(0.4)	3(1.3)	1(0.4)

### 【測定値の状況】

1. 各試料の平均値は目標値に概ね一致していた。

	試料	<u></u>	試料	斗 2	試料	斗 3
	平均值	CV%	平均値	CV%	平均値	CV%
ビューレット法	5.96	1.1	6.84	1.0	8.19	1.1
ドライケミストリー法	5.89	2.2	6.84	2.2	8.27	2.9
全体	5.95	1.6	6.85	1.4	8.20	1.6
目標値	5.9	98	6.	85	8.2	20

- 2. ビューレット法群の CV%は  $1.0 \sim 1.1$ %、ドライケミストリー法群の CV%は  $2.2 \sim 2.9$ %であり、前回とほぼ同様の結果であった。
- 3. ここ数年 CV%は 1.5%前後を推移しており、良好な状態が維持・継続されている。

#### 【基準範囲の状況】

- 1. 基準範囲の平均値は 6.6~8.2g/dL であり、前回調査時と同じ結果であった。
- 2. 基準範囲下限の最頻値は 6.6g/dL(101 施設)であり、基準範囲上限の最頻値は 8.1g/dL(103 施設) であった。
- 3. 基準範囲の状況について報告のあった 236 施設のうち、JCCLS 共用基準範囲(6.6~8.1g/dL)を 採用している施設は 101 施設(42.8%)であり、前回調査時よりも 7.7%増加した。

#### 【その他のコメント】

1. 1 試料以上目標範囲を逸脱した施設は 23 施設(9.2%)であり、その内訳はビューレット法 13 施設、 ドライケミストリー法 10 施設であった。3 試料とも目標範囲を達成した施設は 226 施設(90.8%)であった。

### 【ドライケミストリー法各社の状況】

1. ドライケミストリー法各社のメーカー測定値および参考範囲を示す。アークレイ社は機種によりメーカー測定値が 異なっている。オーソ社は液状試薬法と同じ参考範囲である。

	試米	斗 1	試料	<b>幹 2</b>	試米	斗 3
	メーカー測定値	参考範囲	メーカー測定値	参考範囲	メーカー測定値	参考範囲
アークレイ SP	5.50	5.20~5.80	6.50	6.20~6.80	7.80	7.40~8.20
アークレイ SD	5.50	5.20~5.80	7.00	6.70~7.40	8.80	8.40~9.20
オーソ	5.98	5.80~6.20	6.85	6.70~7.00	8.20	8.00~8.40
富士	5.80	5.30~6.20	6.70	6.20~7.20	8.00	7.50~8.50

2. ドライケミストリー法各社の平均値および参考範囲達成率を示す。

	N	試	料 1	試	料 2	試料 3		
	IN	平均値	達成率	平均値	達成率	平均値	達成率	
アークレイ SP	3	5.63	100.0%	6.57	100.0%	8.10	66.7%	
アークレイ SD	1	5.90	0.0%	7.10	100.0%	9.10	100.0%	
オーソ	4	6.00	100.0%	7.02	50.0%	8.51	0.0%	
富士	23	5.90 100.0% 6.83		6.83	100.0%	8.21	95.7%	

14 TP 施設No.が低い順に並んでいます

施設	INO. W PAR PARTE	- 並ん(( よ)		男性基準	准統囲	女性基	准統田			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01 試		₹料03
-	1.8 ) 1.844	.h / her	H day A DOODD			11124	717			
	ピュレット法	カイノス	目立LABOSPE	6.600	8.100			○ 6.000 ○ 6		
	ピュレット法 ピュレット法	カイノス 積水メディカル	目立LABOSPE	6.700	8.300	6 600	0 100	<ul><li>○ 5.900 ○ 6</li><li>○ 5.900 ○ 6</li></ul>		
	ピュレット法	カイノス	目立LABOSPE 目立LABOSPE	6.600 6.600	8.100 8.100	0.000	0.100	○ 5.940 ○ 6		
	ピュレット法	セロテック	東芝TBA-cシリー	6.700	8.300	6.700	8 300	○ 6.000 ○ 6		
	ピュレット法	和光純薬	日本電子JCA-B	6.500	8.000	6.500		○ 5.900 ○ 6		
	ピュレット法	関東化学	日本電子JCA-B	6.600	8.100			○ 5.940 ○ 6		
	ピュレット法	和光純薬	日立7140-7170	6.600	8.100	0.000	0.100	○ 5.900 ○ 6		
	ピュレット法	カイノス	日本電子JCA-B	6.600	8.100			0 6.000 0 6		
	ピュレット法	カイノス	日本電子JCA-B	6.600	8.100	6 600	8 100	0 6.000 0 6		
	ピュレット法	積水メディカル	日本電子JCA-B	6.500	8.200	6.500		0 6.000 0 6		
	ピュレット法	和光純薬	日本電子JCA-B	6.600	8.100			○ 6.000 ○ 6		
	ピュレット法	積水メディカル	日立LABOSPE	6.700	8.300			○ 6.080 ○ 6		
	ピュレット法	和光純薬	東芝25FR_Accut	6.600	8.100			○ 6.000 ○ 6		
1028	ピュレット法	カイノス	日立LABOSPE	6.700	8.300			○ 6.000 ○ 6	.900 🔘 8	3.200
1029	ピュレット法	和光純薬	目立7140-7170	6.600	8.100	6.600	8.100	○ 5.900 ○ 6	.900 🔘 8	3.200
1031	ピュレット法	和光純薬	東芝TBA-cシリー	6.600	8.100			○ 6.000 ○ 6	.900 🔘 8	3.300
1032	ピュレット法	シーメンス	シーメンスHCDDim	6.700	8.300			○ 5.900 ○ 6	.900 🔘 8	3.300
1033	ピュレット法	積水メディカル	目立7140-7170	6.500	8.200	6.500	8.200	○ 6.000 ○ 6	.900 🔾 8	3.300
1034	ピュレット法	積水メディカル	日立7140-7170	6.500	8.200	6.500	8.200	○ 6.000 ○ 6	.900 🔾 8	3.400
1035	ピュレット法	関東化学	日本電子JCA-B	6.700	8.300			○ 6.000 ○ 6	.800 🔾 8	3.100
1038	ピュレット法	カイノス	日立LABOSPE	6.600	8.100			○ 6.000 ○ 6	.900 🔾 8	3.200
1039	ピュレット法	関東化学	日立7140-7170	6.600	8.100			○ 5.900 ○ 6	.800 🔾 8	3.200
1040	ピュレット法	カイノス	日立LABOSPE	6.600	8.100	6.600	8.100	○ 5.900 ○ 6	.700 🔾 8	3.000
1046	ピュレット法	カイノス	東芝25FR_Accut	6.700	8.300	6.700	8.300	○ 5.940 ○ 6	.820 🔾 8	3.220
1049	ピュレット法	和光純薬	ヘックマン・コールター	6.700	8.300	6.700	8.300	○ 6.000 ○ 6		3.200
	ピュレット法	カイノス	日本電子JCA-B	6.600		6.600				7.960
	ピュレット法	和光純薬	日本電子JCA-B	6.700	8.300	6.700	8.300	○ 6.000 ○ 6		
	ピュレット法	カイノス	東芝TBA-cシリー	6.500	8.000			0 6.000 0 6		
	ピュレット法	シーメンス	シーメンスHCDDim	6.600	8.100			○ 5.900 ○ 6		
	ピュレット法	栄研化学	日立7140-7170	6.700		6.700	8.300	○ 6.000 ○ 6		
	ピュレット法	シノテスト	東京貿易ビオサスス5	6.500	8.200			○ 5.900 ○ 6		
	ピュレット法	LSIメディエンス	日本電子JCA-B 東京貿易ビオリス2	6.700	8.300	C 500	0 000	<ul><li>○ 6.000 ○ 6</li><li>○ 6.000 ○ 6</li></ul>		
	ピュレット法	積水メディカル LSIメディエンス		6.500	8.200	6.500	8.200	○ 5.900 ○ 6		
	ピュレット法	和光純薬	日本電子JCA-B 日立LABOSPE	6.500 6.600		6.600	8 100	○ 6.000 ○ 6		
	ピュレット法	LSIメディエンス	日本電子JCA-B	6.500	8.300			0.000 0 6		
	ピュレット法	積水メディカル	目立LABOSPE	6.700	8.300			0 6.000 0 6		
	ピュレット法	和光純薬	目立LABOSPE	6.700	8.300			○ 5.910 ○ 6		
	ピュレット法	積水メディカル	東京貿易ビオリス2	6.500		6.500		○ 6.200 ○ 6		
	ピュレット法	シーメンス	シーメンスHCDDim	6.700	8.300		8.300	○ 6.000 ○ 6	.900 🔘 8	3.300
1081	ピュレット法	和光純薬	東芝TBA-cシリー	6.600	8.100	6.600	8.100	○ 5.960 ○ 6	.840 🔾 8	3.150
1084	ピュレット法	和光純薬	東京貿易ビオナリス2	6.600	8.100	6.600	8.100	O 6.200 7	.100 8	3.500
1088	ピュレット法	関東化学	日立LABOSPE	6.700	8.300	6.700	8.300	○ 5.900 ○ 6	.800 🔾 8	3.100
1089	ピュレット法	シノテスト	目立7140-7170	6.600	8.100	6.600	8.100	○ 5.990 ○ 6	.900 🔾 8	3.200
1090	ピュレット法	シノテスト	目立7140-7170	6.600	8.100	6.600	8.100	○ 6.000 ○ 6	.900 🔾 8	3.200
1093	ピュレット法	積水メディカル	日本電子JCA-B	6.500	8.200	6.500	8.200	○ 6.000 ○ 7	.000 🔾 8	3.300
1094	ピュレット法	カイノス	日本電子JCA-B	6.700	8.300			○ 6.000 ○ 6	.900 🔘 8	3.200
1101	ピュレット法	積水メディカル	東芝TBA-cシリー	6.500	8.200	6.500	8.200	○ 5.800 ○ 6	.700 🔾 8	3.000
1102	ビコレット法	カイノス	東芝TBA-cシリー	6.600	8.100			○ 5.900 ○ 6	.800 🔾 8	3.100
1105	ピュレット法	ニットーボー	ヘックマン・コールター	6.500	8.200			○ 5.900 ○ 6	.800 🔾 8	3.100
	ピュレット法	シノテスト	東京貿易ビオナリス5	6.700	8.300			○ 5.900 ○ 6		
	ピュレット法	カイノス	日本電子JCA-B	6.700		6.700	8.300	○ 6.000 ○ 6		
	ピュレット法	和光純薬	東芝TBA-cシリー	6.600	8.100			○ 5.900 ○ 6		
	ピュレット法	デンカ生研	東芝25FR_Accut	6.700	8.300			○ 5.800 ○ 6		
	ピュレット法	ベックマン・コー	ベックマン・コールター	6.700	8.300	6.700		○ 5.950 ○ 6		
1123	ピュレット法	シーメンス	シーメンスHCDDim	6.500	8.200	6.500	8.200	O 6.060 7	.040 8	3.540

14 TP 施設No.が低い順に並んでいます

施設	INO. W PENT MATE			男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1124	ピュレット法	シノテスト	目立7020-7080	6.600	8.100			5.500	6.400	7.900
1127	ピュレット法	積水メディカル	日本電子JCA-B	6.500	8.200			○ 5.900 ○	6.800 〇	8.200
1128	ピュレット法	シスメックス	日本電子JCA-B	6.600	8.100	6.600	8.100	○ 5.900 ○	6.700 🔾	8.100
1129	ピュレット法	ベックマン・コー	ヘックマン・コールター	6.500	8.200			○ 5.900 ○	6.800 🔾	8.000
	ピュレット法	カイノス	日本電子JCA-B	6.600	8.100			○ 5.900 ○		
	ピュレット法	積水メディカル	日立7140-7170	6.700		6.700		O 5.930	6.690 🔾	
	ピュレット法	ベックマン・コー	ヘックマン・コールター	6.700	8.300			0 6.100 0		
	ピュレット法	和光純薬	日本電子JCA-B	6.600	8.100			6.000 0	6.900 🔾	
	ビュレット法	和光純薬和光純薬	日本電子JCA-B	6.600 6.500	8.100 8.500			0.210 0		
	ピュレット法		ベックマン・コールター	6.600	8.100			○ 5.900 ○		
	ピュレット法	カイノス	日本電子JCA-B	6.600	8.100			○ 6.000 ○		
	ピュレット法	和光純薬	東芝25FR_Accut	6.600	8.100			○ 6.030 ○		
1310	ピュレット法	和光純薬	東芝TBA-200F	6.500	8.200	6.500	8.200	○ 5.900 ○	6.800 〇	8.200
1313	ピュレット法	和光純薬	日本電子JCA-B	6.700	8.300			○ 6.000 ○	6.900 〇	8.300
1315	ピュレット法	積水メディカル	日本電子JCA-B	6.600	8.100	6.600	8.100	○ 6.000 ○	6.900 🔾	8.300
1316	ピュレット法	和光純薬	日本電子JCA-B	6.700	8.300			○ 5.900 ○	6.800 🔾	8.100
	ピュレット法	積水メディカル	日本電子JCA-B	6.600		6.600		○ 5.900 ○		
	ピュレット法	和光純薬	日本電子JCA-B	6.600		6.600		0 6.000 0		
	ピュレット法 ピュレット法	ニットーボー 関東化学	ヘックマン・コールター 日本電子JCA-B	6.600 6.600	8.100 8.100	6 600		○ 5.900 ○ ○ 6.000 ○		
	ピュレット法	和光純薬	日本電子JCA-B	6.700	8.300	0.000		0 5.970 0		
	ピュレット法	積水メディカル	東芝TBA-cシリー	6.500	8.200			0 6.100 0		0.210
	ピュレット法	和光純薬	日本電子JCA-B	6.600	8.100			0 6.000 0		8.200
	ピュレット法	LSIメディエンス	日本電子JCA-B	6.600	8.100			○ 6.000 ○		
1341	ピュレット法	和光純薬	日本電子JCA-B	6.600	8.100	6.600	8.100	○ 5.900 ○	6.800 〇	8.100
1342	ピュレット法	積水メディカル	日本電子JCA-B	6.500	8.200	6.500	8.200	○ 5.900 ○	6.700 🔾	8.200
1343	ピュレット法	カイノス	目立LABOSPE	6.600	8.100			○ 5.900 ○	6.800 〇	8.100
	ピュレット法	シノテスト	日立7140-7170	6.600	8.100	6.600		○ 5.900 ○		
	ピュレット法	積水メディカル	日本電子JCA-B	6.700	8.300			○ 6.000 ○		
	ピュレット法	ロシュ・ダイアグ	ロシュコハ ス8000c5	6.600	8.100			○ 6.000	7.100 🔾	
	ピュレット法 ピュレット法	積水メディカル ロシュ・ダイアグ	東芝TBA-cシリー ロシュコハ、ス8000c5	6.500 6.600	8.200 8.100	6 600		<ul><li>○ 6.000 ○</li><li>○ 6.000 ○</li></ul>		
	ピュレット法	積水メディカル	日本電子JCA-B	6.700	8.300	0.000		○ 5.900 ○		
	ピュレット法	積水メディカル	ヘックマン・コールター	6.600	8.100	6.600		0 6.000 0		
1352	ピュレット法	和光純薬	日本電子JCA-B	6.700	8.300	6.700	8.300	○ 5.800 ○	6.700 🔾	8.000
1355	ピュレット法	和光純薬	東芝TBA-cシリー	6.600	8.100	6.600	8.100	○ 6.000 ○	6.900 🔾	8.300
1356	ピュレット法	カイノス	日本電子JCA-B	6.600	8.100	6.600	8.100	○ 5.900 ○	6.800 〇	8.100
1357	ピュレット法	和光純薬	日立7140-7170	6.700	8.300	6.700	8.300	○ 6.000 ○	6.900 🔾	8.300
	ピュレット法	和光純薬	日本電子JCA-B	6.600	8.100			○ 5.880 ○		
	ピュレット法	シノテスト	日本電子JCA-B	6.600	8.100	6.600		0 6.000 0		
	ビュレット法	和光純薬 和光純薬	日本電子JCA-B 東芝TBA-20-3	6 600	9 100			○ 5.900 ○		
	ピュレット法	和ル神楽	ペックマン・コールター	6.600 6.700	8.100 8.300			<ul><li>○ 5.890 ○</li><li>○ 5.800 ○</li></ul>		
	ピュレット法	和光純薬	目立7140-7170	6.600	8.100	6.600		○ 5.900 ○		
	ピュレット法	和光純薬	東芝TBA-cシリー	6.600	8.100			○ 5.900 ○		
	ピュレット法	カイノス	日立LABOSPE	6.600	8.100	6.600		○ 6.000 ○		
1371	ピュレット法	カイノス	東京貿易ビオナリス5	6.600	8.100			○ 5.900 ○	6.700 〇	8.000
1373	ピュレット法	関東化学	東京貿易ビオリス1	6.500	8.500			○ 6.000 ○	6.800 〇	8.200
	ピュレット法	和光純薬	目立LABOSPE	6.600	8.100			○ 6.000 ○		
	ピュレット法	和光純薬	東芝25FR_Accut	6.600	8.100			○ 5.920 ○		
	ピュレット法	積水メディカル	東芝TBA-cシリー	6.700	8.300			0 6.000 0		
	ピュレット法	カイノス	目立7140-7170	6.700	8.300	6.700		0 6.000 0		
	ビュレット法	カイノス シーメンス	東京貿易ビオリス5 シーメンスHCDDim	6.600 6.600	8.100 8.100	6 600		○ 6.000 ○ ○ 6.100	7.100	8.400 8.500
	ピュレット法	シノテスト	東京貿易ビオリス2	6.600		6.600		○ 5.900 ○		
	ピュレット法	シーメンス	シーメンスHCDDim	6.600	8.100			○ 5.900 ○		
								_	_	

14 TP 施設No.が低い順に並んでいます

施設	INO.N PEN MARC			男性基準	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1402	ピュレット法	関東化学	日本電子JCA-B	6.600	8.100			○ 5.900 ○	6.800 ℂ	8.200
1403	ビュレット法	セロテック	日本電子JCA-B	6.600	8.100	6.600	8.100	○ 5.900 ○	6.800 ℂ	8.100
1404	ピュレット法	カイノス	東芝TBA-cシリー	6.700	8.300			○ 6.100 ○	7.000 ℂ	8.300
1405	ビコレット法	関東化学	東京貿易ビオปス1	6.500	8.200	6.500	8.200	○ 6.000 ○	6.800 ℂ	8.300
1407	その他		セントラル科学Picc	6.400	8.100			○ 5.900 ○	6.900 ℂ	8.400
	ピュレット法	和光純薬	日本電子JCA-B	6.600	8.100			○ 5.930 ○		
	ピュレット法	ベックマン・コー	ベックマン・コールター	6.700	8.300			O 5.900 C		
	ピュレット法 ピュレット法	積水メディカル 積水メディカル	日立LABOSPE 日本電子JCA-B	6.700 6.700		6.700 6.700		○ 6.100 ○ ○ 5.980 ○		
	ピュレット法	和光純薬	目立LABOSPE	6.600	8.100	0.700	0.500	○ 5.880 ○		
	ピュレット法	和光純薬	目立LABOSPE	6.700	8.300	6.700	8.300	0 6.000 0		
	ピュレット法	積水メディカル	日本電子JCA-B	6.600	8.100			○ 6.100 ○		
	ピュレット法	カイノス	日立7140-7170	6.600	8.100	6.600	8.100	O 6.100	7.100 ℂ	
1513	ビコレット法	和光純薬	目立LABOSPE	6.600	8.100			○ 5.800 ○	6.700 ℂ	8.100
1514	ピュレット法	和光純薬	日立LABOSPE	6.600	8.100	6.600	8.100	○ 5.900 ○	6.800 ℂ	8.200
1518	ビコレット法	ミズホメディ	東京貿易ビオナリス2	6.600	8.100	6.600	8.100	○ 5.900 ○	6.900 ℂ	8.100
1519	ピュレット法	カイノス	東芝25FR_Accut	6.600	8.100			○ 6.000 ○	6.900 ℂ	8.200
	ピュレット法	和光純薬	日立7140-7170	6.600		6.600		○ 6.010 ○		
	ピュレット法	和光純薬	目立LABOSPE	6.700		6.700		O 5.910 C		
	ピュレット法	和光純薬	日本電子JCA-B	6.600		6.600		○ 5.900 ○		
	ピュレット法	シーメンス カイノス	シーメンスHCDDim 日立7140-7170	6.700 6.600	8.300 8.100	6.700 6.600		○ 5.960 ○ ○ 6.150	7.030 C	
	ピュレット法	シーメンス	シーメンスHCDDim	6.600	8.100	0.000	0.100	○ 5.900 ○		
	ピュレット法	和光純薬	東京貿易ビオリス2	6.600	8.100			○ 5.900 ○		
	ピュレット法	カイノス	東京貿易ビオリス2	6.600	8.100			○ 5.900 ○		
	ピュレット法	シノテスト	日本電子JCA-B	6.600	8.100	6.600	8.100	○ 5.900 ○		
1541	ビコレット法	シノテスト	東芝25FR_Accut	6.500	8.300			○ 6.000 ○	6.900 ℂ	8.200
1542	ピュレット法	積水メディカル	日立7140-7170	6.700	8.300			○ 6.000 ○	6.900 ℂ	8.400
1543	ビコレット法	カイノス	東芝25FR_Accut	6.700	8.300	6.700	8.300	○ 6.100 ○	7.000 ℂ	8.200
	ピュレット法	積水メディカル	東京貿易ビオナリス2	6.700	8.300			○ 6.000 ○		
	ピュレット法	積水メディカル	目立7140-7170	6.500	8.200			○ 5.800 ○		
	ピュレット法	シノテスト	日立7140-7170	6.700	8.300			○ 6.000 ○		
	ピュレット法	和光純薬カイノス	日本電子JCA-B 日本電子JCA-B	6.600 6.600	8.100 8.100			○ 5.900 ○ ○ 5.950 ○		
	ピュレット法	和光純薬	ベックマン・コールター	6.700	8.300	6.700		○ 6.000 ○		
	ピュレット法	積水メディカル	日本電子JCA-B	6.500	8.200	0.100	0.000	○ 5.990 ○		
	ピュレット法	積水メディカル	日立7600Dモジュ	6.700	8.300			○ 6.000 ○		
1909	ピュレット法	和光純薬	目立LABOSPE	6.700	8.300			○ 5.900 ○	6.900 ℂ	8.100
1911	ピュレット法	ミズホメディ	ヘックマン・コールター	6.700	8.300			○ 5.900 ○	6.800 ℂ	8.200
1916	ビコレット法	和光純薬	日本電子JCA-B	6.600	8.100			○ 6.000 ○	6.900 ℂ	8.200
	ピュレット法	和光純薬	日立LABOSPE	6.700	8.300	6.700	8.300	○ 6.000 ○		
	ピュレット法	和光純薬	日立3100	6.700	8.300			○ 5.900 C		
	ピュレット法	積水メディカル	日立7140-7170	6.700	8.300			O 6.000 C		
	ピュレット法 ピュレット法	積水メディカル セロテック	日立7140-7170 ヘックマン・コールター	6.700 6.700	8.300 8.300	6.700	8 300	○ 6.000 ○ ○ 6.000 ○		
	ピュレット法	栄研化学	東芝TBA-200F	6.500		6.500		○ 5.900 ○		
	ピュレット法	積水メディカル	ベックマン・コールター	6.700	8.300	0.500	0.200	○ 5.900 ○		
	ピュレット法	和光純薬	ベックマン・コールター	6.700	8.300	6.700	8.300	O 6.000 C		
	ピュレット法	和光純薬	ヘックマン・コールター	6.700		6.700		○ 6.100 ○		
1932	ビコレット法	積水メディカル	日本電子JCA-B	6.500	8.200			○ 5.900 ○	6.900 ℂ	8.200
1934	ピュレット法	和光純薬	ヘックマン・コールター	6.700	8.300			○ 6.000 ○	6.900 ℂ	8.200
1935	ピュレット法	積水メディカル	目立7140-7170	6.500	8.200	6.500	8.200	○ 6.000 ○	6.900 ℂ	8.200
	ピュレット法	セロテック	日本電子JCA-B	6.500		6.500		○ 5.900 ○		
	ピュレット法	セロテック	日本電子JCA-B	6.500	8.200	6.500	8.200	○ 5.900 ○		
	ピュレット法	カイノス	日本電子JCA-B	6.600	8.100			O 6.000 C		
	ピュレット法 ピュレット法	カイノス	日立LABOSPE ロシュコハ*ス8000c7	6.700	8.300	6 600	0 100	○ 6.000 ○		
∠UU8	L ユレット(広	シノテスト	F2-1-/\ \0000001	6.600	0.100	6.600	0.100	○ 6.000 ○	0.900	/ 0.300

14 TP 施設No.が低い順に並んでいます

包設				男性基準筆	6囲	女性基	準範囲			試料報告值
No	測定原理	試薬メーカー	機器		二限	下限	上限	試料01	試料02	試料03
2009	ピュレット法	カイノス	日本電子JCA-B	6.700 8.	.100	6.700	8.100	○ 6.000 ○	6.800 〇	8.200
	ピュレット法	シノテスト	日立7140-7170			6.700		○ 6.000 ○		
2011	ピュレット法	和光純薬	ヘ゛ックマン・コールター			6.700		○ 6.000 ○		
	ピュレット法	カイノス	日本電子JCA-B			6.600		○ 5.930 ○		
	ピュレット法	シーメンス	シーメンスHCDDim		.300			O 6.100	7.100	8.600
	ピュレット法	ベックマン・コー	ヘックマン・コールター		.300			O 6.000 O		
	ピュレット法	カイノス	日本電子JCA-B		.100	6.600	8.100	○ 5.930 ○		
	ピュレット法	積水メディカル	日立7600Dモジュ		.300			○ 6.000 ○		
	ピュレット法	和光純薬	日本電子JCA-B	6.600 8.	.100	6.600	8.100	○ 5.950 ○		
3055	ピュレット法	カイノス	日本電子JCA-B	6.600 8.	.100			○ 6.100 ○	6.900 〇	8.300
	ピュレット法	栄研化学	日本電子JCA-B			6.600	8.100	○ 5.900 ○		
3907	ピュレット法	セロテック	日本電子JCA-B	6.600 8.	.100	6.600	8.100	○ 5.900 ○	6.800 〇	8.100
	ピュレット法	カイノス	日本電子JCA-B		.100			○ 6.100 ○		
1039	ピュレット法		東芝25FR_Accut	6.500 8.	.200	6.500	8.200	○ 5.800 ○		
1040	ピュレット法	ベックマン・コー	ヘックマン・コールター	6.700 8.	.300			○ 5.900 ○	6.800 🔾	8.100
1902	ピュレット法	ミズホメディ	日立7140-7170	6.500 8.	.200			5.700 ○	6.700 🔾	8.100
5003	ピュレット法		日立7140-7170			6.500	8.500	○ 5.900 ○		
	ピュレット法	ニットーボー	日本電子JCA-B		.100			○ 5.900 ○		
	ピュレット法	和光純薬	日本電子JCA-B			6.600	8.100	○ 5.950 ○		
010	ピュレット法	積水メディカル	日本電子JCA-B		.100	6.600		○ 6.000 ○		
	ピュレット法	シスメックス	東芝25FR_Accut		.300			○ 6.000 ○		
	ピュレット法	和光純薬	東芝TBA-200F		.100			○ 6.000 ○		
	ピュレット法	カイノス	日立LABOSPE		.000			○ 5.900 ○		
	ピュレット法	カイノス	東芝TBA-200F	6.500 8.	200	6.500	8.200	○ 6.000 ○		
	ピュレット法	カイノス	日本電子JCA-B			6.700		○ 5.900 ○		
	ピュレット法	カイノス	日本電子JCA-B		.100			○ 6.000 ○		
	ピュレット法	カイノス	ヘックマン・コールター	6.500 8.	.000	6.500	8.000	○ 5.900 ○		
	ピュレット法	カイノス	東芝TBA-cシリー		.100			○ 6.000 ○		
	ピュレット法	ニットーボー	日本電子JCA-B		.300			○ 6.000 ○		
901	ピュレット法	カイノス	目立LABOSPE	6.700 8.	.300			○ 6.000 ○	6.800 🔾	8.200
3004	ピュレット法	和光純薬	日本電子JCA-B	6.700 8.	.300			○ 6.000 ○	7.000 🔾	8.300
0004	ピュレット法	協和メデックス	日立7140-7170					○ 6.100 ○	6.900 〇	8.300
8000	ピュレット法	シノテスト	日立7140-7170					○ 6.000 ○	6.800 🔾	8.200
9009	ピュレット法	LSIメディエンス	日立7140-7170	6.700 8.	.300			○ 5.940 ○	6.830 🔾	8.140
012	ピュレット法	デンカ生研	日立7140-7170	6.700 8.	.300	6.700	8.300	○ 6.000 ○	6.900 🔾	8.300
014	ピュレット法	ニットーボー	日立7140-7170					○ 6.000 ○	6.800 〇	8.100
022	ピュレット法	ミズホメディ	日立7140-7170	6.500 8.	.000			○ 5.900 ○	6.800 〇	8.200
023	ピュレット法	和光純薬	日立7140-7170					○ 6.000 ○	6.900 🔾	8.300
024	ピュレット法	関東化学	日本電子JCA-B	6.700 8.	.300	6.700	8.300	○ 5.900 ○	6.800 〇	8.100
033	ピュレット法	極東製薬	日本電子JCA-B	6.700 8.	.300			○ 6.200	7.100	8.600
035	ピュレット法	積水メディカル	積水EV800					○ 5.970 ○	6.830 🔾	8.120
043	ピュレット法	ロシュ・ダイアグ	ロシュコハ ス8000c5					○ 5.866 ○	6.776 🔾	8.087
9044	ピュレット法	ロシュ・ダイアグ	ロシュコハ [*] ス8000c7					○ 5.914 ○		
	ピュレット法	栄研化学	日立7140-7170	6.700 8.	.300	6.700	8.300	○ 5.950 ○		
	ピュレット法	ニットーボー	ヘ゛ックマン・コールター					○ 5.970 ○		
	ピュレット法	シスメックス	日立7140-7170	6.700 8.	.300			○ 5.900 ○		

94 TP(F) 施設No.が低い順に並んでいます

施設	测点压用	d ( w44	144 111	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1044	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	6.700	8.300			O 6.000 C	6.900	8.300
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	6.500	8.000			O 6.100 C	6.800	8.300
1076	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.700	8.300			O 5.800 (	6.600	8.000
1097	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.500	8.200	6.500	8.200	O 5.800 (	6.800	8.300
1126	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.700	8.300	6.700	8.300	O 5.800 (	6.800	8.300
1133	ドライケミストリー法	富士フィルムメ	富士ドライケム400	6.700	8.300			O 5.900 C	6.900	8.300
1137	ドライケミストリー法	富士フィルムメ	富士ドライケム400	6.700	8.300	6.700	8.300	O 5.900 C	6.800	8.200
1326	ドライケミストリー法	富士フィルムメ	富士ドライケム400	6.500	8.200	6.500	8.200	O 5.900 C	6.900	8.300
1335	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.700	8.300			O 5.900 C	6.900	8.200
1336	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.700	8.300			O 5.800 (	6.800	8.000
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.700	8.300			O 5.900 C	6.900	8.200
1375	ドライケミストリー法	富士フィルムメ	富士ドライケム400	6.500	8.200			O 5.800 (	6.700	8.100
1415	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.700	8.300	6.700	8.300	O 5.900 C	6.900	8.200
1523	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.600	8.100			O 6.000 C	6.900	8.200
1525	ドライケミストリー法	富士フィルムメ	富士ドライケム350	6.700	8.300			O 5.900 C	6.700	8.100
1545	ドライケミストリー法	富士フィルムメ	富士ドライケム400	6.600	8.100			O 5.900 C	6.900 (	8.200
1546	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.700	8.300			O 6.000 C	6.900	8.200
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.600	8.100	6.600	8.100	O 5.800 (	6.700	8.100
1552	ドライケミストリー法	富士フィルムメ	富士ドライケム400	6.700	8.300			O 5.800 (	6.800	8.100
1557	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.700	8.300			O 6.200 C	7.100	8.600
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.600	8.100	6.600	8.100	O 6.000 C	6.900 (	8.300
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.600	8.100	6.600	8.100	O 5.900 (	6.900	8.300
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.700	8.300			O 5.800 (	6.700	8.000

### 129 TP(A1)

施設	測完百理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	測定原理 計 ドライケミストリー法 アート・ライケミストリー法 アート・ライケミストリー法 アート・ライケミストリー法 アー	<b>武栗</b> 人 八		下限 上限 下限 上限 試料01 試料02 試料03
1317	ト・ライケミストリー法	アークレイ	アークレイスポットケム	$6.500$ $8.200$ $6.500$ $8.200$ $\bigcirc$ $5.700$ $\bigcirc$ $6.500$ $\bigcirc$ $8.000$
1378	ト゛ライケミストリー法	アークレイ	アークレイスホットケム	6.700 8.300 $\bigcirc$ 5.700 $\bigcirc$ 6.700 8.500
9041	ト・ライケミストリー法	アークレイ	アークレイスポットケム	$\bigcirc$ 5.500 $\bigcirc$ 6.500 $\bigcirc$ 7.800

159 TP(A2)

施設	測定原理	試薬メーカー	機器	男性基準範	包囲	女性基準範囲			試料報告値		
No	侧正原理			下限 上	:限	下限	上限	試料01	試料02	試料03	
1521	、ライケミストリー法	アークレイ	アークレイスポットケム	6.600 8.	100	6.600	8.100	5.900 (	7.100 (	9.100	

189 TP(O)

施設	測定原理	試薬メーカー	機器	男性基	男性基準範囲		準範囲			試料報告値
No	p ( ) / v	1987411	下限	上限	下限	上限	試料01	試料02	試料03	
1075	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	6.600	8.100	6.600	8.100	O 6.000 C	7.000	8.600
1100	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3					○ 6.000 ○	7.000	8.500
8011	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	6.500	8.300	6.500	8.300	○ 5.940	7.050	8.460
9040	ドライケミストリー法	オーソ・クリニカ	オーソビトロス5600					O 6.050	7.020	8.490

### アルブミン (ALB)

社会医療法人長門莫記念会 長門記念病院 検査科 濱野 貴磨

#### 【参加状況】

1. 参加施設数の推移を表に示す。前年度調査時と比較して11施設増加した。

年度	平成 25 年度	平成 26 年度	平成 27 年度	平成 28 年度	平成 29 年度
施設数	217	213	223	227	238

### 【測定方法の状況】

1. 測定法の推移を年度ごとに表に示す。BCG 法が減少し、BCP 改良法を採用する施設が増加傾向にある。

年度	平成 25 年度	平成 26 年度	平成 27 年度	平成 28 年度	平成 29 年度
BCG 法	78(35.9)	62(29.1)	64(29.1)	57(25.1)	54(22.7)
BCP 法	12(5.5)	14(6.6)	13(5.9)	15(6.6)	8(3.4)
BCP 改良法	104(47.9)	122(57.3)	130(58.3)	134(59.3)	153(64.3)
ト゛ライケミストリー法	22(10.1)	14(6.6)	15(6.8)	20(8.8)	23(9.7)
その他				1(0.4)	

### 【測定値の状況】

1. 各試料の平均値は目標値に概ね一致していた。

	試料	斗 1	試料	斗 2	試料	斗 3	
	平均値	CV%	平均値	CV%	平均値	CV%	
BCG 法	3.78	2.4	4.28	2.3	5.06	2.4	
BCP 法	3.81	1.9	4.30	1.6	5.06	0.9	
BCP 改良法	3.75	1.8	4.28	1.7	5.09	2.0	
ドライケミストリー法	3.91	91 7.9 4.48		6.8	5.31	11.7	
全体	全体 3.78		4.30	3.1	5.10	4.5	
目標値	3.	74	4.:	27	5.10		

- 2. BCG 法群の CV%は 2.3~2.4%、BCP 法群の CV%は 0.9~1.9%、BCP 改良法群の CV%は 1.7% ~2.0%、ドライケミストリー法群の CV%は 6.8~11.7%であった。ドライケミストリー法群の CV%は高値傾向 であるが、グループ 内精密度は比較的良好でありメーカー間差によるものと考えられる。
- 3. 全体の CV%は 3.1~4.5%であった。

#### 【基準範囲の状況】

- 1. 基準範囲の平均値は 4.0~5.1g/dL であり、前回調査時と同じ結果であった。
- 2. 基準範囲下限の最頻値は 4.1g/dL(101 施設)であり、基準範囲上限の最頻値は 5.1g/dL(106 施設)であった。
- 3. 基準範囲の状況について報告のあった 225 施設のうち、JCCLS 共用基準範囲(4.1~5.1g/dL)を 採用している施設は 101 施設(44.9%)であり、前回調査時よりも 9.0%増加した。

### 【その他のコメント】

1. 1 試料以上目標範囲を逸脱した施設は 47 施設(19.7%)であった。その内訳は BCG 法 10 施設、BCP 改良法 14 施設、ドライケミストリー法 23 施設であった。3 試料とも目標範囲を達成した施設は 191 施設(80.3%)であった。

### 【ドライケミストリー法各社の状況】

1. ドライケミストリー法各社のメーカー測定値および参考範囲を示す。アークレイ社は機種によりメーカー測定値が 異なっている。

	試米	¥ 1	試料	<b>針 2</b>	試料 3		
	メーカー測定値	参考範囲	メーカー測定値	参考範囲	メーカー測定値	参考範囲	
アークレイ SP	3.50	3.30~3.70	4.00	3.80~4.20	4.70	4.50~4.90	
アークレイ SD	4.10 3.90~4.30		4.90	4.70~5.10	5.70	5.40~6.00	
オーソ	3.53	3.43~3.63	4.17	4.07~4.27	4.96	4.86~5.06	
富士	4.00	3.60~4.40	4.40	4.00~4.80	5.20	4.70~5.70	

2. ドライケミストリー法各社の平均値および参考範囲達成率を示す。

	N	試	料 1	試	料 2	試料 3		
	N	平均値	達成率	平均值	達成率	平均值	達成率	
アークレイ SP	2	3.40	100.0%	3.90	100.0%	4.65	100.0%	
アークレイ SD	1	4.20 100.0% 5.00		5.00	100.0%	5.80	100.0%	
オーソ	4	3.46	50.0%	4.11	100.0%	5.68	75.0%	
富士	16	4.07	100.0%	4.61	100.0%	5.28	100.0%	

15 ALB 施設No.が低い順に並んでいます

施設	INO.N PEN MARC			男性基準	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01 試	料02	試料03
1001	BCP改良法	カイノス	目立LABOSPE	4.100	5.100			○ 3.700 ○ 4.	.200 🔾	5.100
1002	BCP改良法	カイノス	目立LABOSPE	4.000	5.000			○ 3.700 ○ 4.	.300 🔾	5.100
1004	BCP改良法	積水メディカル	日立LABOSPE	4.100	5.100	4.100	5.100	○ 3.800 ○ 4.	.300 🔾	5.200
1006	BCP改良法	カイノス	日立LABOSPE	4.100	5.100			○ 3.740 ○ 4.	.220 🔾	5.060
1010	BCP改良法	セロテック	東芝TBA-cシリー	4.000	5.000	4.000	5.000	○ 3.800 ○ 4.	.200 🔾	5.100
	BCP改良法	和光純薬	日本電子JCA-B	3.500	5.200			○ 3.700 ○ 4.		
	BCP改良法	関東化学	日本電子JCA-B	4.100	5.100	4.100		○ 3.770 ○ 4.		
	BCP改良法	和光純薬	日立7140-7170	4.100	5.100			○ 3.700 ○ 4.		
	BCP改良法	カイノス	日本電子JCA-B	4.100	5.100	4.100		○ 3.700 ○ 4.		
	BCP改良法 BCG法	カイノス 積水メディカル	日本電子JCA-B	4.100	5.100			○ 3.800 ○ 4.		
	BCP改良法	和光純薬	日本電子JCA-B 日本電子JCA-B	3.700 4.100	5.500 5.100	3.700		<ul><li>○ 3.800 ○ 4.</li><li>○ 3.700 ○ 4.</li></ul>		
	BCG法	相ル純栄 積水メディカル	日立LABOSPE	4.000	5.000			<ul><li>3.700 </li><li>4.</li><li>3.810 </li><li>4.</li></ul>		
	BCP改良法	和光純薬	東芝25FR_Accut	4.100	5.100			<ul><li>3.700</li><li>4.</li></ul>		
	BCP改良法	カイノス	目立LABOSPE	4.000	5.000			○ 3.900 ○ 4.		
	BCP法	和光純薬	目立7140-7170	4.100	5.100	4.100		O 3.700 O 4.		
1031	BCP改良法	和光純薬	東芝TBA-cシリー	4.100	5.100			○ 3.800 ○ 4.		
1032	BCP法	シーメンス	シーメンスHCDDim	3.800	5.200			○ 3.800 ○ 4.	.300 🔾	5.000
1033	BCG法	積水メディカル	日立7140-7170	3.700	5.500	3.700	5.500	○ 3.800 ○ 4.	.300 🔾	5.100
1034	BCG法	積水メディカル	日立7140-7170	3.700	5.500	3.700	5.500	○ 3.900 ○ 4.	.300 🔾	5.200
1035	BCG法	関東化学	日本電子JCA-B	4.000	5.000			○ 3.800 ○ 4.	.300 🔾	5.100
1038	BCP改良法	カイノス	日立LABOSPE	4.100	5.100			○ 3.700 ○ 4.	.100 🔾	5.000
1039	BCP改良法	関東化学	日立7140-7170	4.100	5.100			○ 3.800 ○ 4.	.400 🔾	5.200
	BCP改良法	カイノス	日立LABOSPE	4.100	5.100			○ 3.700 ○ 4.		
	BCP改良法	カイノス	東芝25FR_Accut	4.000	5.000			○ 3.720 ○ 4.		
	BCP改良法	カイノス	日本電子JCA-B	4.100	5.100		5.100	3.520 ○ 4.		4.840
	BCP改良法	和光純薬	日本電子JCA-B	3.800	5.200	3.800		○ 3.700 ○ 4.		
	BCP改良法 BCP法	積水メディカル	東芝TBA-cシリー	3.800	5.100 5.100			○ 3.800 ○ 4.		
	BCF伝	シーメンス 栄研化学	シーメンスHCDDim 目立7140-7170	4.100 4.000	5.000	4 000		<ul><li>○ 3.800 ○ 4.</li><li>○ 3.800 ○ 4.</li></ul>		
	BCP改良法	シノテスト	東京貿易ビオリス5	3.700	5.500	4.000		<ul><li>3.300 </li><li>4.</li><li>3.700 </li><li>4.</li></ul>		
	BCP改良法	LSIメディエンス	日本電子JCA-B	4.000	5.000			<ul><li>3.700</li><li>4.</li><li>3.700</li><li>4.</li></ul>		
	BCG法	積水メディカル	東京貿易ビオリス2	3.700	5.500	3.700		○ 3.800 ○ 4.		
	BCG法	LSIメディエンス	日本電子JCA-B	3.700	5.500			O 3.700 O 4.		
1062	BCP改良法	和光純薬	日立LABOSPE	4.100	5.100	4.100		○ 3.800 ○ 4.		
1064	BCP改良法	LSIメディエンス	日本電子JCA-B	4.000	5.000	4.000	5.000	○ 3.700 ○ 4.	.200 🔾	5.000
1072	BCP改良法	積水メディカル	目立LABOSPE	4.000	5.000	4.000	5.000	○ 3.700 ○ 4.	.300 🔾	5.100
1073	BCP改良法	和光純薬	日立LABOSPE	4.000	5.000	4.000	5.000	○ 3.750 ○ 4.	.270 🔾	5.070
1074	BCG法	積水メディカル	東京貿易ビオリス2	3.700	5.500	3.700	5.500	○ 3.800 ○ 4.	.300 🔾	5.100
1077	BCP法	シーメンス	シーメンスHCDDim	4.000	5.000	4.000	5.000	○ 3.900 ○ 4.	.200 🔾	5.100
	BCP改良法	和光純薬	東芝TBA-cシリー	4.100	5.100	4.100	5.100	○ 3.750 ○ 4.	.240 🔾	5.000
	BCP改良法	和光純薬	東京貿易ビオリス2	4.100	5.100			○ 3.800 ○ 4.		
	BCP改良法	関東化学	日立LABOSPE	4.000	5.000			○ 3.900 ○ 4.		5.300
	BCP改良法	シノテスト	日立7140-7170	4.100	5.100			○ 3.730 ○ 4.		
	BCP改良法	シノテスト	日立7140-7170	4.100	5.100			○ 3.700 ○ 4.		4.900
	BCP改良法	積水メディカル	日本電子JCA-B	4.000	5.000	4.000		○ 3.800 ○ 4.		
	BCP改良法 BCG法	カイノス 積水メディカル	日本電子JCA-B 東芝TBA-cシリー	4.000 3.700	5.000 5.500	3 700		<ul><li>○ 3.900 ○ 4.</li><li>○ 3.700 ○ 4.</li></ul>		
	BCP改良法	カイノス	東芝TBA-cシリー	4.100	5.100	5.100		○ 3.700 ○ 4. ○ 3.700 ○ 4.		
	BCP改良法	ニットーボー	ベックマン・コールター	3.700	5.500			○ 3.700 ○ 4. ○ 3.700 ○ 4.		
	BCP改良法	シノテスト	東京貿易ビオナリス5	3.800	5.200	3.800		○ 3.800 ○ 4.		
	BCP改良法	カイノス	日本電子JCA-B	4.000	5.000			○ 3.800 ○ 4.		
	BCP改良法	和光純薬	東芝TBA-cシリー	4.100	5.100			○ 3.700 ○ 4.		
	BCG法	デンカ生研	東芝25FR_Accut	4.000	5.000	4.000		○ 3.700 ○ 4.		4.900
1122	BCP改良法	ベックマン・コー	ヘックマン・コールター	3.800	5.200		5.200	○ 3.680 ○ 4.	.150 🔾	5.000
1123	BCP改良法	シーメンス	シーメンスHCDDim	3.700	5.500	3.700	5.500	○ 3.720 ○ 4.	.230 🔾	5.000
1124	BCG法	シノテスト	日立7020-7080	4.000	5.100			○ 3.600 ○ 4.	.200	4.900

15 ALB 施設No.が低い順に並んでいます

施設	INO.N PEN MARC			男性基準	準範囲	女性基	準範囲		試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	
1127	BCG法	積水メディカル	日本電子JCA-B	3.700	5.500			○ 3.800 ○	4.400 ○ 5.100
1128	BCG法	シスメックス	日本電子JCA-B	4.100	5.100	4.100	5.100	○ 3.700 ○	4.300 ○ 5.000
1129	BCP改良法	ベックマン・コー	ヘックマン・コールター	3.700	5.500			○ 3.800 ○	4.300 ○ 5.100
	BCP改良法	カイノス	日本電子JCA-B	4.100	5.100				4.300 ○ 5.100
	BCG法	積水メディカル	目立7140-7170	4.000		4.000			4.240 ○ 5.050
	BCP改良法	ベックマン・コー	ヘックマン・コールター	4.000	5.000				0 4.300 O 5.100
	BCP改良法 BCP改良法	和光純薬和光純薬	日本電子JCA-B	4.100 4.100	5.100 5.100				4.200 ○ 5.000 4.270 ○ 5.070
	BCP改良法	和光純薬	日本電子JCA-B	4.100	5.100				4.250 \( \) 5.020
	BCP改良法	ベックマン・コー	ヘックマン・コールター	4.100	5.100				4.200 ○ 5.000
	BCP改良法	カイノス	日本電子JCA-B	4.100	5.100				4.300 🔾 5.000
1308	BCP改良法	和光純薬	東芝25FR_Accut	4.100	5.100			○ 3.760 ○	4.230 🔾 5.040
1310	BCP改良法	和光純薬	東芝TBA-200F	3.800	5.300	3.800	5.300	○ 3.740 ○	4.250 ○ 5.030
1313	BCP改良法	和光純薬	日本電子JCA-B	4.000	5.000			○ 3.800 ○	4.300 ○ 5.100
	BCP改良法	積水メディカル	日本電子JCA-B	4.100	5.100	4.100	5.100	○ 3.700 ○	4.300 ○ 5.200
	BCP改良法	和光純薬	日本電子JCA-B	4.000	5.000				4.200 ○ 5.000
	BCP改良法	カイノス	日本電子JCA-B	4.100	5.100				0 4.300 ○ 5.100
	BCP改良法	和光純薬	日本電子JCA-B	4.100	5.100	4.100			4.200 ○ 5.000
	BCG法 BCP改良法	ベックマン・コー 和光純薬	ヘックマン・コールター 日本電子JCA-B	4.100 4.100	5.100 5.100	4 100			0 4.200 ○ 5.000 0 4.400 ○ 5.200
	BCP改良法	和光純薬	日本電子JCA-B	4.000	5.000	4.100		3.710 C	
	BCG法	積水メディカル	東芝TBA-cシリー	3.700	5.500			○ 3.900 C	
	BCP改良法	和光純薬	日本電子JCA-B	4.100	5.100				0 4.200 ○ 5.000
1339	BCP改良法	LSIメディエンス	日本電子JCA-B	4.100	5.100			○ 3.700 ○	4.200 ○ 5.100
1341	BCP改良法	和光純薬	日本電子JCA-B	4.100	5.100	4.100	5.100	○ 3.800 ○	4.300 🔾 5.100
1342	BCG法	積水メディカル	日本電子JCA-B	3.700	5.500	3.700	5.500	○ 3.800 ○	4.200 ○ 5.000
1343	BCG法	カイノス	日立LABOSPE	4.100	5.100			○ 3.700 ○	4.300 ○ 5.100
	BCP改良法	シノテスト	日立7140-7170	4.100	5.100	4.100			4.300 ○ 5.100
	BCP改良法	積水メディカル	日本電子JCA-B	3.800	5.300				4.300 ○ 5.100
	BCG法	ロシュ・ダイアグ	ロシュコハ ス8000c5	4.100	5.100			4.100	4.500 5.300
	BCG法 BCG法	積水メディカル ロシュ・ダイアグ	東芝TBA-cシリー ロシュコハ、ス8000c5	3.700 4.100	5.500 5.100	4 100			0 4.400 ○ 5.200 0 4.300 ○ 5.000
	BCG法	積水メディカル	日本電子JCA-B	4.000	5.000	1.100			0 4.200 ○ 5.000
	BCG法	ベックマン・コー	ヘックマン・コールター	4.100	5.100	4.100			0 4.300 ○ 5.000
1352	BCP改良法	和光純薬	日本電子JCA-B	4.000	5.000	4.000	5.000	○ 3.700 ○	4.300 🔾 5.000
1355	BCP改良法	和光純薬	東芝TBA-cシリー	4.100	5.100	4.100	5.100	○ 3.900 ○	4.400 ○ 5.200
1356	BCP改良法	カイノス	日本電子JCA-B	4.100	5.100	4.100	5.100	○ 3.700 ○	4.100 ○ 5.000
1357	BCG法	和光純薬	日立7140-7170	4.000	5.000	4.000	5.000	○ 3.900 ○	4.400 ○ 5.200
	BCP改良法	和光純薬	日本電子JCA-B	4.100	5.100				4.380 🔾 5.150
	BCP改良法	シノテスト	日本電子JCA-B	4.100	5.100	4.100			4.200 ○ 5.000
	BCG法 BCG法	和光純薬和光純薬	日本電子JCA-B 東芝TBA-20-3	4.100	5.100			3.850 C	4.300 ○ 5.000 4.400 5.240
	BCG法	ミズホメディ	ベックマン・コールター	4.000	5.000				0 4.300 ○ 5.100
	BCP改良法	和光純薬	目立7140-7170	4.100		4.100			0 4.300 ○ 5.100
	BCP改良法	和光純薬	東芝TBA-cシリー	4.100	5.100			○ 3.700 ○	
1370	BCP改良法	カイノス	目立LABOSPE	4.100	5.100	4.100	5.100	○ 3.800 ○	4.300 ○ 5.100
1371	BCP改良法	カイノス	東京貿易ビオナリス5	4.100	5.100			○ 3.700	4.500 ○ 5.200
1382	BCP改良法	和光純薬	日立LABOSPE	4.100	5.100			○ 3.800 ○	4.300 ○ 5.100
	BCP改良法	和光純薬	東芝25FR_Accut	4.100	5.100				4.240 🔾 5.080
	BCG法	積水メディカル	東芝TBA-cシリー	4.000	5.000				0 4.300 ○ 5.100
	BCP改良法	カイノス	目立7140-7170	3.900	4.900	3.900			0 4.300 O 5.200
	BCP改良法 BCP法	カイノスシーメンス	東京貿易ビオナリス5	4.100	5.100	4 100			0 4.300 ○ 5.000
	BCP法	シノテスト	シーメンスHCDDim 東京貿易ビオナリス2	4.100 4.100	5.100 5.100				0 4.400 ○ 5.100 0 4.300 ○ 5.200
	BCG法	シーメンス	ネホ 貞勿と 47ハ2 シーメンスHCDDim	4.100	5.100				0 4.400 ○ 5.200
	BCP改良法	和光純薬	日本電子JCA-B	4.100	5.100				4.200 ○ 5.000
	BCP改良法	セロテック	日本電子JCA-B	4.100	5.100	4.100			4.300 ○ 5.100

15 ALB 施設No.が低い順に並んでいます

施設	INO. W PAR PARTE	- 並ん( な)		男性基準	進節用	女性基	進新用			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1404	BCG法	カイノス	東芝TBA-cシリー	4.000	5.000			○ 3.800 ○	4.400	5.300
1405	BCG法	関東化学	東京貿易ビオナリス1	3.700	5.500	3.700	5.500	○ 3.800 ○	4.300 〇	5.200
1411	BCP改良法	和光純薬	日本電子JCA-B	4.100	5.100	4.100	5.100	○ 3.760 ○	4.270 〇	5.130
1419	BCP改良法	ベックマン・コー	ヘ、ックマン・コールター	4.000	5.000	4.000	5.000	○ 3.700 ○	4.200 〇	5.000
1501	BCG法	積水メディカル	目立LABOSPE	4.000	5.000	4.000	5.000	○ 3.900 ○	4.400 〇	5.200
1502	BCG法	積水メディカル	日本電子JCA-B	4.000	5.000	4.000	5.000	○ 3.770 ○	4.310 🔾	5.140
	BCP改良法	和光純薬	日立LABOSPE	4.100	5.100			○ 3.730 ○	4.250 🔾	5.020
	BCP改良法	和光純薬	日立LABOSPE	3.800	5.200	3.800		○ 3.800 ○		
	BCP改良法	積水メディカル	日本電子JCA-B	4.100	5.100			○ 3.800 ○		
	BCP改良法	カイノス	日立7140-7170	4.100		4.100		○ 3.900 C		5.300
	BCP改良法	和光純薬	目立LABOSPE	4.100	5.100	4.100		○ 3.700 C		
	BCP改良法	和光純薬	目立LABOSPE	4.100	5.100			○ 3.800 C		
	BCG法 BCP改良法	ミズホメディ カイノス	東京貿易ビオリス2 東芝25FR_Accut	4.100	5.100	4.100		○ 3.700 C		4.900
	BCP改良法	和光純薬	東之25FK_Accut 目立7140-7170	4.100 4.100	5.100	4 100		<ul><li>○ 3.800 ○</li><li>○ 3.760 ○</li></ul>		
	BCP改良法	和光純薬	目立LABOSPE	4.000	5.000			○ 3.740 ○		
	BCP改良法	和光純薬	日本電子JCA-B	4.100	5.100			○ 3.800 C		
	BCP法	シーメンス	シーメンスHCDDim	4.000		4.000		○ 3.830 C		
	BCP改良法	カイノス	日立7140-7170	4.100		4.100	5.100	3.930	4.450	5.330
	BCP改良法	シーメンス	シーメンスHCDDim	4.100	5.100			○ 3.900 ○		
1534	BCP改良法	和光純薬	東京貿易ビオリス2	4.100	5.100			○ 3.700 ○	4.300 〇	5.000
1538	BCP改良法	カイノス	東京貿易ビオปス2	4.100	5.100			○ 3.700 ○	4.300 〇	5.100
1540	BCP改良法	シノテスト	日本電子JCA-B	4.100	5.100	4.100	5.100	○ 3.700 ○	4.300 〇	5.100
1541	BCP改良法	シノテスト	東芝25FR_Accut	3.900	4.900			○ 3.600 ○	4.200	4.900
1542	BCP改良法	積水メディカル	日立7140-7170	3.800	5.200			○ 3.800 ○	4.400 〇	5.200
1543	BCP改良法	カイノス	東芝25FR_Accut	4.000	5.000	4.000	5.000	○ 3.600 ○	4.100	4.900
	BCP改良法	積水メディカル	東京貿易ビオナリス2	3.800	5.100			○ 3.700 ○	4.300 🔾	5.100
	BCG法	積水メディカル	日立7140-7170	3.700	5.500			○ 3.700 ○		
	BCG法	シノテスト	目立7140-7170	4.000	5.000			○ 3.900 ○		
	BCP改良法	和光純薬	日本電子JCA-B	4.100		4.100		○ 3.700 C		
	BCP改良法 BCP改良法	カイノス	日本電子JCA-B ヘックマン・コールター	4.100 4.000	5.100 5.000			○ 3.760 C		
	BCG法	和光純薬 積水メディカル	日本電子JCA-B	3.700	5.500	4.000		○ 3.800 ○ ○ 3.780 ○		
	BCP改良法	積水メディカル	日立7600Dモジュ	3.800	5.200			3.900 C		
	BCP改良法	和光純薬	目立LABOSPE	4.000	5.000			○ 3.800 C		
	BCG法	ミズホメディ	ヘックマン・コールター	4.000	5.000			○ 3.700 ○		
	BCG法	和光純薬	日本電子JCA-B	4.100	5.100			○ 3.700 ○		
1917	BCG法	和光純薬	日立LABOSPE	4.000	5.000	4.000	5.000	○ 3.800 ○	4.300 〇	5.100
1920	BCP改良法	和光純薬	目立3100	4.000	5.000			○ 3.800 ○	4.300 〇	5.100
1922	BCP改良法	積水メディカル	目立7140-7170	3.800	5.200			○ 3.800 ○	4.300 〇	5.200
1923	BCP改良法	積水メディカル	日立7140-7170	3.800	5.200			○ 3.800 ○	4.300 〇	5.200
1925	BCP改良法	セロテック	ヘ゛ックマン・コールター	3.800	5.300	3.800	5.300	○ 3.700 ○	4.200 〇	5.000
1926	BCG法	栄研化学	東芝TBA-200F	3.800	5.100	3.800	5.100	○ 3.800 ○	4.300 🔾	5.100
	BCP改良法	積水メディカル	ヘックマン・コールター	3.800	5.200			○ 3.800 ○		
	BCP改良法	和光純薬	ヘックマン・コールター	4.000	5.000			○ 3.800 ○		
	BCP改良法	和光純薬	ヘックマン・コールター	4.000		4.000		○ 3.800 ○		
	BCG法	積水メディカル	日本電子JCA-B	3.700	5.500			○ 3.800 C		
	BCP改良法	和光純薬	ヘックマン・コールター	4.000	5.000	2.700		○ 3.700 C		
	BCG法 BCG法	積水メディカル セロテック	日立7140-7170 日本電子JCA-B	3.700 3.800	5.500 4.800			○ 3.800 ○ 3.800 ○		
	BCP改良法	CH / 22	日本電子JCA-B	3.800		3.800		○ 3.800 C		
	BCP改良法	カイノス	日本電子JCA-B	4.100	5.100	0.000		○ 3.800 C		
	BCP改良法	カイノス	目立LABOSPE	3.800	5.000			○ 3.700 C		
	BCP改良法	シノテスト	ロシュコハ ス8000c7	4.100	5.100	4.100		○ 3.700 C		
	BCP改良法	カイノス	日本電子JCA-B	3.700		3.700		○ 3.800 C		
	BCP改良法	シノテスト	日立7140-7170	3.800		3.800		○ 3.700 ○		
2011	BCP改良法	和光純薬	ヘックマン・コールター	4.000	5.000	4.000	5.000	○ 3.800 ○	4.300 〇	5.100

15 ALB 施設No.が低い順に並んでいます

施設	测点压用	d ( 14t.4.5	144 0.0	男性基準	隼範囲	女性基	準範囲	試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01 試料02 試料03
3001	BCP改良法	カイノス	日本電子JCA-B	4.100	5.100	4.100	5.100	$\bigcirc$ 3.680 $\bigcirc$ 4.260 $\bigcirc$ 5.060
3013	BCP法	シーメンス	シーメンスHCDDim	4.000	5.000			$\bigcirc$ 3.700 $\bigcirc$ 4.300 $\bigcirc$ 5.000
3018	BCP改良法	ベックマン・コー	ヘックマン・コールター	3.800	5.300			$\bigcirc$ 3.900 $\bigcirc$ 4.400 $\bigcirc$ 5.200
3022	BCP改良法	カイノス	日本電子JCA-B	4.100	5.100	4.100	5.100	$\bigcirc$ 3.750 $\bigcirc$ 4.310 $\bigcirc$ 5.100
3027	BCP改良法	積水メディカル	目立7600Dモシ [*] ュ	3.800	5.200			$\bigcirc$ 3.900 $\bigcirc$ 4.400 5.300
3048	BCP改良法	和光純薬	日本電子JCA-B	4.100	5.100	4.100	5.100	$\bigcirc$ 3.700 $\bigcirc$ 4.210 $\bigcirc$ 5.000
3055	BCP改良法	カイノス	日本電子JCA-B	4.100	5.100			O 3.900 4.500 5.400
	BCP改良法	シノテスト	日本電子JCA-B	4.100	5.100	4.100	5.100	$\bigcirc$ 3.800 $\bigcirc$ 4.300 $\bigcirc$ 5.100
3907	BCP改良法	セロテック	日本電子JCA-B	4.100	5.100	4.100	5.100	$\bigcirc$ 3.700 $\bigcirc$ 4.200 $\bigcirc$ 5.000
4002	BCP改良法	カイノス	日本電子JCA-B	4.100	5.100			$\bigcirc$ 3.800 $\bigcirc$ 4.300 $\bigcirc$ 5.100
4039	BCP改良法		東芝25FR_Accut	4.100	5.100	4.100	5.100	$\bigcirc 3.700 \bigcirc 4.260  5.700$
4040	BCP改良法	ベックマン・コー	ヘ・ックマン・コールター	3.800	5.200			$\bigcirc$ 3.700 $\bigcirc$ 4.200 4.900
4902	BCG法	ミズホメディ	日立7140-7170	4.100	5.100			$\bigcirc$ 3.700 $\bigcirc$ 4.200 $\bigcirc$ 5.000
5003	BCP改良法		日立7140-7170	3.500	4.800	3.500	4.800	$\bigcirc$ 3.700 $\bigcirc$ 4.200 $\bigcirc$ 5.000
5005	BCP改良法	ニットーボー	日本電子JCA-B	4.100	5.100			$\bigcirc$ 3.800 $\bigcirc$ 4.300 $\bigcirc$ 5.100
5006	BCP改良法	カイノス	日本電子JCA-B	4.100	5.100	4.100	5.100	$\bigcirc$ 3.740 $\bigcirc$ 4.300 $\bigcirc$ 5.000
5010	BCP改良法	積水メディカル	日本電子JCA-B	4.100	5.100	4.100	5.100	$\bigcirc$ 3.800 $\bigcirc$ 4.400 $\bigcirc$ 5.200
6006	BCG法	シスメックス	東芝25FR_Accut	3.500	5.200			○ 3.700 ○ 4.200 4.900
6008	BCP改良法	和光純薬	東芝TBA-200F	4.100	5.100			$\bigcirc$ 3.770 $\bigcirc$ 4.300 $\bigcirc$ 5.120
6015	BCP改良法	カイノス	目立LABOSPE	3.800	5.200			$\bigcirc$ 3.700 $\bigcirc$ 4.300 $\bigcirc$ 5.100
6016	BCP改良法	カイノス	東芝TBA-200F	3.800	5.200	3.800	5.200	$\bigcirc$ 3.800 $\bigcirc$ 4.400 $\bigcirc$ 5.100
7001	BCP改良法	カイノス	日本電子JCA-B	4.200	5.300	4.200	5.300	$\bigcirc$ 3.800 $\bigcirc$ 4.300 $\bigcirc$ 5.200
7002	BCP改良法	カイノス	日本電子JCA-B	4.100	5.100			○ 3.700 ○ 4.300 ○ 5.100
7007	BCP改良法	カイノス	ヘ゛ックマン・コールター	4.000		4.000		$\bigcirc$ 3.700 $\bigcirc$ 4.300 $\bigcirc$ 5.000
7011	BCP改良法	カイノス	東芝TBA-cシリー	4.100	5.100			$\bigcirc$ 3.700 $\bigcirc$ 4.300 $\bigcirc$ 5.100
7025	BCP改良法	ニットーボー	日本電子JCA-B	3.900	4.900			$\bigcirc$ 3.800 $\bigcirc$ 4.300 $\bigcirc$ 5.100
7901	BCP改良法	カイノス	目立LABOSPE	4.000	5.000			$\bigcirc$ 3.800 $\bigcirc$ 4.400 $\bigcirc$ 5.200
8004	BCP改良法	カイノス	日本電子JCA-B	3.800	4.900			$\bigcirc$ 3.700 $\bigcirc$ 4.300 $\bigcirc$ 5.100
9004	BCG法	協和メデックス	目立7140-7170					○ 3.900   4.500   5.300
9008	BCP改良法	シノテスト	目立7140-7170					○ 3.700 ○ 4.200 ○ 5.000
9009	BCP改良法	LSIメディエンス	目立7140-7170	3.900	4.900			$\bigcirc$ 3.730 $\bigcirc$ 4.260 $\bigcirc$ 5.000
9012	BCG法	デンカ生研	目立7140-7170	3.800	5.300	3.800	5.300	○ 3.700 ○ 4.100 4.800
9014	BCP改良法	ニットーボー	目立7140-7170					$\bigcirc$ 3.800 $\bigcirc$ 4.300 $\bigcirc$ 5.100
9022	BCG法	ミズホメディ	目立7140-7170	3.800	5.300			$\bigcirc$ 3.800 $\bigcirc$ 4.300 $\bigcirc$ 5.000
9023	BCP改良法	和光純薬	目立7140-7170					$\bigcirc$ 3.800 $\bigcirc$ 4.300 $\bigcirc$ 5.100
9024	BCP改良法	関東化学	日本電子JCA-B	4.000	5.000	4.000	5.000	$\bigcirc$ 3.800 $\bigcirc$ 4.300 $\bigcirc$ 5.200
9033	BCG法	極東製薬	日本電子JCA-B	3.800	5.300			3.500 3.900 4.700
9035	BCP改良法	積水メディカル	積水EV800					$\bigcirc$ 3.760 $\bigcirc$ 4.350 $\bigcirc$ 5.160
9043	BCP改良法	ロシュ・ダイアグ	ロシュコハ*ス8000c5					$\bigcirc$ 3.818 $\bigcirc$ 4.374 $\bigcirc$ 5.161
9044	BCP改良法		ロシュコハ*ス8000c7					$\bigcirc$ 3.697 $\bigcirc$ 4.218 $\bigcirc$ 5.024
9046	BCG法	栄研化学	日立7140-7170	3.800	5.300	3.800	5.300	$\bigcirc$ 3.820 $\bigcirc$ 4.310 $\bigcirc$ 5.070
9047	BCP改良法	ニットーボー	ヘ゛ックマン・コールター					$\bigcirc$ 3.660 $\bigcirc$ 4.190 $\bigcirc$ 5.030
9049	BCG法	シスメックス	日立7140-7170	3.800	5.300			$\bigcirc$ 3.700 $\bigcirc$ 4.200 $\bigcirc$ 5.000
9050	BCP法	シーメンス	シーメンスHCDDim					$\bigcirc$ 3.843 $\bigcirc$ 4.329 $\bigcirc$ 5.071

97 HDL(F)

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	侧足原理	武衆 グーガー	機布	下限	上限	下限	上限	試料01	試料02	試料03
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	30.00	85.00	40.00	99.00	○ 41.00 ○	48.00 (	57.00
1375	ト・ライケミストリー法	富士フィルムメ	富士ドライケム400	40.00	80.00	40.00	90.00	35.00 €	43.00 (	52.00
1548	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	38.00	90.00	48.00	103.0	○ 39.00 ○	46.00 (	58.00
1561	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	38.00	90.00	48.00	103.0	○ 39.00 ○	47.00 (	58.00
2012	ト・ライケミストリー法	富士フィルムメ	富士ドライケムNX5	36.00	60.00	45.00	69.00	○ 40.00 ○	48.00 (	60.00
9038	ト・ライケミストリー法	富士フィルムメ	富士トライケム700	37.00	67.00	40.00	71.00	○ 40.00 ○	47.00 €	57.00

#### 130 ALB(A1)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武衆/一//	79交石计	下限 上限 下限 上限 試料01 試料02 試料03
1317	ト゛ライケミストリー法	アークレイ	アークレイスポットケム	$3.700$ $5.500$ $3.700$ $5.500$ $\bigcirc$ $3.300$ $\bigcirc$ $3.800$ $\bigcirc$ $4.600$
9041	ドライケミストリー法	アークレイ	アークレイスホットケム	$\bigcirc$ 3.500 $\bigcirc$ 4.000 $\bigcirc$ 4.700

95 ALB(F) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告值
No	例足尽垤	武楽/一ガー	7924台	下限	上限	下限	上限	試料01	試料02	試料03
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	3.800	5.100			O 4.200 C	4.500 €	5.300
1076	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	4.000	5.000			O 4.100 C	4.500 €	5.200
1097	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	3.700	5.500	3.700	5.500	O 4.100 C	4.700 €	5.300
1126	ドライケミストリー法	富士フィルムメ	富士ドライケム700	4.000	5.000	4.000	5.000	○ 4.200 ○	4.800 €	5.300
1137	ドライケミストリー法	富士フィルムメ	富士トライケム400	4.000	5.000	4.000	5.000	○ 3.800 ○	4.400 €	5.400
1326	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	3.700	5.500	3.700	5.500	O 4.200 C	4.700 €	5.400
1336	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	3.800	5.000			O 4.200 C	4.800 €	5.400
1374	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	3.700	5.500	3.700	5.500	O 4.000 C	4.700 €	5.400
1375	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	3.700	5.500			○ 3.800 ○	4.300 €	4.900
1415	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.800	5.000	3.800	5.000	O 4.300 C	4.700 €	5.400
1525	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム350	4.000	5.000			○ 3.900 ○	4.600 €	5.000
1545	ドライケミストリー法	富士フィルムメ	富士トライケム400	4.100	5.100			○ 4.000 ○	4.800 €	5.300
1548	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	4.100	5.100	4.100	5.100	O 4.000 C	4.500 €	5.300
1561	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	4.100	5.100	4.100	5.100	O 4.200 C	4.700 €	5.300
2012	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	3.800	5.000	3.800	5.000	O 4.100 C	4.600 €	5.300
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	3.800	5.000			○ 4.000 ○	4.400 €	5.200

160 ALB(A2)

施設	测空原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値	
No	測定原理			下限	上限	下限	上限	試料01	試料02	試料03	
1521 ドラ	イケミストリー法	アークレイ	アークレイスポットケム	4.100	5.100	4.100	5.100	O 4.200 (	5.000 (	5.800	

190 ALB(O)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武架/一刀一	7交台	下限 上限 下限 上限 試料01 試料02 試料03
1075	ト・ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	4.100 5.100 4.100 5.100 3.400 0 4.100 0 4.900
1100	ドライケミストリー法	オーソ・クリニカ	オーソヒトロス250_3	$\bigcirc$ 3.500 $\bigcirc$ 4.100 $\bigcirc$ 4.900
8011	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	$3.800  5.300  3.800  5.300   3.390 \bigcirc \ 4.070   7.940$
9040	ドライケミストリー法	オーソ・クリニカ	オーソビトロス5600	$\bigcirc$ 3.530 $\bigcirc$ 4.170 $\bigcirc$ 4.960

### 総コレステロール (TC)

福岡大学病院 臨床検査部 光井 健

#### 【参加状況】

参加施設 227 施設 (前回 218 施設)

#### 【測定方法の状況】

酵素法の使用施設が 205 施設(90.3%)、ドライケミストリー法の使用施設が 22 施設(9.7%)であった。

#### 【測定値の状況】

1. 全施設の CV%は 2.1~2.7%、3SD 除去後 CV%は 1.8~2.1%であった。 ドライケミストリー法の平均値は、試料 1 と試料 2 で低値傾向であった。 試料 1~3 の測定原理別平均値と CV%を表 1 に示した。

表 1 測定原理別の平均値(mg/dL)と CV%

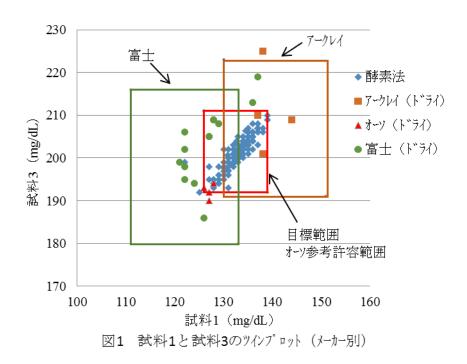
	坛凯粉	試料 1		試	料 2	試料3		
	施設数	平均值	CV%	平均值	CV%	平均值	CV%	
酵素的測定法	205	133.3	1.8	160.3	2.3	201.7	1.6	
ト゛ライケミストリー法	22	128.9	5.0	157.2	4.7	202.8	4.8	
目標値		132.9 (12	6~139)	160.1 (15	52∼168)	201.6 (19	2~211)	

2. 目標範囲達成状況は、3 試料とも目標範囲(目標値±4.5%)内であった施設は、酵素法 203 施設(99.0%)、ドライケミストリー法 9 施設(40.9%)であった。試料別の目標値達成状況を表 2 に示した。

表 2 試料別の目標範囲達成状況

方法	試料1	試料 2	試料3
酵素的測定法(n=205)	203 (99.0%)	204 (99.5%)	205 (100%)
ト゛ライケミストリー法(n=22)	15 (68.2%)	15 (68.2%)	17 (77.3%)

3. ドライメーカー各社から提示された参考値及び参考範囲を表 3 に、メーカー別の平均値と参考範囲達成状況を表 4 に示す。


表3 各ドライメーカーによる参考値及び参考範囲

	試	料1	試	料 2	試料 3		
	メーカー参考値 (mg/dL)       メーカー 参考値 参考範囲 (mg/dL)		メーカー 参考範囲 (mg/dL)	メーカー参考値 (mg/dL)	メーカー 参考範囲 (mg/dL)		
富士	122	111~133 15		136~164	198	180~216	
アークレイ	140	130~151 168 155~18		155~181	207	191~223	
オーソ	132.9	126~139	160.1	152~168	201.6	192~211	

表 4 ト、ライケミストリー法のメーカー別平均値と参考範囲達成状況

		試料	<b>화 1</b>	試	學 2	試料 3		
	n	平均值	メーカー参考範	平均值	メーカー参考範	平均值	メーカー参考範	
		(mg/dL)	囲内施設(%)	(mg/dL)	囲内施設(%)	(mg/dL)	囲内施設(%)	
富士	14	126.5	85.7	156.0	92.9	203.4	92.9	
アークレイ	4	139.3 100 16		167.3	100	211.3	75.0	
オーソ	4	127.0	100	151.5	50.0	192.3	75.0	

4. 試料1と試料3のメーカー別のツインプロットを図1に示した。



### 【基準範囲の状況】

JCCLS 共用基準範囲は 142~248mg/dL であり、全体の 38.8% (88 施設) が基準範囲として採用している。前年と比較すると 15 施設増加していた。

16 T-CHO 施設No.が低い順に並んでいます

施設	测点压用	ط ( تات 44	144 111	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1001	酵素法	協和メデックス	目立LABOSPE	142.0	219.0			○ 134.0 ○	160.0 🔾	202.0
1002	酵素法	積水メディカル	日立LABOSPE	128.0	219.0			○ 133.0 ○	161.0 🔾	203.0
1004	酵素法	積水メディカル	日立LABOSPE	142.0	248.0	142.0	248.0	○ 134.0 ○	160.0 🔾	202.0
1006	酵素法	セロテック	日立LABOSPE	142.0	248.0			○ 132.3 ○	159.0 🔾	199.1
1010	酵素法	デンカ生研	東芝TBA-cシリー	128.0	256.0	128.0	256.0	○ 135.0 ○	162.0 〇	203.0
1011	酵素法	栄研化学	日本電子JCA-B	130.0	219.0	130.0	219.0	○ 133.0 ○	159.0 🔾	200.0
1012	酵素法	和光純薬	日本電子JCA-B	142.0	248.0	142.0	248.0	○ 131.9 ○	157.9 🔾	198.6
1013	酵素法	和光純薬	日立7140-7170	142.0	248.0			○ 130.0 ○	155.0 🔾	199.0
1015	酵素法	協和メデックス	日本電子JCA-B	142.0	248.0			○ 135.0 ○	163.0 🔾	204.0
1018	酵素法	協和メデックス	日本電子JCA-B	142.0	248.0	142.0	248.0	○ 134.0 ○	160.0 🔾	201.0
1021	酵素法	和光純薬	日本電子JCA-B	150.0	219.0	150.0	219.0	○ 132.0 ○	159.0 🔾	201.0
1023	酵素法	和光純薬	日本電子JCA-B	142.0	248.0			○ 132.0 ○	158.0 🔾	199.0
1024	酵素法	積水メディカル	日立LABOSPE	128.0	219.0			○ 134.0 ○	162.0 🔾	204.0
1026	酵素法	積水メディカル	東芝25FR_Accut	142.0	248.0			○ 135.0 ○	162.0 🔾	204.0
1028	酵素法	協和メデックス	日立LABOSPE	128.0	219.0			○ 136.0 ○	163.0 🔾	205.0
1029	酵素法	LSIメディエンス	日立7140-7170	142.0	248.0	142.0	248.0	○ 131.0 ○	153.0 🔾	199.0
1031	酵素法	積水メディカル	東芝TBA-cシリー	142.0	248.0			○ 137.0 ○	165.0 🔾	208.0
1033	酵素法	和光純薬	日立7140-7170	150.0	219.0	150.0	219.0	○ 133.0 ○	158.0 🔾	200.0
1034	酵素法	和光純薬	日立7140-7170	150.0	219.0	150.0	219.0	○ 131.0 ○	157.0 🔾	199.0
1035	酵素法	協和メデックス	日本電子JCA-B	128.0	220.0			○ 137.0 ○	165.0 🔾	207.0
1038	酵素法	積水メディカル	日立LABOSPE	142.0	248.0			○ 135.0 ○	162.0 〇	202.0
1039	酵素法	積水メディカル	日立7140-7170	142.0	248.0			○ 133.0 ○	160.0 🔾	201.0
1040	酵素法	和光純薬	日立LABOSPE	142.0	248.0	142.0	248.0	○ 132.0 ○	158.0 🔾	199.0
1046	酵素法	協和メデックス	東芝25FR_Accut	128.0	219.0	128.0	219.0	○ 132.0 ○	160.0 🔾	203.0
1049	酵素法	協和メデックス	ベックマン・コールター	128.0	219.0	128.0	219.0	○ 134.0 ○	161.0 🔾	202.0
1050	酵素法	協和メデックス	日本電子JCA-B	142.0	248.0	142.0	248.0	○ 133.9 ○	161.9 🔾	203.1
1051	酵素法	積水メディカル	日本電子JCA-B	150.0	219.0	150.0	219.0	○ 135.0 ○	161.0 🔾	203.0
1054	酵素法	協和メデックス	東芝TBA-cシリー	130.0	220.0			○ 136.0 ○	163.0 🔾	205.0
1055	酵素法	和光純薬	シーメンスHCDDim	142.0	248.0			○ 133.0 ○	159.0 🔾	200.0
1056	酵素法	協和メデックス	日立7140-7170	128.0	219.0	128.0	219.0	○ 134.0 ○	162.0 〇	203.0
1057	酵素法	シノテスト	東京貿易ビオリス5	150.0	219.0			○ 134.0 ○	160.0 🔾	203.0
1058	酵素法	LSIメディエンス	日本電子JCA-B	128.0	219.0			○ 135.0 ○	162.0 🔾	203.0
1060	酵素法	LSIメディエンス	日本電子JCA-B	150.0	219.0			○ 131.0 ○	160.0 🔾	199.0
1062	酵素法	積水メディカル	目立LABOSPE	142.0	219.0	142.0	219.0	○ 132.0 ○	160.0 🔾	202.0
1064	酵素法	LSIメディエンス	日本電子JCA-B	130.0	220.0	130.0	220.0	○ 131.0 ○	159.0 🔾	199.0
1072	酵素法	積水メディカル	目立LABOSPE	128.0	219.0	128.0	219.0	○ 133.0 ○	161.0 🔾	201.0
1073	酵素法	LSIメディエンス	目立LABOSPE	128.0	220.0	128.0	220.0	○ 134.0 ○	161.0 🔾	202.0
1074	酵素法	和光純薬	東京貿易ビオリス2	150.0	219.0	150.0	219.0	○ 129.0 ○	154.0 〇	196.0
1077	酵素法	和光純薬	シーメンスHCDDim	150.0	219.0	150.0	219.0	○ 134.0 ○	160.0 🔾	200.0
1081	酵素法	和光純薬	東芝TBA-cシリー	142.0	248.0	142.0	248.0	○ 129.0 ○	155.0 🔾	195.0
1084	酵素法	和光純薬	東京貿易ビオリス2	142.0	248.0	142.0	248.0	○ 129.0 ○	155.0 🔾	194.0
1088	酵素法	協和メデックス	目立LABOSPE	128.0	220.0	128.0	220.0	○ 135.0 ○	162.0 🔾	203.0
1089	酵素法	協和メデックス	目立7140-7170	142.0	248.0	142.0	248.0	○ 134.6 ○	162.0 🔾	203.8
1090	酵素法	デンカ生研	日立7140-7170	142.0	248.0	142.0	248.0	○ 139.0 ○	168.0 🔾	210.0
1093	酵素法	シスメックス	日本電子JCA-B	140.0	199.0	140.0	199.0	○ 134.0 ○	162.0 🔾	202.0
1094	酵素法	シスメックス	日本電子JCA-B	128.0	219.0			○ 133.0 ○	161.0 🔾	202.0
1101	酵素法	協和メデックス	東芝TBA-cシリー	150.0	219.0	150.0	219.0	○ 134.0 ○	162.0 🔾	203.0
1102	酵素法	協和メデックス	東芝TBA-cシリー	142.0	248.0			○ 136.0 ○	163.0 🔾	206.0
1105	酵素法	ベックマン・コー	ヘックマン・コールター	150.0	219.0			○ 133.0 ○	161.0 🔾	202.0
1112	酵素法	協和メデックス	東京貿易ビオリス5	150.0	219.0	150.0	219.0	○ 134.0 ○	161.0 🔾	202.0
1120	酵素法	和光純薬	東芝TBA-cシリー	142.0	248.0			○ 128.0 ○	154.0 🔾	195.0
1121	酵素法	デンカ生研	東芝25FR_Accut	128.0	219.0	128.0	219.0	○ 134.0 ○	163.0 🔾	205.0
1124	酵素法	シノテスト	日立7020-7080	142.0	248.0			122.0	123.0 🔾	199.0
1127	酵素法	和光純薬	日本電子JCA-B	150.0	219.0			○ 132.0 ○	158.0 🔾	199.0
1128	酵素法	シスメックス	日本電子JCA-B	142.0	248.0	142.0	248.0	○ 132.0 ○	159.0 🔾	200.0
1130	酵素法	協和メデックス	日本電子JCA-B	142.0	248.0	142.0	248.0	○ 132.0 ○	158.0 🔾	199.0
1134	酵素法	和光純薬	日立7140-7170	128.0	219.0	128.0	219.0	○ 131.0 ○	155.0 🔾	193.0

16 T-CHO 施設No.が低い順に並んでいます

施設	INO.N EN MAIC	. <u></u> /0 (1 & )		男性基準	進範囲	女性基	進節囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1135	酵素法	ベックマン・コー	ヘ゛ックマン・コールター	128.0	219.0			○ 134.0 ○	161.0 〇	204.0
1136	酵素法	シノテスト	日本電子JCA-B	142.0	248.0			○ 135.0 ○	160.0 🔾	202.0
1300	酵素法	積水メディカル	日本電子JCA-B	142.0	248.0			○ 130.8 ○	157.5 🔾	200.6
1301	酵素法	和光純薬	日本電子JCA-B	130.0	219.0			○ 132.0 ○	159.0 🔾	202.0
1302	酵素法	ベックマン・コー	ヘックマン・コールター	142.0	248.0			○ 139.0 ○	166.0 〇	209.0
	酵素法	協和メデックス	日本電子JCA-B	142.0	219.0			○ 136.0 ○		
	酵素法	協和メデックス	東芝25FR_Accut	142.0	219.0	100.0	000.0	O 136.0 O		
	酵素法	和光純薬	東芝TBA-200F	128.0	220.0	128.0	220.0	0 131.0 0		
	酵素法 酵素法	和光純薬シスメックス	日本電子JCA-B 日本電子JCA-B	128.0	219.0	149.0	249.0	<ul><li>○ 132.0 ○</li><li>○ 133.0 ○</li></ul>		
	酵素法	積水メディカル	日本電子JCA-B	142.0 128.0	248.0 220.0	142.0	240.0	0 131.0 0		
	酵素法	和光純薬	日本電子JCA-B	142.0	248.0	142.0	248.0	0 135.0 0		
	酵素法	和光純薬	日本電子JCA-B	142.0	248.0			O 133.0 O		
	酵素法	ベックマン・コー	ヘックマン・コールター	142.0	248.0			○ 138.0 ○		
1329	酵素法	積水メディカル	日本電子JCA-B	142.0	248.0	142.0	248.0	○ 134.0 ○	162.0 〇	202.0
1330	酵素法	和光純薬	日本電子JCA-B	128.0	219.0			○ 130.0 ○	156.0 〇	198.0
1331	酵素法	協和メデックス	東芝TBA-cシリー	150.0	219.0			○ 133.0 ○	160.0 🔾	202.0
	酵素法	積水メディカル	日本電子JCA-B	142.0	248.0			○ 132.0 ○	158.0 🔾	199.0
	酵素法	LSIメディエンス	日本電子JCA-B	142.0	248.0			○ 135.0 ○		
	酵素法	協和メデックス	日本電子JCA-B	142.0	248.0			O 132.0 O		
	酵素法	和光純薬	日本電子JCA-B	150.0	219.0	150.0	219.0	0 128.0 0		
	酵素法 酵素法	積水メディカル 協和メデックス	日立LABOSPE 日立7140-7170	142.0 142.0	248.0 248.0	149.0	249.0	○ 134.0 ○ ○ 137.0 ○		
	酵素法	和光純薬	日本電子JCA-B	128.0	219.0	142.0	240.0	0 131.0 0		
	酵素法	協和メデックス	東芝TBA-cシリー	150.0	219.0	150.0	219.0	0 131.0 0		
	酵素法	ロシュ・ダイアグ	ロシュコハ*ス8000c5	142.0	248.0			O 133.0 O		
1350	酵素法	和光純薬	日本電子JCA-B	128.0	219.0			○ 134.0 ○	161.0 🔾	202.0
1351	酵素法	積水メディカル	ヘ゛ックマン・コールター	142.0	248.0	142.0	248.0	○ 134.0 ○	160.0 🔾	201.0
1352	酵素法	和光純薬	日本電子JCA-B	143.0	169.0	208.0	128.0	○ 132.0 ○	158.0 🔾	199.0
	酵素法	シスメックス	東芝TBA-cシリー	142.0	248.0	142.0	248.0	○ 136.0 ○	162.0 🔾	202.0
	酵素法	積水メディカル	日本電子JCA-B	142.0		142.0		○ 132.0 ○		
	酵素法	和光純薬	日立7140-7170	128.0		128.0	220.0	O 134.0 O		
	酵素法	協和メデックス	日本電子JCA-B	142.0	248.0	140.0	0.40.0	0 133.9 0		
	酵素法 酵素法	和光純薬和光純薬	日本電子JCA-B	142.0 120.0	248.0 219.0			○ 135.0 ○ ○ 132.0 ○		
	酵素法	和光純薬	日本電子JCA-B 東芝TBA-20-3	142.0	248.0	120.0	215.0	0 129.0 0		
	酵素法	ミズホメディ	ベックマン・コールター	128.0	219.0			0 134.0 0		
	酵素法	和光純薬	日立7140-7170	142.0		142.0	248.0	O 128.0 O		
	酵素法	和光純薬	東芝TBA-cシリー	142.0	248.0				153.0 〇	
1370	酵素法	協和メデックス	目立LABOSPE	142.0	248.0	142.0	248.0	○ 133.0 ○	161.0 🔾	202.0
1371	酵素法	シノテスト	東京貿易ビオリス5	142.0	248.0			○ 134.0 ○	162.0 🔾	203.0
1382	酵素法	和光純薬	日立LABOSPE	142.0	248.0			○ 131.0 ○	158.0 🔾	197.0
	酵素法	和光純薬	東芝25FR_Accut	142.0	248.0			○ 127.0 ○		
	酵素法	協和メデックス	東芝TBA-cシリー	128.0	220.0			0 131.0 0		
	酵素法	協和メデックス	目立7140-7170	128.0		128.0	256.0	0 135.0 0		
	酵素法 酵素法	協和メデックス 和光純薬	東京貿易ビオリス5	142.0	248.0 219.0	149.0	210.0	○ 134.0 ○ ○ 131.0 ○		
	酵素法	シーメンス	シーメンスHCDDim シーメンスHCDDim	142.0 142.0	248.0			0 131.00		
	酵素法	積水メディカル	日本電子JCA-B	142.0	248.0	114.0	210.0	0 133.0 0		
	酵素法	ミズホメディ	日本電子JCA-B	142.0	220.0	142.0	220.0	0 135.0 0		
	酵素法	協和メデックス	東芝TBA-cシリー	128.0	220.0			○ 135.0 ○		
	酵素法	積水メディカル	日本電子JCA-B	142.0	248.0	142.0	248.0	○ 133.7 ○		
1419	酵素法	ベックマン・コー	ヘックマン・コールター	128.0	219.0	128.0	219.0	○ 134.0 ○	162.0 🔾	204.0
1501	酵素法	シスメックス	目立LABOSPE	128.0	219.0	128.0	219.0	○ 136.0 ○	163.0 🔾	205.0
	酵素法	和光純薬	日本電子JCA-B	128.0	219.0	128.0	219.0	○ 133.0 ○	160.0 🔾	201.0
	酵素法	和光純薬	目立LABOSPE	142.0	219.0		0.1-	O 129.0 O		
1506	酵素法	積水メディカル	目立LABOSPE	150.0	219.0	150.0	219.0	○ 135.0 ○	164.0 🔾	207.0

16 T-CHO 施設No.が低い順に並んでいます

No 1511 P 1512 P	測定原理	武薬メーカー 和光純薬	機器	下限	上限	下限	上限	試料0	試料02	試料03
1512	酵素法	和华纳斯								
		107LM63K	日本電子JCA-B	142.0	248.0			O 133.0	O 160.0	O 199.0
1519 i	酵素法	積水メディカル	目立7140-7170	142.0	220.0	142.0	220.0	O 133.0	O 162.0	○ 202.0
1919	酵素法	積水メディカル	目立LABOSPE	142.0	248.0			O 130.0	O 160.0	○ 202.0
1514	酵素法		目立LABOSPE	142.0	219.0	142.0	219.0	O 131.0	O 160.0	⊃ 197.0
1519	酵素法	積水メディカル	東芝25FR_Accut	142.0	248.0			O 133.0	O 160.0	○ 202.0
1528	酵素法	和光純薬	日立7140-7170	142.0	248.0	142.0	248.0	O 131.0	O 157.0	200.0
1529	酵素法	和光純薬	日立LABOSPE	128.0	219.0	128.0	219.0	O 131.0	O 159.0	200.0
1530	酵素法	和光純薬	日本電子JCA-B	142.0	248.0	142.0	248.0	O 130.0	O 157.0	⊃ 195.0
1532	酵素法	協和メデックス	日立7140-7170	142.0	248.0	142.0	248.0	O 135.0	O 164.0	206.0
1533	酵素法	和光純薬	シーメンスHCDDim	142.0	248.0			O 132.0	O 157.0	⊃ 199.0
1534	酵素法	協和メデックス	東京貿易ビオナリス2	142.0	248.0			O 135.0	O 163.0	205.0
1538	酵素法	協和メデックス	東京貿易ビオナリス2	142.0	248.0			O 135.0	O 162.0	206.0
1540	酵素法	LSIメディエンス	日本電子JCA-B	142.0	248.0	142.0	248.0	O 132.0	O 162.0	○ 203.0
1541	酵素法	シノテスト	東芝25FR_Accut	128.0	219.0			O 135.0	O 162.0	204.0
1542	酵素法	シスメックス	日立7140-7170	150.0	219.0			O 136.0	O 163.0	204.0
1543	酵素法	協和メデックス	東芝TBA-20-3	128.0	220.0	128.0	220.0	O 128.0	O 154.0	⊃ 194.0
1549		積水メディカル	東京貿易ビオッリス2	128.0	219.0			O 136.0	O 162.0	204.0
1550		和光純薬	日立7140-7170	150.0	219.0				O 162.0	
1554		シノテスト	日立7140-7170	128.0	219.0				O 163.0	
1558		協和メデックス	日本電子JCA-B	142.0	248.0				0 161.0	
1562		ミズホメディ	日本電子JCA-B	142.0	248.0				0 163.0	
1901		協和メデックス	ベックマン・コールター	128.0	219.0	128.0			0 160.0	
1902		和光純薬	日本電子JCA-B	150.0	219.0				O 160.0 (	
1903		シスメックス	目立7600Dモシュ	150.0	219.0				0 163.0	
	酵素法	ミズホメディ	目立LABOSPE	128.0	219.0				0 163.0	
1911		ミズホメディ	ヘックマン・コールター	128.0	219.0				0 164.0	
1916		和光純薬	日本電子JCA-B	142.0	248.0	100.0			0 160.0	
1917		和光純薬	目立LABOSPE	128.0	219.0	128.0			O 160.0	
1920		ミズホメディ	日立3100	128.0	219.0				0 162.0	
1922   1923		シスメックス	日立7140-7170	150.0	219.0				0 161.0	
1925 F		シスメックス 協和メデックス	日立7140-7170 ヘ [*] ックマン・コールター	150.0	219.0 219.0	120.0			○ 162.0 ( ○ 164.0 (	
1925 F		協和メデックス	東芝TBA-200F	130.0 130.0	219.0				0 159.0	
	酵素法	かれイン・ソンへシスメックス	未 ∠ 1 DA − 200 F	150.0	219.0	130.0			0 165.0	
1930		協和メデックス	ベックマン・コールター	128.0	219.0	128.0			0 162.0	
1931		協和メデックス	ベックマン・コールター	128.0	219.0				0 162.0	
1932		和光純薬	日本電子JCA-B	150.0	219.0	120.0			0 159.0	
1934		協和メデックス	ベックマン・コールター	128.0	219.0				0 163.0	
1935		和光純薬	目立7140-7170	150.0	219.0	150.0			0 160.0	
1936		ミズホメディ	日本電子JCA-B	150.0	220.0				O 160.0	
1937		協和メデックス	日本電子JCA-H	128.0	220.0				O 160.0	
2002		協和メデックス	日本電子JCA-B	142.0	248.0				O 162.0	
2006	酵素法	協和メデックス	日立LABOSPE	130.0	220.0				O 162.0	
2008		和光純薬	ロシュコハ*ス8000c7	142.0	248.0	142.0			O 158.0	
2009	酵素法	協和メデックス	日本電子JCA-B	130.0	220.0	130.0	220.0	O 136.0	O 164.0	206.0
2010	酵素法	協和メデックス	目立7140-7170	150.0	219.0	150.0	219.0	O 133.0	O 161.0	203.0
2011	酵素法	協和メデックス	ヘックマン・コールター	128.0	219.0	128.0	219.0	O 134.0	O 161.0	202.0
3001	酵素法	和光純薬	日本電子JCA-B	142.0	248.0	142.0	248.0	O 130.0	O 155.9	⊃ 196.9
3013	酵素法	和光純薬	シーメンスHCDDim	150.0	219.0			O 134.0	O 163.0	⊃ 202.0
3018	酵素法	ベックマン・コー	ヘックマン・コールター	130.0	219.0			O 136.0	O 163.0	205.0
3022	酵素法	協和メデックス	日本電子JCA-B	142.0	248.0	142.0	248.0	O 134.5	O 161.8	206.3
3027	酵素法	シスメックス	目立7600Dモジュ	150.0	219.0			O 135.0	O 162.0	○ 203.0
3048	酵素法	積水メディカル	日本電子JCA-B	142.0	248.0	142.0	248.0	O 133.0	O 161.0	○ 203.0
3055	酵素法	協和メデックス	日本電子JCA-B	142.0	248.0			O 137.0	O 163.0	206.0
	酵素法	協和メデックス	日本電子JCA-B	128.0	220.0	128.0	220.0	O 136.0	O 162.0	○ 205.0
3056	H1 // 12	100 1110								
3056 I 3907 I		協和メデックス	日本電子JCA-B	142.0	248.0	142.0	248.0	O 133.0	O 160.0	○ 201.0

16 T-CHO 施設No.が低い順に並んでいます

施設	2016-15-78	-A. 1817 A. L.	126 111	男性基準	準範囲	女性基	準範囲				試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	弒	料01	試料02	試料03
4039	酵素法	協和メデックス	東芝25FR_Accut	128.0	220.0	128.0	220.0	0 1	32.7 🔾	161.0 C	204.0
4040	酵素法	ベックマン・コー	ヘ゛ックマン・コールター	150.0	219.0			0 1	34.0 🔾	162.0 ℂ	204.0
4902	酵素法	協和メデックス	日立7140-7170	130.0	220.0			0 1	34.0 〇	162.0 ℂ	203.0
5003	酵素法	和光純薬	目立7140-7170	130.0	220.0	130.0	220.0	0 1	33.0 🔾	159.0 ℂ	200.0
5005	酵素法	協和メデックス	日本電子JCA-B	142.0	248.0			0 1	34.0 〇	162.0 ℂ	203.0
5006	酵素法	積水メディカル	日本電子JCA-B	142.0	248.0	142.0	248.0	0 1	32.3 🔾	159.5 ℂ	201.9
5010	酵素法	積水メディカル	日本電子JCA-B	142.0	248.0	142.0	248.0	0 1	33.0 🔾	161.0 C	203.0
6006	酵素法	シスメックス	東芝25FR_Accut	135.0	220.0			0 1	32.0 🔾	160.0 ℂ	201.0
6008	酵素法	セロテック	東芝TBA-200F	142.0	248.0			0 1	32.0 🔾	159.0 ℂ	200.0
6015	酵素法	協和メデックス	目立LABOSPE	130.0	220.0			0 1	35.0 🔾	163.0 ℂ	204.0
6016	酵素法	協和メデックス	東芝TBA-200F	128.0	219.0	128.0	219.0	0 1	35.0 🔾	162.0 ℂ	204.0
7001	酵素法	セロテック	日本電子JCA-B	132.0	219.0	132.0	219.0	0 1	32.0 🔾	159.0 ℂ	199.0
7002	酵素法	協和メデックス	日本電子JCA-B	142.0	248.0			0 1	35.0 🔾	163.0 ℂ	205.0
7007	酵素法	協和メデックス	ヘックマン・コールター	140.0	219.0	140.0	219.0	0 1	35.0 🔾	160.0 ℂ	203.0
7011	酵素法	和光純薬	東芝TBA-cシリー	142.0	248.0			0 1	33.0 🔾	160.0 ℂ	201.0
7025	酵素法	協和メデックス	日本電子JCA-B	128.0	219.0			0 1	32.0 🔾	159.0 ℂ	198.0
7901	酵素法	ニットーボー	目立LABOSPE	130.0	219.0			0 1	33.0 🔾	160.0 ℂ	201.0
8004	酵素法	協和メデックス	日本電子JCA-B	124.0	220.0			0 1	36.0 〇	167.0 ℂ	208.0
9004	酵素法	協和メデックス	日立7140-7170					0 1	33.0 🔾	159.0 ℂ	201.0
9008	酵素法	シノテスト	日立7140-7170					0 1	32.0 🔾	161.0 C	202.0
9009	酵素法	LSIメディエンス	日立7140-7170	128.0	250.0			0 1	33.8 🔾	161.7 C	201.9
9012	酵素法	デンカ生研	日立7140-7170		220.0		220.0	0 1	36.0 〇	165.0 ℂ	206.0
9014	酵素法	ニットーボー	日立7140-7170					0 1	37.0 🔾	161.0 C	203.0
9022	酵素法	ミズホメディ	日立7140-7170	120.0	220.0			0 1	34.0 〇	161.0 C	203.0
9023	酵素法	和光純薬	日立7140-7170					0 1	33.0 🔾	161.0 C	202.0
9024	酵素法	関東化学	日本電子JCA-B		220.0		220.0	0 1	37.0 🔾	165.0 ℂ	207.0
9033	酵素法	積水メディカル	日本電子JCA-B	142.0	248.0			0 1	27.0 🔾	153.0 ℂ	195.0
9035	酵素法	積水メディカル	積水EV800					0 1	30.0 〇	155.0 ℂ	196.0
9043	酵素法	ロシュ・ダイアグ	ロシュコハ、ス8000c5					0 1	33.6 〇	162.2 C	202.8
9044	酵素法	和光純薬	ロシュコハ [*] ス8000c7					0 1	30.1 🔾	156.7 ℂ	197.6
9046	酵素法	栄研化学	日立7140-7170	120.0	220.0	120.0	220.0	0 1	32.9 🔾	159.3 ℂ	201.4
9047	酵素法	ベックマン・コー	ヘックマン・コールター					0 1	34.0 〇	160.6 🗆	202.6
9049	酵素法	シスメックス	日立7140-7170		200.0			0 1	34.0 〇	161.0 🗆	203.0
9050	酵素法	和光純薬	シーメンスHCDDim					0 1	33.3 🔾	160.3 ℂ	200.2

96 T-CHO(F)

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値	
No	例足原垤	武架/一刀一	70支右计	下限	上限	下限	上限	試料01	試料02	試料03	
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	130.0	220.0			○ 126.0 ○	142.0 〇	186.0	
1126	ドライケミストリー法	富士フィルムメ	富士ドライケム700	128.0	219.0	128.0	219.0	○ 122.0 ○	158.0 €	206.0	
1137	ドライケミストリー法	富士フィルムメ	富士ドライケム400	128.0	219.0	128.0	219.0	○ 127.0 ○	158.0 €	205.0	
1326	ドライケミストリー法	富士フィルムメ	富士ドライケム400	150.0	219.0	150.0	219.0	137.0 €	163.0	219.0	
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	150.0	219.0			○ 128.0 ○	159.0 €	209.0	
1375	ドライケミストリー法	富士フィルムメ	富士ドライケム400	150.0	219.0			○ 122.0 ○	151.0 €	195.0	
1523	ドライケミストリー法	富士フィルムメ	富士ドライケム700	142.0	248.0			○ 129.0 ○	158.0 €	208.0	
1525	ドライケミストリー法	富士フィルムメ	富士ドライケム350	128.0	219.0			136.0	168.0 ℂ	213.0	
1545	ドライケミストリー法	富士フィルムメ	富士ドライケム400	142.0	248.0			○ 127.0 ○	159.0 €	205.0	
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	142.0	248.0	142.0	248.0	○ 122.0 ○	156.0 €	202.0	
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	142.0	248.0	142.0	248.0	○ 124.0 ○	152.0 €	194.0	
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	142.0	248.0	142.0	248.0	O 121.0 C	151.0 €	199.0	
2012	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	150.0	219.0	150.0	219.0	○ 128.0 ○	159.0 €	209.0	
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	150.0	219.0			O 122.0 C	150.0 €	198.0	

#### 131 T-CHO(A1)

施設	正設 測定原理 試薬メー		カー 機器	男性基	男性基準範囲 女性基準範囲			試料報告値				
No	0	PORCY. N	1954 dat	下限	上限	下限	上限	試料01	試料02	試料03		
1065	ドライケミストリー法	アークレイ	アークレイスポットケム					O 138.0	) 162.0	201.0		
1378	ドライケミストリー法	アークレイ	アークレイスポットケム	128.0	219.0			O 138.0 (	771.0	225.0		
9041	ト゛ライケミストリー法	アークレイ	アークレイスホ°ットケム					O 137.0 (	O 168.0 C	210.0		

161 T-CHO(A2)

施設	測定原埋	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値	
No				下限	上限	下限	上限	試料01	試料02	試料03	
1521 ドラ	イケミストリー法	アークレイ	アークレイスポットケム	142.0	248.0	142.0	248.0	O 144.0 (	168.0 (	209.0	 

#### 191 T-CHO(O)

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足原垤	武衆/一//	7交 台	下限	上限	下限	上限	試料01	試料02	試料03
1075	ト゛ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	142.0	219.0	142.0	219.0	○ 127.0	151.0	190.0
1100	ドライケミストリー法	オーソ・クリニカ	オーソヒトロス250_3					○ 126.0	150.0 🔾	193.0
8011	ドライケミストリー法	オーソ・クリニカ	オーソヒトロス250_3	130.0	219.0	130.0	219.0	○ 128.0 ○	153.0 🔾	194.0
9040	ドライケミストリー法	オーソ・クリニカ	オーソビトロス5600					○ 127.0	152.0	192.0

### HDL コレステロール (HDL-C)

福岡大学病院 臨床検査部 光井 健

#### 【参加状況】

参加施設 215 施設 (前回 208 施設)

#### 【測定方法の状況】

酵素修飾法 80 施設(37.2%)、選択阻害法 66 施設(30.7%)、選択消去法 29 施設 (13.5%)、

消去法 6 施設 (2.8%) 、反応阻害法 2 施設 (0.9%) 、 ドライケミストリー法 11 施設 (5.1%) 、 その他 21 施設 (9.8%) であった。

#### 【測定値の状況】

	試剝	)	試	<b>針 2</b>	試	料3	
	平均値	CV%	平均値	CV%	平均値	CV%	
酵素修飾法	43.1	1.8	49.9	1.9	60.0	1.9	
(協和メデックス)	43.1	1.0	49.9	1.9	00.0	1.9	
選択阻害法	46.6	2.2	54.3	3.3	66.5	2.1	
(積水メディカル)	40.0	2.2	34.3	3.3	00.3	2.1	
選択消去法	42.0	1.5	48.9	1.4	59.3	1.5	
(和光純薬)	42.0	1.3	48.9	1.4	39.3	1.5	
消去法	41.4	1.2	49.6	1.0	62.4	1.2	
(デンカ生研)	41.4	1.2	49.0	1.0	02.4	1.3	
反応阻害法	46.9	2.7	54.4	3.5	65.7	3.3	
(シスメックス)	40.9	2.1	34.4	3.3	65.7	3.3	
ト゛ライケミストリー法	39.3	8.0	47.1	9.0	59.1	8.5	
その他	45.1	4.2	52.4	4.9	63.2	5.6	

表 1 測定原理別の平均値(mg/dL)と CV%

- 2. 目標値及び目標範囲については、試料により測定値に差があったため、酵素修飾法(協和メディックス)、選択阻害法(積水メディカル)、選択消去法(和光純薬)はそれぞれの目標値を設定した。その他の方法においては3法の平均値を参考目標値とした。目標値及び目標範囲を表2に、試料別の目標範囲達成状況を表3に示した。
  - 目標範囲達成状況は、3 試料とも目標値範囲内であった施設は、全体で 212 施設 (98.6%) であった。

表 2 目標値及び目標範囲(mg/dL)

	試料1	試料 2	試料3		
酵素修飾法	42.8 (40~45)	49.8 (47~53)	59.9 (56~63)		
(協和メデックス)	42.0 (40 43)	49.6 (4/* 33)	39.9 (30 903)		
選択阻害法	46.0 (42 ~ 40)	53.6 (50~57)	65.4 (62~69)		
(積水メディカル)	46.0 (43~49)	33.0 (30 - 37)	03.4 (02/ 009)		
選択消去法	42.0 (39~45)	49.1 (46~52)	59.3 (56~63)		
(和光純薬)	42.0 (39 43)	49.1 (40 52)	39.3 (30 -03)		
その他の測定方法の	43.6 (39~49)	50.8 (46~57)	61.5 (56~69)		
参考値	43.0 (39 49)	30.8 (40 -37)	01.3 (30 -09)		

表 3 試料別の目標範囲達成状況

方法	試料1	試料 2	試料3
酵素修飾法(n=80)	80 (100%)	80 (100%)	80 (100%)
選択阻害法(n=66)	65 (98.5%)	64 (97.0%)	65 (98.5%)
選択消去法(n=29)	29 (100%)	29 (100%)	29 (100%)
消去法(n=6)	6 (100%)	6 (100%)	6 (100%)
反応阻害法(n=2)	2 (100%)	2 (100%)	2 (100%)
ト゛ライケミストリー法 (n=11)	8 (72.7%)	8 (72.7%)	9 (81.8%)
その他 (n=21)	21 (100%)	20 (95.2%)	20 (95.2%)

3. 試料1と試料3のメーカー別のツインプロットを図1に示した。

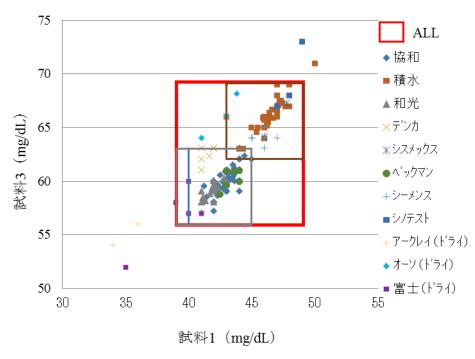



図1 試料1と試料3のツインプロット(メーカー別)

4. ドライメーカー各社から提示された目標値及び参考範囲を表 4 に、メーカー別の平均値と参考範囲達成状況を表 5 に示す。

表 4 ドライメーカー目標値及び参考範囲

_	The state of the s												
		武	料 1	試	料 2	試料 3							
		メーカー参考値 (mg/dL)	メーカー 参考範囲 (mg/dL)	メーカー参考値 (mg/dL)	メーカー 参考範囲 (mg/dL)	メーカー参考値 (mg/dL)	メーカー 参考範囲 (mg/dL)						
	富士	40	36~44	47	42~52	57	51~63						
	アークレイ	35	32~38	44	41~47	57	53~61						
	オーソ	42.8	40~45	49.8	47~53	59.9	56~64						

表 5 メーカー別平均値と参考範囲達成状況

		試料	<b>화 1</b>	試	學 2	試料 3		
	n	平均值	メーカー参考範	平均値	メーカー参考範	平均值	メーカー参考範	
		(mg/dL)	囲内施設(%)	(mg/dL)	囲内施設(%)	(mg/dL)	囲内施設(%)	
富士	6	39.0	83.3	46.5	100	57.0	100	
アークレイ	2	35.0	100	41.5	50.0	55.0	100	
オーソ	3	42.6	100	51.9	100	66.0	33.3	

#### 5. 試料1と試料3のドライメーカー別のツインプロットを図2に示した

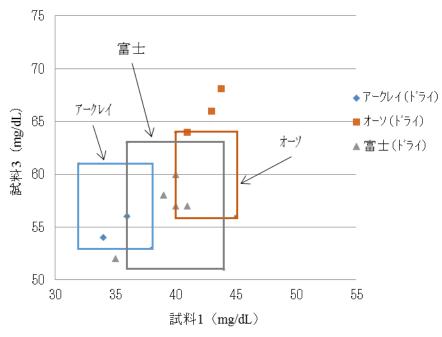



図2 試料1と試料3のツインプロット(ドライメーカー別)

#### 【基準範囲の状況】

JCCLS 共用基準範囲は男性  $38\sim90$ mg/dL、女性  $48\sim103$ mg/dL で、全体の 39.5% (85 施設) が基準範囲として採用しており、前年の 67 施設より増加していた。また、基準範囲下限値について、動脈硬化性疾患予防が小 ういの脂質異常症診断基準である 40 mg/dL または 41 mg/dL としている施設が全体の 51.6% (111 施設) であり、前年の 55.8% (116 施設) より減少していた。

#### 【その他のコメント】

測定原理の選択において、誤記入が目立った。記入する際は、自施設の原理を再度確認して記入するよう注意をしていただきたい。

17 HDL 施設No.が低い順に並んでいます

	.110.10 EN PER	CIE/U (		田州甘	<b>維佐田</b>	<i>-</i> ₩-#-	<b>維佐田</b>			*************************************
施設	測定原理	試薬メーカー	機器	男性基		女性基		10 12445	00 lw4€	試料報告値
No				下限	上限	下限	上限	試料01	試料02	試料03 
	酵素修飾法(協	協和メデックス	日立LABOSPE	40.00	90.00	40.00	103.0	○ 43.00 ○		
	酵素修飾法(協	協和メデックス	日立LABOSPE	40.00	96.00			○ 43.00 ○		
	酵素修飾法(協	協和メデックス	日本電子JCA-B	40.00	99.00	40.00		○ 44.00 ○		
1018	酵素修飾法(協	協和メデックス	日本電子JCA-B	38.00	90.00	48.00		○ 43.00 ○	_	
1029	酵素修飾法(協	協和メデックス	日立7140-7170	38.00	90.00	48.00	103.0	O 41.00 C		
1035	酵素修飾法(協	協和メデックス	日本電子JCA-B	41.00	96.00			○ 43.00 ○		
1046	酵素修飾法(協	協和メデックス	東芝25FR_Accut	40.00	96.00	40.00		O 42.40 C		
1049	酵素修飾法(協	協和メデックス	ヘ、ックマン・コールター	40.00	96.00	40.00		○ 44.00 ○		
	酵素修飾法(協	協和メデックス	日本電子JCA-B	41.00		41.00		O 42.31 C		
	酵素修飾法(協	協和メデックス	東芝TBA-cシリー	30.00	85.00	40.00		○ 44.00 ○		
	酵素修飾法(協	協和メデックス	日立7140-7170	40.00	96.00	40.00	96.00	○ 43.00 ○		
	酵素修飾法(協	協和メデックス	日本電子JCA-B	41.00	96.00			○ 43.00 ○		
	酵素修飾法(協	協和メデックス	日本電子JCA-B	40.00		40.00		○ 44.00 ○		
	酵素修飾法(協	協和メデックス	日立LABOSPE	40.00	90.00	40.00		○ 43.60 ○		
	酵素修飾法(協	協和メデックス	日立LABOSPE	41.00	96.00	41.00		○ 43.50 ○		
	酵素修飾法(協	協和メデックス	日立LABOSPE	41.00		41.00		O 42.70 C		
1089	酵素修飾法(協	協和メデックス	日立7140-7170	38.00	90.00	48.00		○ 44.40 ○		
	酵素修飾法(協	協和メデックス	東芝TBA-cシリー	41.00		41.00		○ 44.00 ○		
	酵素修飾法(協	協和メデックス	東芝TBA-cシリー	38.00	90.00	48.00		○ 43.00 ○		
	酵素修飾法(協	協和メデックス	東京貿易ビオナリス5	40.00	86.00	40.00		O 42.00 C		
	酵素修飾法(協	協和メデックス	日本電子JCA-B	40.00	86.00	40.00		O 42.00 C		
	酵素修飾法(協	協和メデックス	日本電子JCA-B	38.00	90.00	48.00		O 42.00 C		
	酵素修飾法(協	協和メデックス		38.00	90.00	48.00		O 41.40 C		
	酵素修飾法(協	協和メデックス	日本電子JCA-B	40.00	90.00	40.00		○ 43.00 ○		
1308	酵素修飾法(協	協和メデックス	東芝25FR_Accut	40.00	90.00	40.00	103.0	O 44.00 C		
	酵素修飾法(協	協和メデックス	東芝TBA-cシリー	41.00	90.00	40.00	400.0	O 44.00 C		
1339	酵素修飾法(協	協和メデックス	日本電子JCA-B	38.00		48.00		O 42.00 C		
	酵素修飾法(協	協和メデックス	日本電子JCA-B	38.00	90.00	48.00		O 42.00 C		
	酵素修飾法(協	協和メデックス	目立7140-7170	38.00	90.00	48.00		O 45.00 C		
	酵素修飾法(協	協和メデックス	ロシュコハ、ス8000c5	38.00	90.00	48.00		O 43.00 C		
	酵素修飾法(協	協和メデックス	東芝TBA-cシリー	41.00		41.00		O 42.00 C		
	酵素修飾法(協	協和メデックス	ロシュコハ、ス8000c5	38.00	90.00	48.00		O 44.00 C		
	酵素修飾法(協	協和メデックス	日本電子JCA-B	38.00	90.00	48.00		O 43.10 C		
	酵素修飾法(協	協和メデックス	東芝TBA-20-3	38.00	90.00	48.00	103.0	O 43.20 C		
	酵素修飾法(協	協和メデックス	ヘックマン・コールター	40.00	96.00	10.00	100.0	O 43.00 C		
	酵素修飾法(協	協和メデックス	目立LABOSPE	38.00	90.00	48.00		O 43.00 C		
	酵素修飾法(協	協和メデックス	東芝TBA-cシリー	41.00	96.00			O 42.00 C		
	酵素修飾法(協	協和メデックス	日立7140-7170	41.00	86.00			O 42.00 C		
	酵素修飾法(協	協和メデックス	東京貿易ビオリス5	38.00		48.00		O 42.00 C		
	酵素修飾法(協 酵素修飾法(協	協和メデックス	日本電子JCA-B 東茶TPA-oVII-	40.00	90.00	40.00	103.0	○ 43.00 C ○ 44.00 C		
		協和メデックス	東芝TBA-cシリー	40.00	96.00 90.00	19.00	102.0			
	酵素修飾法(協 酵素修飾法(協	協和メデックス 協和メデックス	日本電子JCA-B 日立7140-7170	38.00	90.00			O 42.50 C		
				38.00				○ 44.00 ○ ○ 43.00 ○		
	酵素修飾法(協酵素修飾法(協	協和メデックス 協和メデックス	東京貿易ビオナリス2 東京貿易ビオナリス2	38.00 38.00	90.00	48.00		○ 43.50 C		
	酵素修飾法(協	協和メデックス						○ 43.60 C		
		協和メデックス	日本電子JCA-B 東芝TBA-20-3	38.00	90.00 96.00	48.00		O 42.30 C		
	酵素修飾法(協酵素修飾法(協	協和メデックス	R之IBA-20-3 日本電子JCA-B	41.00 38.00	90.00	48.00		○ 42.30 C		
	酵素修師法(協	協和メデックス	ロ本电丁JCA-B ベックマン・コールター	40.00	96.00	40.00		○ 43.00 C		
	酵素修飾法(協	協和メデックス	日立LABOSPE	40.00	96.00	10.00	30.00	O 44.00 C		
	酵素修飾法(協	協和メデックス	ユンLADOSFE ベックマン・コールター	40.00	96.00			O 44.00 C		
	酵素修師法(協	協和メデックス	日立LABOSPE			40.00	96.00	○ 43.00 C		
	酵素修師法(協	協和メデックス	日立3100 日立3100	40.00		40.00	50.00	○ 43.00 C		
	酵素修師法(協	協和メデックス	□ <u>√</u> 3100	40.00	96.00	40.00	96.00	○ 43.60 C		
	酵素修師法(協 酵素修飾法(協		東芝TBA-200F	40.00	86.00			O 44.00 C		
	酵素修師法(協	協和メデックス 協和メデックス	来之1BA-200F ヘックマン・コールター	40.00 40.00	90.00 96.00	40.00 40.00		○ 43.00 C		
		協和メデックス	ヘックマン・コールター			10.00	50.00			
1934	酵素修飾法(協	mが44个 / ツク へ	~ 77 × 2 = 2   109 =	40.00	96.00			O 44.00 C	51.00 C	01.00

17 HDL 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基準	準範囲	女性基	準範囲			試料報告値	
No	例足尔生	叫来 / //	70克台	下限	上限	下限	上限	試料01	試料02	試料03	
1936	酵素修飾法(協	協和メデックス	日本電子JCA-B	40.00	70.00	40.00	70.00	O 43.00 C	50.00 🤇	60.00	
1937	酵素修飾法(協	協和メデックス	日本電子JCA-H	40.00	108.0	40.00	108.0	O 43.00 C	50.00 🤇	61.00	
2002	酵素修飾法(協	協和メデックス	日本電子JCA-B	38.00	90.00	48.00	103.0	O 44.00 C	51.00 (	61.00	
2006	酵素修飾法(協	協和メデックス	目立LABOSPE	40.00				O 43.00 C	51.00 (	59.00	
2009	酵素修飾法(協	協和メデックス	日本電子JCA-B	40.00		40.00		O 43.00 C	50.00 €	60.00	
2010	酵素修飾法(協	協和メデックス	目立7140-7170	40.00	86.00	40.00	96.00	○ 43.00 ○	50.00 €	60.00	
2011	酵素修飾法(協	協和メデックス	ヘ゛ックマン・コールター	40.00	96.00	40.00	96.00	○ 43.00 ○	49.00 (	59.00	
3001	酵素修飾法(協	協和メデックス	日本電子JCA-B	38.00	90.00	48.00	103.0	O 43.10 C	50.16	60.66	
3055	酵素修飾法(協	協和メデックス	日本電子JCA-B	38.00	90.00	48.00	103.0	O 42.80 C	49.80 €	59.80	
3056	酵素修飾法(協	協和メデックス		40.00	96.00	40.00	96.00	○ 43.00 ○	50.00 €	60.00	
3907	酵素修飾法(協	協和メデックス	日本電子JCA-B	38.00	90.00	48.00	103.0	O 43.00 C	49.00 (	59.00	
4002	酵素修飾法(協	協和メデックス	日本電子JCA-B	38.00	90.00	48.00	103.0	○ 43.00 ○	50.00 €	60.00	
4039	酵素修飾法(協	協和メデックス	東芝25FR_Accut	40.00	108.0	40.00	108.0	O 42.90 C	50.10 (	60.80	
4902	酵素修飾法(協	協和メデックス	日立7140-7170	40.00	108.0			O 44.00 C	51.00 (	61.00	
5005	酵素修飾法(協	協和メデックス	日本電子JCA-B	38.00	90.00	48.00	103.0	O 42.70 C	49.50 (	59.30	
6015	酵素修飾法(協	協和メデックス	目立LABOSPE	40.00	80.00			○ 43.00 ○	50.00 €	59.00	
6016	酵素修飾法(協	協和メデックス	東芝TBA-200F	30.00	80.00	30.00	80.00	O 42.00 C	49.00 €	59.00	
7002	酵素修飾法(協	協和メデックス	日本電子JCA-B	38.00	90.00	48.00	103.0	O 44.00 C	51.00 (	62.00	
7007	酵素修飾法(協	協和メデックス	ヘ゛ックマン・コールター	40.00	119.0	40.00	119.0	O 43.00 C	50.00 €	60.00	
7025	酵素修飾法(協	協和メデックス	日本電子JCA-B	41.00	96.00			O 41.20 C	49.40 (	59.50	
9004	酵素修飾法(協	協和メデックス	日立7140-7170					○ 43.30 ○	49.90 €	60.10	
9022	酵素修飾法(協	協和メデックス	日立7140-7170	40.00	96.00			O 43.60 C	50.40 (	60.00	
9043	酵素修飾法(協	協和メデックス	ロシュコハ ス8000c5					O 42.27 C	49.07	58.60	

31 HDL(S) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基準	準範囲			試料報告値
No	例是水柱	P(3E/: //	17英 位计	下限	上限	下限	上限	試料01	試料02	試料03
1004	選択阻害法(積	積水メディカル	目立LABOSPE	38.00	90.00	48.00	103.0	○ 47.00 ○	54.00 🔾	66.00
1006	選択阻害法(積	積水メディカル	日立LABOSPE	38.00	90.00	48.00		○ 46.30 ○		
	選択阻害法(積	積水メディカル	日本電子JCA-B	40.00	80.00	40.00	90.00	○ 46.00 ○		
	選択阻害法(積	積水メディカル	日立LABOSPE	40.00	96.00			O 46.40 O		
1026	選択阻害法(積	積水メディカル	東芝25FR_Accut	38.00	90.00	48.00		O 46.30 O		
1028	選択阻害法(積	積水メディカル	目立LABOSPE	40.00	96.00	10.00		O 48.00 O		
1031 1033	選択阻害法(積 選択阻害法(積	積水メディカル	東芝TBA-cシリー 日立7140-7170	38.00		48.00		○ 47.00 ○ ○ 46.00 ○		
	選択阻害法(積	積水メディカル 積水メディカル	目立7140-7170 日立7140-7170	40.00 40.00	80.00 80.00	40.00 40.00		O 47.00 O		
	選択阻害法(積	積水メディカル	目立LABOSPE	38.00	90.00	48.00		0 48.00 0		
1039	選択阻害法(積	積水メディカル	日立7140-7170	38.00	90.00	48.00		O 47.00 O		
1051	選択阻害法(積	積水メディカル	日本電子JCA-B	40.00	86.00	40.00		○ 47.00 ○		
1064	選択阻害法(積	積水メディカル	日本電子JCA-B	40.00	110.0	40.00	110.0	○ 47.00 ○	55.00 〇	67.00
1072	選択阻害法(積	積水メディカル	日立LABOSPE	40.00	96.00	40.00	96.00	○ 45.00 ○	53.00 🔾	65.00
1074	選択阻害法(積	積水メディカル	東京貿易ビオリス2	40.00	80.00	40.00	90.00	○ 44.30 ○	51.10 🔾	63.00
1093	選択阻害法(積	積水メディカル	日本電子JCA-B	40.00	99.00	40.00	99.00	○ 47.00 ○	56.00 🔾	68.00
1094	選択阻害法(積	積水メディカル	日本電子JCA-B	40.00	96.00			○ 47.00 ○	55.00 🔾	68.00
	選択阻害法(積	積水メディカル	日立7020-7080	38.00	90.00	48.00		○ 43.00	43.00 🔾	
	選択阻害法(積	積水メディカル	日本電子JCA-B	40.00	80.00	40.00		O 47.00 O		
	選択阻害法(積	積水メディカル	日立7140-7170	40.00	96.00	40.00		O 47.40 O		
	選択阻害法(積	積水メディカル	日本電子JCA-B	38.00	90.00	48.00		O 47.10 O		
	選択阻害法(積 選択阻害法(積	積水メディカル 積水メディカル	日本電子JCA-B 日本電子JCA-B	38.00 41.00	90.00 96.00	48.00		○ 46.00 ○ ○ 47.00 ○		
1325	選択阻害法(積	積水メディカル	日本電子JCA-B	38.00		48.00		O 45.00 O		
1329	選択阻害法(積	積水メディカル	日本電子JCA-B	38.00	90.00	48.00		O 47.00 O		
1337	選択阻害法(積	積水メディカル	日本電子JCA-B	38.00	90.00	48.00		0 46.00 0		
1342	選択阻害法(積	積水メディカル	日本電子JCA-B	40.00	80.00	40.00		O 46.00 O		
1343	選択阻害法(積	積水メディカル	日立LABOSPE	38.00	90.00	48.00	103.0	○ 47.00 ○	54.40 〇	66.50
1346	選択阻害法(積	積水メディカル	日本電子JCA-B	40.00	80.00	40.00	90.00	○ 46.00 ○	54.00 🔾	66.00
1350	選択阻害法(積	積水メディカル	日本電子JCA-B	40.00	96.00			○ 48.00 ○	56.00 🔾	68.00
1351	選択阻害法(積	積水メディカル	ヘックマン・コールター	38.00	90.00	48.00	103.0	○ 47.00 ○	55.00 🔾	67.00
1355	選択阻害法(積	積水メディカル	東芝TBA-cシリー	38.00	90.00	48.00	103.0	○ 46.00 ○	54.00 🔾	66.00
1356	選択阻害法(積	積水メディカル	日本電子JCA-B	38.00	90.00	48.00		○ 46.00 ○		
1359	選択阻害法(積	積水メディカル	日本電子JCA-B	38.00	90.00	48.00		O 47.00 O		
1400	選択阻害法(積	積水メディカル	東京貿易ビオリス2	38.00	90.00	48.00		O 45.00 O		
1402	選択阻害法(積 選択阻害法(積	積水メディカル 積水メディカル	日本電子JCA-B 日立LABOSPE	38.00 40.00	90.00 96.00	48.00 40.00		○ 47.00 ○ ○ 47.20 ○		
	選択阻害法(積	積水メディカル	日本電子JCA-B	40.00	96.00			O 45.90 O		
	選択阻害法(積	積水メディカル	目立LABOSPE	40.00		40.00		0 47.00 0		
	選択阻害法(積	積水メディカル	日本電子JCA-B	38.00				O 47.00 O		
1512	選択阻害法(積	積水メディカル	目立7140-7170	40.00	90.00	40.00	103.0	○ 47.00 ○	55.00 〇	67.00
1513	選択阻害法(積	積水メディカル	日立LABOSPE	38.00	90.00	48.00	103.0	○ 47.00 ○	54.00 🔾	66.00
1519	選択阻害法(積	積水メディカル	東芝25FR_Accut	38.00	90.00	48.00	103.0	○ 47.00 ○	55.00 🔾	67.00
1541	選択阻害法(積	積水メディカル	東芝25FR_Accut	40.00	96.00			○ 46.00 ○	54.00 🔾	66.00
1542	選択阻害法(積	積水メディカル	日立7140-7170	40.00	86.00	40.00	96.00	○ 48.00 ○	56.00 🔾	68.00
1550	選択阻害法(積	積水メディカル	日立7140-7170	40.00	80.00	40.00	90.00	50.00	58.00	71.00
	選択阻害法(積	積水メディカル	日本電子JCA-B	38.00	90.00			O 48.00 O		
	選択阻害法(積	積水メディカル	日本電子JCA-B	40.00		40.00		O 46.10 O		
	選択阻害法(積	積水メディカル	日立7600Dモジュ	40.00		40.00		○ 47.00 ○		
1928 1932	選択阻害法(積 選択阻害法(積	積水メディカル 積水メディカル	ヘ、ックマン・コールター 日本電子JCA-B	40.00 40.00		40.00 40.00		○ 48.00 ○ ○ 46.00 ○		
	選択阻害法(積	積水メディカル	日立7140-7170	40.00		40.00		O 47.00 O		
	選択阻害法(積	積水メディカル	日本電子JCA-B	38.00				0 46.20 0		
	選択阻害法(積	積水メディカル	日立7600Dモジュ	40.00		40.00		O 47.00 O		
	選択阻害法(積	積水メディカル	日本電子JCA-B	38.00		48.00		○ 46.60 ○		
5006	選択阻害法(積	積水メディカル	日本電子JCA-B	38.00	90.00	48.00	103.0	○ 47.70 ○	55.50 〇	67.00
5010	選択阻害法(積	積水メディカル	日本電子JCA-B	38.00	90.00	48.00	103.0	○ 47.00 ○	55.00 〇	67.00

31 HDL(S) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足原垤	武楽/一//	70文 在计	下限	上限	下限	上限	試料01	試料02	試料03
6006	選択阻害法(積	積水メディカル	東芝25FR_Accut	40.00	70.00			O 46.00 C	54.00 (	66.00
6008	選択阻害法(積	積水メディカル	東芝TBA-200F	38.00	90.00			○ 46.00 ○	54.00 (	66.00
7001	選択阻害法(積	積水メディカル	日本電子JCA-B	40.00	86.00	40.00	86.00	○ 47.00 ○	55.00 🤇	68.00
7011	選択阻害法(積	積水メディカル	東芝TBA-cシリー	38.00	90.00	48.00	103.0	○ 45.40 ○	52.60	64.60
7901	選択阻害法(積	積水メディカル	目立LABOSPE	40.00				○ 46.70 ○	54.50 (	65.90
8004	選択阻害法(積	積水メディカル	日本電子JCA-B	41.00	67.00	45.00	77.00	○ 46.00 ○	54.00 (	65.00
9033	選択阻害法(積	積水メディカル	日本電子JCA-B	38.00	90.00	48.00	103.0	○ 44.00 ○	52.00 (	63.00
9035	選択阻害法(積	積水メディカル	積水EV800					○ 45.50 ○	53.00 (	65.00
9046	選択阻害法(積	積水メディカル	目立7140-7170	37.00	60.00	37.00	60.00	○ 47.30 ○	55.10 🤇	67.50

32 HDL(W) 施設No.が低い順に並んでいます

1013	測定原理 選択消去法(和 選択消去法(和 選択消去法(和 選択消去法(和	試薬メーカー 和光純薬 和光純薬 和光純薬	機器 日本電子JCA-B 日立7140-7170	下限 38.00	上限 90.00	下限	上限	試料01	試料02	試料03
1013	選択消去法(和 選択消去法(和	和光純薬	· - · -	38.00	00.00					
	選択消去法(和		目立7140-7170		90.00	48.00	103.0	○ 42.30 ○	49.30 €	59.40
1000		和光純薬		38.00	90.00	48.00	103.0	○ 42.00 ○	49.00 €	60.00
1023	選択消去法(和	1. 2 = 1 = 214	日本電子JCA-B	38.00	90.00	48.00	103.0	○ 42.00 ○	48.00 €	59.00
1040		和光純薬	目立LABOSPE	38.00	90.00	48.00	103.0	○ 42.00 ○	49.00 €	60.00
1081	選択消去法(和	和光純薬	東芝TBA-cシリー	38.00	90.00	48.00	103.0	○ 41.90 ○	49.00 €	59.40
1084	選択消去法(和	和光純薬	東京貿易ビオナリス2	38.00	90.00	48.00	103.0	○ 42.00 ○	48.00 €	58.00
1120	選択消去法(和	和光純薬	東芝TBA-cシリー	38.00	90.00	48.00	103.0	○ 41.90 ○	48.70 €	59.00
1301	選択消去法(和	和光純薬	日本電子JCA-B	40.00	80.00		(	○ 41.90 ○	49.00 €	59.10
1310	選択消去法(和	和光純薬	東芝TBA-200F	37.00	67.00	40.00	71.00	○ 42.10 ○	49.20 €	59.00
1313	選択消去法(和	和光純薬	日本電子JCA-B	40.00	96.00		(	○ 41.00 ○	49.00 €	59.00
1327	選択消去法(和	和光純薬	日本電子JCA-B	38.00	90.00	48.00	103.0	○ 43.00 ○	49.00 €	60.00
1330	選択消去法(和	和光純薬	日本電子JCA-B	40.00	96.00		(	○ 41.10 ○	48.00 €	58.40
1352	選択消去法(和	和光純薬	日本電子JCA-B	45.50	53.90	66.90	40.00	○ 42.00 ○	49.00 €	59.00
1357	選択消去法(和	和光純薬	日立7250-7450	40.00	96.00	40.00	96.00	○ 43.00 ○	50.00 €	61.00
1360	選択消去法(和	和光純薬	日本電子JCA-B	40.00	119.0	40.00	119.0	○ 42.00 ○	49.00 €	59.00
1365	選択消去法(和	和光純薬	日立7140-7170	38.00	90.00	48.00	103.0	○ 41.30 ○	48.10 €	58.10
1368	選択消去法(和	和光純薬	東芝TBA-cシリー	38.00	90.00	48.00	103.0	○ 41.00 ○	48.00 €	58.00
1382	選択消去法(和	和光純薬	日立LABOSPE	38.00	90.00	48.00	103.0	○ 43.00 ○	51.00 €	61.00
1385	選択消去法(和	和光純薬	東芝25FR_Accut	38.00	90.00	48.00	103.0	○ 41.00 ○	48.00 €	58.00
1505	選択消去法(和	和光純薬	日立LABOSPE	40.00	90.00	40.00	103.0	○ 41.70 ○	48.70 €	58.80
1514	選択消去法(和	和光純薬	日立LABOSPE	40.00	90.00	40.00	103.0	○ 42.00 ○	49.00 €	59.00
1528	選択消去法(和	和光純薬	日立7140-7170	38.00	90.00	48.00	103.0	○ 42.10 ○	49.10 €	59.70
1529	選択消去法(和	和光純薬	日立LABOSPE	40.00	96.00	40.00	96.00	○ 42.80 ○	49.00 €	60.20
1530	選択消去法(和	和光純薬	日本電子JCA-B	38.00	90.00	48.00	103.0	○ 41.00 ○	48.00 €	58.00
1916	選択消去法(和	和光純薬	日本電子JCA-B	38.00	90.00	48.00	103.0	○ 43.00 ○	50.00 €	61.00
	選択消去法(和	和光純薬	ロシュコハ [*] ス8000c7	38.00	90.00	48.00		○ 43.00 ○		
	選択消去法(和	和光純薬	日立7140-7170	42.00	62.00	50.00		○ 42.00 ○		
	選択消去法(和	和光純薬	日立7140-7170					○ 42.00 ○		
9044	選択消去法(和	和光純薬	ロシュコハ [*] ス8000c7				(	○ 42.27 ○	48.90 €	59.08

55 HDL(OT)

施設	測定原理	試薬メーカー	機器	男性基準	準範囲	女性基	準範囲			試料報告值
No	例足原理	武衆 ノーガー	機品	下限	上限	下限	上限	試料01	試料02	試料03
1010	消去法(デンカ生	デンカ生研	東芝TBA-cシリー	41.00	96.00	41.00	96.00	○ 41.00 ○	49.00 (	62.00
1090	消去法(デンカ生	デンカ生研	目立7140-7170	38.00	90.00	48.00	103.0	○ 42.00 ○	50.00 €	63.00
1121	消去法(デンカ生	デンカ生研	東芝25FR_Accut	40.00	96.00	40.00	96.00	○ 41.00 ○	50.00 €	63.00
1128	反応阻害法(シス	シスメックス	日本電子JCA-B	38.00	90.00	48.00	103.0	○ 46.00 ○	53.00 €	64.10
1302	消去法(デンカ生	デンカ生研	ヘックマン・コールター	38.00	90.00	48.00	103.0	○ 41.00 ○	49.00 €	61.00
3013	その他	シーメンス	シーメンスHCDDim	40.00	86.00	40.00	96.00	○ 46.00 ○	54.00 €	64.00
9008	その他	シノテスト	日立7140-7170					○ 47.00 ○	54.00 €	67.00
9012	消去法(デンカ生	デンカ生研	日立7140-7170	40.00		40.00		○ 42.00 ○	50.00 €	63.00
9014	消去法(デンカ生	ニットーボー	日立7140-7170					○ 41.60 ○	49.70 €	62.30
9049	反応阻害法(シス	シスメックス	日立7140-7170	40.00				○ 47.80 ○	55.70 €	67.20

97 HDL(F)

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足原垤	武架/-//	7.交合计	下限	上限	下限	上限	試料01	試料02	試料03
1053	ト・ライケミストリー法	富士フィルムメ	富士ドライケム400	30.00	85.00	40.00	99.00	O 41.00 C	48.00 (	57.00
1375	ト・ライケミストリー法	富士フィルムメ	富士ドライケム400	40.00	80.00	40.00	90.00	35.00 €	43.00 (	52.00
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	38.00	90.00	48.00	103.0	○ 39.00 ○	46.00	58.00
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	38.00	90.00	48.00	103.0	○ 39.00 ○	47.00	58.00
2012	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	36.00	60.00	45.00	69.00	○ 40.00 ○	48.00 (	60.00
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	37.00	67.00	40.00	71.00	○ 40.00 ○	47.00 (	57.00

132 HDL(A1)

施設No.が低い順に並んでいます

施設 測定原理 試薬メーカー 機器 男性基準範囲 女性基準範囲 試料報告値 下限 上限 下限 上限 試料01 試料02 試料03

9041 ドライケミストリー法 アークレイ アークレイスポットケム ○ 36.00 ○ 45.00 ○ 56.00

162 HDL(A2)

施設	测宁百理	試薬メーカー	機器	男性基	男性基準範囲 女性基準					試料報告値	
No	測定原理			下限	上限	下限	上限	試料01	試料02	試料03	
1521 ドラ	イケミストリー法	アークレイ	アークレイスポットケム	38.00	90.00	48.00	103.0	34.00	38.00 ℂ	54.00	

### 192 HDL(O)

施設 男性基準範囲 女性基準範囲 大性基準範囲 試料報告値 測定原理 試薬メーカー 機器	4
No 下限 上限 下限 上限 試料01 試料02 試料03	
1075 ドライケミストリー法 オーソ・クリニカ オーソビトロス250_3 40.00 90.00 40.00 90.00 ○ 43.00 ○ 52.00 66.00	
1100 ドライケミストリー法 オーソ・クリニカ オーソビトロス250_3 ○ 41.00 ○ 51.00 64.00	
9040 ドライケミストリー法 オーソ・クリニカ オーソビトロス5600 ○ 43.80 52.80 68.10	

### LDL コレステロール (LDL-C)

福岡大学病院 臨床検査部 光井 健

#### 【参加状況】

参加施設 194 施設 (前回 187 施設)

#### 【測定方法の状況】

選択的可溶化法 75 施設(38.7%)、酵素的測定法 65 施設(33.5%)、選択消去法 27 施設(13.9%)、消去法 8 施設(4.1%)、その他 19 施設(9.8%)であった。

#### 【測定値の状況】

1. 全施設のCV%は3.6~4.1%で3SD除去後のCV%は3.6~3.7%であった。平均値については、 選択消去法、消去法で高値傾向、選択的可溶化法で低値傾向であった。 試料1~3の測定原理別平均値と CV%を表1に示した。

	試制	學 1	試	料 2	試料3		
	平均値	CV%	平均値	CV%	平均値	CV%	
選択的可溶化法 (協和メデックス)	73.6	1.8	89.4	1.6	113.3	1.6	
酵素的測定法 (積水メディカル)	76.2	2.4	92.5	3.5	118.0	1.8	
選択消去法 (和光純薬)	80.1	1.9	97.8	2.3	122.9	1.7	
消去法 (デンカ生研)	78.6	1.2	97.7	1.1	126.1	0.9	
その他	75.7	2.5	92.0	2.9	117.4	2.9	

表 1 測定原理別の平均値(mg/dL)と CV%

2. 目標値及び目標範囲については、選択的可溶化法(協和メデックス)、酵素的測定法(積水メディカル)、選択消去法(和光純薬)はそれぞれの目標値を設定した。その他の方法においては3法の平均値を参考目標値とした。目標値及び目標範囲を表2に示した。目標範囲達成状況は、3試料とも目標値範囲内であった施設は、全体で191施設(98.5%)であった。試料別の目標範囲達成状況を表3に示した。また今回、ドライケミストリー法の参加施設はなく、
オーソ以外のメーカーからの目標値の提示も無かったためドライケミストリー法の目標値及び目標範囲は省略した。

表 2 目標値及び目標範囲(mg/dL)

	試料 1	試料 2	試料 3		
選択的可溶化法	74.2 (70~78)	90.3 (85~95)	114.6 (108~121)		
(協和メデックス)	, ,	· , ,	, ,		
酵素的測定法 (積水メディカル)	75.8 (72~80)	92.4 (87~98)	118.2 (112~125)		
選択消去法	79.3 (75~84)	96.7 (91~102)	122.2 (116~129)		
(和光純薬)	/9.3 (/5~84)	96.7 (91~102)	122.2 (116~129)		
その他の測定方法の	76.4 (70~84)	93.1 (85~102)	118.3 (108~129)		
参考値	, , ,	,	110.0 (100 12)		

試料別の目標範囲達成状況 表 3

方法	試料1	試料 2	試料3
選択的可溶化法(n=75)	75 (100%)	75 (100%)	75 (100%)
酵素的測定法(n=65)	63 (96.9%)	63 (96.9%)	64 (98.5%)
選択消去法(n=27)	27 (100%)	26 (96.3%)	27 (100%)
消去法(n=8)	8 (100%)	8 (100%)	8 (100%)
その他 (n=19)	19 (100%)	19 (100%)	19 (100%)

#### 試料1と試料3のメーカー別のツインプロットを図1に示した。 3.

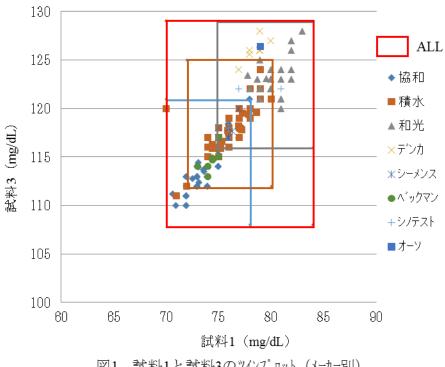



図1 試料1と試料3のツインプロット(メーカー別)

#### 【基準範囲の状況】

JCCLS 共用基準範囲は  $65\sim163$  mg/dL で、全体の 39.7%(77 施設)が基準範囲として採用しており、前年の 62 施設より増加していた。また、基準範囲上限値について、動脈硬化性疾患予防が 115 が 115 かの脂質異常症診断基準である 115 mg/dL または 115 mg/dL としている施設が全体の 115 体の 115 が 115 が

#### 【その他のコメント】

測定原理の選択において誤記入が目立った。記入する際は自施設の原理を再度確認し、間違いのないよう記入していただきたい。

18 LDL 施設No.が低い順に並んでいます

施設	INO. N PAN PARCE	.ш./0 СТ 65 /		男性基準	准統田	女性基	淮統田			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
-						1.1917				<u> </u>
	選択的可溶化法	協和メデックス	日立LABOSPE	65.00	139.0			○ 73.00 ○		
	選択的可溶化法	協和メデックス	日立LABOSPE	70.00	139.0	00.00		O 73.00 O		
	選択的可溶化法	協和メデックス	日本電子JCA-B	60.00	139.0	60.00		O 75.00 O		
	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0	05.00		O 73.00 O		
	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00		65.00		O 73.00 O		
	選択的可溶化法	協和メデックス	日立7140-7170	65.00	163.0	65.00		○ 78.00 ○		
	選択的可溶化法 選択的可溶化法	協和メデックス 協和メデックス	東芝25FR_Accut ベックマン・コールター	70.00 65.00	139.0 139.0	70.00 65.00		○ 70.70 ○ ○ 72.00 ○		
	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0	65.00		○ 73.60 ○		
	選択的可溶化法	協和メデックス	東芝TBA-cシリー	65.00	139.0	05.00		O 74.00 O		
	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	139.0			0 74.00 0		
	選択的可溶化法	協和メデックス	目立LABOSPE	65.00		65.00		0 74.60 0		
	選択的可溶化法	協和メデックス	日立LABOSPE	70.00	139.0	70.00		O 72.60 O		
	選択的可溶化法	協和メデックス	目立LABOSPE	70.00	139.0	70.00		O 73.00 O		
	選択的可溶化法	協和メデックス	日立7140-7170	65.00		65.00		○ 76.00 ○		
	選択的可溶化法	協和メデックス	東芝TBA-cシリー	70.00	139.0	70.00		○ 74.00 ○		
	選択的可溶化法	協和メデックス	東芝TBA-cシリー	65.00	163.0			○ 74.00 ○	90.00 〇	113.0
1112	選択的可溶化法	協和メデックス	東京貿易ビオナリス5	70.00	139.0	70.00	139.0	○ 75.00 ○	89.50 〇	115.6
1116	選択的可溶化法	協和メデックス	日本電子JCA-B	70.00	139.0	70.00	139.0	○ 73.00 ○	89.00 🔾	112.0
1130	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0	65.00	163.0	○ 74.00 ○	89.00 🔾	113.0
1300	選択的可溶化法	協和メデックス		65.00	163.0			○ 73.70 ○	89.40 〇	113.5
1305	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	139.0			○ 73.00 ○	89.00 🔾	112.0
1308	選択的可溶化法	協和メデックス	東芝25FR_Accut	65.00	139.0			○ 75.00 ○	90.00 〇	114.0
1331	選択的可溶化法	協和メデックス	東芝TBA-cシリー	70.00	139.0			○ 74.00 ○	90.00 🔾	114.0
1341	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0	65.00	163.0	○ 74.00 ○	89.00 🔾	113.0
1344	選択的可溶化法	協和メデックス	日立7140-7170	65.00	163.0	65.00	163.0	○ 73.00 ○	88.00 🔾	113.0
1347	選択的可溶化法	協和メデックス	ロシュコハ [*] ス8000c5	65.00	163.0			○ 75.00 ○	91.00 🔾	116.0
1348	選択的可溶化法	協和メデックス	東芝TBA-cシリー	70.00	139.0	70.00	139.0	○ 72.00 ○	88.00 〇	111.0
	選択的可溶化法	協和メデックス	ロシュコハ*ス8000c5	65.00	163.0	65.00		○ 75.00 ○		
	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0			O 74.00 O		
	選択的可溶化法	協和メデックス	東芝TBA-20-3	65.00	163.0			O 72.00 O		
	選択的可溶化法	協和メデックス	ヘー・ツクマン・コールター	70.00	139.0			O 73.00 O		
	選択的可溶化法	協和メデックス	目立LABOSPE	65.00	163.0			O 73.00 O		
	選択的可溶化法	協和メデックス	東芝TBA-cシリー	70.00	139.0	70.00		○ 73.00 ○		
	選択的可溶化法 選択的可溶化法	協和メデックス 協和メデックス	日立7140-7170 東京貿易ビオッリス5	70.00 65.00	140.0 163.0	70.00		○ 72.00 ○ ○ 72.00 ○		
	選択的可溶化法	協和メデックス	日本電子JCA-B	05.00	140.0			0 74.00 0		
	選択的可溶化法	協和メデックス	東芝TBA-cシリー	70.00	139.0			0 76.00 0		
	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0	65.00		0 74.30 0		
	選択的可溶化法	協和メデックス	日立7140-7170	65.00	163.0	65.00		O 74.00 O		
	選択的可溶化法	協和メデックス	東京貿易ビオリス2	65.00	163.0			O 73.10 O		
	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0	65.00		○ 73.00 ○		
	選択的可溶化法	協和メデックス	東芝TBA-20-3	80.00	139.0	80.00	139.0	○ 71.00 ○	88.00 〇	110.0
1558	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0	65.00	163.0	○ 74.00 ○	90.00 〇	114.0
1901	選択的可溶化法	協和メデックス	ヘ゛ックマン・コールター	65.00	139.0	65.00	139.0	○ 73.00 ○	89.00 🔾	113.0
1909	選択的可溶化法	協和メデックス	目立LABOSPE	80.00	139.0			○ 72.00 ○	86.00 〇	110.0
1911	選択的可溶化法	協和メデックス	ヘ、ックマン・コールター	70.00	139.0			○ 75.00 ○	91.00 〇	114.0
1917	選択的可溶化法	協和メデックス	目立LABOSPE		139.0		139.0	○ 74.00 ○	89.00 〇	113.0
1920	選択的可溶化法	協和メデックス	目立3100	80.00	139.0			○ 72.00 ○	88.00 〇	113.0
1925	選択的可溶化法	協和メデックス	ヘーックマン・コールター	70.00	139.0	70.00	139.0	○ 73.00 ○	89.00 🔾	112.0
1926	選択的可溶化法	協和メデックス	東芝TBA-200F	70.00	139.0	70.00	139.0	○ 74.00 ○	89.00 🔾	112.0
1930	選択的可溶化法	協和メデックス	ヘーックマン・コールター	65.00	139.0	65.00	139.0	○ 73.00 ○	89.00 🔾	113.0
	選択的可溶化法	協和メデックス	ヘックマン・コールター	65.00	139.0			○ 73.00 ○		
	選択的可溶化法	協和メデックス	日本電子JCA-B	70.00	139.0			O 71.00 O		
	選択的可溶化法	協和メデックス	日本電子JCA-H	70.00	139.0	70.00		○ 73.00 ○		
	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0			O 74.00 O		
2006	選択的可溶化法	協和メデックス	日立LABOSPE		139.0			○ 73.00 ○	88.00 🔾	112.0

18 LDL 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値	
No	例足原垤	武架/-//	7% 台	下限	上限	下限	上限	試料01	試料02	試料03	
2009	選択的可溶化法	協和メデックス	日本電子JCA-B		140.0		140.0	O 77.00 C	92.00	117.0	
2010	選択的可溶化法	協和メデックス	日立7140-7170	70.00	139.0	70.00	139.0	○ 74.00 ○	89.00 (	113.0	
2011	選択的可溶化法	協和メデックス	ヘックマン・コールター	65.00	139.0	65.00	139.0	O 72.00 C	88.00	111.0	
3001	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0	65.00	163.0	○ 73.10 ○	89.27	114.0	
3055	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0			○ 75.00 ○	92.00 (	116.0	
3056	選択的可溶化法	協和メデックス		70.00	139.0	70.00	139.0	○ 75.00 ○	91.00 (	114.0	
3907	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0	65.00	163.0	○ 73.00 ○	88.00	112.0	
4002	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0			○ 74.00 ○	89.00 (	113.0	
4902	選択的可溶化法	協和メデックス	日立7140-7170	75.00	140.0			○ 75.00 ○	91.00 (	115.0	
5005	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0			○ 74.00 ○	91.00 (	114.0	
6015	選択的可溶化法	協和メデックス	目立LABOSPE	70.00	139.0			O 72.00 C	87.00 (	110.0	
6016	選択的可溶化法	協和メデックス	東芝TBA-200F	70.00	139.0	70.00	139.0	○ 73.00 ○	89.00 (	112.0	
7002	選択的可溶化法	協和メデックス	日本電子JCA-B	65.00	163.0			○ 75.00 ○	91.00 (	115.0	
7007	選択的可溶化法	協和メデックス	ヘックマン・コールター	60.00	139.0	60.00	139.0	O 72.00 C	87.00 (	111.0	
7025	選択的可溶化法	協和メデックス	日本電子JCA-B	64.00	140.0			○ 74.00 ○	89.00 (	112.0	
9004	選択的可溶化法	協和メデックス	日立7140-7170					○ 74.00 ○	89.70	114.0	
9022	選択的可溶化法	協和メデックス	日立7140-7170	70.00	139.0			○ 75.00 ○	91.00 (	115.0	
9043	選択的可溶化法	協和メデックス	ロシュコハ [*] ス8000c5					O 73.17 C	88.73	112.4	

33 LDL(S) 施設No.が低い順に並んでいます

施設	.110.7 EXT FIRST			男性基	淮鉛田	女性基	淮盜田			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
-		41.1								<del></del>
	酵素的測定法(	積水メディカル	目立LABOSPE	65.00	163.0	65.00	163.0	○ 78.00 C		
	酵素的測定法(	積水メディカル	目立LABOSPE	65.00	163.0	<b>50.00</b>	100.0	O 74.40 C		
	酵素的測定法(	積水メディカル	日本電子JCA-B	70.00	139.0	70.00	139.0	○ 75.00 C		
	酵素的測定法(	積水メディカル	目立LABOSPE	25.00	139.0			O 77.20 C		
	酵素的測定法(	積水メディカル	東芝25FR_Accut	65.00	163.0			○ 78.00 C		
	酵素的測定法(	積水メディカル	目立LABOSPE	CE 00	139.0			○ 78.00 C		
	酵素的測定法(酵素的測定法(	積水メディカル 積水メディカル	東芝TBA-cシリー 日立7140-7170	65.00 70.00	163.0 139.0	70.00	120.0	○ 78.00 C ○ 77.00 C		
	酵素的測定法(	積水メディカル	日立7140-7170	70.00	139.0	70.00		O 77.00 C		
	酵素的測定法(	積水メディカル	目立LABOSPE	65.00	163.0	10.00	155.0	O 78.00 C		
	酵素的測定法(	積水メディカル	目立7140-7170	65.00	163.0			O 76.00 C		
	酵素的測定法(	積水メディカル	日本電子JCA-B	70.00	139.0	70.00	139.0	○ 76.00 C		
	酵素的測定法(	積水メディカル	日本電子JCA-B	40.00	139.0	40.00		○ 76.00 ○		
	酵素的測定法(	積水メディカル	日立LABOSPE		139.0			○ 76.00 ○		
	酵素的測定法(	積水メディカル	東京貿易ビオリス2	70.00	139.0	70.00	139.0	71.00	86.00	111.0
1093	酵素的測定法(	積水メディカル	日本電子JCA-B	60.00	119.0	60.00	119.0	○ 76.00 ○	92.00 〇	118.0
1094	酵素的測定法(	積水メディカル	日本電子JCA-B	70.00	139.0			○ 75.00 ○	91.00 〇	115.0
1124	酵素的測定法(	積水メディカル	日立7020-7080	65.00	163.0			70.00	72.00 🔾	120.0
1127	酵素的測定法(	積水メディカル	日本電子JCA-B	70.00	139.0			○ 76.00 ○	92.00 〇	116.0
1134	酵素的測定法(	積水メディカル	日立7140-7170		139.0		139.0	○ 77.10 ○	92.80 〇	117.9
1136	酵素的測定法(	積水メディカル	日本電子JCA-B	65.00	163.0			○ 77.00 ○	93.00 🔾	118.0
1315	酵素的測定法(	積水メディカル	日本電子JCA-B	65.00	163.0	65.00	163.0	○ 76.00 ○	92.00 〇	117.0
1316	酵素的測定法(	積水メディカル	日本電子JCA-B	86.00	140.0			○ 77.00 ○	94.00 〇	119.0
1325	酵素的測定法(	積水メディカル	日本電子JCA-B	65.00	163.0	65.00	163.0	○ 78.00 ○	96.00 〇	120.0
1329	酵素的測定法(	積水メディカル	日本電子JCA-B	65.00	163.0	65.00	163.0	○ 78.00 ○	93.00 🔾	119.0
1337	酵素的測定法(	積水メディカル	日本電子JCA-B	65.00	163.0			○ 77.00 ○	93.00 🔾	118.0
1342	酵素的測定法(	積水メディカル	日本電子JCA-B	70.00	139.0	70.00	139.0	○ 74.00 ○	90.00 〇	115.0
	酵素的測定法(	積水メディカル	日立LABOSPE	65.00	163.0			○ 75.00 ○		
	酵素的測定法(	積水メディカル	日本電子JCA-B	70.00	130.0			○ 77.00 ○		
	酵素的測定法(	積水メディカル	ベックマン・コールター	65.00	163.0			○ 79.00 ○		
	酵素的測定法(	積水メディカル	東芝TBA-cシリー	65.00	163.0	65.00		○ 75.00 C		
	酵素的測定法(	積水メディカル	日本電子JCA-B	65.00		65.00		○ 79.00 C		
	酵素的測定法( 酵素的測定法(	積水メディカル 積水メディカル	日本電子JCA-B 東京貿易ビオナリス2	65.00 65.00		65.00 65.00		○ 74.00 ○ ○ 74.00 ○		
	酵素的測定法(	積水メディカル	日本電子JCA-B	65.00	163.0 163.0	05.00	103.0	O 77.00 C		
	酵素的測定法(	積水メディカル	目立LABOSPE	00.00	139.0		139.0	O 77.30 C		
	酵素的測定法(	積水メディカル	日本電子JCA-B	70.00	139.0	70.00		O 74.40 C		
	酵素的測定法(	積水メディカル	目立LABOSPE	70.00	139.0			O 76.00 C		
	酵素的測定法(	積水メディカル	日本電子JCA-B	65.00	163.0			○ 76.00 ○		
	酵素的測定法(	積水メディカル	日立7140-7170	65.00	140.0	65.00	140.0	○ 78.00 ○		
	酵素的測定法(	積水メディカル	目立LABOSPE	65.00	163.0			○ 75.00 ○	91.00 〇	118.0
1541	酵素的測定法(	積水メディカル	東芝25FR_Accut		139.0			○ 80.00 ○	97.00 〇	121.0
1542	酵素的測定法(	積水メディカル	日立7140-7170	70.00	139.0			○ 77.00 ○	93.00 〇	120.0
1550	酵素的測定法(	積水メディカル	日立7140-7170	70.00	139.0			○ 79.00 ○	97.00 〇	124.0
1554	酵素的測定法(	積水メディカル		70.00	139.0	70.00	139.0	○ 75.00 ○	91.00 〇	116.0
1562	酵素的測定法(	積水メディカル	日本電子JCA-B	65.00	163.0	65.00	163.0	○ 77.00 ○	94.00 〇	120.0
1902	酵素的測定法(	積水メディカル	日本電子JCA-B	70.00	139.0			○ 75.30 ○	92.20 🔾	116.6
	酵素的測定法(	積水メディカル	目立7600Dモジュ	70.00	139.0			○ 76.00 ○		
	酵素的測定法(	積水メディカル	ベックマン・コールター	70.00	139.0			○ 75.00 ○		
	酵素的測定法(	積水メディカル	日本電子JCA-B	70.00	139.0			○ 76.00 C		
	酵素的測定法(	積水メディカル	目立7140-7170	70.00	139.0	70.00		O 76.00 C		
	酵素的測定法(	積水メディカル	日本電子JCA-B	65.00	163.0	65.00	163.0	○ 77.00 C		
	酵素的測定法(	積水メディカル	目立7600Dモジュ	70.00	139.0	CE CC	100.0	○ 76.00 C		
	酵素的測定法(	積水メディカル	日本電子JCA-B	65.00	163.0			○ 75.20 C		
	酵素的測定法(	積水メディカル	日本電子JCA-B	65.00	163.0	65.00		○ 78.60 C		
	酵素的測定法(	積水メディカル	日本電子JCA-B 東芸25EB Acout	65.00	163.0	65.00	163.0	○ 76.00 C		
duud	酵素的測定法(	積水メディカル	東芝25FR_Accut	70.00	139.0			○ 72.00 ○	88.00 🔾	114.U

33 LDL(S)

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足原垤	武架/一万一	7英 台	下限	上限	下限	上限	試料01 声	<b>式料02</b>	試料03
6008	酵素的測定法(	積水メディカル	東芝TBA-200F	48.00	103.0			○ 76.00 ○ 9	92.00 〇	119.0
7001	酵素的測定法(	積水メディカル	日本電子JCA-B	70.00	139.0	70.00	139.0	$\bigcirc$ 76.00 $\bigcirc$ 9	94.00 〇	119.0
7011	酵素的測定法(	積水メディカル	東芝TBA-cシリー	65.00	163.0			○ 76.90 ○ 9	93.70 🔾	118.2
7901	酵素的測定法(	積水メディカル	目立LABOSPE	70.00	139.0			○ 77.00 ○ 9	94.00 〇	119.0
8004	酵素的測定法(	積水メディカル	日本電子JCA-B		140.0			$\bigcirc$ 75.00 $\bigcirc$ 9	92.00 〇	117.0
9033	酵素的測定法(	積水メディカル	日本電子JCA-B	65.00	163.0			$\bigcirc$ 74.00 $\bigcirc$ 9	90.00 〇	115.0
9035	酵素的測定法(	積水メディカル	積水EV800					○ 75.90 ○ 9	92.90 〇	117.7
9046	酵素的測定法(	積水メディカル	目立7140-7170		120.0		120.0	○ 77.90 ○ 9	94.20 〇	119.4

34 LDL(W) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例定水生	P(**/* //	1次付计	下限	上限	下限	上限	試料01	試料02	試料03
1012	選択消去法(和	和光純薬	日本電子JCA-B	65.00	163.0	65.00	163.0	O 79.60	⊃ 96.90 ⊂	) 123.1
1013	選択消去法(和	和光純薬	目立7140-7170	65.00	163.0			O 81.00	⊃ 98.00 ⊂	121.0
1023	選択消去法(和	和光純薬	日本電子JCA-B	66.00	163.0			0 80.00	⊃ 96.00 ⊂	123.0
1040	選択消去法(和	和光純薬	日立LABOSPE	65.00	163.0	65.00	163.0	O 81.00 (	⊃ 100.0 ⊂	123.0
1081	選択消去法(和	和光純薬	東芝TBA-cシリー	65.00	163.0	65.00	163.0	O 81.00	⊃ 98.00 ⊂	124.0
1120	選択消去法(和	和光純薬	東芝TBA-cシリー	65.00	163.0			O 79.00 (	⊃ 96.00 ⊂	) 122.0
1301	選択消去法(和	和光純薬	日本電子JCA-B	70.00	139.0			0 80.00	⊃ 97.00 ⊂	) 123.0
1310	選択消去法(和	和光純薬	東芝TBA-200F		120.0		120.0	O 79.00 (	⊃ 97.00 ⊂	) 121.0
1313	選択消去法(和	和光純薬	日本電子JCA-B		139.0			0 80.00	⊃ 96.00 ⊂	) 122.0
1330	選択消去法(和	和光純薬	日本電子JCA-B		139.0			O 79.00 (	⊃ 96.00 ⊂	) 122.0
1352	選択消去法(和	和光純薬	日本電子JCA-B	83.00	99.00	122.0	70.00	0 80.00	⊃ 97.00 ⊂	) 122.0
1357	選択消去法(和	和光純薬	日立7600Pモジュ	70.00	139.0	70.00	139.0	O 82.00	⊃ 98.00 ⊂	) 123.0
1360	選択消去法(和	和光純薬	日本電子JCA-B	65.00	139.0	65.00	139.0	0 80.00	⊃ 98.00 ⊂	) 122.0
1365	選択消去法(和	和光純薬	日立7140-7170	65.00	163.0	65.00	163.0	O 83.00 (	⊃ 102.0 ⊂	) 128.0
1368	選択消去法(和	和光純薬	東芝TBA-cシリー	65.00	163.0			O 81.00 (	⊃ 97.00 ⊂	120.0
1382	選択消去法(和	和光純薬	日立LABOSPE	65.00	163.0			O 82.00	⊃ 101.0 ⊂	) 126.0
1385	選択消去法(和	和光純薬	東芝25FR_Accut	65.00	163.0			○ 78.00 (	⊃ 96.00 ⊂	) 122.0
1505	選択消去法(和	和光純薬	日立LABOSPE	65.00	139.0			O 77.80	⊃ 96.00 ⊂	) 123.4
1514	選択消去法(和	和光純薬	日立LABOSPE	65.00	139.0	65.00	139.0	○ 81.00	104.0 〇	) 121.0
1528	選択消去法(和	和光純薬	日立7140-7170	65.00	163.0	65.00	163.0	O 82.00	⊃ 100.0 ⊂	) 127.0
1529	選択消去法(和	和光純薬	目立LABOSPE		139.0		139.0	0 80.00	⊃ 97.00 ⊂	123.0
1530	選択消去法(和	和光純薬	日本電子JCA-B	65.00	163.0	65.00	163.0	O 79.00 (	⊃ 97.00 ⊂	125.0
1916	選択消去法(和	和光純薬	日本電子JCA-B	65.00	163.0			O 76.00 (	⊃ 93.00 ⊂	117.0
2008	選択消去法(和	和光純薬	ロシュコハ*ス8000c7	65.00	163.0	65.00	163.0	0 80.00	⊃ 96.00 ⊂	) 123.0
5003	選択消去法(和	和光純薬	日立7140-7170	70.00	139.0	70.00	139.0	0 80.00	⊃ 99.00 ⊂	) 124.0
9023	選択消去法(和	和光純薬	日立7140-7170					O 82.00	⊃ 100.0 ⊂	) 124.0
9044	選択消去法(和	和光純薬	ロシュコハ*ス8000c7					O 78.73	⊃ 96.63 ⊂	123.0

56 LDL(OT)

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基準	準範囲			試料報告値
No	例足原垤	武衆/一ガー	7% 台	下限	上限	下限	上限	試料01	試料02	試料03
1010	消去法(デンカ生	デンカ生研	東芝TBA-cシリー	63.00	139.0	63.00	139.0	○ 79.00 ○	98.00 🗆	126.0
1090	消去法(デンカ生	デンカ生研	日立7140-7170	65.00	163.0	65.00	163.0	○ 79.00 ○	100.0 €	128.0
1105	その他	ベックマン・コー	ヘックマン・コールター	70.00	139.0			○ 73.00 ○	89.00 🗆	114.0
1121	消去法(デンカ生	デンカ生研	東芝25FR_Accut		139.0		139.0	○ 78.00 ○	97.00 €	126.0
1122	その他	ベックマン・コー	ヘックマン・コールター	70.00	139.0	70.00	139.0	○ 74.40 ○	90.30 🗆	114.9
1128	消去法(デンカ生	デンカ生研	日本電子JCA-B	65.00	163.0	65.00	163.0	○ 77.00 ○	97.00 €	124.0
1129	その他	ベックマン・コー	ヘ、ックマン・コールター	70.00	139.0			○ 75.00 ○	91.00 🗆	117.0
1135	その他	ベックマン・コー	ヘ、ックマン・コールター	65.00	139.0			○ 74.00 ○	89.00 🗆	114.0
1302	消去法(デンカ生	デンカ生研	ヘックマン・コールター	65.00	163.0			○ 79.00 ○	97.00 ℂ	126.0
1328	その他	ベックマン・コー	ヘ、ックマン・コールター	65.00	163.0			○ 74.40 ○	90.30 🗆	114.7
1419	その他	ベックマン・コー	ヘックマン・コールター		139.0		139.0	○ 75.00 ○	91.00 🗆	115.0
3018	その他	ベックマン・コー	ヘ゛ックマン・コールター	70.00	139.0			○ 74.00 ○	89.00 🗆	114.0
4040	その他	ベックマン・コー	ヘ、ックマン・コールター	70.00	139.0			○ 74.00 ○	89.00 🗆	113.0
9012	消去法(デンカ生	デンカ生研	日立7140-7170		140.0		140.0	○ 80.00 ○	98.00 €	127.0
9014	消去法(デンカ生	ニットーボー	日立7140-7170					○ 79.00 ○	97.00 €	126.0
9049	消去法(デンカ生	デンカ生研	目立7140-7170		140.0			○ 78.00 ○	97.60 €	125.6
9050	その他	シーメンス	シーメンスHCDDim					○ 76.33 ○	93.33 🗆	117.7

193 LDL(O)

施設	測定原理	試薬メーカー	機器	男性基準範囲	女性基	準範囲			試料報告值
No				下限 上限	下限	上限	試料01	試料02	試料03
9040		オーソ・クリニカ	オーソビトロス5600				79.00	99.00	126.4

### 中性脂肪 (TG)

福岡大学病院 臨床検査部 光井 健

#### 【参加状況】

参加施設 232 施設 (前回 225 施設)

#### 【測定方法の状況】

遊離グリセロールを除去する方法の使用施設が 212 施設(91.4%)で、そのうち  $H_2O_2$  比色法 209 施設 (98.6%)、UV 法 3 施設(1.4%)、遊離グリセロールを除去しない方法の使用施設は 20 施設(8.6%)で全てドライケミストリー法であった。

#### 【測定値の状況】

1. 遊離グリセロールを除去する方法全体としての CV%は 1.7~2.4%、遊離グリセロールを除去しない 方法の CV%は 6.2~7.1%であった。測定原理の違いによりドライケミストリー法が高値傾向であった。

試料 1~3の測定原理別平均値と CV%を表 1に示した。

	話	料 1	括	料 2	試料 3		
	平均値	CV%	平均值	CV%	平均値	CV%	
遊離グリセロール除去							
H ₂ O ₂ 比色法(GK-G3PD)	65.2	2.2	79.2	2.4	100.8	1.7	
UV 法	65.9	1.2	79.8	0.9	101.5	0.5	
遊離グリセロール未除去							
ト゛ライケミストリー法	72.0	7.1	88.2	6.7	112.5	6.2	
目標値	65.4 (6	2~69)	79.6 (7:	5~84)	101.3 (96~107)		

表1 測定原理別の平均値(mg/dL)と CV%

2. 目標範囲達成率は、3 試料とも目標範囲内(目標値±5%)であった施設は、遊離グリセロール 除去法では208 施設(98.1%)、遊離グリセロール未除去法では1 施設(5.0%)であった。 試料別の目標範囲達成状況を表 2 に示した。

表 2 試料別の目標範囲達成状況

方法	試料1	試料2	試料3
遊離グリセロール除去			
H ₂ 0 ₂ 比色法(GK-G3PD) (n=209)	206 (98.6%)	206 (98.6%)	206 (98.6%)
UV 法 (n=3)	3 (100%)	3 (100%)	3 (100%)
遊離グリセロール未除去			
ト゛ライケミストリー法 (n=20)	1 (5.0%)	2 (10.0%)	3 (15.0%)

3. ドライメーカー各社から提示された参考値及び参考範囲を表 3 に、メーカー別の測定値の状況と参考範囲達成率を表 4 に示す。

表3 各ドライメーカーによる参考値及び参考範囲

	章	式料 1	<b></b>	<b></b>	試料 3			
	メーカー参考	メーカー参考範囲	メーカー参考	メーカー参考範囲	メーカー参考	メーカー参考範囲		
	値(mg/dL)	(mg/dL)	値(mg/dL)	(mg/dL)	値(mg/dL)	(mg/dL)		
富士	71	66~76	86	80~92	109	102~116		
オーソ	77.0	73.2~80.9	96.0	91.2~100.8	122.3	116.2~128.4		
アークレイ	70	65~75	83	77~89	105	97~113		

表 4 メーカー別平均値と参考範囲達成状況

		試料	<b>박 1</b>	試	學 2	試料 3			
	n	平均值	メーカー参考範	平均值	メーカー参考範	平均值	メーカー参考範		
		(mg/dL)	囲内施設(%)	(mg/dL)	囲内施設(%)	(mg/dL)	囲内施設(%)		
富士	14	71.4	92.9	87.2	92.9	111.4	85.7		
オーソ	4	76.8	100	95.0	100	121.1	100		
アークレイ	2	66.0	50.0	81.5	50.0	103.5	100		

#### 4. 試料1と試料3のメーカー別のツインプロットを図1に示した。

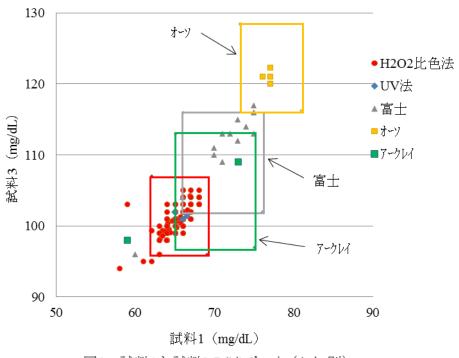



図1 試料1と試料3のツインプロット(メーカー別)

#### 【基準範囲の状況】

JCCLS 共用基準範囲は男性 40~234mg/dL、女性 30~117mg/dL で、全体の 38.8% (90 施設) が基準範囲として採用しており、前年の 75 施設より増加していた。また、基準範囲上限値 (共通または男性) について、動脈硬化性疾患予防が イドラインの脂質異常症診断基準である 149 mg/dL または 150 mg/dL としている施設が、全体の 52.6% (122 施設) であり、前年の 56.9% (128 施設) より減少していた。

21 TG 施設No.が低い順に並んでいます

施設				男性基準筆	範囲	女性基準	準範囲			試料報告値
No	測定原理	試薬メーカー	機器		上限	下限	上限	試料01	試料02	試料03
	1100011-7-24/0	<b>地たっ</b> ・・・・	T 41 ADOCEDE							-
	H2O2比色法(G	協和メデックス	日立LABOSPE			30.00	149.0	O 65.00 O		
	H2O2比色法(G	積水メディカル	日立LABOSPE		49.0			O 64.00 O		
	H2O2比色法(G	積水メディカル	目立LABOSPE			30.00		○ 66.00 ○		
	H2O2比色法(G	セロテック	目立LABOSPE			30.00		○ 65.10 ○		
	H2O2比色法(G	デンカ生研	東芝TBA-cシリー			30.00		○ 66.00 ○		
	H2O2比色法(G	栄研化学	日本電子JCA-B	30.00 1	49.0	30.00	149.0	○ 64.00 ○	78.00 ○	99.00
1012	H2O2比色法(G	和光純薬	日本電子JCA-B	40.00 23	34.0	30.00	117.0	○ 65.70 ○	79.50 🔾	101.2
1013	H2O2比色法(G	和光純薬	目立7140-7170	40.00 23	34.0	30.00	117.0	○ 66.00 ○	80.00 🔾	101.0
1015	H2O2比色法(G	協和メデックス	日本電子JCA-B	40.00 23	34.0	30.00	117.0	○ 65.00 ○	80.00 〇	101.0
1018	H2O2比色法(G	協和メデックス	日本電子JCA-B	40.00 23	34.0	30.00	117.0	○ 64.00 ○	78.00 🔾	100.0
1021	H2O2比色法(G	積水メディカル	日本電子JCA-B	50.00 1	49.0	50.00	149.0	○ 64.00 ○	78.00 🔾	98.00
1023	H2O2比色法(G	和光純薬	日本電子JCA-B	40.00 23	34.0	30.00	117.0	○ 66.00 ○	80.00 〇	102.0
1024	H2O2比色法(G	積水メディカル	目立LABOSPE	30.00 1	49.0			$\bigcirc$ 65.20 $\bigcirc$	79.00 🔾	99.80
1026	H2O2比色法(G	積水メディカル	東芝25FR_Accut	40.00 23	34.0	30.00	117.0	$\bigcirc$ 66.00 $\bigcirc$	80.00 〇	99.00
1028	H2O2比色法(G	協和メデックス	日立LABOSPE	30.00 1	49.0			$\bigcirc$ 65.00 $\bigcirc$	79.00 🔾	100.0
1029	H2O2比色法(G	積水メディカル	日立7140-7170	40.00 23	34.0	30.00	117.0	○ 64.00 ○	79.00 🔾	102.0
1031	H2O2比色法(G	積水メディカル	東芝TBA-cシリー	40.00 23	34.0	30.00	117.0	○ 67.00 ○	81.00 〇	102.0
1032	H2O2比色法(G	和光純薬	シーメンスHCDDim	50.00 1	49.0			○ 66.00 ○	79.00 🔾	99.00
1033	H2O2比色法(G	積水メディカル	目立7140-7170	50.00 1	49.0	50.00	149.0	○ 64.00 ○	77.00 🔾	98.00
1034	H2O2比色法(G	積水メディカル	日立7140-7170	50.00 1	49.0	50.00	149.0	○ 67.00 ○	81.00 〇	103.0
1035	H2O2比色法(G	協和メデックス	日本電子JCA-B	30.00 1	50.0			○ 65.00 ○	80.00 〇	100.0
1038	H2O2比色法(G	積水メディカル	日立LABOSPE	40.00 23	34.0	30.00	117.0	○ 64.00 ○	79.00 🔾	100.0
	H2O2比色法(G	積水メディカル	日立7140-7170			30.00		○ 65.00 ○		
	H2O2比色法(G		目立LABOSPE			30.00		○ 65.00 ○		
	H2O2比色法(G	協和メデックス	東芝25FR_Accut			30.00		○ 63.00 ○		
	H2O2比色法(G	協和メデックス	ベックマン・コールター			30.00		○ 64.00 ○		
	H2O2比色法(G	協和メデックス	日本電子JCA-B			30.00		O 64.00 O		
	H2O2比色法(G	積水メディカル	日本電子JCA-B			50.00		O 65.00 O		
	H2O2比色法(G	協和メデックス	東芝TBA-cシリー		30.0	30.00	11010	O 67.00 O		
	H2O2比色法(G	和光純薬	シーメンスHCDDim			30.00	117.0	O 65.00 O		
	H2O2比色法(G	協和メデックス	日立7140-7170			30.00		0 66.00 0		
	H2O2比色法(G	シノテスト	東京貿易ビオナリス5		49.0	50.00	110.0	0 65.00 0		
	H2O2比色法(G	LSIメディエンス	日本電子JCA-B		49.0			0 65.00 0		
	H2O2比色法(G	LSIメディエンス	日本電子JCA-B		49.0			0 66.00 0		
	H2O2比色法(G	積水メディカル	日立LABOSPE			30.00	140.0	0 65.00 0		
	H2O2比色法(G		日本電子JCA-B							
		LSIメディエンス	· - · -			30.00		○ 67.00 ○		
	H2O2比色法(G	積水メディカル	日立LABOSPE					O 66.00 O		
	H2O2比色法(G	LSIメディエンス	目立LABOSPE			30.00		O 65.00 O		
	H2O2比色法(G	積水メディカル	東京貿易ピオリス2			50.00	149.0	61.00	74.00	95.00
	H2O2比色法(G	和光純薬	シーメンスHCDDim			50.00		○ 63.00 ○		
	H2O2比色法(G	和光純薬	東芝TBA-cシリー			30.00		O 65.00 O		
	H2O2比色法(G	和光純薬	東京貿易ビオリス2			30.00		O 64.00 O		
	H2O2比色法(G	協和メデックス	目立LABOSPE			30.00		O 66.00 O		
	H2O2比色法(G	協和メデックス	日立7140-7170			30.00		O 66.60 O		
	H2O2比色法(G	デンカ生研	目立7140-7170			30.00		○ 66.00 ○		
1093	H2O2比色法(G	積水メディカル	日本電子JCA-B	30.00 1	49.0	30.00	149.0	○ 65.00 ○	78.00 ○	99.00
	H2O2比色法(G	積水メディカル	日本電子JCA-B		49.0			○ 65.00 ○		
	H2O2比色法(G	協和メデックス	東芝TBA-cシリー			50.00		○ 66.00 ○		
1102	H2O2比色法(G	協和メデックス	東芝TBA-cシリー			30.00	117.0	○ 65.00 ○	79.00 🔾	101.0
1105	H2O2比色法(G	ベックマン・コー	ヘックマン・コールター	50.00 1	49.0			○ 64.00 ○	77.00 🔾	100.0
1112	H2O2比色法(G	協和メデックス	東京貿易ビオリス5	50.00 1	49.0	50.00	149.0	○ 63.00 ○	81.00 🔾	100.0
1116	H2O2比色法(G	協和メデックス	日本電子JCA-B	50.00 1	49.0	50.00	149.0	○ 66.00 ○	80.00 〇	101.0
1120	H2O2比色法(G	和光純薬	東芝TBA-cシリー	40.00 23	34.0	30.00	117.0	○ 64.00 ○	77.00 🔾	98.00
1121	H2O2比色法(G	デンカ生研	東芝25FR_Accut	30.00 1	49.0	30.00	149.0	○ 65.00 ○	79.00 🔾	101.0
1122	H2O2比色法(G	ベックマン・コー	ベックマン・コールター	50.00 1	49.0	50.00	149.0	○ 65.80 ○	79.40 🔾	100.7
1124	H2O2比色法(G	シノテスト	日立7020-7080	40.00 23	34.0	30.00	117.0	59.00	63.00 🔾	103.0
1127	H2O2比色法(G	積水メディカル	日本電子JCA-B	50.00 1	49.0			○ 64.00 ○	78.00 🔾	98.00

21 TG 施設No.が低い順に並んでいます

施設	御亭尾冊	24本ノーム	466 QQ	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1128	UV測定法	シスメックス	日本電子JCA-B	40.00	234.0	30.00	117.0	○ 66.00 ○	80.00 〇	101.0
1129	H2O2比色法(G	ベックマン・コー	ヘックマン・コールター	50.00	149.0			○ 67.00 ○	82.00 〇	103.0
1130	H2O2比色法(G	和光純薬	日本電子JCA-B	40.00	234.0	30.00	117.0	○ 66.00 ○	80.00 〇	101.0
1134	H2O2比色法(G	積水メディカル	目立7140-7170	30.00	149.0	30.00	149.0	○ 63.90 ○	77.90 🔾	98.00
1135	H2O2比色法(G	ベックマン・コー	ヘ゛ックマン・コールター	30.00	149.0			○ 66.00 ○	80.00 〇	101.0
1136	H2O2比色法(G	シノテスト	日本電子JCA-B	40.00	234.0	30.00	117.0	○ 66.00 ○	79.00 🔾	102.0
1300	H2O2比色法(G	積水メディカル		40.00	234.0	30.00	117.0	○ 63.10 ○	76.20 🔾	98.20
1301	H2O2比色法(G	和光純薬	日本電子JCA-B	30.00	149.0			○ 65.00 ○	80.00 〇	102.0
	H2O2比色法(G	デンカ生研	ヘ゛ックマン・コールター	40.00	234.0	30.00		○ 66.00 ○		
	H2O2比色法(G	協和メデックス	日本電子JCA-B	40.00	149.0	30.00		○ 65.00 ○		
	H2O2比色法(G	協和メデックス	東芝25FR_Accut	30.00	149.0			○ 67.00 ○		
	H2O2比色法(G	和光純薬	東芝TBA-200F	30.00		30.00		O 66.00 O		
	H2O2比色法(G	和光純薬	日本電子JCA-B	30.00	149.0			O 66.00 O		
	H2O2比色法(G	協和メデックス	日本電子JCA-B	40.00				O 64.00 O		
	H2O2比色法(G	積水メディカル	日本電子JCA-B	38.00	207.0	30.00		○ 65.00 ○		
	H2O2比色法(G	積水メディカル	日本電子JCA-B	40.00	234.0	30.00		○ 65.00 ○		
	H2O2比色法(G H2O2比色法(G	和光純薬	日本電子JCA-B ベックマン・コールター	40.00	234.0	30.00		○ 66.00 ○		
	H2O2比色法(G H2O2比色法(G	ベックマン・コー		40.00	234.0	30.00		○ 67.00 ○		
	H2O2比色法(G	積水メディカル 和光純薬	日本電子JCA-B 日本電子JCA-B	40.00 30.00	234.0 149.0	30.00		○ 66.00 ○ ○ 65.00 ○		
	H2O2比色法(G	協和メデックス	東芝TBA-cシリー	50.00	149.0			○ 65.00 ○		
	H2O2比色法(G	積水メディカル	日本電子JCA-B	40.00	234.0	30.00		○ 64.00 ○		
	H2O2比色法(G	LSIメディエンス	日本電子JCA-B	40.00	234.0	30.00		○ 65.00 ○		
	H2O2比色法(G	協和メデックス	日本電子JCA-B	40.00	234.0	30.00		0 66.00 0		
	H2O2比色法(G	積水メディカル	日本電子JCA-B	50.00	149.0	50.00		○ 63.00 ○		
	H2O2比色法(G	積水メディカル	目立LABOSPE	40.00	234.0	30.00		0 64.00 0		
	H2O2比色法(G	協和メデックス	日立7140-7170	40.00	234.0			○ 66.00 ○		
	H2O2比色法(G	積水メディカル	日本電子JCA-B	31.00	140.0			○ 65.00 ○		
	H2O2比色法(G	ロシュ・ダイアグ	ロシュコハ ス8000c5	40.00	234.0	30.00		○ 65.00 ○		
1348	H2O2比色法(G	協和メデックス	東芝TBA-cシリー	50.00	149.0	50.00	149.0	○ 63.00 ○	77.00 🔾	99.00
1349	H2O2比色法(G	ロシュ・ダイアグ	ロシュコハ ス8000c5	40.00	234.0	30.00	117.0	○ 65.00 ○	79.00 🔾	99.00
1350	H2O2比色法(G	積水メディカル	日本電子JCA-B	30.00	149.0			○ 67.00 ○	81.00 〇	101.0
1351	H2O2比色法(G	積水メディカル	ヘ゛ックマン・コールター	40.00	234.0	30.00	117.0	○ 68.00 ○	82.00 〇	104.0
1352	H2O2比色法(G	和光純薬	日本電子JCA-B	78.00	94.00	115.0	30.00	○ 66.00 ○	81.00 〇	102.0
1355	H2O2比色法(G	協和メデックス	東芝TBA-cシリー	40.00	234.0	30.00	117.0	○ 68.00 ○	81.00 〇	103.0
1356	H2O2比色法(G	積水メディカル	日本電子JCA-B	40.00	234.0	30.00	117.0	○ 64.00 ○	77.00 🔾	100.0
1357	H2O2比色法(G	和光純薬	目立7600Dモジュ	30.00	149.0	30.00	149.0	○ 68.00 ○	82.00 〇	104.0
1358	H2O2比色法(G	協和メデックス	日本電子JCA-B	40.00	234.0	30.00	117.0	○ 64.80 ○	79.60 🔾	100.8
1359	H2O2比色法(G	積水メディカル	日本電子JCA-B	40.00	234.0	30.00	117.0	○ 65.00 ○	78.00 🔾	99.00
1360	H2O2比色法(G	和光純薬	日本電子JCA-B	30.00	149.0	30.00	149.0	○ 66.00 ○	80.00 〇	102.0
	H2O2比色法(G	和光純薬	東芝TBA-20-3	40.00	234.0	30.00		○ 64.00 ○		
	H2O2比色法(G	ミズホメディ	ヘ・ックマン・コールター	30.00	149.0			○ 68.00 ○		
	H2O2比色法(G	和光純薬	目立7140-7170	40.00	234.0			O 65.00 O		
	H2O2比色法(G	和光純薬	東芝TBA-cシリー	40.00	234.0			O 64.00 O		
	H2O2比色法(G	協和メデックス	目立LABOSPE	40.00	234.0	30.00		O 64.00 O		
	H2O2比色法(G	シノテスト	東京貿易ピオリス5	40.00	234.0	30.00		O 64.00 O		
	H2O2比色法(G	和光純薬	目立LABOSPE	40.00	234.0	30.00		0 66.00 0		
	H2O2比色法(G	和光純薬	東芝25FR_Accut	40.00	234.0	30.00		O 64.00 O		
	H2O2比色法(G	協和メデックス	東芝TBA-cシリー 日立7140-7170	30.00	150.0	30.00		○ 65.00 ○ ○ 67.00 ○		
	H2O2比色法(G H2O2比色法(G	協和メデックス 協和メデックス	日立7140-7170 東京貿易ビオナリス5	38.00 40.00	207.0 234.0	30.00		○ 67.00 ○ ○ 63.00 ○		
	H2O2比色法(G	和光純薬	来尽員多に4リハ5 シーメンスHCDDim		149.0	30.00		○ 66.00 ○		
	H2O2比色法(G	和元純 <del>楽</del> シノテスト	東京貿易ビオリス2	40.00 40.00	234.0	30.00		○ 64.00 ○		
	H2O2比色法(G	シーメンス	来京員勿じれりへ2 シーメンスHCDDim	40.00	234.0	30.00		○ 66.00 ○		
	H2O2比色法(G	積水メディカル	日本電子JCA-B	40.00	234.0	30.00		○ 63.00 ○		
	H2O2比色法(G	ミズホメディ	日本電子JCA-B	40.00		30.00		○ 68.00 ○		
	H2O2比色法(G	協和メデックス	東芝TBA-cシリー	30.00	150.0	55.00		○ 66.00 ○		
1 101		WATER TO DO	/K/C 1 D/1 (//)	50.00	100.0			00.00	30.00	102.0

21 TG 施設No.が低い順に並んでいます

施設	测学店班		14% BB	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1411	H2O2比色法(G	積水メディカル	日本電子JCA-B	40.00	234.0	30.00	117.0	○ 63.40 ○	77.40 🔾	99.30
1419	H2O2比色法(G	ベックマン・コー	ヘックマン・コールター	30.00	149.0	30.00	149.0	○ 65.00 ○	79.00 🔾	100.0
	H2O2比色法(G	積水メディカル	日立LABOSPE	30.00	149.0	30.00		○ 64.40 ○		
	H2O2比色法(G	積水メディカル	日本電子JCA-B	30.00	149.0	30.00		0 63.40 0		
	H2O2比色法(G	和光純薬	目立LABOSPE	40.00	149.0	30.00		0 64.00 0		
	H2O2比色法(G H2O2比色法(G	積水メディカル 積水メディカル	日立LABOSPE 日本電子JCA-B	50.00 40.00	149.0 234.0	50.00 30.00		○ 68.00 ○ ○ 65.00 ○		
	H2O2比色法(G	積水メディカル	日立7140-7170	40.00	150.0	30.00		0 64.00 0		
	H2O2比色法(G	積水メディカル	目立LABOSPE	40.00	234.0	30.00		0 64.00 0		
	H2O2比色法(G	和光純薬	日立LABOSPE	40.00	149.0	30.00		○ 67.00 ○		
1519	H2O2比色法(G	積水メディカル	東芝25FR_Accut	40.00	234.0	30.00	117.0	○ 65.00 ○	79.00 🔾	100.0
1528	H2O2比色法(G	和光純薬	目 立7140-7170	40.00	234.0	30.00	117.0	○ 67.00 ○	81.00 〇	103.0
1529	H2O2比色法(G	和光純薬	日立LABOSPE	30.00	149.0	30.00	149.0	○ 66.00 ○	80.00 〇	102.0
1530	H2O2比色法(G	和光純薬	日本電子JCA-B	40.00	234.0	30.00	117.0	○ 64.00 ○	78.00 🔾	99.00
	H2O2比色法(G	和光純薬	シーメンスHCDDim	30.00	150.0	30.00		○ 66.00 ○		
	H2O2比色法(G	協和メデックス	日立7140-7170	40.00	234.0	30.00		O 67.00 O		
	H2O2比色法(G	和光純薬	シーメンスHCDDim	40.00	234.0	30.00		0 64.00 0		
	H2O2比色法(G H2O2比色法(G	協和メデックス 協和メデックス	東京貿易ビオナリス2 東京貿易ビオナリス2	40.00 40.00	234.0 234.0	30.00		○ 66.00 ○ ○ 65.00 ○		
	H2O2比色法(G	LSIメディエンス	日本電子JCA-B	40.00	234.0	30.00		0 66.00 0		
	H2O2比色法(G	シノテスト	東芝25FR_Accut	30.00	149.0	50.00	111.0	0 64.00 0		
	H2O2比色法(G	積水メディカル	日立7140-7170	50.00	149.0			○ 65.00 ○		
1543	H2O2比色法(G	協和メデックス	東芝TBA-20-3	30.00	150.0	30.00	150.0	58.00	73.00	94.00
1549	H2O2比色法(G	積水メディカル	東京貿易ビオナリス2	30.00	149.0			○ 64.00 ○	78.00 🔾	100.0
1550	H2O2比色法(G	積水メディカル	日立7140-7170	50.00	149.0			○ 65.00 ○	81.00 🔾	103.0
1554	H2O2比色法(G	シノテスト		30.00	149.0	30.00	149.0	○ 65.00 ○	78.00 🔾	100.0
	H2O2比色法(G	協和メデックス	日本電子JCA-B	40.00	234.0	30.00		○ 66.00 ○		
	H2O2比色法(G	積水メディカル	日本電子JCA-B	40.00		30.00		O 65.00 O		
	H2O2比色法(G	協和メデックス	ヘックマン・コールター ロ大電フ・ICA-D	30.00	149.0	30.00	149.0	O 66.00 O		
	H2O2比色法(G H2O2比色法(G	積水メディカル 積水メディカル	日本電子JCA-B 日立7600Dモジュ	50.00 50.00	149.0 149.0			○ 65.00 ○ ○ 66.00 ○		
	H2O2比色法(G	協和メデックス	目立LABOSPE	30.00	149.0			0 64.00 0		
	H2O2比色法(G	ミズホメディ	ヘ゛ックマン・コールター	30.00	149.0			O 67.00 O		
	H2O2比色法(G	和光純薬	日本電子JCA-B	40.00	234.0	30.00	117.0	○ 65.00 ○		
1917	H2O2比色法(G	和光純薬	目立LABOSPE	30.00	149.0	30.00	149.0	○ 65.00 ○	79.00 🔾	100.0
1920	H2O2比色法(G	協和メデックス	日立3100	30.00	149.0			○ 66.00 ○	78.00 🔾	101.0
1922	H2O2比色法(G	積水メディカル	日立7140-7170	50.00	149.0			○ 64.00 ○	78.00 🔾	101.0
	H2O2比色法(G	積水メディカル	日立7140-7170		149.0			○ 65.00 ○		
	H2O2比色法(G	協和メデックス	ベックマン・コールター	35.00	149.0	35.00		O 66.00 O		
	H2O2比色法(G H2O2比色法(G	協和メデックス	東芝TBA-200F ヘックマン・コールター	50.00 50.00	149.0 149.0	50.00	149.0	○ 66.00 ○ ○ 68.00 ○		
	H2O2比色法(G	積水メディカル 協和メデックス	ベックマン・コールター	30.00		30.00	149.0	0 64.00 0		
	H2O2比色法(G	協和メデックス	ヘックマン・コールター	30.00	149.0	30.00		0 65.00 0		
	H2O2比色法(G	積水メディカル	日本電子JCA-B	50.00	149.0	00.00	110.0	0 65.00 0		
	H2O2比色法(G	協和メデックス	ヘックマン・コールター	30.00	149.0			○ 65.00 ○		
1935	H2O2比色法(G	積水メディカル	日立7140-7170	50.00	149.0	50.00	149.0	○ 65.00 ○	78.00 🔾	99.00
1936	H2O2比色法(G	ミズホメディ	日本電子JCA-B	50.00	150.0	50.00	150.0	○ 67.00 ○	81.00 🔾	102.0
	H2O2比色法(G	協和メデックス	日本電子JCA-H	30.00	150.0	30.00		○ 64.00 ○		
	H2O2比色法(G	協和メデックス	日本電子JCA-B	40.00	234.0	30.00	117.0	○ 64.00 ○		
	H2O2比色法(G	協和メデックス	目立LABOSPE	40.00	149.0	00.00	1150	○ 66.00 ○		
	H2O2比色法(G	和光純薬	ロシュコハ、ス8000c7	40.00	234.0			O 65.00 O		
	H2O2比色法(G H2O2比色法(G	協和メデックス 協和メデックス	日本電子JCA-B 日立7140-7170	50.00 50.00		50.00 50.00		○ 66.00 ○ ○ 65.00 ○		
	H2O2比色法(G	協和メデックス	ヘックマン・コールター	30.00	149.0			0 64.00 0		
	H2O2比色法(G	和光純薬	日本電子JCA-B	40.00	234.0	30.00		0 64.20 0		
	H2O2比色法(G	和光純薬	シーメンスHCDDim	50.00	149.0			○ 66.00 ○		
3018	H2O2比色法(G	ベックマン・コー	ヘックマン・コールター	30.00	150.0			○ 67.00 ○	81.00 🔾	102.0

21 TG 施設No.が低い順に並んでいます

No   Pice	施設	測定原理	試薬メーカー	機器	男性基準	範囲	女性基	準範囲			試料報告値
1920日色説信   横水ディかか   日立花900Pが2   1920日を説信   1920日を説信   1920日を説信   1920日を説信   1920日を説信   1920日を記信   1920日を記信	No	例足原生	政衆/ //	75克台	下限	上限	下限	上限	試料01	試料02	試料03
3048   日202比色法(6   株水デッカル   日本電子)CA-B	3022	H2O2比色法(G	協和メデックス	日本電子JCA-B	40.00 2	234.0	30.00	117.0	○ 64.90 ○	78.80 🔾	100.9
305   日20土色法伝  協和メデックス   本電子ICA-B	3027	H2O2比色法(G	積水メディカル	日立7600Dモジュ	50.00	149.0			○ 65.00 ○	79.00 🔾	101.0
300   日202比色法(2	3048	H2O2比色法(G	積水メディカル	日本電子JCA-B	40.00 2	234.0	30.00	117.0	○ 65.00 ○	80.00 🔾	102.0
3907   日202性色法(6   編和デックス   本電子)CA-B	3055	H2O2比色法(G	協和メデックス	日本電子JCA-B	40.00 2	234.0	30.00	117.0	○ 66.00 ○	81.00 🔾	103.0
1002   1202   1202   1202   1202   1202   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203   1203	3056	H2O2比色法(G	協和メデックス		50.00	149.0	50.00	149.0	○ 65.00 ○	81.00 🔾	101.0
1402   1402   1402   1402   1402   1402   1402   1402   1402   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403   1403	3907	H2O2比色法(G	協和メデックス	日本電子JCA-B	40.00 2	234.0	30.00	117.0	○ 64.00 ○	79.00 🔾	100.0
400   日202性色法に	4002	H2O2比色法(G	協和メデックス	日本電子JCA-B	40.00 2	234.0	30.00	117.0	○ 66.00 ○	81.00 🔾	102.0
日20世色族伝   日次の生色族伝   日次に一次で   日次に日から   日本電子にA-B   日本の日本に日から日本に日から日本に日から日本に日から日本に日から日本に日から日本に日から日本に日から日本に日から日本に日本に日から日本に日本に日本に日本に日本に日本に日本に日本に日本に日本に日本に日本に日本に日	4039	H2O2比色法(G	協和メデックス	東芝25FR_Accut	30.00	150.0	30.00	150.0	○ 62.00 ○	77.00 🔾	99.30
5003   日202比色法伝   和光純薬   日立140-7170   50.00   150.00   150.00   150.00   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00   0   150.00	4040	H2O2比色法(G	ベックマン・コー	ヘ゛ックマン・コールター	50.00	149.0			○ 67.00 ○	81.00 🔾	103.0
日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	4902	H2O2比色法(G	ニットーボー	目立7140-7170	50.00	150.0			○ 65.00 ○	79.00 🔾	102.0
日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	5003	H2O2比色法(G	和光純薬	目立7140-7170	50.00	150.0	50.00	150.0	○ 66.00 ○	81.00 🔾	102.0
501   日20   日20   日本電子   日本   日本電子   日本   日本電子   日本電子   日本電子   日本電子   日本電子   日本電子   日本電子   日本電子   日本   日本   日本   日本   日本   日本   日本   日	5005	H2O2比色法(G	協和メデックス	日本電子JCA-B	40.00 2	234.0	30.00	117.0	○ 66.00 ○	81.00 🔾	102.0
6008   LV割定法   シスメックス   東芝5FRAccut   50.00   150.00   150.00   160.00   170.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00   102.00	5006	H2O2比色法(G	積水メディカル	日本電子JCA-B	40.00 2	234.0	30.00	117.0	○ 64.00 ○	78.00 🔾	99.00
6008   H2O2比色法(6   セロテック   東芝TBA-200F   40.00   23.00   10.00   65.00   79.00   10.10   6016   H2O2比色法(6   協和メデックス   東芝TBA-200F   30.00   15.00   15.00   14.00   65.00   79.00   10.10   6016   H2O2比色法(6   協和メデックス   東芝TBA-200F   30.00   14.00   30.00   14.00   30.00   14.00   66.00   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   10.10   79.00   79.00   79.00   79.00	5010	H2O2比色法(G	積水メディカル	日本電子JCA-B	40.00 2	234.0	30.00	117.0	○ 65.00 ○	79.00 🔾	100.0
6015   H2O2比色法G   協和メデックス   東立RABOSPE   50.00   15.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14	6006	UV測定法	シスメックス	東芝25FR_Accut	50.00	150.0			○ 65.00 ○	79.00 🔾	102.0
601   H2O2比色法(3   協和メデックス 東芝TBA-200F   30.00   149.0   30.00   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149.0   149	6008	H2O2比色法(G	セロテック	東芝TBA-200F	40.00 2	234.0	30.00	117.0	○ 65.00 ○	79.00 🔾	101.0
日本電子JCA-B   日本電子JCA-B   日本電子JCA-B   40.00   33.00   149.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00	6015	H2O2比色法(G	協和メデックス	目立LABOSPE	50.00	150.0			○ 67.00 ○	82.00 🔾	104.0
日本の日本語	6016	H2O2比色法(G	協和メデックス	東芝TBA-200F	30.00	149.0	30.00	149.0	○ 66.00 ○	79.00 🔾	101.0
日本の	7001	H2O2比色法(G	セロテック	日本電子JCA-B	33.00	149.0	33.00	149.0	○ 66.00 ○	79.00 🔾	101.0
7011       H2O2比色法G       積水メディカル       東芝TBA-cシリー       40.00       23.0       117.0       63.70       78.10       99.20         7025       H2O2比色法G       協和メデックス       日本電子JCA-B       30.00       149.0       一       65.00       79.00       100.0         7041       H2O2比色法G       協和メデックス       日本電子JCA-B       30.00       149.0       一       65.00       80.00       101.0         8004       H2O2比色法G       協和メデックス       日本電子JCA-B       45.00       180.0       35.00       140.0       66.00       80.00       103.0         9004       H2O2比色法G       協和メデックス       日立7140-7170       42.00       66.00       80.00       100.0         9008       H2O2比色法G       デンクチエア       日立7140-7170       42.00       66.00       80.70       104.2         9014       H2O2比色法G       デンカ生研       日立7140-7170       42.00       150.0       66.00       80.70       104.2         902       H2O2比色法G       和光純薬       日立7140-7170       30.00       150.0       66.00       80.00       105.0         902       H2O2比色法G       和光純薬       日立7140-7170       30.00       150.0       68.00       83.00       105.0         903	7002	H2O2比色法(G	協和メデックス	日本電子JCA-B	40.00 2	234.0	30.00	117.0	○ 68.00 ○	82.00 🔾	104.0
7025         H2O2比色法信         協和メデックス         日本電子JCA-B         30.00         149.0 ***         65.00 ***         79.00 ***         10.0           7901         H2O2比色法信         協和メデックス         日立LABOSPE         30.00         149.0 ***         65.00 ***         80.00 ***         101.0           8004         H2O2比色法信         協和メデックス         日本電子JCA-B         45.00         180.0 ***         5.00 ***         81.00 ***         103.0           9004         H2O2比色法信         協和メデックス         日立7140-7170         42.00         168.0 ***         66.00 ***         80.00 ***         102.0           9009         H2O2比色法信         LSIメディエンス         日立7140-7170         42.00         168.0 ***         66.00 ***         80.00 ***         104.2           9012         H2O2比色法信         デンカ生研         日立7140-7170         30.00         150.0 ***         66.00 ***         80.00 ***         102.0           902         H2O2比色法信         東水ディンディンディンディンディンディンディンディンディンディン・         日立7140-7170         30.00         150.0 ***         66.00 ***         80.00 ***         103.0           902         H2O2比色法信         東東化学         日本電子JCA-B         40.00         23.00         150.0 ***         68.00 ***         83.00 ***         150.0           903	7007	H2O2比色法(G	協和メデックス	ヘ゛ックマン・コールター	30.00	149.0	30.00	149.0	○ 66.00 ○	80.00 🔾	100.0
7901 日202比色法に       協和メデックス       目立LABOSPE       30.00       14.9.0 ***********************************	7011	H2O2比色法(G	積水メディカル	東芝TBA-cシリー	40.00 2	234.0	30.00	117.0	○ 63.70 ○	78.10 🔾	99.20
804 H2O2比色法G 協和メデックス 日本電子JCA-B 45.00 18.00 35.00 14.00 67.00 81.00 103.0 9004 H2O2比色法G 協和メデックス 日立7140-7170	7025	H2O2比色法(G	協和メデックス	日本電子JCA-B	30.00	149.0			○ 65.00 ○	79.00 🔾	100.0
9004 H2O2比色法(G         協和メデックス         日立140-7170         66.00	7901	H2O2比色法(G	協和メデックス	目立LABOSPE	30.00	149.0			○ 65.00 ○	80.00 🔾	101.0
9008       H2O2比色法(G       シノテスト       目立7140-7170       42.00       168.0       64.00       78.00       100.0         9009       H2O2比色法(G       LSIメディエンス       目立7140-7170       42.00       168.0       66.90       80.70       104.2         9012       H2O2比色法(G       デンカ生研       目立7140-7170       150.0       66.00       80.00       102.0         9014       H2O2比色法(G       ニットーボー       目立7140-7170       30.00       150.0       66.00       82.00       105.0         9022       H2O2比色法(G       和光純薬       目立7140-7170       30.00       150.0       66.00       82.00       103.0         9024       H2O2比色法(G       和光純薬       目立7140-7170       150.0       66.00       81.00       102.0         903       H2O2比色法(G       カ水純薬       日立7140-7170       150.0       150.0       68.00       83.00       105.0         903       H2O2比色法(G       積水メディカル       日本電子JCA-B       40.00       234.0       30.00       117.0       62.00       75.00       95.00         903       H2O2比色法(G       積水メディカル       積水医V80       ア・フ・ダイアグ       64.10       77.70       100.3         904       H2O2比色法(G       和光純薬       日立140-7170	8004	H2O2比色法(G	協和メデックス	日本電子JCA-B	45.00	180.0	35.00	140.0	○ 67.00 ○	81.00 🔾	103.0
9009 日202比色法(G       LSIメディエンス       目立7140-7170       42.00       168.0       66.90 80.70 104.2         9012 日202比色法(G       デンカ生研       日立7140-7170       150.0       150.0       66.00 80.00 102.0         9014 日202比色法(G       ニットーボー       日立7140-7170       30.00       150.0       66.00 82.00 105.0         9022 日202比色法(G       米ボメディ       日立7140-7170       30.00       150.0       66.00 82.00 105.0         9023 日202比色法(G       和光純薬       日立7140-7170       150.0       150.0       68.00 82.00 105.0         9024 日202比色法(G       瀬木火ギオカル       日本電子JCA-B       150.0       150.0       68.00 82.00 75.00       95.00         903 日202比色法(G       積水メディカル       積水医V800       40.00       234.0       30.00       117.0       62.00 75.00       95.00         904 日202比色法(G       積水メディカル       積水とV800       エーデーストストストストストストストストストストストストストストストストストストス	9004	H2O2比色法(G	協和メデックス	目立7140-7170					○ 66.00 ○	80.00 🔾	102.0
9012 H2O2比色法(G       デンカ生研       目立7140-7170       150.0       150.0       66.00 0 80.00 0 102.0         9014 H2O2比色法(G       ニットーボー       目立7140-7170       30.00       150.0       66.00 0 82.00 0 105.0         9022 H2O2比色法(G       天ボメディ       目立7140-7170       30.00       150.0       66.00 0 82.00 0 103.0         9024 H2O2比色法(G       関東化学       日本電子JCA-B       150.0       150.0       66.00 0 82.00 0 105.0         9033 H2O2比色法(G       積水メディカル       日本電子JCA-B       40.00       234.0       30.00       117.0       62.00 0 75.00 95.00         9035 H2O2比色法(G       積水メディカル       積水EV800       150.0       66.00 0 82.00 0 75.00 95.00       95.00         9044 H2O2比色法(G       ロシュ・ダイアグ       ロシュコハス8000c5       150.0       65.67 0 79.67 0 101.2         9044 H2O2比色法(G       和光純薬       ロシュコハス8000c7       150.0       65.37 0 79.57 0 100.7         9046 H2O2比色法(G       奈研化学       日立7140-7170       30.00       150.0       65.30 0 79.00 0 101.0         9047 H2O2比色法(G       奈研化学       日立7140-7170       30.00       150.0       66.60 0 80.40 0 101.4         9049 UV測定法       シスメックス       日立7140-7170       150.0       66.60 0 80.40 0 101.4	9008	H2O2比色法(G	シノテスト	日立7140-7170					○ 64.00 ○	78.00 🔾	100.0
9014 H2O2比色法(G       ニットーボー       目立7140-7170       30.00 150.0       66.00 82.00 105.0         9022 H2O2比色法(G       ミズホメディ       目立7140-7170       30.00 150.0       68.00 82.00 103.0         9023 H2O2比色法(G       和光純薬       目立7140-7170       150.0       66.00 81.00 102.0         9024 H2O2比色法(G       関東化学       日本電子JCA-B       150.0       150.0       68.00 82.00 105.0         9033 H2O2比色法(G       積水メディカル       日本電子JCA-B       40.00 234.0       30.00 117.0 62.00 75.00 95.00       95.00         9035 H2O2比色法(G       積水メディカル       積水EV800       64.10 77.70 100.3       95.00         9043 H2O2比色法(G       ロシュ・ダイアグ       ロシュコハス8000c5       65.67 79.67 101.2         9044 H2O2比色法(G       和光純薬       ロシュコハス8000c7       65.37 79.57 100.7         9046 H2O2比色法(G       常研化学       日立7140-7170       30.00 150.0       150.0 65.30 79.00 101.0         9047 H2O2比色法(G       ベックマン・コー ペックマン・コールター       150.0 66.60 80.40 101.4         9049 UV測定法       シスメックス       目立7140-7170       150.0 66.60 80.40 101.4	9009	H2O2比色法(G	LSIメディエンス	日立7140-7170	42.00	168.0			○ 66.90 ○	80.70 🔾	104.2
9022 H2O2比色法(G       ミズホメディ       日立7140-7170       30.00       150.0       68.00 ○ 82.00 ○ 103.0         9023 H2O2比色法(G       和光純薬       日立7140-7170       150.0       66.00 ○ 81.00 ○ 102.0         9024 H2O2比色法(G       関東化学       日本電子JCA-B       150.0       150.0       68.00 ○ 83.00 ○ 105.0         9035 H2O2比色法(G       積水メディカル       日本電子JCA-B       40.00       234.0       30.00       117.0       62.00 ○ 75.00       95.00         9035 H2O2比色法(G       積水メディカル       積水EV800	9012	H2O2比色法(G	デンカ生研	日立7140-7170	1	150.0		150.0	○ 66.00 ○	80.00 🔾	102.0
9023 H2O2比色法(G       和光純薬       日立7140-7170       「50.0」       66.00」       81.00」       102.0         9024 H2O2比色法(G       関東化学       日本電子JCA-B       150.0       150.0       68.00」       83.00」       105.0         9035 H2O2比色法(G       積水メディカル       日本電子JCA-B       40.00       234.0       30.00       117.0       62.00」       75.00       95.00         9043 H2O2比色法(G       可シュ・ダイアグ       ロシュ・ダイアグ       ロシュコース8000c5       「65.67」       79.67」       101.2         9044 H2O2比色法(G       和光純薬       ロシュコース8000c7       「65.37」       79.57」       100.7         9046 H2O2比色法(G       栄研化学       日立7140-7170       30.00       150.0       30.00       150.0       65.30」       79.00」       101.0         9047 H2O2比色法(G       ベックマン・コー       ベックマン・コールター       「64.60」       78.90」       100.7         9049 UV測定法       シスメックス       日立7140-7170       150.0       150.0       66.60』       80.40』       101.4	9014	H2O2比色法(G	ニットーボー	日立7140-7170					○ 66.00 ○	82.00 🔾	105.0
9024 H2O2比色法(G       関東化学       日本電子JCA-B       150.0       150.0       68.00       83.00       105.0         9033 H2O2比色法(G       積水メディカル       日本電子JCA-B       40.00       234.0       30.00       117.0       62.00       75.00       95.00         9043 H2O2比色法(G       ロシュ・ダイアグ       ロシュ・ダイアグ       ロシューバス8000c5       - 65.67       79.67       101.2         9044 H2O2比色法(G       和光純薬       ロシュコハベス8000c7       - 65.37       79.57       100.7         9046 H2O2比色法(G       栄研化学       日立7140-7170       30.00       150.0       30.00       150.0       65.30       79.00       101.0         9047 H2O2比色法(G       ベックマン・コー       ベックマン・コールター       - 64.60       78.90       100.7         9049 UV測定法       シスメックス       日立7140-7170       150.0       150.0       66.60       80.40       101.4	9022	H2O2比色法(G	ミズホメディ	日立7140-7170	30.00	150.0			○ 68.00 ○	82.00 🔾	103.0
9033 H2O2比色法(G       積水メディカル       日本電子JCA-B       40.00       234.0       30.00       117.0       62.00 ○ 75.00       95.00         9035 H2O2比色法(G       積水メディカル       積水とV800       64.10 ○ 77.70 ○ 100.3         9043 H2O2比色法(G       ロシュ・ダイアグ       ロシューバス8000c5       65.67 ○ 79.67 ○ 101.2         9044 H2O2比色法(G       和光純薬       ロシュコーバス8000c7       65.37 ○ 79.57 ○ 100.7         9046 H2O2比色法(G       栄研化学       日立7140-7170       30.00       150.0       30.00       150.0       65.30 ○ 79.00 ○ 101.0         9047 H2O2比色法(G       ベックマン・コー       ベックマン・コールター       64.60 ○ 78.90 ○ 100.7         9049 UV測定法       シスメックス       目立7140-7170       150.0       66.60 ○ 80.40 ○ 101.4	9023	H2O2比色法(G	和光純薬	日立7140-7170					○ 66.00 ○	81.00 🔾	102.0
9035       H2O2比色法(G       積水メディカル       積水EV800       ○ 64.10 ○ 77.70 ○ 100.3         9043       H2O2比色法(G       ロシュ・ダイアグ       ロシュコハス8000c5       ○ 65.67 ○ 79.67 ○ 101.2         9044       H2O2比色法(G       和光純薬       ロシュコハス8000c7       ○ 65.37 ○ 79.57 ○ 100.7         9046       H2O2比色法(G       栄研化学       日立7140-7170       30.00 150.0 30.00 150.0 ○ 65.30 ○ 79.00 ○ 101.0         9047       H2O2比色法(G       ベックマン・コー ペックマン・コールター       ○ 64.60 ○ 78.90 ○ 100.7         9049       UV測定法       シスメックス       目立7140-7170       150.0 ○ 66.60 ○ 80.40 ○ 101.4	9024	H2O2比色法(G	関東化学	日本電子JCA-B	1	150.0		150.0	○ 68.00 ○	83.00 🔾	105.0
9043 H2O2比色法(G       ロシュ・ダイアグ       ロシュコペス8000c5       65.67 (79.67 (101.2)         9044 H2O2比色法(G       和光純薬       ロシュコペス8000c7       65.37 (79.57 (100.7)         9046 H2O2比色法(G       栄研化学       日立7140-7170       30.00 150.0 30.00 150.0 (65.30 (79.00 (101.0))         9047 H2O2比色法(G       ベックマン・コー ペックマン・コールター       (94.60 (78.90 (100.7))         9049 UV測定法       シスメックス       日立7140-7170       150.0 (66.60 (80.40 (101.4))	9033	H2O2比色法(G	積水メディカル	日本電子JCA-B	40.00 2	234.0	30.00	117.0	○ 62.00 ○	75.00	95.00
9044 H2O2比色法(G       和光純薬       ロシュコハス8000c7       65.37 ○ 79.57 ○ 100.7         9046 H2O2比色法(G       栄研化学       日立7140-7170       30.00 150.0 30.00 150.0 65.30 ○ 79.00 ○ 101.0         9047 H2O2比色法(G       ベックマン・コー ペックマン・コールター       ・ベックマン・コールター       64.60 ○ 78.90 ○ 100.7         9049 UV測定法       シスメックス       日立7140-7170       150.0 ○ 66.60 ○ 80.40 ○ 101.4	9035	H2O2比色法(G	積水メディカル	積水EV800					○ 64.10 ○	77.70 🔾	100.3
9046     H2O2比色法(G     栄研化学     日立7140-7170     30.00     150.0     30.00     150.0     65.30 ○ 79.00 ○ 101.0       9047     H2O2比色法(G     ベックマン・コー     ベックマン・コールター     64.60 ○ 78.90 ○ 100.7       9049     UV測定法     シスメックス     日立7140-7170     150.0     66.60 ○ 80.40 ○ 101.4	9043	H2O2比色法(G	ロシュ・ダイアグ	ロシュコハ [*] ス8000c5					○ 65.67 ○	79.67	101.2
9047 H2O2比色法(G       ベックマン・コー ペックマン・コールター       ○ 64.60 ○ 78.90 ○ 100.7         9049 UV測定法       シスメックス       日立7140-7170       150.0       ○ 66.60 ○ 80.40 ○ 101.4	9044	H2O2比色法(G	和光純薬	ロシュコハ、ス8000c7					○ 65.37 ○	79.57	100.7
9049 UV測定法 シスメックス 日立7140-7170 150.0 ○ 66.60 ○ 80.40 ○ 101.4	9046	H2O2比色法(G	栄研化学	目立7140-7170	30.00	150.0	30.00	150.0	○ 65.30 ○	79.00 🔾	101.0
	9047	H2O2比色法(G	ベックマン・コー	ベックマン・コールター					○ 64.60 ○	78.90 🔾	100.7
9050 H2O2比色法(G 和光純薬 シーメンスHCDDim ○ 65.67 ○ 79.00 ○ 100.4	9049	UV測定法	シスメックス	目立7140-7170	1	150.0			○ 66.60 ○	80.40 〇	101.4
	9050	H2O2比色法(G	和光純薬	シーメンスHCDDim					○ 65.67 ○	79.00 🔾	100.4

99 TG(F) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足原生	四条/ //	70交布计	下限	上限	下限	上限	試料01	試料02	試料03
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	60.00	130.0			○ 70.00 ○	86.00 ℂ	110.0
1126	ドライケミストリー法	富士フィルムメ	富士ドライケム700	30.00	149.0	30.00	149.0	○ 75.00 ○	91.00 🗆	116.0
1137	ドライケミストリー法	富士フィルムメ	富士ドライケム400	30.00	149.0	30.00	149.0	○ 72.00 ○	88.00 ℂ	113.0
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	50.00	149.0			○ 75.00 ○	92.00	117.0
1375	ドライケミストリー法	富士フィルムメ	富士ドライケム400	50.00	149.0			○ 66.00 ○	80.00 ℂ	104.0
1523	ドライケミストリー法	富士フィルムメ	富士ドライケム700	40.00	234.0	30.00	117.0	60.00	74.00	96.00
1525	ドライケミストリー法	富士フィルムメ	富士トライケム350	30.00	149.0			○ 75.00 ○	91.00 〇	116.0
1545	ドライケミストリー法	富士フィルムメ	富士ドライケム400	40.00	234.0			○ 71.00 C	89.00 ℂ	113.0
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	40.00	234.0	30.00	117.0	○ 73.00 ○	89.00 ℂ	115.0
1552	ドライケミストリー法	富士フィルムメ	富士ドライケム400	50.00	149.0			○ 73.00 ○	89.00 ℂ	112.0
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	40.00	234.0	30.00	117.0	○ 70.00 ○	86.00 ℂ	111.0
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	40.00	234.0	30.00	117.0	○ 75.00 ○	90.00 🗆	113.0
2012	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	50.00	149.0	50.00	149.0	○ 74.00 ○	90.00 🗆	114.0
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	50.00	149.0			○ 71.00 ○	86.00 ℂ	109.0

134 TG(A1)

施設No.が低い順に並んでいます

9041 トライケミストリー法 アークレイ アークレイスポットケム 59.00 76.00 ○ 98.00

164 TG(A2)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	側足原理			下限 上限 下限 上限 試料01 試料02 試料03
1521 h	「ライケミストリー法	アークレイ	アークレイスホ°ットケム	40.00 234.0 30.00 117.0 $\bigcirc$ 73.00 $\bigcirc$ 87.00 $\bigcirc$ 109.0

#### 194 TG(O)

施設	測定原理	「理 試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武衆/一//	1)32.1111	下限 上限 下限 上限 試料01 試料02 試料03
1075		オーソ・クリニカ	オーソビトロス250_3	40.00 149.0 40.00 149.0 $\bigcirc$ 77.00 $\bigcirc$ 94.00 $\bigcirc$ 120.0
1100		オーソ・クリニカ	オーソビトロス250_3	○ 77.00 ○ 96.00 ○ 121.0
8011		オーソ・クリニカ	オーソビトロス250_3	$30.00  149.0  30.00  149.0 \ \bigcirc \ 76.00 \ \bigcirc \ 94.00 \ \bigcirc \ 121.0$
9040		オーソ・クリニカ	オーソビトロス5600	○ 77.00 ○ 96.00 ○ 122.3

### アルカリ性ホスファターゼ(ALP)

熊本大学医学部附属病院 中央検査部 山内 露子

#### 【参加状况】

参加施設 239 施設 (前回 229 施設)

#### 【測定方法の状況】

- 1. JSCC 標準化対応法は 213 施設(89.1%)、ドライケミストリー法は 25 施設(10.5%)、その他の方法が 1 施設(0.4%)であった。
- 2. JSCC 標準化対応法における検量方法は、酵素キャリブレーターの表示値での仕様が 207 施設、表示値外での使用が 1 施設、JCCLS CRM001 の使用が 2 施設、市販管理血清の使用が 2 施設、実測 K-factor の使用が 0 施設であった。
- 3. 報告単位は、ほぼ全施設で国際単位が採用されていた。
- 4. JCCLS 共用基準範囲(106~322 U/L)は、97 施設(40.6%)で採用されていた。

#### 【測定値の状況】

1. 各試料の目標範囲とその達成率、CV%は下記の通りであった。

試料	目標範囲(U/L)	目標達原	<b>戍率(%)</b>	CV% (3SD 除去後)			
11八个十	口信型团(U/L)	JSCC	ト゛ライ	JSCC	ト゛ライ		
1	369~409	97.6	24.0	1.6	3.9		
2	$312 \sim 345$	97.2	20.0	1.7	4.1		
3	224~249	97.2	12.0	2.1	5.5		

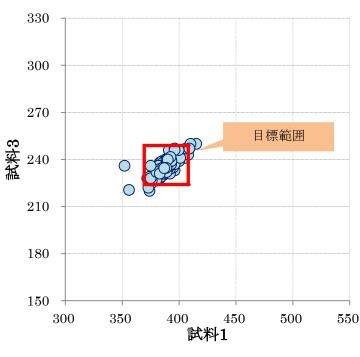



図 1 JSCC 標準化対応法

※ 施設 No.4039 は極端値のためグラフから除外した。

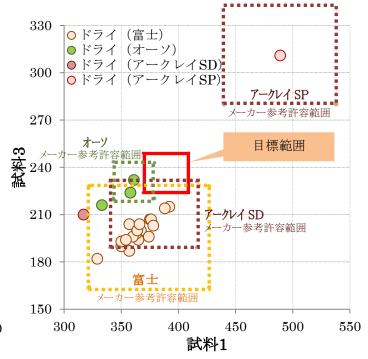



図2 ドライケミストリー法

- 2. JSCC 標準化対応法で目標範囲から大きく外れた施設 No.4039 は、試料 1 の誤記入と考えられる。当日の測定結果が目標範囲を満たしているかレビューを行うこと。
- 3. ドライケミストリー法では、アークレイ社のSDシリーズとSPシリーズで測定値の大きな差がみられた。
- 4. JSCC 標準化対応法のシェア上位 4 社の測定値は下記の通りであった。試料  $1\sim3$  で同様の傾向であったことから、試料 1 の測定値を示す。

平均値を比較すると、 $\underline{n}$ 光<関東化学・ $\underline{LSI}$ < $\underline{v}$ /テストであった。和光と $\underline{v}$ /テストの平均値の差は  $\underline{5}$ .0  $\underline{U}$ /L であった。

試料1	和光	関東化学	シノテスト	LSI
n	71	33	26	16
mean	386.2	389.3	391.2	389.5
SD	6.36	3.10	9.34	7.47
CV%	1.65	0.80	2.39	1.92

#### 【その他】

- 市販管理血清をキャリブレーターとして使用している施設 No.1916 と 1937 は、見直しをお願いしたい。
- 自施設の検量方法を理解できていない施設が散見される。正しい理解をお願いしたい。

22 ALP 施設No.が低い順に並んでいます

施設	INO. WENT PARCE	-ш.го (		男性其	準範囲	七件其	准备田			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
-	D. D. S. S. C. L. C.	即士 // . 兴	E da ADOGDO			1124	71%			-
	EAE緩衝液(JSC	関東化学	目立LABOSPE	106.0	322.0			O 387.0 O		
		LSIメディエンス	目立LABOSPE	115.0	359.0	100.0	200.0	O 395.0 O		
	EAE緩衝液(JSC	積水メディカル	目立LABOSPE	106.0	322.0	100.0	322.0	O 384.0 O		
	EAE緩衝液(JSC	和光純薬	目立LABOSPE	106.0	322.0	115.0	250.0	O 380.8 O		
	EAE緩衝液(JSC	関東化学	東芝TBA-cシリー	115.0	359.0			O 391.0 O		
	EAE緩衝液(JSC EAE緩衝液(JSC	LSIメディエンス	日本電子JCA-B	107.0	339.0			O 380.0 O		
	EAE緩衝液(JSC	関東化学	日本電子JCA-B 日本7140-7170	106.0	322.0	100.0	322.0	O 386.2 O		
	EAE緩衝液(JSC	和光純薬 関東化学	日立7140-7170 日本電子JCA-B	106.0	322.0			<ul><li>○ 381.0 ○</li><li>○ 386.0 ○</li></ul>		
	EAE緩衝液(JSC	関東化学	日本電子JCA-B	106.0	322.0	106.0	222.0	○ 386.0 ○		
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	106.0 104.0	338.0			○ 390.0 ○		
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	106.0	322.0	104.0	550.0	○ 382.0 ○		
	EAE緩衝液(JSC EAE緩衝液(JSC	和光純薬	日立LABOSPE	115.0	359.0			○ 390.0 ○		
	EAE緩衝液(JSC	LSIメディエンス	東芝25FR_Accut	106.0	322.0			○ 387.0 ○		
	EAE緩衝液(JSC	積水メディカル	目立LABOSPE	115.0	359.0			0 394.0 0		
	EAE緩衝液(JSC	LSIメディエンス	日立7140-7170	106.0	322.0	106.0	322 N	O 389.0 O		
	EAE緩衝液(JSC	和光純薬	東芝TBA-cシリー	106.0	322.0	100.0	022.0	O 381.0 O		
	EAE緩衝液(JSC	和光純薬	シーメンスHCDDim	115.0	359.0			O 386.0 O		
	EAE緩衝液(JSC	和光純薬	目立7140-7170	104.0		104.0	338.0	O 389.0 O		
	EAE緩衝液(JSC	和光純薬	日立7140-7170	104.0		104.0		○ 383.0 ○		
	EAE緩衝液(JSC	関東化学	日本電子JCA-B	115.0	359.0	10110	000.0	O 387.0 O		
	EAE緩衝液(JSC	和光純薬	日立LABOSPE	106.0	322.0			O 387.0 O		
	EAE緩衝液(JSC	関東化学	日立7140-7170	106.0	322.0			○ 394.0 ○		
	EAE緩衝液(JSC	和光純薬	日立LABOSPE	106.0	322.0	106.0	322.0	○ 384.0 ○		
	EAE緩衝液(JSC	和光純薬	東芝25FR_Accut	115.0	359.0			○ 375.0 ○		
1049	EAE緩衝液(JSC	和光純薬	ヘ、ックマン・コールター	115.0	359.0			○ 390.0 ○		
	EAE緩衝液(JSC	シノテスト	日本電子JCA-B	106.0	322.0	106.0		○ 385.2 ○		
		シノテスト	日本電子JCA-B	115.0	359.0			○ 383.0 ○		
	EAE緩衝液(JSC	シノテスト	東芝TBA-cシリー	100.0	320.0			○ 391.0 ○		
1055	EAE緩衝液(JSC	和光純薬	シーメンスHCDDim	106.0	322.0			○ 383.0 ○	315.0 🔾	228.0
1056	EAE緩衝液(JSC	シノテスト	日立7140-7170	115.0	359.0	115.0	359.0	○ 383.0 ○	328.0 🔾	238.0
1057	EAE緩衝液(JSC	シノテスト	東京貿易ビオリス5	104.0	338.0			○ 402.0 ○	343.0 🔾	246.0
1058	EAE緩衝液(JSC	LSIメディエンス	日本電子JCA-B	115.0	359.0			○ 381.0 ○	328.0 🔾	236.0
1059	EAE緩衝液(JSC	和光純薬	東京貿易ビオリス2	104.0	338.0	104.0	338.0	○ 388.0 ○	330.0 🔾	235.0
1060	EAE緩衝液(JSC	LSIメディエンス	日本電子JCA-B	104.0	338.0			○ 389.0 ○	332.0 🔾	239.0
1062	EAE緩衝液(JSC	関東化学	目立LABOSPE	106.0	322.0	106.0	322.0	○ 394.0 ○	334.0 〇	239.0
1064	EAE緩衝液(JSC	LSIメディエンス	日本電子JCA-B	115.0	359.0	115.0	359.0	○ 386.0 ○	328.0 🔾	238.0
1072	EAE緩衝液(JSC	積水メディカル	目立LABOSPE	115.0	359.0	115.0	359.0	○ 390.0 ○	332.0 🔾	238.0
1073	EAE緩衝液(JSC	関東化学	目立LABOSPE	115.0	359.0	115.0	359.0	○ 390.0 ○	331.0 🔾	239.0
1074	EAE緩衝液(JSC	和光純薬	東京貿易ビオナリス2	104.0	338.0	104.0	338.0	○ 374.0 ○	312.0 🔾	224.0
1077	EAE緩衝液(JSC	和光純薬	シーメンスHCDDim	115.0	359.0	115.0	359.0	○ 382.0 ○	322.0 🔾	230.0
1081	EAE緩衝液(JSC	和光純薬	東芝TBA-cシリー	106.0	322.0	106.0	322.0	○ 384.0 ○	322.0 🔾	231.0
1084	EAE緩衝液(JSC	和光純薬	東京貿易ビオナリス2	106.0	322.0	106.0	322.0	○ 383.0 ○	325.0 🔾	230.0
1088	EAE緩衝液(JSC	関東化学	日立LABOSPE	115.0	359.0	115.0	359.0	○ 387.0 ○	326.0 🔾	235.0
1089	EAE緩衝液(JSC	デンカ生研	日立7140-7170	106.0	322.0	106.0	322.0	○ 391.4 ○	329.7 🔾	235.5
1090	EAE緩衝液(JSC	デンカ生研	日立7140-7170	106.0	322.0	106.0	322.0	○ 390.0 ○	329.0 🔾	236.0
1093	EAE緩衝液(JSC	関東化学	日本電子JCA-B	113.0	360.0	113.0	360.0	○ 385.0 ○	325.0 🔾	235.0
1094	EAE緩衝液(JSC	関東化学	日本電子JCA-B	115.0	359.0			○ 392.0 ○	331.0 🔾	238.0
1101	EAE緩衝液(JSC	和光純薬	東芝TBA-cシリー	104.0	338.0	104.0	338.0	○ 381.0 ○	323.0 🔾	231.0
	EAE緩衝液(JSC	関東化学	東芝TBA-cシリー	106.0	322.0			○ 388.0 ○		
	EAE緩衝液(JSC	ベックマン・コー	ヘックマン・コールター	104.0	338.0			○ 399.0 ○		
	EAE緩衝液(JSC	シノテスト	東京貿易ビオリス5	115.0	359.0			○ 388.0 ○		
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	115.0	359.0	115.0	359.0	○ 384.0 ○		
	EAE緩衝液(JSC	和光純薬	東芝TBA-cシリー	106.0	322.0			○ 386.0 ○		
	EAE緩衝液(JSC	デンカ生研	東芝25FR_Accut	115.0	359.0			○ 392.0 ○		
	EAE緩衝液(JSC	ベックマン・コー	ヘックマン・コールター	115.0		115.0		○ 393.1 ○		
1123	EAE緩衝液(JSC	和光純薬	シーメンスHCDDim	104.0	338.0	104.0	338.0	356.0	305.1	220.6

22 ALP 施設No.が低い順に並んでいます

施設	INO. WENT PARCE	- <u>L</u> 70 (1 5k)		里性其	準範囲	七件其	淮統田			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
-				1 1933	上版	1 192	工版			
	EAE緩衝液(JSC	<b>で、ソルムナーサ</b>	n lizzaron n					352.0	251.0 🔾	
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	104.0	338.0	100.0	000.0	O 390.0 O		
	EAE緩衝液(JSC	シスメックス	日本電子JCA-B	106.0		106.0	322.0	O 394.0 O		
1129	EAE緩衝液(JSC	ベックマン・コー	ヘー・クラフェールター	104.0	338.0	100.0	200.0	O 395.0 O		
1130	EAE緩衝液(JSC EAE緩衝液(JSC	シノテスト	日本電子JCA-B	106.0	322.0 359.0			O 390.0 O		
	EAE緩衝液(JSC	和光純薬 ベックマン・コー	日立7140-7170 ベックマン・コールター	115.0 115.0	359.0	115.0	559.0	<ul><li>○ 384.0 ○</li><li>○ 392.0 ○</li></ul>		
	EAE緩衝液(JSC	シノテスト	日本電子JCA-B	106.0	322.0			O 387.0 O		
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	106.0	322.0			O 380.9 O		
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	89.00		89.00	313.0	O 388.0 O		
	EAE緩衝液(JSC	ベックマン・コー	ヘックマン・コールター	106.0	322.0	03.00	515.0	O 396.0 O		
	EAE緩衝液(JSC	シノテスト	日本電子JCA-B	106.0	322.0			O 392.0 O		
	EAE緩衝液(JSC	シノテスト	東芝25FR_Accut	106.0	322.0			O 401.0 O		
	EAE緩衝液(JSC	和光純薬	東芝TBA-200F	115.0	359.0	115.0	359.0	○ 376.0 ○		
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	115.0	359.0			○ 386.0 ○		
	EAE緩衝液(JSC	シノテスト	日本電子JCA-B	106.0	322.0	106.0	322.0	○ 385.0 ○		
	EAE緩衝液(JSC	LSIメディエンス	日本電子JCA-B	115.0	359.0			○ 385.0 ○	326.0 🔾	235.0
1325	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	106.0	322.0	106.0	322.0	○ 391.0 ○	329.0 🔾	236.0
1327	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	106.0	322.0	106.0	322.0	○ 389.0 ○	327.0 🔾	232.0
1328	EAE緩衝液(JSC	ベックマン・コー	ヘ・ックマン・コールター	106.0	322.0			○ 405.0 ○	339.0 🔾	241.0
1329	EAE緩衝液(JSC	シスメックス	日本電子JCA-B	106.0	322.0	106.0	322.0	○ 396.0 ○	336.0 〇	239.0
1330	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	115.0	359.0			○ 381.0 ○	322.0 🔾	229.0
1331	EAE緩衝液(JSC	和光純薬	東芝TBA-cシリー	104.0	338.0			○ 387.0 ○	329.0 🔾	235.0
1337	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	106.0	322.0			○ 383.0 ○	321.0 🔾	228.0
1339	EAE緩衝液(JSC	LSIメディエンス	日本電子JCA-B	106.0	322.0			○ 388.0 ○	327.0 🔾	237.0
1341	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	106.0	322.0	106.0	322.0	○ 393.0 ○	331.0 🔾	235.0
1343	EAE緩衝液(JSC	関東化学	目立LABOSPE	106.0	322.0			○ 387.0 ○	328.0 🔾	238.0
1344	EAE緩衝液(JSC	シノテスト	日立7140-7170	106.0	322.0	106.0	322.0	○ 384.0 ○	327.0 🔾	235.0
1346	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	115.0	359.0			○ 374.0 ○	313.0	220.0
	EAE緩衝液(JSC	ロシュ・ダイアグ	ロシュコハ*ス8000c5	106.0	322.0			○ 396.0 ○		
	EAE緩衝液(JSC	和光純薬	東芝TBA-cシリー	104.0	338.0			○ 385.0 ○		
	EAE緩衝液(JSC	ロシュ・ダイアグ	ロシュコハ ス8000c5	106.0	322.0	106.0	322.0	○ 394.0 ○		
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	115.0	359.0			○ 408.0 ○		
	EAE緩衝液(JSC	シノテスト	ヘックマン・コールター	106.0	322.0		322.0	415.0	346.0	250.0
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	115.0	359.0			○ 387.0 ○		
	EAE緩衝液(JSC	和光純薬	東芝TBA-cシリー	106.0	322.0	106.0		O 382.0 O		
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	106.0				O 383.0 O		
	EAE緩衝液(JSC	和光純薬	日立7140-7170	115.0		115.0	359.0	O 400.0 O		
1358 1359	EAE緩衝液(JSC EAE緩衝液(JSC	シノテスト	日本電子JCA-B	106.0 106.0	322.0 322.0	106.0	222.0	<ul><li>○ 392.0 ○</li><li>○ 383.0</li></ul>	226.0 🔾	
	EAE緩衝液(JSC	和光純薬 和光純薬	日本電子JCA-B 日本電子JCA-B	120.0		120.0		○ 384.0 ○		
	EAE緩衝液(JSC	和光純薬	東芝TBA-20-3	106.0	322.0	120.0	310.0	0 384.0 0		
	EAE緩衝液(JSC	関東化学	ベックマン・コールター	115.0	359.0			0 387.0 0		
	EAE緩衝液(JSC	和光純薬	目立7140-7170	106.0		106.0	322.0	O 393.0 O		
	EAE緩衝液(JSC	和光純薬	東芝TBA-cシリー	106.0	322.0	100.0	022.0	O 380.0 O		
	EAE緩衝液(JSC	シノテスト	目立LABOSPE	106.0		106.0	322.0	○ 388.0 ○		
	EAE緩衝液(JSC	シノテスト	東京貿易ビオリス5	106.0	322.0			○ 391.0 ○		
	EAE緩衝液(JSC	和光純薬	日立LABOSPE	106.0	322.0			○ 383.0 ○		
	EAE緩衝液(JSC	和光純薬	東芝25FR_Accut	106.0	322.0			○ 372.0 ○		
	EAE緩衝液(JSC	和光純薬	東芝TBA-cシリー	115.0		115.0	359.0	○ 392.0 ○		
		シノテスト	目立7140-7170	115.0	359.0	115.0	359.0	○ 409.0 ○	337.0 🔾	247.0
1394	EAE緩衝液(JSC	LSIメディエンス	東京貿易ビオナリス5	106.0	322.0			○ 400.0 ○	341.0 🔾	245.0
1396	EAE緩衝液(JSC	和光純薬	シーメンスHCDDim	106.0	322.0	106.0	322.0	○ 373.0 ○	315.0	222.0
1400	EAE緩衝液(JSC	シノテスト	東京貿易ビオナリス2	106.0	322.0	106.0	322.0	○ 396.0 ○	332.0 🔾	240.0
1401	EAE緩衝液(JSC	シーメンス	シーメンスHCDDim	106.0	322.0	106.0	322.0	○ 388.0 ○	332.0 🔾	235.0
1402	EAE緩衝液(JSC	シノテスト	日本電子JCA-B	106.0	322.0			○ 384.0 ○	324.0 🔾	235.0
1403	EAE緩衝液(JSC	セロテック	日本電子JCA-B	106.0	322.0	106.0	322.0	○ 386.0 ○	327.0 🔾	234.0

22 ALP 施設No.が低い順に並んでいます

施設	INO.N PAN PARC	- 並んくく よ)		甲州 甘	準範囲	女性基	淮統田			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
-	DAP經統法/ICC	明 <b>本</b> // A ^A	##TD 4 2 4			1 193				<u> </u>
	EAE緩衝液(JSC	関東化学	東芝TBA-cシリー	115.0	359.0			○ 388.0 ○		
	その他 EAE緩衝液(JSC	和光純薬	セントラル科学Picc 日本電子JCA-B	42.00 106.0	141.0	106.0	322 A	106.0 ○ 385.7 ○	83.00	65.00
	EAE緩衝液(JSC	ベックマン・コー	ヘックマン・コールター	115.0		115.0		○ 384.0 ○		
	EAE緩衝液(JSC	関東化学	目立LABOSPE	115.0		115.0		O 385.0 C		
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	115.0		115.0		○ 387.0 ○		
	EAE緩衝液(JSC	和光純薬	目立LABOSPE	106.0	322.0			○ 382.0 ○		
1506	EAE緩衝液(JSC	関東化学	目立LABOSPE	115.0	359.0	115.0	359.0	○ 393.0 ○	333.0 ○	239.0
1511	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	106.0	322.0			○ 381.0 ○	323.0 🔾	230.0
1512	EAE緩衝液(JSC	和光純薬	日立7140-7170	106.0	322.0	106.0	322.0	○ 390.0 ○	331.0 〇	238.0
1513	EAE緩衝液(JSC	和光純薬	日立LABOSPE	106.0	322.0			○ 384.0 ○	325.0 🔾	232.0
1514	EAE緩衝液(JSC	和光純薬	目立LABOSPE	106.0	322.0	106.0	322.0	○ 382.0 ○	324.0 〇	232.0
	EAE緩衝液(JSC	和光純薬	東京貿易ビオナリス2	106.0	322.0	106.0	322.0	○ 388.0 ○		
	EAE緩衝液(JSC	和光純薬	東芝25FR_Accut	106.0	322.0			○ 388.0 ○		
	EAE緩衝液(JSC	和光純薬	日立7140-7170	106.0		106.0		○ 396.0 ○		
	EAE緩衝液(JSC	和光純薬	目立LABOSPE	115.0		115.0		O 382.0 C		
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	106.0		106.0		O 374.0 C		
	EAE緩衝液(JSC EAE緩衝液(JSC	和光純薬 シスメックス	シーメンスHCDDim 日立7140-7170	115.0 106.0	359.0 322.0	115.0 106.0		○ 384.0 ○ ○ 380.6 ○		
	EAE緩衝液(JSC	和光純薬	シーメンスHCDDim	106.0	322.0	100.0		○ 391.0 ○		
	EAE緩衝液(JSC	積水メディカル	東京貿易ビオナリス2	106.0	322.0			O 396.0 C		
	EAE緩衝液(JSC	19000	日本電子JCA-B	106.0		106.0		○ 385.0 ○		
	EAE緩衝液(JSC	シノテスト	東芝25FR_Accut	115.0	359.0			○ 406.0 ○		
	EAE緩衝液(JSC	関東化学	日立7140-7170	115.0	359.0			○ 391.0 ○		
1543	EAE緩衝液(JSC	シスメックス	東芝TBA-20-3	115.0	359.0	115.0	359.0	○ 384.0 ○	325.0 ○	234.0
1549	EAE緩衝液(JSC	積水メディカル	東京貿易ビオリス2	115.0	359.0			○ 395.0 ○	335.0 ○	239.0
1550	EAE緩衝液(JSC	和光純薬	日立7140-7170	104.0	338.0			○ 386.0 ○	330.0 〇	238.0
1554	EAE緩衝液(JSC	シノテスト	日立7140-7170	115.0	359.0	115.0	359.0	○ 394.0 ○	332.0 🔾	239.0
1558	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	106.0	322.0	106.0	322.0	○ 382.0 ○	322.0 ○	230.0
		シノテスト	日本電子JCA-B	106.0	322.0	106.0		○ 389.0 ○		
	EAE緩衝液(JSC	和光純薬	ベックマン・コールター	115.0	359.0	115.0		○ 392.0 ○		
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	104.0	338.0			○ 390.0 ○		
	EAE緩衝液(JSC	関東化学	目立7600Dモジュ	115.0	359.0			O 389.0 C		
	EAE緩衝液(JSC EAE緩衝液(JSC	和光純薬 関東化学	日立LABOSPE	115.0	359.0			○ 388.0 ○ ○ 386.0 ○		
	EAE緩衝液(JSC	和光純薬	ヘックマン・コールター 日本電子JCA-B	115.0 106.0	359.0 322.0			○ 386.0 ○		
	EAE緩衝液(JSC	関東化学	目立LABOSPE	115.0		115.0		○ 392.0 ○		
	EAE緩衝液(JSC	和光純薬	日立3100	115.0	359.0	110.0	505.0	○ 386.0 ○		
	EAE緩衝液(JSC	関東化学	日立7140-7170	115.0	359.0			O 393.0 C		
	EAE緩衝液(JSC	関東化学	日立7140-7170	115.0	359.0			○ 391.0 ○		
1925	EAE緩衝液(JSC	関東化学	ヘ・ックマン・コールター	110.0	360.0	110.0	360.0	○ 398.0 ○	338.0 ○	244.0
1926	EAE緩衝液(JSC		東芝TBA-200F	110.0	350.0	110.0	350.0	○ 389.0 ○	329.0 🔾	238.0
1928	EAE緩衝液(JSC	関東化学	ヘ、ックマン・コールター	115.0	359.0			○ 389.0 ○	325.0 ○	232.0
1930	EAE緩衝液(JSC	和光純薬	ヘ、ックマン・コールター	115.0	359.0	115.0	359.0	○ 389.0 ○	328.0 🔾	237.0
1931	EAE緩衝液(JSC	和光純薬	ベックマン・コールター	115.0	359.0	115.0	359.0	○ 392.0 ○	328.0 🔾	231.0
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	104.0	338.0			○ 389.0 ○	330.0 ○	235.0
	EAE緩衝液(JSC	和光純薬	ヘックマン・コールター	115.0	359.0			○ 395.0 ○		
	EAE緩衝液(JSC	和光純薬	日立7140-7170	104.0		104.0		○ 390.0 ○		
	EAE緩衝液(JSC	セロテック	日本電子JCA-B	106.0		106.0		O 393.0 C		
	EAE緩衝液(JSC		日本電子JCA-H	106.0		106.0		○ 379.0 C		
	EAE緩衝液(JSC	関東化学	日本電子JCA-B	106.0	322.0			O 391.0 C		
	EAE緩衝液(JSC EAE緩衝液(JSC	関東化学 和光純薬	日立LABOSPE ロシュコハ、ス8000c7	110.0	360.0	106.0		○ 389.0 ○ ○ 380.0 ○		
		和元純 <del>楽</del> シノテスト	日本電子JCA-B	106.0 115.0		115.0		388.0 0		
	EAE緩衝液(JSC		日立7140-7170	115.0		115.0		388.0 0		
	EAE緩衝液(JSC	和光純薬	ヘックマン・コールター	115.0		115.0		O 392.0 C		
	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	106.0		106.0		○ 375.9 ○		
		**	•					_	_	

22 ALP 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基準	準範囲	女性基	準範囲				試料報告値
No	例是水柱	P(**/* //	1)及有此	下限	上限	下限	上限	試料	01	試料02	試料03
3013	EAE緩衝液(JSC	和光純薬	シーメンスHCDDim	115.0	359.0			○ 384	.0 0	327.0 🔾	236.0
3018	EAE緩衝液(JSC	ベックマン・コー	ヘ゛ックマン・コールター	115.0	359.0			○ 394	.0 🔾	332.0 🔾	238.0
3022	EAE緩衝液(JSC	栄研化学	日本電子JCA-B	106.0	322.0	106.0	322.0	○ 394	.9 🔾	334.6 〇	241.8
3027	EAE緩衝液(JSC	関東化学	日立7600Dモシ゛ュ	115.0	359.0			○ 389	.0 🔾	329.0 🔾	236.0
3048	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	106.0	322.0	106.0	322.0	○ 386	.0 🔾	325.0 🔾	232.0
3055	EAE緩衝液(JSC	LSIメディエンス	日本電子JCA-B	106.0	322.0			O 382	.0 🔾	324.0 🔾	236.0
3056	EAE緩衝液(JSC	シスメックス	日本電子JCA-B	106.0	322.0	106.0	322.0	O 400	.0 🔾	337.0 🔾	241.0
3907	EAE緩衝液(JSC	セロテック	日本電子JCA-B	106.0	322.0	16.00	322.0	○ 390	.0 🔾	337.0 🔾	234.0
4002	EAE緩衝液(JSC	栄研化学	日本電子JCA-B	106.0	322.0			O 392	.0 🔾	332.0 🔾	241.0
4039	EAE緩衝液(JSC		東芝25FR_Accut	106.0	350.0	106.0	350.0	36.	0	305.0	223.0
4040	EAE緩衝液(JSC	ベックマン・コー	ヘ゛ックマン・コールター	115.0	359.0			○ 396	.0 🔾	333.0 🔾	237.0
4902	EAE緩衝液(JSC	LSIメディエンス	日立7140-7170	106.0	350.0			410	.0 🔾	344.0	250.0
5003	EAE緩衝液(JSC		日立7140-7170	110.0	380.0	110.0	380.0	O 393	.0 🔾	334.0 〇	239.0
5005	EAE緩衝液(JSC	関東化学	日本電子JCA-B	106.0	322.0			O 392	.0 🔾	331.0 🔾	239.0
5006	EAE緩衝液(JSC	デンカ生研	日本電子JCA-B	106.0	322.0	106.0	322.0	O 401	.0 🔾	338.0 🔾	241.0
5010	EAE緩衝液(JSC	和光純薬	日本電子JCA-B	106.0	322.0	106.0	322.0	O 399	.6 🔾	339.2 🔾	246.0
6006	EAE緩衝液(JSC	シスメックス	東芝25FR_Accut	100.0	350.0			○ 386	.0 🔾	328.0 🔾	233.0
8008	EAE緩衝液(JSC	シスメックス	東芝TBA-200F	106.0	322.0			O 383	.0 0	325.0 🔾	234.0
3015	EAE緩衝液(JSC	シノテスト	目立LABOSPE	115.0	359.0			O 374	.0 0	318.0 〇	229.0
6016	EAE緩衝液(JSC	関東化学	東芝TBA-200F	115.0	359.0	115.0	359.0	O 387	.0 0	327.0 🔾	235.0
7001	EAE緩衝液(JSC	ニットーボー	日本電子JCA-B	130.0	324.0	108.0	358.0	O 391	.0 0	330.0 〇	237.0
7002	EAE緩衝液(JSC	LSIメディエンス	日本電子JCA-B	106.0	322.0			O 393	0 0	334.0 〇	240.0
7007	EAE緩衝液(JSC	関東化学	ヘ゛ックマン・コールター	104.0	338.0	104.0	338.0	○ 386	0 0	327.0 🔾	235.0
7011	EAE緩衝液(JSC	セロテック	東芝TBA-cシリー	130.0	324.0	108.0	358.0	O 387	.0 🔾	326.0 〇	234.0
7025	EAE緩衝液(JSC	ニットーボー	日本電子JCA-B	115.0	359.0			O 375	0 0	319.0 🔾	228.0
7901	EAE緩衝液(JSC	ニットーボー	目立LABOSPE	130.0	324.0	108.0	358.0	O 390	.0 0	330.0 〇	236.0
3004	EAE緩衝液(JSC	積水メディカル	日本電子JCA-B	110.0	355.0			○ 389	.0 🔾	327.0 🔾	232.0
9004	EAE緩衝液(JSC	LSIメディエンス	目立7140-7170					O 389	.0 🔾	329.0 🔾	239.0
9008	EAE緩衝液(JSC	シノテスト	目立7140-7170					O 396	.0 0	339.0 〇	246.0
9009	EAE緩衝液(JSC	LSIメディエンス	目立7140-7170	130.0	500.0			O 390	7 🔾	330.6 〇	237.7
9012	EAE緩衝液(JSC	デンカ生研	目立7140-7170	104.0	338.0	104.0	338.0	O 392	.0 🔾	328.0 〇	236.0
9014	EAE緩衝液(JSC	ニットーボー	目立7140-7170					O 380	.0 0	322.0 🔾	232.0
9022	EAE緩衝液(JSC	ミズホメディ	目立7140-7170	109.0	344.0			O 409	.0	346.0 〇	247.0
9023	EAE緩衝液(JSC	和光純薬	日立7140-7170					O 393	.0 🔾	333.0 🔾	237.0
9024	EAE緩衝液(JSC	関東化学	日本電子JCA-B	115.0	359.0	115.0	359.0	O 390	.0 🔾	330.0 🔾	237.0
9033	EAE緩衝液(JSC	極東製薬	日本電子JCA-B	104.0	338.0			O 375	.0 🔾	323.0 🔾	236.0
9035	EAE緩衝液(JSC	積水メディカル	積水EV800					O 389	.0 🔾	330.0 🔾	240.0
9043	EAE緩衝液(JSC	ロシュ・ダイアグ	ロシュコハ [*] ス8000c5					O 393	.3 🔾	330.6 〇	239.1
	EAE緩衝液(JSC		ロシュコハ [*] ス8000c7					O 392	.5 🔾	333.9 🔾	241.6
	EAE緩衝液(JSC	栄研化学	日立7140-7170	104.0	338.0	104.0				331.0 〇	
	EAE緩衝液(JSC	ベックマン・コー	ヘ゛ックマン・コールター							321.4 〇	
	EAE緩衝液(JSC	シスメックス	日立7140-7170	115.0	359.0					325.0 🔾	
					_				_	_	

100 ALP(F) 施設No.が低い順に並んでいます

施設	测学区理	⇒4-w J. →.	+6K ILI	男性基準領	男性基準範囲 女性基準範囲		<b>試料報告値</b>				
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03	
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	100.0 3	20.0			⊃ 375.0 ⊂	303.0 €	207.0	
1076	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	115.0 3	59.0		(	⊃ 357.0 ⊂	284.0 €	187.0	
1126	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	115.0 3	59.0	115.0	359.0	⊃ 367.0 ⊂	300.0 ⊂	200.0	
1137	ドライケミストリー法	富士フィルムメ	富士ドライケム400	115.0 3	59.0	115.0	359.0	⊃ 350.0 ⊂	283.0 €	190.0	
1326	ドライケミストリー法	富士フィルムメ	富士ドライケム400	104.0 3	38.0	104.0	338.0	⊃ 351.0 ⊂	294.0 €	193.0	
1336	ドライケミストリー法	富士フィルムメ	富士ドライケム700	115.0 3	59.0		(	⊃ 357.0 ⊂	301.0 €	204.0	
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	104.0 3	38.0		(	⊃ 376.0 ⊂	319.0 €	207.0	
1374	ドライケミストリー法	富士フィルムメ	富士ドライケム700	104.0 3	38.0	104.0	338.0	⊃ 350.0 ⊂	295.0 €	193.0	
1375	ドライケミストリー法	富士フィルムメ	富士ドライケム400	104.0 3	38.0		(	⊃ 329.0 ⊂	277.0 €	182.0	
1415	ドライケミストリー法	富士フィルムメ	富士ドライケム700	104.0 3	38.0	104.0	338.0	⊃ 365.0 ⊂	301.0 €	194.0	
1523	ドライケミストリー法	富士フィルムメ	富士ドライケム700	106.0 3	22.0		(	⊃ 363.0 ⊂	297.0 €	198.0	
1525	ドライケミストリー法	富士フィルムメ	富士ドライケム350	115.0 3	59.0		(	⊃ 360.0 ⊂	294.0 €	196.0	
1545	ドライケミストリー法	富士フィルムメ	富士ドライケム400	106.0 3	22.0		(	⊃ 364.0 ⊂	303.0 €	200.0	
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	106.0 3	22.0	106.0	322.0	⊃ 392.0 ⊂	326.0 €	215.0	
1552	ドライケミストリー法	富士フィルムメ	富士ドライケム400	104.0 3	38.0		(	⊃ 354.0 ⊂	286.0 €	194.0	
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	106.0 3	22.0	106.0	322.0	⊃ 388.0 ⊂	324.0 €	214.0	
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	106.0 3	22.0	106.0	322.0	⊃ 366.0 ⊂	313.0 €	204.0	
2012	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	104.0 3	38.0	104.0	338.0	⊃ 378.0 ⊂	309.0 ○	203.0	
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	104.0 3	38.0		(	○ 374.0 ○	312.0 〇	196.0	

135 ALP(A1)

施設No.が低い順に並んでいます

施設 測定原理 試薬メーカー 機器 男性基準範囲 女性基準範囲 試料報告値 下限 上限 下限 上限 試料01 試料02 試料03

9041 ドライケミストリー法 アークレイ アークレイスポットケム ○ 489.0 ○ 406.0 ○ 311.0

165 ALP(A2)

施設	測定原理 試薬メーカー	:J_+_	機器	男性基準	<b>準範囲</b>	女性基準範囲				試料報告値
No No	:原理 武衆	<u> </u>	(残谷)	下限	上限	下限	上限	試料01	試料02	試料03
1521 ドライケジ	ストリー法アーク	'レイ アーク	レイスポ°ットケム	106.0	322.0	106.0	322.0	317.0 🔾	301.0 〇	210.0

#### 195 ALP(O)

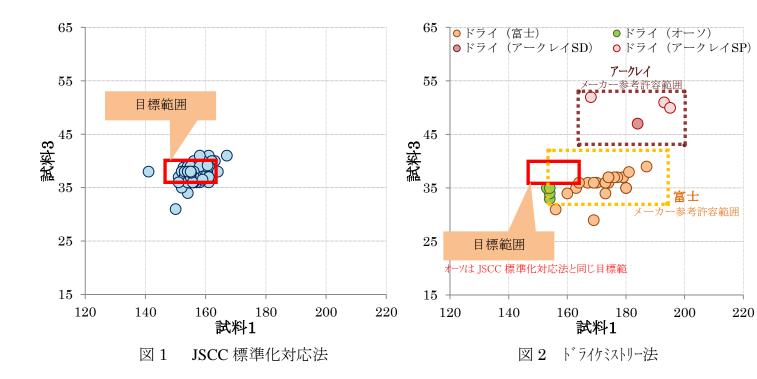
施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武架/一刀一	7交台	下限 上限 下限 上限 試料01 試料02 試料03
1075		オーソ・クリニカ	オーソビトロス250_3	106.0 322.0 106.0 322.0 $\bigcirc$ 358.0 $\bigcirc$ 306.0 $\bigcirc$ 224.0
1100		オーソ・クリニカ	オーソヒトロス250_3	333.0 286.0 216.0
8011		オーソ・クリニカ	オーソヒトロス250_3	110.0 354.0 110.0 354.0 $\bigcirc$ 358.0 $\bigcirc$ 304.0 $\bigcirc$ 224.0
9040		オーソ・クリニカ	オーソビトロス5600	$\bigcirc$ 361.0 $\bigcirc$ 310.0 $\bigcirc$ 232.0

## γ-グルタミルトランスフェラーゼ (γ-GT)

熊本大学医学部附属病院 中央検査部 山内 露子

#### 【参加状況】

参加施設 245 施設 (前回 234 施設)


#### 【測定方法の状況】

- 1. JSCC 標準化対応法は 214 施設(87.3%)、 ト ライケミストリー法は 30 施設(12.2%)、 その他の方法が 1 施設(0.4%)であった。
- 2. JSCC 標準化対応法における検量方法は、酵素キャリブレーターの表示値での使用が 201 施設、表示値外での使用が 1 施設、JCCLS CRM001 の使用が 2 施設、市販管理血清の使用が 2 施設、実測 K-factor の使用が 0 施設であった。
- 3. 報告単位については、ほぼ全施設で国際単位が採用されていた。
- 4. JCCLS 共用基準範囲(男性:13~64 U/L、女性:9~32 U/L)は、97 施設(39.6%)で採用されていた。

#### 【測定値の状況】

1. 各試料の目標範囲とその達成率、CV%は下記の通りであった。

試料	目標範囲(U/L)	目標達用	<b>成率(%)</b>	CV% (3S	D 除去後)
武什	日係軋団(U/L <i>)</i> 	JSCC	ト゛ライ	JSCC	ト゛ライ
1	147~163	98.1	23.3	1.4	6.1
2	102~114	99.1	36.7	1.4	4.7
3	36~40	96.7	50.0	2.2	2.5



2. JSCC 標準化対応法のシェア上位 4 社の測定値は下記の通りであった。試料  $1\sim3$  で同様の傾向であったことから、試料 1 の測定値を示す。 メーカー間差はみとめられなかった。

試料1	和光	関東化学	積水メディカル	シノテスト
n	53	28	28	24
mean	156.1	154.8	156.3	156.0
SD	1.72	1.10	2.42	1.77
CV%	1.10	0.71	1.55	1.14

#### 【その他】

- 市販管理血清をキャリブレーターとして使用している施設 No.1916 と 1937 は、見直しをお願いしたい。
- 自施設の検量方法を理解できていない施設が散見される。正しい理解をお願いしたい。

23 R-GT 施設No.が低い順に並んでいます

施設	INO. W PART	三並んで、		男性基	進節囲	女性基	進節囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1001	γ -グルタミル-3-カ	関東化学	日立LABOSPE	13.00	64.00	9.000	32.00	O 154.0 C	108.0 🔾	38.00
	· γ ーク・ルタミルー3ーカ	和光純薬	日 立LABOSPE	10.00	47.00			○ 158.0 ○		
1004	γ ーク・ルタミルー3ーカ	積水メディカル	日立LABOSPE	13.00	64.00	9.000	32.00	○ 156.0 ○	110.0 🔾	40.00
1006	γ ーク・ルタミルー3ーカ	関東化学	日立LABOSPE	13.00	64.00	9.000	32.00	○ 152.7 ○	106.8 🔾	37.30
1010	γ ーク・ルタミルー3ーカ	関東化学	東芝TBA-cシリー	10.00	47.00	10.00	47.00	○ 156.0 ○	109.0 🔾	37.00
1011	γ ーク・ルタミルー3ーカ	和光純薬	日本電子JCA-B		50.00		50.00	○ 156.0 ○	109.0 🔾	38.00
1012	γ ーク・ルタミルー3ーカ	関東化学	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 152.3 ○	106.0	35.90
1013	γ ーク・ルタミルー3ーカ	和光純薬	日立7140-7170	13.00	64.00	9.000	32.00	○ 156.0 ○	109.0 ○	38.00
	γ ーク・ルタミルー3ーカ	関東化学	日本電子JCA-B					○ 154.0 ○		
1018	γ ーク・ルタミルー3ーカ	関東化学	日本電子JCA-B	13.00	64.00	9.000		O 155.0 C		
	γ - ケ ルタミル-3-カ	積水メディカル	日本電子JCA-B	10.00	79.00			O 156.0 C		
	γ ーク・ルタミルー3ーカ	和光純薬	日本電子JCA-B	13.00	64.00	9.000	32.00	O 157.0 C		
	γ ーク・ルタミルー3ーカ	積水メディカル	目立LABOSPE	10.00	47.00	0.000	22.00	O 154.0 C		
	$\gamma - f' \nu f = \nu - 3 - \pi$ $\gamma - f' \nu f = \nu - 3 - \pi$	デンカ生研 積水メディカル	東芝25FR_Accut 日立LABOSPE	13.00 10.00	64.00 47.00	9.000	32.00	○ 153.0 ○ ○ 152.0 ○		
1028	ν - ケ ルタミル - 3 - カ	和光純薬	日立7140-7170	13.00	64.00	9 000	32.00	0 154.0 0		
	γ - ク [*] ルタミル-3-カ	和光純薬	東芝TBA-cシリー	13.00	64.00			0 156.0 0		
1033	γ -ク*ルタミル-3-カ	積水メディカル	目立7140-7170	10.00	79.00	0.000		0 154.0 0		
	γ -ク ルタミル-3-カ	和光純薬	目立7140-7170		79.00			O 156.0 C		
	· γ -ク˙ルタミル-3-カ	関東化学	日本電子JCA-B	10.00	47.00			○ 154.0 ○		
1038	γ ーク・ルタミルー3ーカ	和光純薬	日立LABOSPE	13.00	64.00	9.000	32.00	○ 156.0 ○	111.0 🔾	39.00
1039	γ ーク・ルタミルー3ーカ	関東化学	目立7140-7170	13.00	64.00	9.000	32.00	○ 156.0 ○	109.0 🔾	38.00
1040	γ ーク・ルタミルー3ーカ	和光純薬	日立LABOSPE	13.00	64.00	9.000	32.00	○ 154.0 ○	108.0 🔾	37.00
1046	γ ーク・ルタミルー3ーカ	ミズホメディ	東芝25FR_Accut	10.00	47.00	10.00	47.00	○ 154.0 ○	108.0 🔾	38.00
1050	γ ーク・ルタミルー3ーカ	シノテスト	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 155.7 ○	107.6 🔾	37.90
1051	γ ーク・ルタミルー3ーカ	シノテスト	日本電子JCA-B		70.00		30.00	○ 155.0 ○	109.0 🔾	38.00
	γ ーク・ルタミルー3ーカ	関東化学	東芝TBA-cシリー	15.00	70.00			○ 155.0 ○		
1055	γ - ケ ルタミル-3-カ	シーメンス	シーメンスHCDDim	13.00	64.00			O 161.0 C		41.00
1056	γ - ケ ルタミル-3-カ	シノテスト	目立7140-7170	10.00	47.00	10.00		O 157.0 C		
	γ ーク [*] ルタミルー3ーカ	シノテスト	東京貿易ビオリス5	10.00	79.00		48.00	O 155.0 C		
1058 1059	$\gamma - f' h g \in h - 3 - h$ $\gamma - f' h g \in h - 3 - h$	LSIメディエンス 積水メディカル	日本電子JCA-B 東京貿易ピオーリス2	10.00	47.00 79.00		19.00	○ 154.0 ○ ○ 156.0 ○		
1060	y ーク ルタミルー3ーカ	LSIメディエンス	日本電子JCA-B		79.00			O 155.0 C		
	γ -ク ルタミル-3-カ	和光純薬	目立LABOSPE	13.00	64.00	9.000		0 157.0 0		
	γ -ク ルタミル-3-カ	LSIメディエンス	日本電子JCA-B		60.00			○ 153.0 ○		
1072	· γ -ク˙ルタミル-3-カ	積水メディカル	日立LABOSPE	10.00	47.00	10.00	47.00	○ 154.0 ○	107.0 🔾	37.00
1073	γ ーク・ルタミルー3ーカ	関東化学	日立LABOSPE	10.00	47.00	10.00	47.00	○ 154.0 ○	107.0 🔾	36.00
1074	γ ーク・ルタミルー3ーカ	積水メディカル	東京貿易ビオナリス2		79.00		48.00	○ 150.0 ○	103.0	31.00
1077	γ ーク・ルタミルー3ーカ	シーメンス	シーメンスHCDDim		70.00		30.00	○ 159.0 ○	113.0 🔾	38.00
1081	γ ーク・ルタミルー3ーカ	和光純薬	東芝TBA-cシリー	13.00	64.00	9.000	32.00	○ 155.0 ○	108.0 🔾	38.00
1084	γ ーク・ルタミルー3ーカ	和光純薬	東京貿易ビオリス2	13.00	64.00	9.000	32.00	○ 158.0 ○	110.0 〇	38.00
	γ -ク ルタミル-3-カ	関東化学	日立LABOSPE	10.00	47.00			○ 156.0 ○		
	γ -ケ ルタミル-3-カ	デンカ生研	日立7140-7170	13.00	64.00			○ 154.0 ○		
	γ ーク・ルタミルー3ーカ	デンカ生研	日立7140-7170	13.00	64.00			O 152.0 C		
	γ ーク・ルタミルー3ーカ	関東化学	日本電子JCA-B	8.000		7.000	38.00	O 157.0 C		
	γ ーク・ルタミルー3ーカ	関東化学	日本電子JCA-B	10.00	47.00	16.00	72.00	O 154.0 C		
	$\gamma - f' \mu g \in \mu - 3 - \pi$ $\gamma - f' \mu g \in \mu - 3 - \pi$	積水メディカル 関東化学	東芝TBA-cシリー 東芝TBA-cシリー	16.00 13.00	73.00 64.00			○ 155.0 ○ ○ 155.0 ○		
	γ - ケ ルタミル-3-カ γ - ケ ルタミル-3-カ	対水10子   ベックマン・コー	ペックマン・コールター	10.00	79.00	3.000		0 160.0 0		
	y ーク ルタミルー3ーカ	シノテスト	東京貿易ビオリス5		70.00			0 155.0 0		
	γ - ク ˙ ルタミル-3-カ	和光純薬	日本電子JCA-B		70.00			O 156.0 C		
	γ -ク ルタミル-3-カ	和光純薬	東芝TBA-cシリー	13.00	64.00	9.000		0 157.0 0		
	γ ーク・ルタミルー3ーカ	デンカ生研	東芝25FR_Accut	10.00	47.00			O 151.0 C		
	· γ -ク*ルタミル-3-カ	ベックマン・コー	ヘックマン・コールター		70.00			○ 161.9 ○		
1123	γ ーク・ルタミルー3ーカ	シーメンス	シーメンスHCDDim		79.00		79.00	○ 155.6 ○	108.8 🔾	38.00
1124	γ ーク・ルタミルー3ーカ							141.0	82.00 🔾	38.00
1127	γ ーク・ルタミルー3ーカ	積水メディカル	日本電子JCA-B		79.00		48.00	○ 157.0 ○	110.0 🔾	38.00

23 R-GT 施設No.が低い順に並んでいます

施設	TOTAL PER PRES			男性基	準範囲	女性基	準範囲		試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01 試料02	試料03
1128	γ -ク*ルタミル-3-カ	シスメックス	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 156.0 ○ 109.0 ○	38.00
1129	γ ーク・ルタミルー3ーカ	ベックマン・コー	ヘックマン・コールター		79.00		48.00	○ 163.0 ○ 114.0 ○	40.00
1130	γ ーク・ルタミルー3ーカ	積水メディカル	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 153.0 ○ 107.0 ○	37.00
1134	γ ーク・ルタミルー3ーカ	積水メディカル	日立7140-7170	10.00	47.00	10.00	47.00	○ 156.0 ○ 109.0 ○	38.00
	γ ーク・ルタミルー3ーカ	ベックマン・コー	ヘ、ックマン・コールター	10.00	47.00			○ 161.0 ○ 111.0 ○	
	γ ーク・ルタミルー3ーカ	シノテスト	日本電子JCA-B	13.00	64.00			O 155.0 O 108.0 C	
	γ - ク*ルタミル-3-カ	和光純薬	n læzvak n	13.00	64.00	9.000		O 152.6 O 104.5 C	
	γ - ク ルタミル-3-カ	和光純薬	日本電子JCA-B	10.00	50.00	0.000		0 156.0 0 109.0 0	
	γ ーク・ルタミルー3ーカ	ベックマン・コー シノテスト	ヘックマン・コールター	13.00	64.00			0 159.0 0 110.0 0	
	$\gamma - f' h \beta \xi h - 3 - h$ $\gamma - f' h \beta \xi h - 3 - h$	和光純薬	日本電子JCA-B 東芝25FR_Accut	13.00 13.00	64.00 64.00			○ 155.0 ○ 109.0 ○ ○ 160.0 ○ 111.0 ○	
	γ - ク [*] ルタミル - 3 - カ	和光純薬	東芝TBA-200F	10.00		10.00		○ 156.0 ○ 109.0 ○	
	γ - ケ ルタミル-3-カ	和光純薬	日本電子JCA-B	10.00	47.00	10.00	11.00	○ 157.0 ○ 109.0 ○	
	γ -ク*ルタミル-3-カ	<b>栄研化学</b>	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 155.0 ○ 109.0 ○	
	γ -ク*ルタミル-3-カ	LSIメディエンス	日本電子JCA-B	10.00	60.00			O 155.0 O 108.0 C	
	· γ -ク*ルタミル-3-カ	積水メディカル	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 156.0 ○ 110.0 ○	
1327	γ ーク・ルタミルー3ーカ	和光純薬	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 157.0 ○ 109.0 ○	38.00
1328	γ ーク・ルタミルー3ーカ	ベックマン・コー	ヘ゛ックマン・コールター	13.00	64.00	9.000	32.00	○ 160.0 ○ 111.0 ○	37.00
1329	γ ーク・ルタミルー3ーカ	和光純薬	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 158.0 ○ 111.0 ○	39.00
1330	γ ーク・ルタミルー3ーカ	和光純薬	日本電子JCA-B	10.00	47.00			○ 154.0 ○ 108.0 ○	38.00
1331	γ ーク・ルタミルー3ーカ	積水メディカル	東芝TBA-cシリー	16.00	73.00			$\bigcirc$ 155.0 $\bigcirc$ 110.0 $\bigcirc$	38.00
1337	γ ーク・ルタミルー3ーカ	和光純薬	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 154.0 ○ 108.0 ○	37.00
1339	γ ーク・ルタミルー3ーカ	LSIメディエンス	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 156.0 ○ 109.0 ○	39.00
1341	γ -ク・ルタミル-3-カ	和光純薬	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 155.0 ○ 109.0 ○	38.00
	γ ーク・ルタミルー3ーカ	積水メディカル	日本電子JCA-B		79.00			○ 156.0 ○ 112.0 ○	
	γ ーク・ルタミルー3ーカ	関東化学	日立LABOSPE	13.00	64.00			○ 154.0 ○ 108.0 ○	
	γ - ク * ルタミル-3-カ	シノテスト	日立7140-7170	13.00	64.00	9.000	32.00	O 156.0 O 110.0 C	
	γ - ク*ルタミル-3-カ	積水メディカル	日本電子JCA-B	10.00	60.00			O 156.0 O 109.0 C	
	γ - ク ルタミル-3-カ	(本人) ごいよい	ロシュコハ、ス8000c5	13.00	64.00			0 160.0 0 109.0 0	
	γ ーク・ルタミルー3ーカ	積水メディカル	東芝TBA-cシリー	16.00		16.00		0 155.0 0 108.0 0	
	γ ーク [*] ルタミルー3ーカ	ロシュ・ダイアグ 積水メディカル	ロシュコハ、ス8000c5	13.00 10.00	64.00 47.00	9.000	32.00	0 158.0 0 109.0 0	
	$\gamma - f' h \beta \xi h - 3 - h$ $\gamma - f' h \beta \xi h - 3 - h$	(根外/) イルル シノテスト	日本電子JCA-B ベックマン・コールター	13.00	64.00	9 000	32.00	○ 158.0 ○ 111.0 ○ ○ 160.0 ○ 111.0 ○	
	γ - ク [*] ルタミル - 3 - カ	和光純薬	日本電子JCA-B	10.00	47.00			○ 158.0 ○ 110.0 ○	
	γ -ク*ルタミル-3-カ	和光純薬	東芝TBA-cシリー	13.00	64.00			O 158.0 O 110.0 C	
	γ -ク*ルタミル-3-カ	和光純薬	日本電子JCA-B	13.00	64.00			O 154.0 O 108.0 C	
	· γ -ク*ルタミル-3-カ	和光純薬	日立7140-7170	10.00	47.00			○ 159.0 ○ 111.0 ○	
1358	γ ーク・ルタミルー3ーカ	シノテスト	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 157.1 ○ 110.0 ○	38.50
1359	γ ーク・ルタミルー3ーカ	積水メディカル	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 157.0 ○ 110.0 ○	37.00
1360	γ ーク・ルタミルー3ーカ	和光純薬	日本電子JCA-B		50.00		50.00	○ 156.0 ○ 109.0 ○	38.00
1361	γ ーク・ルタミルー3ーカ	和光純薬	東芝TBA-20-3	13.00	64.00	9.000	32.00	○ 154.0 ○ 108.0	34.00
1362	γ ーク・ルタミルー3ーカ	シスメックス	ヘックマン・コールター	10.00	47.00			$\bigcirc$ 152.0 $\bigcirc$ 105.0 $\bigcirc$	38.00
1365	γ ーク・ルタミルー3ーカ	和光純薬	日立7140-7170	13.00	64.00	9.000	32.00	○ 155.0 ○ 109.0 ○	38.00
	γ -ク*ルタミル-3-カ	和光純薬	東芝TBA-cシリー	13.00	64.00			○ 156.0 ○ 111.0 ○	
	γ ーク・ルタミルー3ーカ	シノテスト	日立LABOSPE	13.00	64.00			○ 157.0 ○ 110.0 ○	
	γ ーク・ルタミルー3ーカ	シノテスト	東京貿易ビオปス5	13.00	64.00			O 153.0 O 107.0 C	
	γ - ク*ルタミル-3-カ	和光純薬	日立LABOSPE	13.00	64.00			O 157.0 O 110.0 C	
	γ -ケ ルタミル-3-カ	和光純薬	東芝25FR_Accut	13.00	64.00			O 156.0 O 109.0 C	
	γ ーク [*] ルタミルー3ーカ	積水メディカル	東芝TBA-cシリー	16.00	73.00		73.00	167.0 117.0	41.00
	γ ーク [*] ルタミルー3ーカ	シノテスト	日立7140-7170 東方智見どまり25	10.00	47.00 64.00			O 158.0 O 110.0 C	
	γ ーク [*] ルタミルー3ーカ	協和メデックス シーメンス	東京貿易ビオリス5	13.00	64.00			O 157.0 O 107.0 C	
	$\gamma - f' h \beta \xi h - 3 - h$ $\gamma - f' h \beta \xi h - 3 - h$	シノテスト	シーメンスHCDDim 東京貿易ビオナリス2	13.00 13.00	64.00 64.00			○ 159.0 ○ 112.0 ○ ○ 156.0 ○ 110.0 ○	
	γ - ク ルタミル-3- カ γ - ク ルタミル-3- カ	シーメンス	来京貝多に4リヘ2 シーメンスHCDDim	13.00	64.00			○ 162.0 ○ 113.0 ○	
	y - ク・ルクミル - 3 - カ y - ク・ルタミル - 3 - カ	シノテスト	日本電子JCA-B	13.00	64.00			○ 153.0 ○ 107.0 ○	
	γ - ク [*] ルタミル - 3 - カ	セロテック	日本電子JCA-B	13.00		9.000		○ 153.0 ○ 107.0 ○ ○ 153.0 ○ 107.0 ○	
	γ - ケ ルタミル-3-カ	関東化学	東芝TBA-cシリー	10.00	47.00		00	○ 155.0 ○ 108.0 ○	
			•					0	

23 R-GT 施設No.が低い順に並んでいます

施設	INO.W PENT PIRTO			男性基準	準範囲	女性基準	<b>準範囲</b>			試料報告値	
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03	
1405	γ ーク・ルタミルー3ーカ	関東化学	東京貿易ビオปス1		79.00		48.00	○ 153.0 ○	109.0 〇	37.00	_
1407	その他		セントラル科学Picc	5.000	65.00			140.0	97.00	34.00	
1411	γ ーク・ルタミルー3ーカ	和光純薬	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 154.6 ○	107.7 🔾	37.60	
1419	γ ーク・ルタミルー3ーカ	ベックマン・コー	ヘ゛ックマン・コールター	10.00	47.00	10.00	47.00	○ 158.0 ○	108.0 🔾	36.00	
1501	γ ーク・ルタミルー3ーカ	関東化学	日立LABOSPE	10.00	47.00	10.00	47.00	○ 155.0 ○	108.0 🔾	38.00	
	γ ーク・ルタミルー3ーカ	積水メディカル	日本電子JCA-B	10.00	47.00			○ 156.0 ○			
	γ - ク*ルタミル-3-カ	FF = 71. 22	日立LABOSPE	13.00	64.00	9.000		0 156.0 0			
	$\gamma - f' h \beta \xi h - 3 - h$ $\gamma - f' h \beta \xi h - 3 - h$	関東化学	日立LABOSPE	12.00	70.00	0.000		0 155.0 0			
	y - ク ルクミル-3-カ y - ク ルタミル-3-カ	積水メディカル 積水メディカル	日本電子JCA-B 日立7140-7170	13.00 13.00	64.00 64.00			○ 156.0 ○ ○ ○ 157.0 ○			
	γ - ク*ルタミル-3-カ	シノテスト	目立LABOSPE	13.00	64.00			0 155.0 0			
	<ul><li>γ -ク*ルタミル-3-カ</li></ul>	和光純薬	目立LABOSPE	13.00	64.00			O 154.0 O			
	· γ -ク˙ルタミル-3-カ	和光純薬	東京貿易ビオナリス2	13.00	64.00	9.000		○ 159.0 ○			
1519	γ -ク*ルタミル-3-カ	和光純薬	東芝25FR_Accut	13.00	64.00	9.000	32.00	○ 160.0 ○	111.0 🔾	39.00	
1528	γ ーク・ルタミルー3ーカ	和光純薬	日立7140-7170	13.00	64.00	9.000	32.00	○ 157.0 ○	110.0 🔾	39.00	
1529	γ ーク・ルタミルー3ーカ	和光純薬	目立LABOSPE	10.00	47.00	10.00	47.00	○ 156.0 ○	110.0 🔾	39.00	
1530	γ ーク・ルタミルー3ーカ	和光純薬		13.00	64.00	9.000	32.00	○ 153.0 ○	106.0 🔾	38.00	
	γ -ク*ルタミル-3-カ	シーメンス	シーメンスHCDDim	10.00	47.00			0 161.1 0			
	γ -ケ ルタミル-3-カ	シスメックス	目立7140-7170	13.00	64.00			0 156.4 0			
1533 1534	$\gamma - f' h g = h - 3 - h$ $\gamma - f' h g = h - 3 - h$	シーメンス 和光純薬	シーメンスHCDDim 東京貿易ビオリス2	13.00 13.00	64.00 64.00	9.000		○ 159.0 ○ ○ 158.0 ○			
1534	y - ク ルクミル-3-カ y - ク ルタミル-3-カ	和ル純条 積水メディカル	東京貿易ビオリス2	13.00		9.000		0 158.0 0		41.00	
1540	γ - ク [*] ルタミル-3-カ	LSIメディエンス	日本電子JCA-B	13.00	64.00			0 155.0 0			
	γ -ク*ルタミル-3-カ	シノテスト	東芝25FR_Accut	10.00	47.00	0.000	02.00	0 159.0 0			
	· γ -ク˙ルタミル-3-カ	関東化学	日立7140-7170		70.00		30.00	○ 156.0 ○			
1543	γ -ク*ルタミル-3-カ	シスメックス	東芝TBA-20-3	10.00	47.00	10.00	47.00	○ 153.0 ○	108.0 🔾	38.00	
1549	γ ーク・ルタミルー3ーカ	積水メディカル	東京貿易ビオナリス2	10.00	47.00			○ 157.0 ○	109.0 🔾	36.00	
1550	γ ーク・ルタミルー3ーカ	積水メディカル	日立7140-7170		79.00		48.00	○ 154.0 ○	109.0 🔾	38.00	
	γ ーク・ルタミルー3ーカ	シノテスト		10.00	63.00			○ 158.0 ○			
	γ - ク*ルタミル-3-カ	和光純薬	日本電子JCA-B	13.00	64.00			O 153.0 O			
1562	γ - ケ ルタミル-3-カ	シノテスト	日本電子JCA-B	13.00	64.00			0 155.0 0			
	$\gamma - f' h \beta \xi h - 3 - h$ $\gamma - f' h \beta \xi h - 3 - h$	和光純薬 積水メディカル	ベックマン・コールター 日本電子JCA-B	10.00	47.00 79.00	10.00		○ 155.0 ○ ○ 156.0 ○			
	y - ク・ルクミル - 3 - カ y - ク・ルタミル - 3 - カ	関東化学	日立7600Dモジュ		70.00		40.00	0 155.0 0			
	γ -ク*ルタミル-3-カ	和光純薬	目立LABOSPE	10.00	47.00			0 157.0 0			
	· γ -ク˙ルタミル-3-カ	シスメックス	ヘ゛ックマン・コールター	10.00	47.00			○ 154.0 ○	107.0 🔾	37.00	
1916	γ -ク*ルタミル-3-カ	和光純薬	日本電子JCA-B	13.00	64.00	9.000	32.00	○ 158.0 ○	111.0 🔾	39.00	
1917	γ ーク・ルタミルー3ーカ	関東化学	目立LABOSPE	10.00	47.00	10.00	47.00	○ 155.0 ○	108.0 🔾	38.00	
1920	γ ーク・ルタミルー3ーカ	和光純薬	日立3100	10.00	47.00			○ 155.0 ○	109.0 🔾	38.00	
	γ ーク・ルタミルー3ーカ	関東化学	目立7140-7170		70.00			○ 156.0 ○			
	γ ーク・ルタミルー3ーカ	関東化学	日立7140-7170		70.00			0 156.0 0			
	$\gamma - f' h \beta \xi h - 3 - h$ $\gamma - f' h \beta \xi h - 3 - h$	関東化学 LSIメディエンス	ベックマン・コールター 東芝TBA-200F		75.00 70.00			○ 153.0 ○ ○ 155.0 ○			
	y - ク・ルクミル - 3 - カ y - ク・ルタミル - 3 - カ	関東化学	ベックマン・コールター		70.00			0 154.0 0			
	γ - ク*ルタミル-3-カ	和光純薬	ベックマン・コールター	10.00	47.00	10.00		0 156.0 0			
	<ul><li>γ -ク*ルタミル-3-カ</li></ul>	和光純薬	ヘックマン・コールター		47.00			○ 156.0 ○			
1932	γ ーク・ルタミルー3ーカ	積水メディカル	日本電子JCA-B		79.00			○ 157.0 ○	109.0 🔾	38.00	
1934	γ -ク*ルタミル-3-カ	和光純薬	ヘ゛ックマン・コールター	10.00	47.00			○ 157.0 ○	110.0 〇	38.00	
1935	γ ーク・ルタミルー3ーカ	積水メディカル	目立7140-7170		79.00		48.00	○ 156.0 ○	109.0 🔾	38.00	
	γ ーク・ルタミルー3ーカ	セロテック	日本電子JCA-B		47.00			○ 158.0 ○			
	γ -ケ ルタミル-3-カ	シノテスト	日本電子JCA-H	10.00	47.00			O 157.0 O			
	γ -ケ ルタミル-3-カ	関東化学	日本電子JCA-B	13.00	64.00	9.000	32.00	0 156.0 0			
	γ ーク [*] ルタミルー3ーカ	関東化学和光純素	目立LABOSPE	10.00	50.00	0.000	29.00	O 155.0 O			
	$\gamma - f' h \beta \xi h - 3 - h$ $\gamma - f' h \beta \xi h - 3 - h$	和光純薬 シノテスト	ロシュコハ、ス8000c7 日本電子JCA-B	13.00	64.00 50.00	5.000		○ 157.0 ○ ○ 158.0 ○			
	y - ク・ルクミル - 3 - カ y - ク・ルタミル - 3 - カ	シノテスト	日立7140-7170		70.00			0 155.0 0			
	γ -ク*ルタミル-3-カ	和光純薬	ベックマン・コールター	10.00	47.00	10.00		0 156.0 0			

23 R-GT 施設No.が低い順に並んでいます

設	測定原理	試薬メーカー	機器	男性基準範		女性基準		→ b./~!	Thule'	試料報告値
No				下限 上	.限	下限	上限	試料01	試料02	試料03
001	γ ーク・ルタミルー3ーカ	和光純薬	日本電子JCA-B	13.00 64	.00	9.000	32.00	○ 153.7 ○	108.0 ○	37.80
013	γ ーク・ルタミルー3ーカ	シーメンス	シーメンスHCDDim	70	.00		30.00	○ 155.0 ○	109.0 ○	39.00
018	γ ーク・ルタミルー3ーカ	ベックマン・コー	ベックマン・コールター	10.00 47	.00			○ 161.0 ○	111.0 🗆	37.00
022	γ ーク・ルタミルー3ーカ	和光純薬	日本電子JCA-B	13.00 64	.00	9.000	32.00	○ 154.7 ○	108.5 ○	38.20
027	γ ーク・ルタミルー3ーカ	関東化学	目立7600Dモシ [*] ュ	70	.00			○ 155.0 ○	108.0 €	37.00
048	γ ーク・ルタミルー3ーカ	和光純薬	日本電子JCA-B	13.00 64	.00	9.000	32.00	○ 154.0 ○	109.0 ○	39.00
055	γ ーク・ルタミルー3ーカ	協和メデックス	日本電子JCA-B	13.00 64	.00	9.000	32.00	○ 157.0 ○	109.0 ○	38.00
056	γ ーク・ルタミルー3ーカ	シスメックス	日本電子JCA-B	13.00 64	.00	9.000	32.00	○ 157.0 ○	111.0 🗆	39.00
907	γ ーク・ルタミルー3ーカ	セロテック	日本電子JCA-B	13.00 64	.00	13.00	32.00	○ 156.0 ○	109.0 ○	37.00
002	γ ーク・ルタミルー3ーカ	栄研化学	日本電子JCA-B	13.00 64	.00	9.000	32.00	○ 153.0 ○	107.0 €	38.00
039	γ ーク・ルタミルー3ーカ		東芝25FR_Accut	12.00 47	.00	9.000	30.00	○ 156.0 ○	109.0 ○	36.00
040	γ ーク・ルタミルー3ーカ	ベックマン・コー	ヘ゛ックマン・コールター	70	.00		30.00	164.0 ⊂	112.0 🗆	38.00
902	γ ーク・ルタミルー3ーカ	ニットーボー	日立7140-7170	9.000 47	.00			○ 160.0 ○	112.0 C	39.00
003	γ ーク・ルタミルー3ーカ		日立7140-7170	9.000 67	.00	9.000	67.00	○ 155.0 ○	108.0 €	37.00
005	γ ーク・ルタミルー3ーカ	関東化学	日本電子JCA-B	13.00 64	.00	9.000	32.00	○ 155.0 ○	108.0 🗆	38.00
006	γ ーク・ルタミルー3ーカ	LSIメディエンス	日本電子JCA-B	13.00 64	.00	9.000	32.00	○ 154.6 ○	108.8 🗆	37.80
010	γ ーク・ルタミルー3ーカ	積水メディカル	日本電子JCA-B	13.00 64	.00	9.000	32.00	○ 156.0 ○	109.0 🗆	38.20
006	γ ーク・ルタミルー3ーカ	シスメックス	東芝25FR_Accut	60	.00			○ 152.0 ○	106.0	35.00
800	γ ーク・ルタミルー3ーカ	積水メディカル	東芝TBA-200F	13.00 64	.00	9.000	32.00	○ 157.0 ○	109.0 ℂ	37.00
015	γ ーク・ルタミルー3ーカ	協和メデックス	目立LABOSPE	10.00 50	.00	9.000	32.00	○ 154.0 ○	108.0 €	38.00
016	γ ーク・ルタミルー3ーカ	関東化学	東芝TBA-200F	10.00 47	.00	10.00	47.00	○ 154.0 ○	108.0 €	36.00
001	γ ーク・ルタミルー3ーカ	ニットーボー	日本電子JCA-B	12.00 82	.00	8.000	37.00	○ 157.0 ○	110.0 ℂ	39.00
002	γ ーク・ルタミルー3ーカ	シノテスト	日本電子JCA-B	13.00 64	.00	9.000	32.00	○ 154.0 ○	109.0 ℂ	38.00
007	γ ーク・ルタミルー3ーカ	和光純薬	ヘ゛ックマン・コールター	12.00 82	.00	8.000	37.00	○ 157.0 ○	110.0 🗆	39.00
011	γ ーク・ルタミルー3ーカ		東芝TBA-cシリー	13.00 64	.00	9.000	32.00	○ 155.0 ○	109.0 ℂ	38.00
025	γ ーク・ルタミルー3ーカ	ニットーボー	日本電子JCA-B	12.00 82	.00	8.000	37.00	○ 155.0 ○	109.0 ℂ	38.00
901	γ ーク・ルタミルー3ーカ	ニットーボー	目立LABOSPE	12.00 82	.00	8.000	37.00	○ 155.0 ○	109.0 ℂ	39.00
004	γ ーク・ルタミルー3ーカ	極東製薬	日本電子JCA-B	10.00 65	.00	7.000	45.00	○ 155.0 ○	109.0 ℂ	38.00
011	ト・ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	86	.00		48.00	○ 153.0 ○	106.0	35.00
004	γ ーク・ルタミルー3ーカ	協和メデックス	目立7140-7170					○ 154.0 ○	108.0 €	38.00
800	γ ーク・ルタミルー3ーカ	シノテスト	目立7140-7170					○ 155.0 ○	108.0 €	38.00
009	γ ーク・ルタミルー3ーカ	LSIメディエンス	目立7140-7170	16.00 84	.00	12.00	48.00	○ 153.9 ○	107.3 €	36.00
012	γ ーク・ルタミルー3ーカ	デンカ生研	目立7140-7170	9.000 40	.00	9.000	35.00	○ 151.0 ○	105.0 €	36.00
014	γ ーク・ルタミルー3ーカ	ニットーボー	目立7140-7170					○ 155.0 ○	109.0 ℂ	39.00
022	γ ーク・ルタミルー3ーカ	ミズホメディ	目立7140-7170	10.00 47	.00			○ 158.0 ○	110.0 🗆	39.00
023	γ ーク・ルタミルー3ーカ	和光純薬	目立7140-7170					○ 156.0 ○	110.0 🗆	38.00
024	γ ーク・ルタミルー3ーカ	関東化学	日本電子JCA-B	10.00 47	.00	10.00	47.00	○ 156.0 ○	109.0 🗆	37.00
033	γ ーク・ルタミルー3ーカ	極東製薬	日本電子JCA-B	11.00 64	.00	8.000	45.00	○ 155.0 ○	109.0 🗆	38.00
	· γ ーク・ルタミルー3ーカ	積水メディカル	積水EV800					○ 155.0 ○		
	ト [・] ライケミストリー法	オーソ・クリニカ	オーソヒ・トロス5600					○ 154.0 ○	106.0	35.00
043	γ ーク・ルタミルー3ーカ	ロシュ・ダイアグ	ロシュコハ*ス8000c5					○ 155.6 ○		36.01
	· γ -ク˙ルタミル-3-カ		ロシュコハ、ス8000c7					O 155.1 C	108.0 €	37.79
	· γ -ク˙ルタミル-3-カ	栄研化学	日立7140-7170	16.00 73	.00	16.00	73.00	○ 154.0 ○		
	· γ -ク˙ルタミル-3-カ	ベックマン・コー	ヘ゛ックマン・コールター					○ 158.9 ○		
	γ ーク・ルタミルー3ーカ	シスメックス	日立7140-7170	10.00 47	.00			○ 155.0 ○		
								_	_	

101 R-GT(F) 施設No.が低い順に並んでいます

施設	测点压押	ط ( تلاداد	44V DD	男性基	準範囲	女性基	準範囲				試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料	01	試料02	試料03
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	15.00	70.00			O 179	.0 🔾	118.0 🔾	37.00
1076	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	10.00	47.00			O 170	.0 🔾	116.0 🔾	36.00
1097	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700		79.00		48.00	O 167	.0 🔾	112.0 🔾	36.00
1126	ドライケミストリー法	富士フィルムメ	富士ドライケム700	10.00	47.00	10.00	47.00	O 174	.0 🔾	116.0 🔾	36.00
1133	ドライケミストリー法	富士フィルムメ	富士ドライケム400	16.00	73.00			○ 179	.0 🔾	119.0 🔾	37.00
1137	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	10.00	47.00	10.00	47.00	O 169	.0 🔾	114.0 🔾	36.00
1326	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400		79.00		48.00	○ 180	.0 🔾	120.0 🔾	35.00
1336	ドライケミストリー法	富士フィルムメ	富士ドライケム700	16.00	73.00			O 177	.0 🔾	117.0 🔾	37.00
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	16.00	73.00			O 163	.0 🔾	112.0 🔾	35.00
1374	ドライケミストリー法	富士フィルムメ	富士ドライケム700		79.00		48.00	O 173	.0 🔾	115.0 🔾	34.00
1375	ドライケミストリー法	富士フィルムメ	富士ドライケム400		79.00		48.00	O 169	.0 🔾	110.0	29.00
1415	ドライケミストリー法	富士フィルムメ	富士ドライケム700	16.00	73.00	16.00	73.00	O 173	.0 🔾	117.0 🔾	36.00
1523	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	13.00	64.00	9.000	32.00	O 164	.0 🔾	111.0 🔾	36.00
1525	ドライケミストリー法	富士フィルムメ	富士ドライケム350	10.00	47.00			O 156	.0 🔾	105.0	31.00
1545	ドライケミストリー法	富士フィルムメ	富士ドライケム400	13.00	64.00	9.000	32.00	O 176	.0 🔾	120.0 🔾	37.00
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	13.00	64.00	9.000	32.00	O 181	.0 🔾	120.0 🔾	38.00
1552	ドライケミストリー法	富士フィルムメ	富士ドライケム400	16.00	73.00			O 173	.0 🔾	121.0 🔾	36.00
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	13.00	64.00	9.000	32.00	O 174	.0 🔾	117.0 🔾	37.00
1560	ドライケミストリー法	富士フィルムメ	富士ドライケム700	16.00	73.00			O 160	.0 🔾	109.0 🔾	34.00
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	13.00	64.00	9.000	32.00	○ 180	.0 🔾	118.0 🔾	35.00
2012	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	16.00	73.00	16.00	73.00	O 187	.0 🔾	121.0 🔾	39.00
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	16.00	73.00			O 174	.0 🔾	117.0 🔾	37.00

136 R-GT(A1)

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値	
No	例足亦生	四条/ //	75交合计	下限	上限	下限	上限	試料01	試料02	試料03	
1317	ト・ライケミストリー法	アークレイ	アークレイスポットケム		79.00		48.00	O 168.0 C	125.0	52.00	
1378	ト・ライケミストリー法	アークレイ	アークレイスポットケム	10.00	47.00			O 193.0 C	140.0	51.00	
9041	ト・ライケミストリー法	アークレイ	アークレイスポットケム					O 195.0 C	136.0	50.00	

166 R-GT(A2)

施設	施設 測定原理 No	14% P.P.	男性基準範囲 女性基準範囲 試料報告値	
No		武楽メールー	機器	下限 上限 下限 上限 試料01 試料02 試料03
1521	ト゛ライケミストリー法	アークレイ	アークレイスホットケム	13.00 64.00 9.000 32.00 $\bigcirc$ 184.0 $\bigcirc$ 132.0 $\bigcirc$ 47.00

196 R-GT(O)

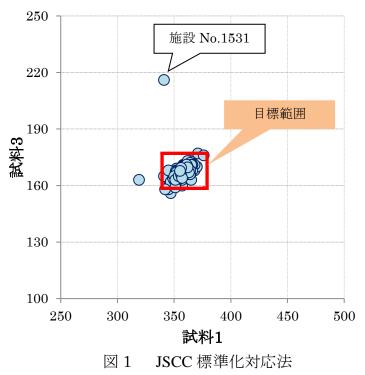
施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武衆/一//	79交石计	下限 上限 下限 上限 試料01 試料02 試料03
1075	ト゛ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	13.00 64.00 9.000 32.00 🔾 154.0 🔾 105.0 33.00
1100	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	○ 154.0 ○ 105.0 34.00

#### クレアチンキナーゼ (CK)

熊本大学医学部附属病院 中央検査部 山内 露子

#### 【参加状況】

参加施設 245 施設 (前回 232 施設)


#### 【測定方法の状況】

- 1. JSCC 標準化対応法は 211 施設(86.1 %)、 ドライケミストリー法は 34 施設(13.9 %)であった。
- 2. JSCC 標準化対応法における検量方法は、酵素キャリブレーターの表示値での使用が 203 施設、表示値外での使用が 1 施設、JCCLS CRM001 の使用が 2 施設、市販管理血清の使用が 2 施設、実測 K-factor の使用が 0 施設であった。
- 3. 報告単位については、ほぼ全施設で国際単位が採用されていた。
- 4. JCCLS 共用基準範囲(男性:  $59\sim248$  U/L、女性:  $41\sim153$  U/L)は、96 施設(39.2%)で採用されていた。

#### 【測定値の状況】

1. 各試料の目標範囲とその達成率、CV%は下記の通りであった。

試料	目標範囲(U/L)	目標達用	<b>戍率(%)</b>	CV% (3SD 除去後)		
武作	口 (示	JSCC	ト゛ライ	JSCC	<b>ド</b> ライ	
1	$339 \sim 376$	99.5	23.5	1.4	3.3	
2	$267 \sim 296$	99.1	67.6	1.5	3.6	
3	159~177	98.1	38.2	1.6	3.1	



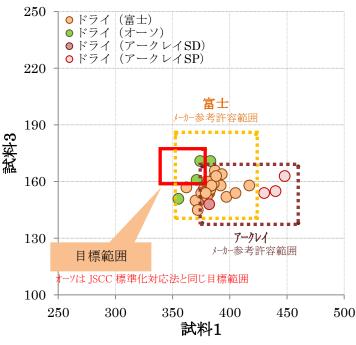



図2 ドライケミストリー法

- 2. JSCC 標準化対応法で目標範囲から大きく外れた施設 No.1531 は試料測定時の試料の取り扱いを含めた測定状況の確認と早急な是正処置が必要である。
- 3. ドライケミストリー法では、これまでアークレイの高濃度領域でばらつきがみられていたが、今年は収束していた。
- 4. JSCC 標準化対応法のシェア上位 4 社の測定値は下記の通りであった。試料 1~3 で同様の傾向であったことから、試料 1 の測定値を示す。メーカー間差はみとめられなかった。昨年はニットーボー社で若干の高値傾向がみられていたが、今年はみとめられなかった。ニットーボー社は上位標準物質のロット変更などは行っておらず、試薬やキャリブレーターの状況は昨年と全く変わっていないとの回答を得ている。昨年の試料 1 の目標範囲は 428~474 U/L で、今年の試料 1 とは約 100 U/L の差がある。添加物によるマトリックスの影響などが考えられるが、患者試料での検証ができていないため断定はできない。原因は不明である。

試料1	和光	関東化学	ニットーホ゛ー	シノテスト
n	50	33	26	25
mean	358.1	357.8	359.9	357.1
SD	5.52	5.04	3.99	5.82
CV%	1.54	1.41	1.11	1.63

#### 【その他】

- 市販管理血清をキャリブレーターとして使用している施設 No.1916 と 1937 は、見直しをお願いしたい。
- 自施設の検量方法を理解できていない施設が散見される。正しい理解をお願いしたい。

26 CK 施設No.が低い順に並んでいます

施設			L44 00	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1001	IFCC(JSCC)標	ニットーボー	目立LABOSPE	59.00	248.0	41.00	153.0	○ 358.0 ○	280.0 🔾	164.0
1002	IFCC(JSCC)標	関東化学	日立LABOSPE	62.00	287.0	45.00	163.0	○ 356.0 ○	280.0 🔾	167.0
1004	IFCC(JSCC)標	積水メディカル	日立LABOSPE	59.00	248.0	41.00	153.0	○ 355.0 ○	280.0 🔾	166.0
	IFCC(JSCC)標	シノテスト	日立LABOSPE	59.00	248.0	41.00		○ 355.3 ○		
	IFCC(JSCC)標	関東化学	東芝TBA-cシリー	62.00		45.00		○ 358.0 ○		
	IFCC(JSCC)標	関東化学	日本電子JCA-B	59.00	248.0			O 361.2 O		
	IFCC(JSCC)標	和光純薬	目立7140-7170	59.00	248.0	41.00	153.0	O 359.0 O		
	IFCC(JSCC)標	関東化学	日本電子JCA-B	59.00	248.0	41.00	152.0	<ul><li>○ 363.0 ○</li><li>○ 358.0 ○</li></ul>		
	IFCC(JSCC)標 IFCC(JSCC)標	関東化学 ニットーボー	日本電子JCA-B 日本電子JCA-B	50.00	230.0			O 357.0 O		
	IFCC(JSCC)標	シノテスト	日本電子JCA-B	59.00	248.0			0 361.0 0		
	IFCC(JSCC)標	ニットーボー	目立LABOSPE	62.00	287.0			○ 360.0 ○		
	IFCC(JSCC)標	シノテスト	東芝25FR_Accut	59.00	248.0			○ 362.0 ○		
1028	IFCC(JSCC)標	積水メディカル	日立LABOSPE	62.00	287.0	45.00	163.0	○ 355.0 ○	276.0 🔾	165.0
1029	IFCC(JSCC)標	LSIメディエンス	目立7140-7170	59.00	248.0	41.00	153.0	○ 352.0 ○	275.0 🔾	164.0
1031	IFCC(JSCC)標	和光純薬	東芝TBA-cシリー	59.00	248.0	41.00	153.0	○ 358.0 ○	281.0 🔾	166.0
1032	IFCC(JSCC)標	シーメンス	シーメンスHCDDim	62.00	287.0	45.00	163.0	○ 352.0 ○	275.0 🔾	163.0
1033	IFCC(JSCC)標	ニットーボー	日立7140-7170	50.00	230.0	50.00	210.0	○ 363.0 ○	288.0 🔾	171.0
	IFCC(JSCC)標	和光純薬	日立7140-7170	50.00		50.00	210.0	○ 359.0 ○		
	IFCC(JSCC)標	関東化学	日本電子JCA-B	62.00	287.0			○ 349.0 ○		
	IFCC(JSCC)標	和光純薬	目立LABOSPE	59.00	248.0			O 362.0 O		
	IFCC(JSCC)標	関東化学	目立7140-7170 目立LABOSPE	59.00	248.0 248.0			O 357.0 O		
	IFCC(JSCC)標 IFCC(JSCC)標	和光純薬ニットーボー	東芝25FR_Accut	59.00 62.00	287.0			○ 355.0 ○ ○ ○ 354.0 ○		
	IFCC(JSCC)標	和光純薬	ベックマン・コールター	62.00	287.0			O 362.0 O		
	IFCC(JSCC)標	シノテスト	日本電子JCA-B	59.00	248.0			0 351.2 0		
	IFCC(JSCC)標	シノテスト	日本電子JCA-B	62.00	287.0			0 354.0 0		
	IFCC(JSCC)標	関東化学	東芝TBA-cシリー	14.00	170.0			○ 370.0 ○		
1055	IFCC(JSCC)標	和光純薬	シーメンスHCDDim	59.00	248.0	41.00	153.0	○ 357.0 ○	284.0 🔾	165.0
1056	IFCC(JSCC)標	シノテスト	目立7140-7170	62.00	287.0	45.00	163.0	○ 356.0 ○	279.0 🔾	166.0
1057	IFCC(JSCC)標	シノテスト	東京貿易ビオリス5	50.00	230.0	50.00	210.0	○ 353.0 ○	277.0 🔾	168.0
1058	IFCC(JSCC)標		日本電子JCA-B	62.00	287.0	45.00	163.0	○ 355.0 ○	280.0 🔾	165.0
1059	IFCC(JSCC)標	ニットーボー	東京貿易ビオリス2	50.00	230.0	50.00	210.0	○ 357.0 ○	283.0 🔾	168.0
	IFCC(JSCC)標	LSIメディエンス	日本電子JCA-B	50.00	230.0			○ 358.0 ○		
	IFCC(JSCC)標	関東化学	目立LABOSPE	59.00		41.00		O 364.0 O		
	IFCC(JSCC)標	LSIメディエンス	日本電子JCA-B	24.00	195.0			O 360.0 O		
	IFCC(JSCC)標	積水メディカル	目立LABOSPE	62.00	287.0			O 363.0 O		
	IFCC(JSCC)標 IFCC(JSCC)標	関東化学	日立LABOSPE 東京貿易ビオリス2	62.00 50.00	287.0 230.0			○ 356.0 ○ ○ ○ 351.0 ○		
	IFCC(JSCC)標	和光純薬	シーメンスHCDDim	62.00	287.0			O 352.0 O		
	IFCC(JSCC)標	和光純薬	東芝TBA-cシリー	59.00	248.0			O 359.0 O		
	IFCC(JSCC)標	和光純薬	東京貿易ビオナリス2	59.00	248.0			○ 355.0 ○		
1088	IFCC(JSCC)標	関東化学	目立LABOSPE	62.00	287.0	45.00	163.0	○ 356.0 ○	279.0 🔾	165.0
1089	IFCC(JSCC)標	積水メディカル	日立7140-7170	59.00	248.0	41.00	153.0	○ 353.6 ○	279.1 🔾	164.0
1090	IFCC(JSCC)標	デンカ生研	日立7140-7170	59.00	248.0	41.00	153.0	○ 351.0 ○	275.0 🔾	162.0
1094	IFCC(JSCC)標	関東化学	日本電子JCA-B	62.00	287.0	45.00	163.0	○ 355.0 ○	280.0 🔾	166.0
1101	IFCC(JSCC)標	シノテスト	東芝TBA-cシリー	50.00	210.0	50.00	210.0	○ 357.0 ○	280.0 🔾	165.0
	IFCC(JSCC)標	関東化学	東芝TBA-cシリー	59.00	248.0			○ 362.0 ○		
	IFCC(JSCC)標	ベックマン・コー	ベックマン・コールター	50.00	230.0			O 355.0 O		
	IFCC(JSCC)標	シノテスト	東京貿易ビオサスス5	57.00	197.0			O 347.0	265.0	156.0
	IFCC(JSCC)標	和光純薬	日本電子JCA-B 東芝TRA-civille	62.00	287.0			○ 358.0 ○ ○ 359.0 ○		
	IFCC(JSCC)標 IFCC(JSCC)標	和光純薬 デンカ生研	東芝TBA-cシリー 東芝25FR_Accut	59.00 62.00	248.0 287.0			○ 359.0 ○ ○ ○ 352.0 ○		
	IFCC(JSCC)標	ベックマン・コー	ペックマン・コールター	62.00	287.0			O 359.2 O		
	IFCC(JSCC)標	和光純薬	シーメンスHCDDim	50.00	230.0			O 349.3 O		
	IFCC(JSCC)標			-		-		319.0	207.0 🔾	
	IFCC(JSCC)標	ニットーボー	日本電子JCA-B	50.00	230.0	50.00	210.0	○ 358.0 ○		

26 CK 施設No.が低い順に並んでいます

施設	INO. WENT PRICE	<u>- 10 (                                  </u>		男性基	準範囲	女性基	進節用		試料報告個	首
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01 試料		
1128	IFCC(JSCC)標	シスメックス	日本電子JCA-B	59.00	248.0	41.00	153.0	○ 358.0 ○ 280	0 0 163.0	
	IFCC(JSCC)標	ベックマン・コー	ヘ、ックマン・コールター	50.00	230.0			○ 356.0 ○ 276		
1130	IFCC(JSCC)標	和光純薬	日本電子JCA-B	59.00	248.0	41.00	153.0	○ 345.0 ○ 272	0 ○ 165.0	
1134	IFCC(JSCC)標	ニットーボー	日立7140-7170	62.00	287.0	45.00	163.0	○ 368.0 ○ 291	0 ○ 168.0	
1135	IFCC(JSCC)標	ベックマン・コー	ヘ゛ックマン・コールター	62.00	287.0	45.00	163.0	○ 365.0 ○ 285	0 ○ 169.0	
1136	IFCC(JSCC)標	和光純薬	日本電子JCA-B	59.00	248.0	41.00	153.0	○ 361.0 ○ 282	0 ○ 169.0	
1300	IFCC(JSCC)標	和光純薬		59.00	248.0	41.00	153.0	○ 359.5 ○ 285	0 0 169.9	
1301	IFCC(JSCC)標	和光純薬	日本電子JCA-B	30.00	180.0	30.00	180.0	○ 360.0 ○ 285	0 ○ 171.0	
	IFCC(JSCC)標	ベックマン・コー	ヘ、ックマン・コールター	59.00	248.0		153.0	○ 364.0 ○ 286	0 ○ 168.0	
	IFCC(JSCC)標	シノテスト	日本電子JCA-B	59.00	248.0			O 350.0 O 276		
	IFCC(JSCC)標	和光純薬	東芝25FR_Accut	59.00	248.0			O 370.0 O 288		
	IFCC(JSCC)標	和光純薬	東芝TBA-200F	62.00	287.0			○ 363.0 ○ 285		
	IFCC(JSCC)標	和光純薬	日本電子JCA-B	62.00	287.0			○ 359.0 ○ 284 ○ 363.0 ○ 284		
	IFCC(JSCC)標 IFCC(JSCC)標	関東化学 LSIメディエンス	日本電子JCA-B 日本電子JCA-B	59.00 62.00	248.0 287.0			<ul><li>○ 363.0 ○ 284</li><li>○ 360.0 ○ 283</li></ul>		
	IFCC(JSCC)標	ニットーボー	日本電子JCA-B	59.00	248.0			○ 361.0 ○ 287		
	IFCC(JSCC)標	和光純薬	日本電子JCA-B	59.00	248.0			○ 360.0 ○ 283		
	IFCC(JSCC)標	ベックマン・コー	ヘックマン・コールター	59.00	248.0			○ 359.0 ○ 284		
	IFCC(JSCC)標	関東化学	日本電子JCA-B	59.00	248.0			○ 366.0 ○ 290		
	IFCC(JSCC)標	和光純薬	日本電子JCA-B	45.00	287.0			○ 357.0 ○ 285		
	IFCC(JSCC)標	シノテスト	東芝TBA-cシリー	30.00	180.0			○ 363.0 ○ 286		
1337	IFCC(JSCC)標	和光純薬	日本電子JCA-B	59.00	248.0	41.00	153.0	○ 350.0 ○ 276	0 0 163.0	
	IFCC(JSCC)標	LSIメディエンス	日本電子JCA-B	59.00	248.0	41.00	153.0	○ 358.0 ○ 281	0 ○ 165.0	
1341	IFCC(JSCC)標	和光純薬	日本電子JCA-B	59.00	248.0	41.00	153.0	○ 358.0 ○ 283	0 ○ 166.0	
1342	IFCC(JSCC)標	ニットーボー	日本電子JCA-B	50.00	230.0	50.00	210.0	○ 364.0 ○ 287	0 ○ 172.0	
1343	IFCC(JSCC)標	LSIメディエンス	目立LABOSPE	59.00	248.0	41.00	153.0	○ 359.0 ○ 284	0 ○ 166.0	
1344	IFCC(JSCC)標	シノテスト	日立7140-7170	59.00	248.0	41.00	153.0	○ 360.0 ○ 283	0 0 169.0	
1346	IFCC(JSCC)標	ニットーボー	日本電子JCA-B	62.00	287.0	45.00	163.0	○ 359.0 ○ 283	0 0 166.0	
1347	IFCC(JSCC)標	ロシュ・ダイアグ	ロシュコハ*ス8000c5	59.00	248.0	41.00	153.0	○ 364.0 ○ 290	0 ○ 173.0	
1348	IFCC(JSCC)標	和光純薬		30.00	180.0	30.00	180.0	○ 361.0 ○ 283	0 ○ 166.0	
1349	IFCC(JSCC)標	ロシュ・ダイアグ	ロシュコハ ス8000c5	59.00	248.0	41.00	153.0	○ 365.0 ○ 289	0 0 170.0	
1350	IFCC(JSCC)標	ニットーボー	日本電子JCA-B	62.00	287.0	45.00	163.0	O 354.0 O 278	0 0 164.0	
	IFCC(JSCC)標	シノテスト	ヘ、ックマン・コールター	59.00	248.0			O 357.0 O 277		
	IFCC(JSCC)標	和光純薬	日本電子JCA-B	62.00		45.00		○ 355.0 ○ 281		
	IFCC(JSCC)標	LSIメディエンス	東芝TBA-cシリー	59.00	248.0			O 345.0 O 270		
	IFCC(JSCC)標	和光純薬	日本電子JCA-B	59.00	248.0			O 356.0 O 280		
	IFCC(JSCC)標	和光純薬	日立7140-7170	62.00	287.0			○ 371.0 ○ 292		
	IFCC(JSCC)標	シノテスト	日本電子JCA-B	59.00		41.00		○ 354.9 ○ 280 ○ 350.0 ○ 201		
	IFCC(JSCC)標 IFCC(JSCC)標	ニットーボー	日本電子JCA-B 東芝TBA-20-3	59.00	248.0	41.00		○ 358.0 ○ 281 ○ 361.0 ○ 287		
	IFCC(JSCC)標	和光純薬 関東化学	ペックマン・コールター	59.00 62.00	287.0			○ 356.0 ○ 281		
	IFCC(JSCC)標	和光純薬	目立7140-7170	59.00	248.0			O 362.0 O 290		
	IFCC(JSCC)標	和光純薬	東芝TBA-cシリー	59.00		41.00		O 354.0 O 281		
	IFCC(JSCC)標	シノテスト	目立LABOSPE	59.00	248.0			O 346.0 O 276		
	IFCC(JSCC)標	シノテスト	東京貿易ビオリス5	59.00	248.0			O 341.0 O 272		
	IFCC(JSCC)標	関東化学	東京貿易ビオリス1	35.00	200.0			○ 356.0 ○ 280		
1382	IFCC(JSCC)標	和光純薬	目立LABOSPE	59.00	248.0	41.00	153.0	○ 358.0 ○ 281	0 ○ 168.0	
1385	IFCC(JSCC)標	和光純薬	東芝25FR_Accut	59.00	248.0	41.00	153.0	○ 352.0 ○ 280	0 ○ 169.0	
1390	IFCC(JSCC)標	シノテスト	東芝TBA-cシリー	62.00	287.0	45.00	163.0	○ 363.0 ○ 287	0 ○ 170.0	
1391	IFCC(JSCC)標	シノテスト	目立7140-7170	62.00	287.0	45.00	163.0	○ 352.0 ○ 277	0 ○ 163.0	
1394	IFCC(JSCC)標	協和メデックス	東京貿易ビオリス5	59.00	248.0	41.00	153.0	○ 357.0 ○ 278	0 ○ 160.0	
1396	IFCC(JSCC)標	和光純薬	シーメンスHCDDim	59.00	248.0	41.00	153.0	○ 351.0 ○ 276	0 ○ 166.0	
1400	IFCC(JSCC)標	シノテスト	東京貿易ビオリス2	59.00	248.0	41.00	153.0	○ 361.0 ○ 283	0 ○ 168.0	
	IFCC(JSCC)標	シーメンス	シーメンスHCDDim	59.00	248.0			○ 355.0 ○ 282		
	IFCC(JSCC)標	シノテスト	日本電子JCA-B	59.00	248.0			○ 356.0 ○ 282		
	IFCC(JSCC)標	セロテック	日本電子JCA-B	59.00		41.00	153.0	O 347.0 O 276		
1404	IFCC(JSCC)標	関東化学	東芝TBA-cシリー	62.00	287.0			○ 356.0 ○ 279	0 0 163.0	

26 CK 施設No.が低い順に並んでいます

施設	加合医理		4% DD	男性基	準範囲	女性基	準範囲		試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01 試料02	試料03
1405	IFCC(JSCC)標	関東化学	東京貿易ビオリス1	50.00	230.0	50.00	210.0	○ 352.0 ○ 276.0 ○	) 163.0
	IFCC(JSCC)標	和光純薬	日本電子JCA-B	59.00	248.0			○ 365.9 ○ 285.9 ○	
	IFCC(JSCC)標	ベックマン・コー	ヘ゛ックマン・コールター	62.00	287.0			O 368.0 O 291.0 O	
	IFCC(JSCC)標	関東化学	目立LABOSPE	62.00	287.0			O 357.0 O 280.0 O	
	IFCC(JSCC)標	ニットーボー	日本電子JCA-B	62.00	287.0			O 361.0 O 286.0 O	
	IFCC(JSCC)標 IFCC(JSCC)標	シノテスト 関東化学	日立LABOSPE 日立LABOSPE	59.00 62.00	248.0	41.00 45.00		○ 362.0 ○ 288.0 ○ ○ 364.0 ○ 287.0 ○	
	IFCC(JSCC)標	ニットーボー	日本電子JCA-B	59.00		41.00		○ 364.0 ○ 290.0 ○	
	IFCC(JSCC)標	シノテスト	日立7140-7170	59.00		41.00		○ 360.0 ○ 282.0 ○	
	IFCC(JSCC)標	シスメックス	目立LABOSPE	59.00	248.0			○ 357.0 ○ 280.0 ○	
1514	IFCC(JSCC)標	シノテスト	目立LABOSPE	59.00	248.0	41.00	153.0	○ 359.0 ○ 285.0 ○	169.0
1518	IFCC(JSCC)標	和光純薬	東京貿易ビオナリス2	59.00	248.0	41.00	153.0	○ 366.0 ○ 287.0 ○	771.0
1519	IFCC(JSCC)標	和光純薬	東芝25FR_Accut	59.00	248.0	41.00	153.0	○ 364.0 ○ 287.0 ○	770.0
1528	IFCC(JSCC)標	和光純薬	目立7140-7170	59.00	248.0	41.00	153.0	○ 359.0 ○ 284.0 ○	169.0
1529	IFCC(JSCC)標	和光純薬	日立LABOSPE	62.00	287.0	45.00	163.0	○ 350.0 ○ 278.0 ○	163.0
	IFCC(JSCC)標	和光純薬		59.00		41.00		O 353.0 O 280.0 O	
	IFCC(JSCC)標	和光純薬	シーメンスHCDDim	62.00		45.00		O 341.0 O 291.0	216.0
	IFCC(JSCC)標	関東化学	日立7140-7170	59.00	248.0			O 360.0 O 284.0 O	
	IFCC(JSCC)標 IFCC(JSCC)標	和光純薬 和光純薬	シーメンスHCDDim 東京貿易ビオナリス2	59.00	248.0 248.0			○ 354.0 ○ 280.0 ○ 363.0 ○ 284.0 ○	
	IFCC(JSCC)標	シノテスト	東京貿易ビオリス2	59.00 59.00		41.00		352.0 279.0 C	
	IFCC(JSCC)標	LSIメディエンス	日本電子JCA-B	59.00	248.0			○ 350.0 ○ 279.0 ○	
	IFCC(JSCC)標	シノテスト	東芝25FR_Accut	62.00	287.0			○ 360.0 ○ 285.0 ○	
1542	IFCC(JSCC)標	関東化学	日立7140-7170	62.00		45.00	163.0	○ 359.0 ○ 282.0 ○	) 166.0
1543	IFCC(JSCC)標	シスメックス	東芝TBA-20-3	62.00	287.0	45.00	163.0	○ 365.0 ○ 290.0 ○	○ 163.0
1549	IFCC(JSCC)標	積水メディカル	東京貿易ビオナリス2	62.00	287.0	45.00	163.0	○ 363.0 ○ 284.0 ○	168.0
1550	IFCC(JSCC)標	ニットーボー	目立7140-7170	50.00	230.0	50.00	210.0	○ 362.0 ○ 283.0 ○	) 166.0
1554	IFCC(JSCC)標	シノテスト		61.00	255.0	45.00	170.0	○ 356.0 ○ 278.0 ○	167.0
	IFCC(JSCC)標	和光純薬	日本電子JCA-B	59.00		41.00		O 349.0 O 276.0 O	
	IFCC(JSCC)標	アルフレッサファ	日本電子JCA-B	59.00		41.00		356.0 280.0	
	IFCC(JSCC)標	和光純薬	ヘックマン・コールター	62.00	287.0			357.0 280.0	
	IFCC(JSCC)標 IFCC(JSCC)標	ニットーボー 関東化学	日本電子JCA-B 日立7600Dモジュ	50.00 62.00		50.00 45.00		○ 356.0 ○ 282.0 ○ 360.0 ○ 285.0 ○	
	IFCC(JSCC)標	和光純薬	日立LABOSPE	62.00		45.00		○ 358.0 ○ 283.0 ○	
	IFCC(JSCC)標	関東化学	ヘックマン・コールター	62.00	287.0			○ 356.0 ○ 281.0 ○	
	IFCC(JSCC)標	和光純薬	日本電子JCA-B	59.00	248.0			O 349.0 O 278.0 O	
1917	IFCC(JSCC)標	和光純薬	目立LABOSPE	62.00	287.0	45.00	163.0	○ 360.0 ○ 285.0 ○	○ 168.0
1920	IFCC(JSCC)標	和光純薬	目立3100	62.00	287.0	45.00	163.0	○ 353.0 ○ 277.0 ○	163.0
1922	IFCC(JSCC)標	関東化学	目立7140-7170	62.00	287.0	45.00	163.0	○ 358.0 ○ 282.0 ○	166.0
1923	IFCC(JSCC)標	関東化学	日立7140-7170	62.00	287.0	45.00	163.0	○ 357.0 ○ 282.0 ○	165.0
	IFCC(JSCC)標	関東化学	ヘックマン・コールター	50.00		45.00		O 355.0 O 278.0 O	
	IFCC(JSCC)標	関東化学	ヘックマン・コールター	62.00		45.00		O 363.0 O 285.0 O	
	IFCC(JSCC)標	和光純薬	ベックマン・コールター	62.00		45.00		O 359.0 O 284.0 O	
	IFCC(JSCC)標	和光純薬 ニットーボー	ヘ、ックマン・コールター 日本電子JCA-B	62.00		45.00		362.0 284.0	
	IFCC(JSCC)標 IFCC(JSCC)標	和光純薬	「本电丁JCA-D ベックマン・コールター	50.00 62.00		50.00 45.00		○ 360.0 ○ 284.0 ○ 359.0 ○ 284.0 ○	
	IFCC(JSCC)標	ニットーボー	日立7140-7170	50.00		50.00		○ 358.0 ○ 281.0 ○	
	IFCC(JSCC)標	セロテック	日本電子JCA-B	57.00	284.0			○ 356.0 ○ 283.0 ○	
	IFCC(JSCC)標	シノテスト	日本電子JCA-H	57.00		45.00		O 354.0 O 280.0 O	
	IFCC(JSCC)標	関東化学	日本電子JCA-B	59.00		41.00		○ 356.0 ○ 280.0 ○	
2006	IFCC(JSCC)標	関東化学	目立LABOSPE	60.00	290.0	40.00	160.0	○ 358.0 ○ 284.0 ○	168.0
2008	IFCC(JSCC)標	和光純薬	ロシュコハ*ス8000c7	59.00	248.0	41.00	153.0	○ 345.0 ○ 274.0 ○	) 168.0
	IFCC(JSCC)標	シノテスト	日本電子JCA-B	56.00	244.0			○ 359.0 ○ 281.0 ○	
	IFCC(JSCC)標	シノテスト	日立7140-7170	62.00	287.0			O 362.0 O 285.0 O	
	IFCC(JSCC)標	和光純薬	ヘックマン・コールター	62.00		45.00		O 360.0 O 280.0 O	
	IFCC(ISCC)標	和光純薬	日本電子JCA-B	59.00		41.00		○ 362.9 ○ 287.2 ○	
2018	IFCC(JSCC)標	ベックマン・コー	ヘックマン・コールター	62.00	481.0	45.00	103.0	○ 361.0 ○ 284.0 ○	J 108.U

26 CK 施設No.が低い順に並んでいます

施設	测点压用	d ( 147.45	146 111	男性基	準範囲	女性基	準範囲	試料報告值
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01 試料02 試料03
3022	IFCC(JSCC)標	和光純薬	日本電子JCA-B	59.00	248.0	41.00	153.0	○ 351.3 ○ 278.5 ○ 167.4
3027	IFCC(JSCC)標	関東化学	日立7600Dモジュ	62.00	287.0	45.00	163.0	$\bigcirc$ 359.0 $\bigcirc$ 280.0 $\bigcirc$ 167.0
3048	IFCC(JSCC)標	和光純薬	日本電子JCA-B	59.00	248.0	41.00	153.0	○ 352.0 ○ 278.0 ○ 167.0
3055	IFCC(JSCC)標		日本電子JCA-B	59.00	248.0	41.00	153.0	○ 365.0 ○ 289.0 ○ 171.0
3056	IFCC(JSCC)標	シスメックス	日本電子JCA-B	59.00	248.0	41.00	153.0	○ 366.0 ○ 287.0 ○ 168.0
3907	IFCC(JSCC)標	セロテック	日本電子JCA-B	59.00	248.0	59.00	153.0	$\bigcirc$ 351.0 $\bigcirc$ 277.0 $\bigcirc$ 164.0
4002	IFCC(JSCC)標	ニットーボー	日本電子JCA-B	59.00	248.0	41.00	153.0	○ 366.0 ○ 287.0 ○ 171.0
4039	IFCC(JSCC)標		東芝25FR_Accut	57.00	284.0	45.00	176.0	$\bigcirc$ 376.0 $\bigcirc$ 295.0 $\bigcirc$ 176.0
4040	IFCC(JSCC)標	ベックマン・コー	ヘ、ックマン・コールター	62.00	287.0	45.00	163.0	○ 363.0 ○ 285.0 ○ 168.0
4902	IFCC(JSCC)標	シスメックス	日立7140-7170	57.00	284.0	45.00	176.0	$\bigcirc$ 364.0 $\bigcirc$ 283.0 $\bigcirc$ 166.0
5003	IFCC(JSCC)標		日立7140-7170	40.00	190.0	40.00	190.0	$\bigcirc$ 355.0 $\bigcirc$ 279.0 $\bigcirc$ 165.0
5005	IFCC(JSCC)標	関東化学	日本電子JCA-B	59.00	248.0	41.00	153.0	○ 358.0 ○ 281.0 ○ 165.0
5006	IFCC(JSCC)標	デンカ生研	日本電子JCA-B	59.00	248.0	41.00	153.0	$\bigcirc$ 352.0 $\bigcirc$ 277.0 $\bigcirc$ 164.0
5010	IFCC(JSCC)標	シノテスト	日本電子JCA-B	59.00	248.0	41.00	153.0	○ 356.8 ○ 281.2 ○ 167.2
6006	IFCC(JSCC)標	シスメックス	東芝25FR_Accut	15.00	190.0			$\bigcirc$ 354.0 $\bigcirc$ 280.0 $\bigcirc$ 164.0
6008	IFCC(JSCC)標	シノテスト	東芝TBA-200F	7.000	23.00			$\bigcirc$ 361.0 $\bigcirc$ 284.0 $\bigcirc$ 170.0
6015	IFCC(JSCC)標	シノテスト	日立LABOSPE	57.00	197.0	32.00	180.0	○ 366.0 ○ 287.0 ○ 171.0
6016	IFCC(JSCC)標	関東化学	東芝TBA-200F	62.00	287.0	45.00	163.0	○ 342.0 ○ 268.0 158.0
7001	IFCC(JSCC)標	ニットーボー	日本電子JCA-B	57.00	183.0	43.00	146.0	○ 359.0 ○ 281.0 ○ 167.0
7002	IFCC(JSCC)標	シノテスト	日本電子JCA-B	59.00	248.0	41.00	153.0	○ 356.0 ○ 281.0 ○ 168.0
7007	IFCC(JSCC)標	関東化学	ヘ、ックマン・コールター	57.00	183.0	57.00	183.0	○ 363.0 ○ 287.0 ○ 170.0
7011	IFCC(JSCC)標	ニットーボー	東芝TBA-cシリー	59.00	248.0	41.00	153.0	$\bigcirc$ 365.0 $\bigcirc$ 290.0 $\bigcirc$ 171.0
7025	IFCC(JSCC)標	ニットーボー	日本電子JCA-B	62.00	287.0	45.00	163.0	$\bigcirc$ 364.0 $\bigcirc$ 286.0 $\bigcirc$ 168.0
7901	IFCC(JSCC)標	ニットーボー	日立LABOSPE	52.00	255.0	43.00	151.0	○ 359.0 ○ 284.0 ○ 168.0
8004	IFCC(JSCC)標	シノテスト	日本電子JCA-B	34.00	190.0	29.00	135.0	○ 361.0 ○ 287.0 ○ 171.0
9004	IFCC(JSCC)標	協和メデックス	日立7140-7170					$\bigcirc$ 355.0 $\bigcirc$ 281.0 $\bigcirc$ 164.0
9008	IFCC(JSCC)標	シノテスト	日立7140-7170					$\bigcirc$ 360.0 $\bigcirc$ 284.0 $\bigcirc$ 169.0
9009	IFCC(JSCC)標	LSIメディエンス	日立7140-7170	32.00	187.0			$\bigcirc$ 350.1 $\bigcirc$ 278.4 $\bigcirc$ 165.0
9012	IFCC(JSCC)標	デンカ生研	日立7140-7170	58.00	348.0	29.00	145.0	$\bigcirc$ 351.0 $\bigcirc$ 276.0 $\bigcirc$ 159.0
9014	IFCC(JSCC)標	ニットーボー	日立7140-7170					$\bigcirc$ 362.0 $\bigcirc$ 283.0 $\bigcirc$ 170.0
9022	IFCC(JSCC)標	ミズホメディ	日立7140-7170	62.00	287.0	45.00	163.0	$\bigcirc$ 363.0 $\bigcirc$ 284.0 $\bigcirc$ 167.0
9023	IFCC(JSCC)標	和光純薬	日立7140-7170					○ 361.0 ○ 285.0 ○ 170.0
9024	IFCC(JSCC)標	関東化学	日本電子JCA-B	62.00	287.0	45.00	163.0	$\bigcirc$ 351.0 $\bigcirc$ 275.0 $\bigcirc$ 163.0
9033	IFCC(JSCC)標	極東製薬	日本電子JCA-B	62.00	287.0	45.00	163.0	$\bigcirc$ 360.0 $\bigcirc$ 285.0 $\bigcirc$ 170.0
9035	IFCC(JSCC)標	積水メディカル	積水EV800					$\bigcirc$ 354.0 $\bigcirc$ 279.0 $\bigcirc$ 165.0
9043	IFCC(JSCC)標	ロシュ・ダイアグ	ロシュコハ、ス8000c5					○ 361.0 ○ 286.9 ○ 171.1
9044	IFCC(JSCC)標		ロシュコハ [*] ス8000c7					$\bigcirc$ 361.8 $\bigcirc$ 285.4 $\bigcirc$ 169.6
9046	IFCC(JSCC)標	栄研化学	日立7140-7170	61.00	255.0	45.00	170.0	$\bigcirc$ 356.0 $\bigcirc$ 281.0 $\bigcirc$ 166.0
9047	IFCC(JSCC)標	ベックマン・コー	ヘ・ックマン・コールター					$\bigcirc$ 356.1 $\bigcirc$ 281.8 $\bigcirc$ 169.4
9049	IFCC(JSCC)標	シスメックス	日立7140-7170	62.00	287.0	45.00	163.0	$\bigcirc$ 357.0 $\bigcirc$ 282.0 $\bigcirc$ 164.0
9050	IFCC(JSCC)標	和光純薬	シーメンスHCDDim					○ 355.2 ○ 281.7 ○ 167.8

104 CK(F) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足原生	四条/ //	1双右计	下限	上限	下限	上限	試料01	試料02	試料03
1044	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	40.00	200.0	30.00	150.0	⊃ 372.0 ⊂	281.0 €	149.0
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400	14.00	170.0	12.00	144.0	⊃ 362.0 ⊂	296.0 €	157.0
1076	ドライケミストリー法	富士フィルムメ	富士ドライケム700	62.00	287.0	45.00	163.0	⊃ 387.0 ⊂	295.0 €	159.0
1097	ドライケミストリー法	富士フィルムメ	富士ドライケム700	50.00	230.0	50.00	210.0	⊃ 397.0 ⊂	299.0 €	152.0
1104	ドライケミストリー法	富士フィルムメ	富士ドライケム350	40.00	200.0	30.00	150.0	⊃ 392.0 ⊂	292.0 €	158.0
1126	ドライケミストリー法	富士フィルムメ	富士ドライケム700	62.00	287.0	45.00	163.0	⊃ 387.0 ⊂	301.0 €	163.0
1133	ドライケミストリー法	富士フィルムメ	富士ドライケム400	40.00	200.0	30.00	150.0	⊃ 382.0 ⊂	289.0 €	154.0
1137	ドライケミストリー法	富士フィルムメ	富士ドライケム400	62.00	287.0	45.00	163.0	⊃ 370.0 ⊂	283.0 €	) 150.0
1335	ドライケミストリー法	富士フィルムメ	富士ドライケム700	40.00	200.0	30.00	150.0	⊃ 382.0 ⊂	291.0 €	) 155.0
1336	ドライケミストリー法	富士フィルムメ	富士ドライケム700	40.00	200.0	30.00	150.0	⊃ 383.0 ⊂	293.0 €	156.0
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	40.00	200.0	30.00	150.0	⊃ 383.0 ⊂	298.0 €	) 159.0
1374	ドライケミストリー法	富士フィルムメ	富士ドライケム700	50.00	230.0	50.00	210.0	⊃ 377.0 ⊂	287.0 €	) 156.0
1375	ドライケミストリー法	富士フィルムメ	富士ドライケム400	50.00	230.0	50.00	210.0	⊃ 380.0 ⊂	282.0 €	) 152.0
1393	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	62.00	287.0	45.00	163.0	○ 405.0 ○	313.0 €	) 154.0
1415	ドライケミストリー法	富士フィルムメ	富士ドライケム700	40.00	200.0	30.00	150.0	⊃ 381.0 ⊂	287.0 €	) 157.0
1523	ドライケミストリー法	富士フィルムメ	富士ドライケム700	59.00	248.0	41.00	153.0	⊃ 372.0 ⊂	277.0 €	145.0
1525	ドライケミストリー法	富士フィルムメ	富士ドライケム350	62.00	287.0	45.00	163.0	⊃ 387.0 ⊂	293.0 €	) 166.0
1545	ドライケミストリー法	富士フィルムメ	富士ドライケム400	59.00	248.0	41.00	153.0	⊃ 375.0 ⊂	288.0 €	154.0
1546	ドライケミストリー法	富士フィルムメ	富士ドライケム700	40.00	200.0	30.00	150.0	⊃ 386.0 ⊂	294.0 €	159.0
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	59.00	248.0	41.00	153.0	⊃ 379.0 ⊂	291.0 €	) 160.0
1552	ドライケミストリー法	富士フィルムメ	富士ドライケム400	40.00	200.0	30.00	150.0	⊃ 381.0 ⊂	292.0 €	) 160.0
1557	ドライケミストリー法	富士フィルムメ	富士ドライケム700				(	⊃ 417.0 ⊂	300.0 €	) 158.0
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	59.00	248.0	41.00	153.0	⊃ 384.0 ⊂	290.0 €	) 158.0
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	59.00	248.0	41.00	153.0	⊃ 393.0 ⊂	299.0 €	164.0
2012	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	40.00	200.0	30.00	150.0	⊃ 379.0 ⊂	294.0 €	154.0
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	40.00	200.0	30.00	150.0	⊃ 388.0 ⊂	301.0 €	) 163.0

139 CK(A1)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例是原理	四架/ //	17英台社	下限 上限 下限 上限 試料01 試料02 試料03
1317	ドライケミストリー法	アークレイ	アークレイスポットケム	50.00 230.0 50.00 230.0 $\bigcirc$ 430.0 $\bigcirc$ 317.0 $\bigcirc$ 154.0
1378	ドライケミストリー法	アークレイ	アークレイスホットケム	62.00 287.0 45.00 163.0 $\bigcirc$ 448.0 $\bigcirc$ 337.0 $\bigcirc$ 163.0
9041	ドライケミストリー法	アークレイ	アークレイスホ°ットケム	$\bigcirc$ 440.0 $\bigcirc$ 320.0 $\bigcirc$ 155.0

169 CK(A2)

ħ	施設	測定原理	試薬メーカー	機器	男性基	男性基準範囲 女性基準			<b>ζ性基準範囲</b>			
	No	例足原垤			下限	上限	下限	上限	試料01	試料02	試料03	
-	1521 F	「ライケミストリー法	アークレイ	アークレイスポットケム	59.00	248.0	41.00	153.0	○ 382.0 ○	285.0 (	) 148.0	 

199 CK(O)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	侧足原垤	武衆/一//	7交台	下限 上限 下限 上限 試料01 試料02 試料03
1075		オーソ・クリニカ	オーソビトロス250_3	59.00 248.0 41.00 153.0 🔾 355.0 🔾 270.0 151.0
1100		オーソ・クリニカ	オーソヒトロス250_3	○ 374.0 ○ 295.0 ○ 171.0
8011		オーソ・クリニカ	オーソヒトロス250_3	$38.00  196.0  30.00  172.0   383.0   300.0 \bigcirc  171.0$
9040		オーソ・クリニカ	オーソビトロス5600	$\bigcirc$ 371.0 $\bigcirc$ 286.0 $\bigcirc$ 161.0

#### アスパラギン酸アミノトランスフェラーゼ (AST)

九州大学病院 検査部 酒本 美由紀

#### 【参加状况】

今回の参加は253施設であり前回より10施設の増加であった。

#### 【測定方法の状況】

- 1. 測定原理は JSCC 標準化対応法が 215 施設 (85.0%)、ドライケミストリー法が 37 施設 (14.6%) であった。
- 2. ドライケミストリー法を採用している施設の内訳は、富士フイルムメディカルが 28 施設、アークレイが 5 施設、ホー ソ・クリニカル・ダイアグノスティックスが 4 施設であった。
- 3. 認証 ERM を使用している施設は 2 施設、検量用 ERM を表示値で使用している施設は 212 施設(84.6%)であった。市販管理血清を検量用に使用している施設が 2 施設あった。

#### 【測定値の状況】

1. 測定原理別の平均値と CV%を表 1 に示す。 JSCC 標準化対応法・ドライケシストリー法ともに昨年と比較し CV はほぼ変化はなかった。

	試料1	試料2	試料3
JSCC標準化対応法	116.7 (1.7%)	80.9 (1.6%)	26.4 (3.3%)
ドライケミストリー法	108.3 (5.9%)	76. 1 (5. 6%)	28.5 (4.0%)
目標値	117. 7	81.4	26. 5

表 1 測定原理別の平均値(U/L)と CV%(3SD 除去後)

#### 2. 目標値達成状況について

表 2 試料ごとの目標範囲内達成状況

目標範囲	試料1:111~124U/L	試料2:77~89U/L	試料3:25~28U/L
JSCC標準化対応法	93.0% (200/215)	99.5% (214/215)	92.6% (199/215)
ドライケミストリー法	32.4% (12/37)	27. 1% (19/37)	51.3% (19/37)

3. ドライケミストリー各社から提示された参考目標範囲・ドライケミストリー法における測定値の状況と目標範囲、を表 3・図 1 に示す。 オーツは JSCC 法と同じ目標範囲であり、アークレイ・富士は目標範囲が 10%であった。アークレイ・富士使用施設は、試料 1・2 では目標範囲と比較し、測定値・メーカー参考目標範囲ともに低値傾向であり、試料 3 は高値傾向であり、これは昨年と同様である。 AST は 2012 年度の検証により、ドライケミストリー法において試料の影響がないことが確認されているため、JSCC 法との差が小さくなることが望まれる。

表 3	ドライケミストリー法のメーカー別参考目標範囲
10	- 1 / 1/ 1/1/ 14 2/ / // // 2012年12日 -

	試料1	試料2	試料3	
オーソ	111~124	77~86	25~28	
アークレイ (SP試薬)	95. 4~116. 6	68. 4~83. 6	27.0~33.0	
アークレイ (SD試薬)	95. 4~116. 6	68. 4~83. 6	27.0~33.0	
富士	97~117	70~84	25~31	

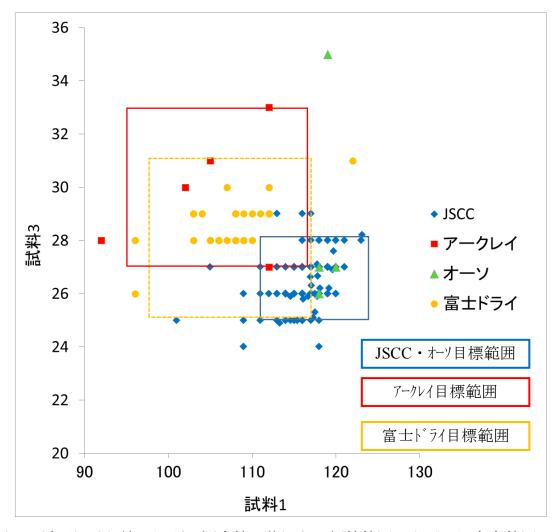



図1 ドライケミストリー法メーカー別の測定値の状況と目標値範囲およびメーカー参考範囲

#### 【基準範囲の状況】

JCCLS 共用基準範囲は  $13\sim30~U/L$  であり、この基準範囲を使用している施設は、昨年は 78 施設(32.1%)であったが、今年は 95 施設(37.5%)であった。

 $13\sim33~U/L$  を使用している施設が 56 施設、 $10\sim40~U/L$  を使用している施設が 39 施設であった。基準範囲下限を設定していない施設が 7 施設あった。

24 AST 施設No.が低い順に並んでいます

施設	Note that		Lett. P.P.	男性基準	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1001	JSCC標準化対	ニットーボー	目立LABOSPE	13.00	30.00			○ 116.0 ○	81.00 🔾	27.00
1002	JSCC標準化対	関東化学	日立LABOSPE	13.00	33.00			○ 120.0 ○	83.00 🔾	27.00
1004	JSCC標準化対	積水メディカル	日立LABOSPE	13.00	30.00	13.00	30.00	○ 119.0 ○		
	JSCC標準化対	和光純薬	日立LABOSPE	13.00	30.00			○ 119.2 ○		
	JSCC標準化対	関東化学	東芝TBA-cシリー	13.00	33.00	13.00		0 117.0 0		
	JSCC標準化対	和光純薬	日本電子JCA-B	10.00	30.00			0 115.0 0		
	JSCC標準化対	関東化学	日本電子JCA-B	13.00	30.00	13.00	30.00	0 114.6 0		
	JSCC標準化対 JSCC標準化対	和光純薬	日立7140-7170 日本電子JCA-B	13.00	30.00			<ul><li>○ 118.0 ○</li><li>○ 117.0 ○</li></ul>		
	JSCC標準化対	関東化学 関東化学	日本電子JCA-B	13.00	30.00	13.00	30.00	0 118.0 0		
	JSCC標準化対	積水メディカル	日本電子JCA-B	10.00	40.00			0 115.0 0		
	JSCC標準化対	和光純薬	日本電子JCA-B	13.00	30.00			0 117.0 0		
	JSCC標準化対	積水メディカル	日立LABOSPE	13.00	33.00			0 117.0 0		
1026	JSCC標準化対	デンカ生研	東芝25FR_Accut	13.00	30.00			○ 118.0 ○	82.00 🔾	27.00
1028	JSCC標準化対	シノテスト	目立LABOSPE	13.00	33.00			○ 116.0 ○	80.00 〇	26.00
1029	JSCC標準化対	LSIメディエンス	日立7140-7170	13.00	30.00	13.00	30.00	○ 117.0 ○	81.00 〇	26.00
1031	JSCC標準化対	和光純薬	東芝TBA-cシリー	13.00	30.00			○ 119.0 ○	82.00 🔾	26.00
1033	JSCC標準化対	積水メディカル	日立7140-7170	10.00	40.00	10.00	40.00	○ 116.0 ○	80.00 〇	26.00
	JSCC標準化対	積水メディカル	日立7140-7170	10.00	40.00	10.00	40.00	○ 118.0 ○		
	JSCC標準化対	関東化学	日本電子JCA-B	13.00	33.00			0 116.0 0		
	JSCC標準化対	和光純薬	目立LABOSPE	13.00	30.00			0 119.0 0		
	JSCC標準化対	関東化学	目立7140-7170	13.00	30.00	12.00	20.00	0 116.0 0		
	JSCC標準化対 JSCC標準化対	和光純薬 積水メディカル	日立LABOSPE 東芝25FR_Accut	13.00 13.00	30.00			<ul><li>○ 116.0 ○</li><li>○ 116.0 ○</li></ul>		
	JSCC標準化対	和光純薬	木 と 25 T N_Accut ヘックマン・コールター	13.00	33.00			0 117.0 0		
	JSCC標準化対	シノテスト	日本電子JCA-B	13.00	30.00			0 113.3 0		24.90
	JSCC標準化対	シノテスト	日本電子JCA-B	10.00	40.00			0 113.0 0		
	JSCC標準化対	シノテスト	東芝TBA-cシリー		40.00			○ 117.0 ○		
1055	JSCC標準化対	和光純薬	シーメンスHCDDim	13.00	30.00			○ 119.0 ○	82.00 🔾	27.00
1056	JSCC標準化対	シノテスト	日立7140-7170	13.00	33.00	13.00	33.00	○ 117.0 ○	80.00 〇	26.00
1057	JSCC標準化対	シノテスト	東京貿易ピオナリス5	10.00	40.00			○ 116.0 ○	80.00 〇	25.00
1058	JSCC標準化対	LSIメディエンス	日本電子JCA-B	13.00	33.00			○ 116.0 ○	80.00 〇	26.00
	JSCC標準化対	積水メディカル	東京貿易ビオナリス2	10.00	40.00	10.00	40.00	○ 117.0 ○		
	JSCC標準化対	LSIメディエンス	日本電子JCA-B	10.00	40.00			0 117.0 0		
	JSCC標準化対	和光純薬	目立LABOSPE	13.00	30.00	13.00		0 118.0 0		
	JSCC標準化対 JSCC標準化対	LSIメディエンス 関東化学	日本電子JCA-B	13.00	40.00 33.00	12.00		<ul><li>○ 121.0 ○</li><li>○ 116.0 ○</li></ul>		
	JSCC標準化対	関東化学	日立LABOSPE 日立LABOSPE	13.00	33.00			0 116.0 0		
	JSCC標準化対	積水メディカル	東京貿易ビオリス2	10.00	40.00			0 113.0 0		29.00
	JSCC標準化対	和光純薬	シーメンスHCDDim	10.00	40.00			0 118.0 0		
	JSCC標準化対	和光純薬	東芝TBA-cシリー	13.00	30.00			0 117.0 0		
1084	JSCC標準化対	和光純薬	東京貿易ビオナリス2	13.00	30.00	13.00	30.00	○ 119.0 ○	81.00 🔾	26.00
1088	JSCC標準化対	関東化学	目立LABOSPE	13.00	33.00	13.00	33.00	○ 114.0 ○	78.00 🔾	26.00
1089	JSCC標準化対	デンカ生研	日立7140-7170	13.00	30.00	13.00	30.00	○ 117.8 ○	81.40 〇	25.90
1090	JSCC標準化対	デンカ生研	日立7140-7170	13.00	30.00	13.00	30.00	○ 114.0 ○	81.00 🔾	26.00
1093	JSCC標準化対	関東化学	日本電子JCA-B	8.000	34.00	8.000	34.00	○ 115.0 ○	80.00 🔾	27.00
	JSCC標準化対	関東化学	日本電子JCA-B	13.00	33.00			○ 118.0 ○		
	JSCC標準化対	積水メディカル	東芝TBA-cシリー	10.00	40.00	10.00	40.00	O 113.0 O		
	JSCC標準化対	関東化学	東芝TBA-cシリー	13.00	30.00			0 114.0 0		
	JSCC標準化対	ベックマン・コー	ヘックマン・コールター 東京智見ドナリフロ	10.00	40.00	10.00	40.00	0 111.0 0		
	JSCC標準化対 ISCC標準化対	シノテスト	東京貿易ビオサリス5	10.00	40.00		40.00	109.0	76.00 🔾	
	JSCC標準化対 JSCC標準化対	和光純薬 和光純薬	日本電子JCA-B 東芝TBA-cシリー	10.00 13.00	40.00 30.00	10.00	40.00	<ul><li>○ 117.0 ○</li><li>○ 118.0 ○</li></ul>		
	JSCC標準化対	和元純条 デンカ生研	東芝25FR_Accut	13.00	33.00	13.00	33 00	0 115.0 0		
	JSCC標準化対	ベックマン・コー	ベックマン・コールター	10.00	40.00			0 119.6 0		
	JSCC標準化対	和光純薬	シーメンスHCDDim	10.00	40.00			0 123.1 0		28.20
	JSCC標準化対	シノテスト	目立7020-7080					101.0	57.00 🔾	

24 AST 施設No.が低い順に並んでいます

施設	INO. WENT PRICE	<u>- 11.70 (                                   </u>		男性基	進節用	女性基	進節囲		試料報告値	
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02 試料03	
1127	JSCC標準化対	積水メディカル	日本電子JCA-B	10.00	40.00			○ 114.0 ○	80.00 ○ 26.00	
1128	JSCC標準化対	シスメックス	日本電子JCA-B	13.00	30.00	13.00	30.00	○ 119.0 ○	83.00 🔾 27.00	
1129	JSCC標準化対	ベックマン・コー	ヘックマン・コールター	10.00	40.00			○ 116.0 ○	80.00 🔾 27.00	
1130	JSCC標準化対	積水メディカル	日本電子JCA-B	13.00	30.00	13.00	30.00	○ 113.0 ○	78.00 🔾 25.00	
	JSCC標準化対	積水メディカル	日立7140-7170	13.00	33.00	13.00	33.00		81.00 🔾 26.00	
	JSCC標準化対	ベックマン・コー	ヘ、ックマン・コールター	13.00	33.00				83.00 ○ 28.00	
	JSCC標準化対	和光純薬	日本電子JCA-B	13.00	30.00				84.00 \( \times 27.00 \)	
	JSCC標準化対	和光純薬	日未電子JCA_D	13.00	30.00		25.00		80.50 \( \times 25.80 \)	
	JSCC標準化対 JSCC標準化対	和光純薬 ベックマン・コー	日本電子JCA-B ベックマン・コールター	13.00	35.00 30.00		33.00		81.00 \( \times \) 26.00 81.00 \( \times \) 27.00	
	JSCC標準化対	シノテスト	日本電子JCA-B	13.00	30.00				79.00 \( \times 26.00	
	JSCC標準化対	和光純薬	東芝25FR_Accut	13.00	30.00				83.00 \( \text{27.00} \)	
	JSCC標準化対	和光純薬	東芝TBA-200F	13.00		13.00	33.00		82.00 \( \times 26.00 \)	
	JSCC標準化対	和光純薬	日本電子JCA-B	13.00	33.00				82.00 ○ 27.00	
1315	JSCC標準化対	和光純薬	日本電子JCA-B	13.00	30.00	13.00	30.00	○ 117.0 ○	81.00 🔾 26.00	
1316	JSCC標準化対	LSIメディエンス	日本電子JCA-B	13.00	33.00			○ 118.0 ○	81.00 $\bigcirc$ 26.00	
1325	JSCC標準化対	積水メディカル	日本電子JCA-B	13.00	30.00	13.00	30.00	○ 117.0 ○	81.00 🔾 27.00	
1327	JSCC標準化対	和光純薬	日本電子JCA-B	13.00	30.00	13.00	30.00	○ 118.0 ○	81.00 🔾 26.00	
1328	JSCC標準化対	ベックマン・コー	ヘ、ックマン・コールター	13.00	30.00			○ 117.0 ○	81.00 🔾 27.00	
	JSCC標準化対	和光純薬	日本電子JCA-B	13.00		13.00	30.00		83.00 🔾 27.00	
	JSCC標準化対	和光純薬	日本電子JCA-B	13.00	33.00				81.00 \( \times 26.00 \)	
	JSCC標準化対	積水メディカル	東芝TBA-cシリー	9.000	35.00				80.00 ○ 27.00	
	JSCC標準化対	和光純薬	日本電子JCA-B	13.00	30.00				78.00 \( \times 25.00 \)	
	JSCC標準化対 JSCC標準化対	LSIメディエンス 和光純薬	日本電子JCA-B 日本電子JCA-B	13.00 13.00	30.00	13.00	33.00		82.00 \( \times 27.00 \) 81.00 \( \times 26.00 \)	
	JSCC標準化対	積水メディカル	日本電子JCA-B	10.00		10.00			82.00 \( \text{ 27.00} \)	
	JSCC標準化対	関東化学	目立LABOSPE	13.00	30.00	10.00	10.00		81.00 \( \times 27.00 \)	
	JSCC標準化対	シノテスト	日立7140-7170	13.00		13.00	30.00		79.00 🔾 25.00	
1346	JSCC標準化対	積水メディカル	日本電子JCA-B	16.00	33.00			○ 113.0 ○	78.00 🔾 26.00	
1347	JSCC標準化対	ロシュ・ダイアグ	ロシュコハ [*] ス8000c5	13.00	30.00			○ 121.0 ○	83.00 🔾 27.00	
1348	JSCC標準化対	積水メディカル	東芝TBA-cシリー	9.000	35.00	9.000	35.00	○ 111.0 ○	78.00 🔾 26.00	
1349	JSCC標準化対	ロシュ・ダイアグ	ロシュコハ、ス8000c5	13.00	30.00	13.00	30.00	○ 119.0 ○	81.00 🔾 27.00	
	JSCC標準化対	積水メディカル	日本電子JCA-B	13.00	33.00				80.00 🔾 26.00	
	JSCC標準化対	シノテスト	ヘ、ックマン・コールター	13.00	30.00				79.00 🔾 26.00	
	JSCC標準化対	和光純薬	日本電子JCA-B	13.00	33.00				80.00 \( \times 26.00 \)	
	JSCC標準化対	和光純薬	東芝TBA-cシリー	13.00	30.00	13.00			80.00 \( \times 26.00 \)	
	JSCC標準化対 JSCC標準化対	和光純薬 和光純薬	日本電子JCA-B 日立7140-7170	13.00 13.00		13.00			80.00 ○ 25.00 82.00 ○ 27.00	
	JSCC標準化対	シノテスト	日本電子JCA-B	13.00	30.00	13.00	33.00		80.90 \( \) 25.30	
	JSCC標準化対	積水メディカル	日本電子JCA-B	13.00		13.00	30.00		81.00 \( \times \) 27.00	
	JSCC標準化対	和光純薬	日本電子JCA-B	7.000		7.000			82.00 ○ 26.00	
1361	JSCC標準化対	和光純薬	東芝TBA-20-3	13.00	30.00			○ 116.0 ○	83.00 29.00	
1362	JSCC標準化対	シスメックス	ヘ、ックマン・コールター	13.00	33.00			○ 119.0 ○	82.00 🔾 27.00	
1365	JSCC標準化対	和光純薬	日立7140-7170	13.00	30.00	13.00	30.00	○ 120.0 ○	83.00 🔾 28.00	
1368	JSCC標準化対	和光純薬	東芝TBA-cシリー	13.00	30.00			○ 118.0 ○	81.00 🔾 26.00	
	JSCC標準化対	シノテスト	日立LABOSPE	13.00	30.00	13.00	30.00		79.00 🔾 26.00	
	JSCC標準化対	シノテスト	東京貿易ビオナリス5	13.00		13.00	30.00	105.0	74.00 \( \times 27.00 \)	
	JSCC標準化対	関東化学	東京貿易ピオリス1	10.00	42.00				80.00 \( \times 27.00 \)	
	JSCC標準化対 ISCC標準化対	和光純薬	目立LABOSPE 東英25FP Acoust	13.00	30.00				81.00 \( \times 26.00 \)	
	JSCC標準化対 JSCC標準化対	和光純薬 積水メディカル	東芝25FR_Accut 東芝TBA-cシリー	13.00 13.00	30.00 33.00	13.00	33 00		83.00 ○ 28.00 80.00 ○ 26.00	
	JSCC標準化対	付	日立7140-7170	13.00		13.00			79.00 \( \times 26.00 \)	
	JSCC標準化対	協和メデックス	東京貿易ビオリス5	13.00	30.00	10.00	55.00	0 117.0 0		
	JSCC標準化対	和光純薬	シーメンスHCDDim	13.00	30.00	13.00	30.00		81.00 \( \text{28.00} \)	
	JSCC標準化対	シノテスト	東京貿易ピオリス2	13.00		13.00			81.00 🔾 25.00	
	JSCC標準化対	シーメンス	シーメンスHCDDim	13.00	30.00	13.00	30.00	○ 118.0 ○	82.00 🔾 27.00	
1402	JSCC標準化対	シノテスト	日本電子JCA-B	13.00	30.00			○ 115.0 ○	80.00 🔾 25.00	

24 AST 施設No.が低い順に並んでいます

施設	INO. NEW MERC	- 並んくく より		男性基	准統田	女性基	淮統田			試料報告値
	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
No										<u> </u>
	JSCC標準化対	セロテック	日本電子JCA-B	13.00	30.00	13.00	30.00	O 114.0 O		
	JSCC標準化対	関東化学	東芝TBA-cシリー	13.00	33.00			0 117.0 0		
	JSCC標準化対	関東化学	東京貿易ビオリス1	10.00	40.00	10.00	40.00	O 114.0 O		
	その他		セントラル科学Picc	11.00	38.00			O 118.0 O		32.00
	JSCC標準化対	和光純薬	日本電子JCA-B	13.00	30.00			0 117.5 0		
	JSCC標準化対	ベックマン・コー	ベックマン・コールター	13.00	33.00			O 113.0 O		
	JSCC標準化対	関東化学	目立LABOSPE	13.00	33.00			0 118.0 0		
	JSCC標準化対	積水メディカル	日本電子JCA-B	13.00	33.00	13.00	33.00	0 118.0 0		
	JSCC標準化対 JSCC標準化対	和光純薬	日立LABOSPE 日立LABOSPE	13.00	30.00	10.00	10.00	0 118.0 0		
	JSCC標準化対	関東化学 積水メディカル	日本電子JCA-B	10.00 13.00	40.00 30.00	10.00	40.00	○ 117.0 ○ ○ 118.0 ○		
	JSCC標準化対	積水メディカル	日立7140-7170	13.00	30.00	13.00	30.00	0 117.0 0		
	JSCC標準化対	和光純薬	日立LABOSPE	13.00	30.00	15.00	30.00	0 119.0 0		
	JSCC標準化対	和光純薬	目立LABOSPE	13.00	30.00	13 00	30.00	0 118.0 0		
	JSCC標準化対	和光純薬	東京貿易ビオリス2	13.00	30.00			0 118.0 0		
	JSCC標準化対	和光純薬	東芝25FR_Accut	13.00	30.00	10.00	00.00	0 117.0 0		
	JSCC標準化対	和光純薬	日立7140-7170	13.00	30.00	13.00	30.00	0 117.0 0		
	JSCC標準化対	和光純薬	目立LABOSPE	13.00	33.00			○ 113.0 ○		
	JSCC標準化対	和光純薬		13.00	30.00			0 116.0 0		
1531	JSCC標準化対	和光純薬	シーメンスHCDDim	13.00	33.00	13.00	33.00	○ 117.0 ○	82.00 🔾	28.00
1532	JSCC標準化対	シスメックス	日立7140-7170	13.00	30.00	13.00	30.00	○ 119.7 ○	82.90 🔾	27.60
1533	JSCC標準化対	和光純薬	シーメンスHCDDim	13.00	30.00			○ 117.0 ○	82.00 🔾	26.00
1534	JSCC標準化対	和光純薬	東京貿易ビオナリス2	13.00	30.00			○ 114.0 ○	82.00 🔾	27.00
1538	JSCC標準化対	積水メディカル	東京貿易ビオナリス2	13.00	30.00			○ 117.0 ○	82.00 🔾	26.00
1540	JSCC標準化対	LSIメディエンス	日本電子JCA-B	13.00	30.00	13.00	30.00	○ 115.0 ○	79.00 🔾	26.00
1541	JSCC標準化対	シノテスト	東芝25FR_Accut	13.00	33.00			○ 117.0 ○	81.00 🔾	27.00
1542	JSCC標準化対	関東化学	日立7140-7170	10.00	40.00			○ 116.0 ○	80.00 〇	28.00
1543	JSCC標準化対	シスメックス	東芝TBA-20-3	13.00	33.00	13.00	33.00	○ 119.0 ○	82.00 🔾	27.00
1549	JSCC標準化対	積水メディカル	東京貿易ビオリス2	13.00	33.00			○ 118.0 ○	82.00	24.00
1550	JSCC標準化対	積水メディカル	日立7140-7170	10.00	40.00			109.0 🔾	78.00 ○	26.00
1554	JSCC標準化対	シノテスト	日立7140-7170	13.00	33.00	13.00	33.00	○ 116.0 ○	80.00 🔾	25.00
1558	JSCC標準化対	和光純薬	日本電子JCA-B	13.00	30.00	13.00	30.00	○ 114.0 ○	79.00 ○	25.00
	JSCC標準化対	シノテスト	日本電子JCA-B	13.00	30.00			○ 116.0 ○		
	JSCC標準化対	和光純薬	ヘックマン・コールター	13.00	33.00	13.00	33.00	○ 118.0 ○		
	JSCC標準化対	積水メディカル	日本電子JCA-B	10.00	40.00			O 118.0 O		
	JSCC標準化対	関東化学	目立7600Dモジュ	10.00	40.00		30.00	O 116.0 O		
	JSCC標準化対	和光純薬	目立LABOSPE	13.00	33.00			0 118.0 0		
	JSCC標準化対	シスメックス	ヘックマン・コールター	13.00	33.00			0 118.0 0		
	JSCC標準化対	和光純薬	日本電子JCA-B 日立LABOSPE	13.00 13.00	30.00	12.00	22.00	○ 116.0 ○ ○ 117.0 ○		
	JSCC標準化対 JSCC標準化対	和光純薬 和光純薬	日立3100	13.00	33.00	13.00	33.00	0 115.0 0		
	JSCC標準化対	関東化学	日立7140-7170	10.00	40.00			0 116.0 0		
	JSCC標準化対	関東化学	日立7140-7170	10.00	40.00			0 116.0 0		
	JSCC標準化対	関東化学	ベックマン・コールター	10.00		10.00	40 00	0 115.0 0		
	JSCC標準化対	LSIメディエンス	東芝TBA-200F	10.00	40.00	10.00		0 120.0 0		
	JSCC標準化対	関東化学	ヘックマン・コールター	10.00	40.00			0 115.0 0		
	JSCC標準化対	和光純薬	ヘックマン・コールター	13.00	33.00	13.00	33.00	0 116.0 0		
	JSCC標準化対	和光純薬	ヘックマン・コールター	13.00		13.00		0 117.0 0		
	JSCC標準化対	積水メディカル	日本電子JCA-B	10.00	40.00			O 115.0 O		
	JSCC標準化対	和光純薬	ヘックマン・コールター	13.00	33.00			○ 117.0 ○		
	JSCC標準化対	積水メディカル	目立7140-7170	10.00	40.00	10.00	40.00	○ 115.0 ○	81.00 〇	27.00
1936	JSCC標準化対	セロテック	日本電子JCA-B	8.000	40.00	8.000	40.00	○ 120.0 ○	82.00 〇	26.00
1937	JSCC標準化対	シノテスト	日本電子JCA-H	13.00	34.00	13.00	34.00	○ 116.0 ○	80.00 🔾	26.00
2002	JSCC標準化対	関東化学	日本電子JCA-B	13.00	40.00			○ 117.0 ○	81.00 🔾	27.00
2006	JSCC標準化対	関東化学	目立LABOSPE	10.00	35.00			○ 117.0 ○	80.00 〇	26.00
2008	JSCC標準化対	和光純薬	ロシュコハ*ス8000c7	13.00	30.00	13.00	30.00	○ 119.0 ○	81.00 🔾	26.00
2009	JSCC標準化対	シノテスト	日本電子JCA-B	5.000	35.00	5.000	35.00	○ 117.0 ○	81.00 🔾	25.00

24 AST 施設No.が低い順に並んでいます

施設	2012년 12270	4. ( tht: 4.	F46 BB	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
2010	JSCC標準化対	シノテスト	日立7140-7170	10.00	40.00	10.00	40.00	○ 116.0 ○	81.00 〇	26.00
2011	JSCC標準化対	和光純薬	ベックマン・コールター	13.00	33.00	13.00	33.00	○ 116.0 ○	80.00 〇	26.00
3001	JSCC標準化対	和光純薬	日本電子JCA-B	13.00	30.00	13.00	30.00	○ 115.4 ○	79.10 🔾	25.00
3013	JSCC標準化対	和光純薬	シーメンスHCDDim	10.00	40.00			○ 113.0 ○	78.00 🔾	25.00
	JSCC標準化対	ベックマン・コー	ヘックマン・コールター	8.000	38.00			○ 119.0 ○		
	JSCC標準化対	和光純薬	日本電子JCA-B	13.00		13.00		0 114.6 0		
	JSCC標準化対	関東化学	目立7600Dモジュ	10.00	40.00			O 115.0 O		
	JSCC標準化対	和光純薬	日本電子JCA-B	13.00		13.00	30.00	0 114.0 0		
	JSCC標準化対	和光純薬	日本電子JCA-B	13.00	30.00	10.00		0 118.0 0		
	JSCC標準化対	シスメックス	日本電子JCA-B	13.00	30.00			O 123.0 O		
	JSCC標準化対	セロテック	日本電子JCA-B	13.00		13.00	30.00	0 117.0 0		
	JSCC標準化対	ニットーボー	日本電子JCA-B	13.00	30.00	12.00	24.00	0 118.0 0		
	JSCC標準化対 JSCC標準化対	シノテスト ベックマン・コー	東芝25FR_Accut ベックマン・コールター	13.00	40.00	13.00	34.00	○ 120.0 ○ ○ 119.0 ○		
	JSCC標準化対	カイノス	目立7140-7170	10.00 5.000	40.00			0 116.0 0		
	JSCC標準化対	関東化学	目立7140-7170	11.00		11.00	38.00	0 117.0 0		
	JSCC標準化対	関東化学	日本電子JCA-B	13.00	30.00	11.00	30.00	0 117.0 0		
	JSCC標準化対	LSIメディエンス	日本電子JCA-B	13.00	30.00	13 00	30.00	0 116.7 0		
	JSCC標準化対	積水メディカル	日本電子JCA-B	13.00		13.00		0 117.8 0		
	JSCC標準化対	シスメックス	東芝25FR_Accut	8.000	40.00	10.00	00.00	0 120.0 0		
	JSCC標準化対	シノテスト	東芝TBA-200F	13.00	30.00			0 116.0 0		
	JSCC標準化対	シノテスト	日立LABOSPE	10.00	35.00			○ 114.0 ○	79.00 🔾	26.00
	JSCC標準化対	関東化学	東芝TBA-200F	13.00	33.00	13.00	33.00	○ 112.0 ○	78.00 🔾	26.00
7001	JSCC標準化対	LSIメディエンス	日本電子JCA-B	13.00	36.00	11.00	29.00	○ 118.0 ○	81.00 〇	26.00
7002	JSCC標準化対	LSIメディエンス	日本電子JCA-B	13.00	30.00			○ 117.0 ○	81.00 〇	26.00
7007	JSCC標準化対	和光純薬	ヘ゛ックマン・コールター	8.000	38.00	8.000	38.00	○ 118.0 ○	81.00 〇	26.00
7011	JSCC標準化対	ニットーボー	東芝TBA-cシリー	13.00	36.00	11.00	29.00	○ 116.0 ○	80.00 〇	25.00
7025	JSCC標準化対	ニットーボー	日本電子JCA-B	13.00	33.00			○ 118.0 ○	81.00 🔾	27.00
7901	JSCC標準化対	ニットーボー	目立LABOSPE	13.00	36.00	11.00	29.00	○ 118.0 ○	81.00 🔾	27.00
8004	JSCC標準化対	シノテスト	日本電子JCA-B	10.00	34.00			○ 116.0 ○	81.00 🔾	25.00
9004	JSCC標準化対	協和メデックス	日立7140-7170					○ 117.0 ○	81.00 🔾	27.00
9008	JSCC標準化対	シノテスト	日立7140-7170					○ 116.0 ○	80.00 〇	27.00
9009	JSCC標準化対	LSIメディエンス	日立7140-7170	12.00	33.00			O 117.1 O		
	JSCC標準化対	デンカ生研	日立7140-7170	8.000	38.00	8.000	38.00	○ 117.0 ○		
	JSCC標準化対	ニットーボー	目立7140-7170					O 119.0 O		
	JSCC標準化対	和光純薬	目立7140-7170					O 120.0 O		
	JSCC標準化対	関東化学	日本電子JCA-B	13.00		13.00	33.00	○ 115.0 ○		
	JSCC標準化対	極東製薬	日本電子JCA-B	8.000	38.00			109.0	75.00	24.00
	JSCC標準化対	積水メディカル	積水EV800					0 116.0 0		
	JSCC標準化対	ロシュ・ダイアグ	ロシュコハ、ス8000c5					0 117.0 0		
	JSCC標準化対 ISCC標準化対	シノテスト	ロシュコハ、ス8000c7 日 立 71.40-71.70	0.000	30 00	8 000	20 00	0 118.1 0		
	JSCC標準化対 ISCC標準化対	栄研化学	目立7140-7170 ベックマン・コールター	8.000	აგ.00	8.000	აგ.00	0 114.0 0		
	JSCC標準化対	ベックマン・コー		19.00	22.00			0 117.3 0		
	JSCC標準化対 ISCC標準化対	シスメックス	目立7140-7170 シーメンスHCDDim	13.00	33.00			0 118.0 0		
9000	JSCC標準化対	和光純薬	√ - √ √ ∪ C D D IIII					○ 117.8 ○	01.19 (	20.01

102 AST(F) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足原垤	武衆/一ガー	79发 台	下限	上限	下限	上限	試料01	試料02	試料03
1044	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	8.000	38.00			O 103.0 C	77.00 🤇	29.00
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400		40.00			O 112.0 C	78.00 🤇	29.00
1076	ドライケミストリー法	富士フィルムメ	富士ドライケム700	13.00	33.00			O 103.0 C	75.00 🤇	29.00
1097	ドライケミストリー法	富士フィルムメ	富士ドライケム700	10.00	40.00	10.00	40.00	O 105.0 C	76.00 🤇	28.00
1104	ドライケミストリー法	富士フィルムメ	富士ドライケム350	8.000	38.00			O 108.0 C	72.00 🤇	28.00
1126	ドライケミストリー法	富士フィルムメ	富士ドライケム700	13.00	33.00	13.00	33.00	○ 109.0 ○	77.00 🤇	28.00
1133	ドライケミストリー法	富士フィルムメ	富士ドライケム400	8.000	38.00			○ 109.0 ○	77.00 🤇	28.00
1137	ドライケミストリー法	富士フィルムメ	富士ドライケム400	13.00	33.00	13.00	33.00	O 110.0 C	79.00 🤇	29.00
1326	ドライケミストリー法	富士フィルムメ	富士ドライケム400	10.00	40.00	10.00	40.00	○ 103.0 ○	71.00 (	28.00
1335	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	38.00			O 112.0 C	79.00 🤇	29.00
1336	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	38.00			○ 109.0 ○	80.00	29.00
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	38.00			O 112.0 C	79.00 🤇	30.00
1374	ドライケミストリー法	富士フィルムメ	富士ドライケム700	10.00	40.00	10.00	40.00	O 105.0 C	74.00 (	28.00
1375	ドライケミストリー法	富士フィルムメ	富士ドライケム400	10.00	40.00			○ 106.0 ○	72.00 🤇	28.00
1393	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	13.00	33.00	13.00	33.00	O 108.0 C	79.00 🤇	29.00
1415	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	38.00	8.000	38.00	○ 109.0 ○	73.00 🤇	28.00
1523	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	13.00	30.00			96.00 (	71.00 (	28.00
1525	ドライケミストリー法	富士フィルムメ	富士ドライケム350	13.00	33.00			122.0	85.00 €	31.00
1545	ドライケミストリー法	富士フィルムメ	富士ドライケム400	13.00	20.00			O 108.0 C	76.00 🤇	28.00
1546	ドライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	38.00			O 110.0 C	76.00 🤇	28.00
1548	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	13.00	30.00	13.00	30.00	O 112.0 C	79.00 🤇	29.00
1552	ト・ライケミストリー法	富士フィルムメ	富士ドライケム400	8.000	38.00			O 108.0 C	76.00 🤇	29.00
1557	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700					96.00	65.00 €	26.00
1559	ドライケミストリー法	富士フィルムメ	富士ドライケム700	13.00	30.00	13.00	30.00	O 106.0 C	77.00 🤇	28.00
1560	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	6.000	38.00			O 104.0 C	74.00 (	29.00
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	13.00	30.00	13.00	30.00	O 111.0 C	78.00 (	29.00
2012	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	8.000	38.00	8.000	38.00	O 107.0 C	78.00 (	30.00
9038	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	8.000	38.00			O 107.0 C	77.00 €	28.00

#### 137 AST(A1)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原连	武架/-//	7交 台	下限 上限 下限 上限 試料01 試料02 試料03
1065	ト・ライケミストリー法	アークレイ	アークレイスポットケム	○ 112.0 ○ 80.00 ○ 33.00
1317	ドライケミストリー法	アークレイ	アークレイスホ。ットケム	10.00 40.00 10.00 40.00 $\bigcirc$ 105.0 $\bigcirc$ 74.00 $\bigcirc$ 31.00
1378	ドライケミストリー法	アークレイ	アークレイスホ。ットケム	13.00 33.00 92.00 $64.00 \bigcirc 28.00$
9041	ドライケミストリー法	アークレイ	アークレイスポットケム	$\bigcirc$ 102.0 $\bigcirc$ 73.00 $\bigcirc$ 30.00

167 AST(A2)

茄	施設 測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
]	例足原连 No	武衆ノーカー		下限 上限 下限 上限 試料01 試料02 試料03
1	521 ドライケミストリー法	アークレイ	アークレイスポットケム	13.00 30.00 13.00 30.00 0 112.0 0 75.00 0 27.00

#### 197 AST(O)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武衆/一//	75文 台	下限 上限 下限 上限 試料01 試料02 試料03
1075	ト・ライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	13.00 30.00 13.00 30.00 $\bigcirc$ 118.0 $\bigcirc$ 80.00 $\bigcirc$ 26.00
1100	ト゛ライケミストリー法	オーソ・クリニカ	オーソヒトロス250_3	$\bigcirc$ 120.0 $\bigcirc$ 82.00 $\bigcirc$ 27.00
8011	ト゛ライケミストリー法	オーソ・クリニカ	オーソヒトロス250_3	$8.000$ $38.00$ $8.000$ $38.00$ $\bigcirc$ $119.0$ $106.0$ $35.00$
9040	ドライケミストリー法	オーソ・クリニカ	オーソビトロス5600	○ 118.0 ○ 81.00 ○ 27.00

#### アラニンアミノトランスフェラーゼ (ALT)

九州大学病院 検査部 酒本 美由紀

#### 【参加状况】

今回の参加は253施設であり前回より10施設の増加であった。

#### 【測定方法の状況】

- 1. 測定原理は JSCC 標準化対応法が 215 施設 (85.0%)、ドライケミストリー法が 37 施設 (14.6%) であった。
- 2. ドライケミストリー法を採用している施設の内訳は、富士フイルムメディカルが 28 施設、アークレイが 5 施設、ホー ソ・クリニカル・ダイアグノスティックスが 4 施設であった。
- 3. 認証 ERM を使用している施設は2施設、検量用 ERM を表示値で使用している施設は212 施設であった。市販管理血清を検量用に使用している施設が2施設あった。

#### 【測定値の状況】

1. 測定原理別の平均値と CV%を表 1 に示す。昨年と比較して JSCC 標準化対応法・ドライケミスト リー法ともに収束率はほとんど変化なかった。

表 1	測定原理別の平均値	(II/I) L	CV10/	(3SD 除去後)
1X I	例足が生かり十分値	(U/L)	C V /0	しりひり ケスコタノ

	試料1	試料2	試料3
JSCC標準化対応法	137. 1 (2.0%)	91.6 (2.5%)	23.7 (4.1%)
ドライケミストリー法	130.9 (4.3%)	88.8 (4.2%)	24.4 (12.8%)
目標値	138. 0	92.0	23. 9

2. 試料 1~3 全てが目標値±5%以内の許容幅に入った施設は、全体で 199 施設 (78.7%)、その 内訳は JSCC 標準化対応法 194 施設、ドライケミストリー法 5 施設であった。ドライケミストリー法の達成 施設数は昨年とほぼ変化なかった。試料ごとの測定原理別目標範囲達成状況を表 3 に示 す。

表 2 試料ごとの測定原理別目標範囲内達成状況

目標範囲	試料1:131~145 U/L	試料2:87~97 U/L	試料3:22~26 U/L
JSCC標準化対応法	93.5% (201/215)	95.8% (206/215)	97. 2% (209/215)
ドライケミストリー法	45.9% (17/37)	78.4% (29/37)	48.6% (18/37)

3. ドライケミストリー各社から提示された参考目標範囲・ドライケミストリー法メーカー別の測定値の状況と目標値範囲を表 3・図 1 に示す。オーソはメーカー別参考目標範囲が目標範囲と同じであるが 2 試料とも目標範囲内であった施設はなかった。ALT は 2012 年度の検証により、ドライケミストリー法において試料の影響が確認された。よってドライケミストリー法使用施設は、メーカー参考目標範囲内に測定値があれば測定手技に問題ないと判断できるといえる。しかし、富士・アークレイでは昨年同様参考目標範囲が 10%と広いため、参考範囲内であっても各施設で注意していただきたい。

表 3	ドライケミス	トリー法のメーカー別	参考目標範囲

	試料1	試料2	試料3		
オーソ	131~145	87~97	22~26		
アークレイ (SP試薬)	118.8~145.2	79.2~96.8	26.1~31.9		
アークレイ (SD試薬)	118.8~145.2	79.2~96.8	26.1~31.9		
富士	118~142	80~98	22~28		

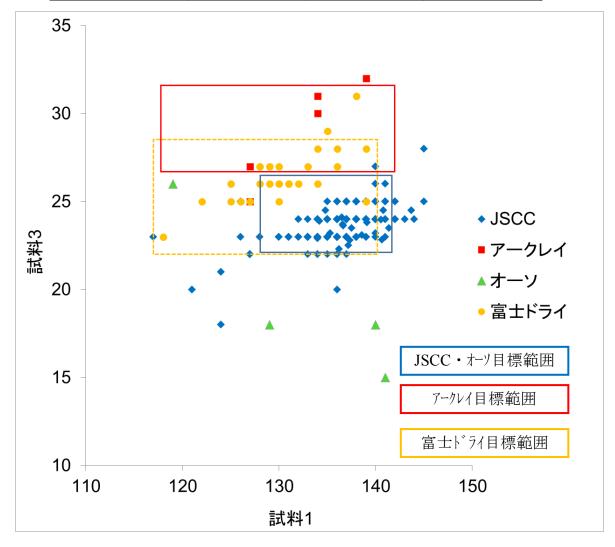



図1 ドライケミストリー法メーカー別の測定値の状況と目標値範囲およびメーカー参考範囲

#### 【基準範囲の状況】

JCCLS 共用基準範囲は男女別に設定されており、男:  $10\sim42~U/L$ 、女:  $7\sim23~U/L$  である。この基準範囲を使用している施設は、昨年は 73~ 施設(30.0%)であったが、今年は 86~ 施設(34.0%)であった。 $6\sim30~U/L$  を使用している施設が 41~ 施設であり、基準範囲下限を設定していない施設が 7~ 施設あった。

25 ALT 施設No.が低い順に並んでいます

施設	110.73年以7月1			男性基	準範囲	女性基	淮絎田			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
	10.00 AF WE / 1.1.	1 12	E da ADOGDE							<del></del>
	JSCC標準化対	ニットーボー	目立LABOSPE	10.00		7.000		O 137.0 C		
	JSCC標準化対	関東化学	目立LABOSPE	8.000		6.000		O 138.0 C		
	JSCC標準化対	積水メディカル	目立LABOSPE	10.00		7.000		O 142.0 C		
	JSCC標準化対	和光純薬	目立LABOSPE	10.00		7.000		O 134.8 C		
	JSCC標準化対	関東化学	東芝TBA-cシリー	8.000	42.00	6.000		O 138.0 C		
	JSCC標準化対	和光純薬	日本電子JCA-B	10.00	30.00	<b>7</b> 000		0 134.0	86.00 🔾	
	JSCC標準化対	関東化学	日本電子JCA-B	10.00	42.00	7.000		O 136.5 C		
	JSCC標準化対	和光純薬	日立7140-7170	10.00	42.00	7.000	23.00	O 139.0 C		
	JSCC標準化対	関東化学	日本電子JCA-B	10.00	40.00	7.000	00.00	O 136.0 C		
	JSCC標準化対	関東化学	日本電子JCA-B	10.00	42.00			O 139.0 C		
	JSCC標準化対	積水メディカル	日本電子JCA-B	5.000	45.00			O 133.0 C		
	JSCC標準化対	和光純薬	日本電子JCA-B	10.00	30.00	7.000	23.00	O 140.0 C		
	JSCC標準化対 ISCC標準化対	積水メディカル デンカ生研	日立LABOSPE	6.000	42.00	7.000	22.00	○ 139.0 C ○ 141.0 C		
	JSCC標準化対		東芝25FR_Accut 日立LABOSPE	10.00	30.00	7.000	23.00	O 141.0 C		
	JSCC標準化対	シノテスト	日立7140-7170	6.000		7 000	22.00			
	JSCC標準化対 ISCC標準化対	LSIメディエンス 和光純薬	ロ 並 7140-7170 東 芝 TBA-cシリー	10.00 10.00		7.000 7.000		○ 136.0 C ○ 142.0 C		
	JSCC標準化対 JSCC標準化対	積水メディカル	果之1BA C29 目立7140-7170			5.000		O 135.0 C		
	JSCC標準化対	積水メディカル	日立7140-7170	5.000 5.000		5.000		O 135.0 C		
	JSCC標準化対	関東化学	日本電子JCA-B	6.000	30.00	5.000	45.00	O 140.0 C		
	JSCC標準化対	和光純薬	日立LABOSPE	10.00		7.000	23.00	O 136.0 C		
	JSCC標準化対	関東化学	日立7140-7170	10.00		7.000		O 137.0 C		
	JSCC標準化対	積水メディカル	日立LABOSPE	10.00	42.00	7.000		O 133.0 C		
	JSCC標準化対	積水メディカル	東芝25FR_Accut	6.000	30.00	6.000		O 135.0 C		
	JSCC標準化対	和光純薬	ベックマン・コールター	6.000	30.00	6.000		O 137.0 C		
	JSCC標準化対	シノテスト	日本電子JCA-B	10.00		7.000		O 140.0 C		
	JSCC標準化対	シノテスト	日本電子JCA-B	5.000	40.00			O 131.0 C		
	JSCC標準化対	シノテスト	東芝TBA-cシリー	0.000	40.00	0.000	10.00	O 138.0 C		
	JSCC標準化対	和光純薬	シーメンスHCDDim	10.00	42.00	7.000	23.00	O 137.0 C		
	JSCC標準化対	シノテスト	日立7140-7170	6.000		6.000		○ 139.0 ○		
	JSCC標準化対	シノテスト	東京貿易ビオリス5	5.000	45.00			○ 136.0 ○		
	JSCC標準化対	LSIメディエンス	日本電子JCA-B	6.000	30.00			○ 136.0 ○		
	JSCC標準化対	積水メディカル	東京貿易ビオリス2	5.000		5.000	45.00	○ 136.0 ○		
	JSCC標準化対	LSIメディエンス	日本電子JCA-B	5.000	45.00			○ 133.0 ○		
	JSCC標準化対	和光純薬	日立LABOSPE	10.00	30.00	7.000	30.00	○ 137.0 ○		
1064	JSCC標準化対	LSIメディエンス	日本電子JCA-B		40.00		40.00	○ 141.0 ○	94.00 🔾	23.00
1072	JSCC標準化対	関東化学	目立LABOSPE	6.000	30.00	6.000	30.00	○ 142.0 ○	97.00 🔾	24.00
1073	JSCC標準化対	関東化学	目立LABOSPE	6.000	30.00	6.000	30.00	○ 139.0 ○	94.00 🔾	25.00
1074	JSCC標準化対	積水メディカル	東京貿易ビオリス2	5.000	45.00	5.000	45.00	○ 132.0 ○	90.00 🔾	23.00
1077	JSCC標準化対	和光純薬	シーメンスHCDDim	5.000	40.00	5.000	40.00	○ 138.0 ○	94.00 🔾	24.00
1081	JSCC標準化対	和光純薬	東芝TBA-cシリー	10.00	42.00	7.000	23.00	○ 134.0 ○	92.00 🔾	23.00
1084	JSCC標準化対	和光純薬	東京貿易ビオリス2	10.00	42.00	7.000	23.00	○ 136.0 ○	91.00 🔾	23.00
1088	JSCC標準化対	関東化学	目立LABOSPE	6.000	30.00	6.000	30.00	○ 137.0 ○	90.00 🔾	25.00
1089	JSCC標準化対		目立7140-7170	10.00	42.00	7.000	23.00	○ 135.3 ○	89.10 🔾	23.20
1090	JSCC標準化対	デンカ生研	目立7140-7170	10.00	42.00	7.000	23.00	○ 135.0 ○	88.00 🔾	22.00
1093	JSCC標準化対	関東化学	日本電子JCA-B	4.000	41.00	6.000	26.00	○ 139.0 ○	94.00 🔾	25.00
1094	JSCC標準化対	関東化学	日本電子JCA-B	8.000	42.00	6.000	27.00	○ 135.0 ○	93.00 🔾	25.00
1101	JSCC標準化対	積水メディカル	東芝TBA-cシリー	5.000	45.00	5.000	45.00	126.0	85.00 🔾	23.00
1102	JSCC標準化対	関東化学	東芝TBA-cシリー	10.00	42.00	7.000	23.00	○ 136.0 ○	92.00 🔾	25.00
1105	JSCC標準化対	ベックマン・コー	ベックマン・コールター	5.000	45.00			○ 138.0 ○	92.00 🔾	24.00
1112	JSCC標準化対	シノテスト	東京貿易ビオリス5	5.000	40.00	5.000	40.00	121.0	81.00	20.00
1116	JSCC標準化対	和光純薬	日本電子JCA-B	5.000	40.00	5.000	40.00	○ 138.0 ○	87.00 🔾	23.00
1120	JSCC標準化対	和光純薬	東芝TBA-cシリー	10.00	42.00	7.000	23.00	○ 134.0 ○	91.00 🔾	23.00
1121	JSCC標準化対	デンカ生研	東芝25FR_Accut	6.000	30.00	6.000	30.00	○ 133.0 ○	89.00 🔾	23.00
1122	JSCC標準化対	ベックマン・コー	ベックマン・コールター	5.000	40.00	5.000	40.00	○ 143.7	97.20 🔾	24.50
1123	JSCC標準化対	和光純薬	シーメンスHCDDim	5.000	45.00	5.000	45.00	○ 134.2 ○	87.10 🔾	23.90
1124	JSCC標準化対	シノテスト	目立7020-7080					117.0	65.00 ○	23.00

25 ALT 施設No.が低い順に並んでいます

施設	NO.7 EN PER	<u>- 11.70 (                                   </u>		男性基	進齨囲	女性基準	進節用			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1127	JSCC標準化対	積水メディカル	日本電子JCA-B	5.000	45.00			○ 135.0 ○	91.00 〇	24.00
1128	JSCC標準化対	シスメックス	日本電子JCA-B	10.00	42.00	7.000	23.00	○ 136.0 ○	91.00 〇	24.00
1129	JSCC標準化対	ベックマン・コー	ヘ、ックマン・コールター	5.000	45.00			○ 136.0 ○	90.00 🔾	24.00
1130	JSCC標準化対	積水メディカル	日本電子JCA-B	10.00	42.00	7.000	23.00	○ 131.0 ○	87.00 🔾	23.00
1134	JSCC標準化対	積水メディカル	日立7140-7170	6.000	30.00	6.000	30.00	○ 133.0 ○	90.00 🔾	23.00
	JSCC標準化対	ベックマン・コー	ヘ、ックマン・コールター	6.000	30.00			○ 145.0 ○		
	JSCC標準化対	和光純薬	日本電子JCA-B	10.00	42.00			○ 139.0 ○		
	JSCC標準化対	和光純薬	D.七冊フICA D	10.00	42.00	7.000		0 134.0 0		
	JSCC標準化対 JSCC標準化対	和光純薬 ベックマン・コー	日本電子JCA-B ベックマン・コールター	10.00	35.00 42.00	7.000		○ 138.0 ○ ○ 143.0 ○		
	JSCC標準化対	シノテスト	日本電子JCA-B	10.00 10.00		7.000	30.00		90.00 🔾	
	JSCC標準化対	和光純薬	東芝25FR_Accut	7.000	30.00	1.000	00.00	0 140.0 0		
	JSCC標準化対	和光純薬	東芝TBA-200F	8.000	42.00	6.000	27.00	O 138.0 O		
	JSCC標準化対	和光純薬	日本電子JCA-B	6.000	30.00			○ 137.0 ○		
1315	JSCC標準化対	和光純薬	日本電子JCA-B	10.00	42.00	7.000	23.00	○ 135.0 ○	93.00 🔾	23.00
1316	JSCC標準化対	LSIメディエンス	日本電子JCA-B	8.000	42.00	6.000	27.00	○ 136.0 ○	91.00 〇	23.00
1325	JSCC標準化対	積水メディカル	日本電子JCA-B	10.00	42.00	7.000	23.00	○ 135.0 ○	92.00 🔾	24.00
1327	JSCC標準化対	和光純薬	日本電子JCA-B	10.00	42.00	7.000		○ 138.0 ○		
	JSCC標準化対	ベックマン・コー	ヘ、ックマン・コールター	10.00		7.000		O 144.0 O		
	JSCC標準化対	和光純薬	日本電子JCA-B	10.00		7.000	23.00	0 141.0 0		
	JSCC標準化対	和光純薬	日本電子JCA-B	6.000	30.00			124.0	82.00	18.00
	JSCC標準化対 JSCC標準化対	積水メディカル 和光純薬	東芝TBA-cシリー 日本電子JCA-B	5.000 10.00	33.00 42.00				87.00 ○ 89.00 ○	
	JSCC標準化対	LSIメディエンス	日本電子JCA-B	10.00	42.00	7 000	23.00	0 140.0 0		
	JSCC標準化対	和光純薬	日本電子JCA-B	10.00	42.00			0 137.0 0		
	JSCC標準化対	積水メディカル	日本電子JCA-B	5.000	45.00			O 135.0 O		
1343	JSCC標準化対	関東化学	目立LABOSPE	10.00	42.00	7.000	23.00	○ 138.0 ○	94.00 〇	25.00
1344	JSCC標準化対	シノテスト	日立7140-7170	10.00	42.00	7.000	23.00	○ 136.0 ○	90.00 〇	23.00
1346	JSCC標準化対	積水メディカル	日本電子JCA-B	6.000	20.00			○ 133.0 ○	89.00 🔾	23.00
1347	JSCC標準化対	ロシュ・ダイアグ	ロシュコハ [*] ス8000c5	10.00	42.00	7.000	23.00	○ 142.0 ○	94.00 🔾	24.00
	JSCC標準化対	積水メディカル		5.000	33.00		33.00		88.00 🔾	
	JSCC標準化対	ロシュ・ダイアグ	ロシュコハ、ス8000c5	10.00	42.00	7.000	23.00	○ 139.0 ○		
	JSCC標準化対	積水メディカル	日本電子JCA-B	6.000	30.00	7.000	00.00	0 140.0 0		
	JSCC標準化対 ISCC標準化対	シノテスト	ヘックマン・コールター 日本電子ICA-P	10.00 6.000	42.00 30.00	6.000		○ 137.0 ○ ○ 137.0 ○		
	JSCC標準化対 JSCC標準化対	和光純薬 和光純薬	日本電子JCA-B 東芝TBA-cシリー	10.00		7.000		0 131.0 0		
	JSCC標準化対	和光純薬	日本電子JCA-B	10.00	42.00		23.00		89.00 🔾	
	JSCC標準化対	和光純薬	日立7140-7170	6.000	30.00			○ 137.0 ○		
	JSCC標準化対	シノテスト	日本電子JCA-B	10.00	42.00	7.000	23.00	O 141.4 O	93.70 🔾	23.50
1359	JSCC標準化対	積水メディカル	日本電子JCA-B	10.00	42.00	7.000	23.00	○ 135.0 ○	91.00 〇	23.00
1360	JSCC標準化対	和光純薬	日本電子JCA-B	4.000	44.00	4.000	44.00	○ 139.0 ○	90.00 〇	23.00
	JSCC標準化対	和光純薬	東芝TBA-20-3	10.00	42.00	7.000	23.00	○ 145.0 ○		28.00
	JSCC標準化対	シスメックス	ヘ、ックマン・コールター	6.000	30.00			○ 138.0 ○		
	JSCC標準化対	和光純薬	日立7140-7170	10.00	42.00			O 135.0 O		
	JSCC標準化対	和光純薬	東芝TBA-cシリー	10.00	42.00			O 133.0 O		
	JSCC標準化対 JSCC標準化対	シノテストシノテスト	日立LABOSPE 東京貿易ビオナリス5	10.00 10.00	42.00 42.00		23.00	0 137.0 0	87.00 🔾	
	JSCC標準化対	関東化学	東京貿易ビオリス1	10.00	40.00	1.000	25.00	0 137.0 0		
	JSCC標準化対	和光純薬	目立LABOSPE	10.00	42.00	7.000	23.00	0 140.0 0		
	JSCC標準化対	和光純薬	東芝25FR_Accut	10.00	42.00			O 137.0 O		
	JSCC標準化対	積水メディカル	東芝TBA-cシリー	6.000	30.00	6.000	30.00	○ 138.0 ○	90.00 〇	25.00
1391	JSCC標準化対	シノテスト	日立7140-7170	8.000	42.00	6.000	27.00	○ 134.0 ○	89.00 🔾	23.00
1394	JSCC標準化対	協和メデックス	東京貿易ビオปス5	10.00	42.00	7.000	23.00	○ 135.0 ○	91.00 🔾	23.00
	JSCC標準化対	和光純薬	シーメンスHCDDim	10.00	30.00			○ 136.0 ○		
	JSCC標準化対	シノテスト	東京貿易ビオปス2	10.00	42.00			○ 136.0 ○		
	JSCC標準化対	シーメンス	シーメンスHCDDim	10.00	42.00			0 137.0 0		
1402	JSCC標準化対	シノテスト	日本電子JCA-B	10.00	42.00	7.000	23.00	○ 136.0 ○	91.00 🔾	23.00

25 ALT 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告值
No	例是水柱	PV3F27 7V	1955年	下限	上限	下限	上限	試料01	試料02	試料03
1403	JSCC標準化対	セロテック	日本電子JCA-B	10.00	30.00	7.000	30.00	○ 135.0 ○	91.00 〇	24.00
	JSCC標準化対	関東化学	東芝TBA-cシリー	8.000	42.00			○ 139.0 ○		
	JSCC標準化対	関東化学	東京貿易ビオナリス1	5.000	45.00	5.000		○ 138.0 ○		
	その他		セントラル科学Picc	10.00	47.00			○ 136.0 ○		31.00
	JSCC標準化対	和光純薬	日本電子JCA-B	10.00	42.00			0 138.6 0		
	JSCC標準化対	ベックマン・コー	ヘックマン・コールター ロ さしADOSDE	6.000		6.000		O 139.0 O		
	JSCC標準化対 JSCC標準化対	関東化学 積水メディカル	日立LABOSPE 日本電子JCA-B	6.000 6.000	30.00	6.000		○ 138.0 ○ ○ 132.0 ○		
	JSCC標準化対	和光純薬	日立LABOSPE	10.00		7.000		0 138.0 0		
	JSCC標準化対	関東化学	日立LABOSPE	5.000	40.00			0 142.0 0		
	JSCC標準化対	積水メディカル	日本電子JCA-B	10.00		7.000		O 137.0 O		
1512	JSCC標準化対	積水メディカル	日立7140-7170	10.00	30.00	7.000	30.00	○ 134.0 ○	94.00 〇	24.00
1513	JSCC標準化対	和光純薬	目立LABOSPE	10.00	42.00	7.000	23.00	○ 141.0 ○	95.00 〇	26.00
1514	JSCC標準化対	和光純薬	日立LABOSPE	10.00	30.00	7.000	30.00	○ 136.0 ○	89.00 🔾	22.00
1518	JSCC標準化対	和光純薬	東京貿易ビオナリス2	10.00	42.00	7.000	23.00	○ 138.0 ○	95.00 🔾	24.00
1519	JSCC標準化対	和光純薬	東芝25FR_Accut	10.00	42.00	7.000		○ 134.0 ○		
	JSCC標準化対	和光純薬	日立7140-7170	10.00		7.000	23.00	○ 137.0 ○	92.00 🔾	24.00
	JSCC標準化対	和光純薬	日立LABOSPE	6.000	30.00		30.00	127.0	86.00 🔾	
	JSCC標準化対	和光純薬	) hallanni	10.00	42.00			0 134.0 0		
	JSCC標準化対	和光純薬	シーメンスHCDDim	8.000	42.00	6.000		O 136.0 O		
	JSCC標準化対 JSCC標準化対	シスメックス 和光純薬	日立7140-7170 シーメンスHCDDim	10.00 10.00	42.00 42.00			○ 139.1 ○ ○ 134.0 ○		
	JSCC標準化対	和光純薬	東京貿易ビオリス2	10.00	42.00			0 135.0 0		
	JSCC標準化対	積水メディカル	東京貿易ビオリス2	10.00		7.000	23.00		88.00 🔾	
	JSCC標準化対	LSIメディエンス	日本電子JCA-B	10.00	42.00			0 134.0 0		
	JSCC標準化対	シノテスト	東芝25FR_Accut	6.000	30.00			○ 138.0 ○		
1542	JSCC標準化対	関東化学	日立7140-7170	5.000	40.00			○ 137.0 ○	94.00 〇	25.00
1543	JSCC標準化対	シスメックス	東芝TBA-20-3	6.000	30.00	6.000	30.00	○ 136.0 ○	93.00 🔾	24.00
1549	JSCC標準化対	積水メディカル	東京貿易ビオナリス2	6.000	30.00			○ 138.0 ○	92.00 🔾	23.00
1550	JSCC標準化対	積水メディカル	日立7140-7170	5.000	45.00			124.0	84.00	21.00
	JSCC標準化対	シノテスト	日立7140-7170	8.000	42.00			○ 140.0 ○		
	JSCC標準化対	和光純薬	日本電子JCA-B	10.00	42.00			O 133.0 O		
	JSCC標準化対	シノテスト	日本電子JCA-B	10.00		7.000		O 139.0 O		
	JSCC標準化対	和光純薬	ヘックマン・コールター ロオ電子・ICA-D	6.000		6.000		○ 138.0 ○ ○ 137.0 ○		
	JSCC標準化対 JSCC標準化対	積水メディカル 関東化学	日本電子JCA-B 日立7600Dモジュ	5.000 5.000	45.00 40.00			0 137.0 0		
	JSCC標準化対	和光純薬	目立LABOSPE	6.000	30.00			0 136.0 0		
	JSCC標準化対	シスメックス	ヘ゛ックマン・コールター	6.000	30.00			O 135.0 O		
	JSCC標準化対	和光純薬	日本電子JCA-B	10.00	42.00	7.000		○ 141.0 ○		
1917	JSCC標準化対	和光純薬	目立LABOSPE	6.000	30.00	6.000	30.00	○ 137.0 ○	92.00 〇	23.00
1920	JSCC標準化対	和光純薬	日立3100	6.000	30.00			○ 136.0 ○	92.00 🔾	24.00
1922	JSCC標準化対	関東化学	日立7140-7170	5.000	40.00			○ 138.0 ○	94.00 🔾	24.00
	JSCC標準化対	関東化学	日立7140-7170	5.000	40.00			○ 138.0 ○	92.00 🔾	25.00
	JSCC標準化対	関東化学	ヘ゛ックマン・コールター	5.000	45.00	5.000		○ 136.0 ○		
	JSCC標準化対	LSIメディエンス	東芝TBA-200F	= 000	35.00			O 139.0 O		
	JSCC標準化対	関東化学	ヘックマン・コールター	5.000	40.00	c 000		0 137.0 0		
	JSCC標準化対	和光純薬 和光純薬	ヘックマン・コールター	6.000 6.000	30.00			○ 136.0 ○ ○ 138.0 ○		
	JSCC標準化対 JSCC標準化対	和ル純条 積水メディカル	日本電子JCA-B	5.000	45.00	0.000		0 134.0 0		
	JSCC標準化対	和光純薬	ベックマン・コールター	6.000	30.00			0 138.0 0		
	JSCC標準化対	積水メディカル	日立7140-7170	5.000	45.00	5.000		0 135.0 0		
	JSCC標準化対	セロテック	日本電子JCA-B	5.000	35.00			0 137.0 0		
	JSCC標準化対	シノテスト	日本電子JCA-H	7.000	37.00			○ 138.0 ○		
2002	JSCC標準化対	関東化学	日本電子JCA-B	10.00	42.00	7.000	23.00	○ 139.0 ○	94.00 〇	25.00
2006	JSCC標準化対	関東化学	目立LABOSPE	5.000	40.00			○ 138.0 ○	90.00 〇	23.00
2008	JSCC標準化対	和光純薬	ロシュコハ*ス8000c7	10.00	42.00	7.000	23.00	○ 137.0 ○	91.00 🔾	23.00
2009	JSCC標準化対	シノテスト	日本電子JCA-B	5.000	30.00	5.000	30.00	○ 136.0 ○	90.00	20.00

25 ALT 施設No.が低い順に並んでいます

施設		=4-tt:)	75% 00	男性基準	範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
2010	JSCC標準化対	シノテスト	目立7140-7170	5.000 4	10.00	5.000	40.00	○ 138.0 ○	94.00 〇	24.00
2011	JSCC標準化対	和光純薬	ヘ゛ックマン・コールター	6.000 3	30.00	6.000	30.00	○ 136.0 ○	90.00 🔾	23.00
3001	JSCC標準化対	和光純薬	日本電子JCA-B	10.00 4	42.00	7.000	23.00	○ 136.2 ○	90.00 🔾	22.30
3013	JSCC標準化対	和光純薬	シーメンスHCDDim	5.000 4	10.00			127.0 ℂ	89.00 🔾	22.00
3018	JSCC標準化対	ベックマン・コー	ヘックマン・コールター	4.000 4	44.00			○ 139.0 ○	92.00 🔾	24.00
3022	JSCC標準化対	和光純薬	日本電子JCA-B	10.00 4	42.00	7.000	23.00	○ 137.5 ○	89.50 🔾	23.50
3027	JSCC標準化対	関東化学	日立7600Dモジュ	5.000 4	40.00			○ 138.0 ○	94.00 〇	24.00
3048	JSCC標準化対	和光純薬	日本電子JCA-B	10.00 4	42.00	7.000	23.00	○ 136.0 ○	91.00 🔾	23.00
3055	JSCC標準化対	和光純薬	日本電子JCA-B	10.00 4	42.00	7.000	23.00	○ 136.0 ○	94.00 〇	24.00
3056	JSCC標準化対	シスメックス	日本電子JCA-B	10.00 4	12.00	7.000	23.00	○ 141.0 ○	88.00 🔾	24.00
3907	JSCC標準化対	セロテック	日本電子JCA-B	10.00 4	42.00	10.00	23.00	○ 136.0 ○	90.00 🔾	24.00
4002	JSCC標準化対	ニットーボー	日本電子JCA-B	10.00 4	12.00	7.000	23.00	○ 137.0 ○	91.00 🔾	23.00
4039	JSCC標準化対	シノテスト	東芝25FR_Accut	7.000 3	37.00	7.000	37.00	○ 136.0 ○	93.00 🔾	23.00
4040	JSCC標準化対	ベックマン・コー	ヘックマン・コールター	5.000 4	10.00			○ 141.0 ○	95.00 🔾	25.00
4902	JSCC標準化対	カイノス	目立7140-7170	5.000 3	35.00			○ 139.0 ○	93.00 🔾	24.00
5003	JSCC標準化対	関東化学	目立7140-7170	5.000 4	10.00	5.000	40.00	○ 139.0 ○	92.00 🔾	25.00
5005	JSCC標準化対	関東化学	日本電子JCA-B	10.00 4	42.00	7.000	23.00	○ 140.0 ○	94.00 〇	25.00
5006	JSCC標準化対	LSIメディエンス	日本電子JCA-B	10.00	42.00	7.000	23.00	○ 137.2 ○	91.80 🔾	22.50
5010	JSCC標準化対	積水メディカル	日本電子JCA-B	10.00 4	42.00	7.000	23.00	○ 136.6 ○	91.00 🔾	23.70
6006	JSCC標準化対	シスメックス	東芝25FR_Accut	5.000 3	35.00			○ 140.0 ○	97.00	27.00
6008	JSCC標準化対	シノテスト	東芝TBA-200F	10.00 4	42.00			○ 138.0 ○	92.00 🔾	24.00
	JSCC標準化対	シノテスト	目立LABOSPE	5.000 3	35.00			○ 141.0 ○	89.00 🔾	24.00
6016	JSCC標準化対	関東化学	東芝TBA-200F	8.000 4	42.00	6.000	27.00	○ 134.0 ○	88.00 🔾	23.00
7001	JSCC標準化対	LSIメディエンス	日本電子JCA-B	9.000 4	44.00	7.000	27.00	○ 137.0 ○	93.00 🔾	23.00
7002	JSCC標準化対	LSIメディエンス	日本電子JCA-B			7.000	23.00	○ 134.0 ○	92.00 🔾	23.00
	JSCC標準化対	和光純薬	ヘックマン・コールター		14.00			○ 142.0 ○		
	JSCC標準化対	ニットーボー	東芝TBA-cシリー			7.000		○ 136.0 ○		
	JSCC標準化対	ニットーボー	日本電子JCA-B			6.000		○ 138.0 ○		
	JSCC標準化対	ニットーボー	目立LABOSPE			7.000		○ 137.0 ○		
	JSCC標準化対	シノテスト	日本電子JCA-B	7.000 4	42.00	6.000	37.00	○ 140.0 ○		
	JSCC標準化対	協和メデックス	日立7140-7170					○ 136.0 ○		
	JSCC標準化対	シノテスト	目立7140-7170					○ 140.0 ○		
	JSCC標準化対	LSIメディエンス	目立7140-7170		35.00			O 137.3 C		
	JSCC標準化対	デンカ生研	目立7140-7170	4.000 4	44.00	4.000	44.00	○ 134.0 ○		
	JSCC標準化対	ニットーボー	日立7140-7170					○ 137.0 ○		
	JSCC標準化対	和光純薬	目立7140-7170					○ 139.0 ○		
	JSCC標準化対	関東化学	日本電子JCA-B			6.000	27.00	○ 135.0 ○		
	JSCC標準化対	極東製薬	日本電子JCA-B	4.000 4	43.00			○ 132.0 ○		
	JSCC標準化対	積水メディカル	積水EV800					○ 136.0 ○		
	JSCC標準化対	ロシュ・ダイアグ	ロシュコハ ス8000c5					O 140.6 C		
	JSCC標準化対	ロシュ・ダイアグ	ロシュコハ ス8000c7				40	O 140.6 C		
	JSCC標準化対	<b>栄研化学</b>	日立7140-7170	4.000 4	13.00	4.000	43.00	O 134.0		
	JSCC標準化対	ベックマン・コー	ヘックマン・コールター					O 140.8 C		
	JSCC標準化対	シスメックス	日立7140-7170	8.000 4	12.00	6.000	24.00	O 137.0 C		
9050	JSCC標準化対	和光純薬	シーメンスHCDDim					O 136.7 C	91.71 🔾	23.63

103 ALT(F) 施設No.が低い順に並んでいます

施設	施設 測定原理 試薬メーカー	試薬メーカー	機器	男性基準	男性基準範囲 3		女性基準範囲		試料報告値	
No	例是水生	PC 3427. 74	1)及有計	下限	上限	下限	上限	試料01	試料02	試料03
1044	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	4.000	44.00			O 127.0 C	85.00 〇	25.00
1053	ト・ライケミストリー法	富士フィルムメ	富士ドライケム400		40.00			O 130.0 C	92.00 (	26.00
1076	ドライケミストリー法	富士フィルムメ	富士ドライケム700	6.000	30.00			O 128.0 C	91.00 〇	27.00
1097	ドライケミストリー法	富士フィルムメ	富士ドライケム700	5.000	45.00	5.000	45.00	O 135.0 C	92.00	29.00
1104	ドライケミストリー法	富士フィルムメ	富士ドライケム350	4.000	44.00			O 122.0 C	86.00 〇	25.00
1126	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	6.000	30.00	6.000	30.00	O 130.0 C	94.00 (	27.00
1133	ト・ライケミストリー法	富士フィルムメ	富士ドライケム400	4.000	44.00			O 128.0 C	89.00 (	27.00
1137	ドライケミストリー法	富士フィルムメ	富士ドライケム400	8.000	42.00	6.000	27.00	O 131.0 C	88.00 (	26.00
1326	ドライケミストリー法	富士フィルムメ	富士ドライケム400	5.000	45.00	5.000	45.00	O 136.0 C	94.00 (	27.00
1335	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	4.000	44.00			O 130.0 C	89.00 (	26.00
1336	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	4.000	44.00			O 129.0 C	91.00 〇	26.00
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	4.000	44.00			O 134.0 C	94.00 (	28.00
1374	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	5.000	45.00	5.000	45.00	O 134.0 C	88.00 〇	26.00
1375	ドライケミストリー法	富士フィルムメ	富士ドライケム400	5.000	45.00			O 125.0 C	88.00 (	26.00
1393	ト・ライケミストリー法	富士フィルムメ	富士ドライケムNX5	6.000	30.00	6.000	30.00	O 139.0 C	95.00 €	28.00
1415	ドライケミストリー法	富士フィルムメ	富士ドライケム700	4.000	44.00	4.000	44.00	O 133.0 C	90.00 (	27.00
1523	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	10.00	42.00	7.000	23.00	O 125.0 C	83.00 (	25.00
1525	ト・ライケミストリー法	富士フィルムメ	富士ドライケム350	6.000	30.00			O 138.0 C	96.00	31.00
1545	ト・ライケミストリー法	富士フィルムメ	富士ドライケム400	10.00	42.00	7.000	23.00	O 126.0 C	88.00 (	25.00
1546	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	4.000	44.00			O 132.0 C	89.00 (	26.00
1548	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	10.00	42.00	7.000	23.00	O 129.0 C	89.00 (	27.00
1552	ト・ライケミストリー法	富士フィルムメ	富士ドライケム400	4.000	44.00			O 128.0 C	89.00 (	26.00
1557	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700					O 118.0 C	82.00 (	23.00
1559	ト・ライケミストリー法	富士フィルムメ	富士ドライケム700	10.00	42.00	7.000	23.00	O 131.0 C	87.00 €	26.00
1560	ドライケミストリー法	富士フィルムメ	富士ドライケム700	4.000	44.00			O 129.0 C	83.00 (	27.00
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	10.00	42.00	7.000	23.00	O 136.0 C	91.00 〇	28.00
2012	ドライケミストリー法	富士フィルムメ	富士ドライケムNX5	4.000	44.00	4.000	44.00	○ 139.0 ○	89.00 (	25.00
9038	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	4.000	44.00			O 130.0 C	89.00 (	25.00

#### 138 ALT(A1)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	No Richter Park, N	7% 10	下限 上限 下限 上限 試料01 試料02 試料03	
1065	ト・ライケミストリー法	アークレイ	アークレイスポットケム	○ 127.0 ○ 84.00 ○ 27.00
1317	ト・ライケミストリー法	アークレイ	アークレイスポットケム	$5.000$ $45.00$ $5.000$ $45.00$ $\bigcirc$ $139.0$ $\bigcirc$ $88.00$ $32.00$
1378	ト・ライケミストリー法	アークレイ	アークレイスポットケム	6.000 $30.00$ $\bigcirc$ $134.0 \bigcirc$ $90.00 \bigcirc$ $31.00$
9041	ドライケミストリー法	アークレイ	アークレイスポットケム	○ 134.0 ○ 91.00 ○ 30.00

168 ALT(A2)

施設	測定原埋 試楽メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No			下限 上限 下限 上限 試料01 試料02 試料03
1521 ト・ライケミストリー法	アークレイ	アークレイスポットケム	10.00 42.00 7.000 23.00 $\bigcirc$ 127.0 $\bigcirc$ 82.00 25.00

168 ALT(A2)

施設	測定原埋 試楽メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No			下限 上限 下限 上限 試料01 試料02 試料03
1521 ト・ライケミストリー法	アークレイ	アークレイスポットケム	10.00 42.00 7.000 23.00 $\bigcirc$ 127.0 $\bigcirc$ 82.00 25.00

198 ALT(O)

施設 測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値	
No	例足原生	叫来/ //	1万英十日计	下限 上限 下限 上限 試料01 試料02 試料03
1075	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	10.00 30.00 7.000 30.00 129.0
1100	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	○ 141.0 ○ 87.00 15.00
8011	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	4.000 43.00 4.000 43.00 119.0 81.00 26.00
9040	ドライケミストリー法	オーソ・クリニカ	オーソビトロス5600	○ 140.0 ○ 92.00 18.00

#### アミラーゼ (AMY)

産業医科大学病院 臨床検査・輸血部 比嘉 幸枝 早原 千恵

#### 【参加状况】

参加施設 241 施設(前回 229 施設)

#### 【測定方法の状況】

- 1. JSCC 標準化対応法が 208 施設(86.3%)、 ト ライケミストリー法が 32 施設(13.3%)、 その他が 1 施設 (0.4%)であった。
- 2. 溶液法のうち、基質に用いている糖数で区分すると、G7 基質 96 施設(45.9%)、G5 基質 78 施設(37.3%)、G3 基質 16 施設(7.7%)、G2 基質 19 施設(9.1%)であった。
- 3. 溶液法における検量方法は、指定 factor を使用している施設が 2 施設(1.0%)、検量用 ERM を使用している施設が 204 施設(97.5%)、認証 ERM を使用している施設が 2 施設(1.0%)、管理血清などを使用している施設が 1 施設(0.5%)であった。

#### 【測定値の状況】

1. 試料  $1\sim3$  の測定原理別 CV%を表 1 に、原理別測定値の分布を図 1 に示した。JSCC 標準化対応法の CV%は  $2.0\sim2.2$  %と収束していた。一方、ドライケミストリー法の CV%は  $10.0\sim13.1$  %であり、メーカー間差がばらつきの原因と思われた。また、JSCC 標準化対応法の測定値に、基質による差は認められなかった。

21 747-271 (652 741-12)									
測定法	n		平均值		CV%				
例 足 伝		試料1	試料 2	試料 3	試料1	試料 2	試料 3		
全体	241	229.7	173.5	88.9	2.7	2.9	2.5		
JSCC 標準化対応法	208	230.6	174.3	89.1	2.0	2.0	2.2		
ドライケミストリー法	32	218.4	165.8	86.5	13.1	12.0	10.0		
その他	1	162	126	67	-	-	-		

表 1. 測定原理別 CV% (3SD 除去後)

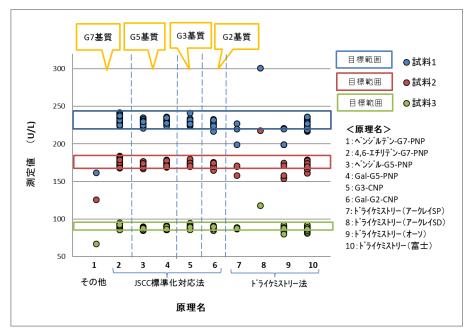



図1. 原理別測定値の分布

2. 目標値は、試料 1:232.8(220~245)、試料 2:175.9(167~185)、試料 3:89.6(85~95)U/L である。試料別の目標範囲達成状況を表 2、3 に、試料 1 と 3 の散布図を図 2、3 に示した。 JSCC 標準化対応法で 3 試料すべてを達成できていた施設は 206 施設(99.0%)であり、ドライケ ミストリー法では 21 施設(65.6%)であった。

表 2. 試料別目標範囲(目標値±5.0%) 達成状況

	n	目標範囲達成							
測定法		施設数					達成率(%)		
MACIA		3 試料 すべて	試料1	試料2	試料3	3 試料 すべて	試料1	試料 2	試料 3
全体	241	227	228	228	231	94.2	94.6	94.6	95.9
JSCC 標準化対応法	208	206	206	206	208	99.0	99.0	99.0	100.0
ドライケミストリー法	32	21	22	22	23	65.6	68.8	68.8	71.9
その他	1	0	0	0	0	0	0	0	0

表 3. 試料別目標範囲(目標値±5.0%) 達成状況 (基質別)

	n	目標範囲達成								
No. 1 11.000		施設数					達成率(%)			
測定基質		3 試料 すべて	試料 1	試料 2	試料3	3 試料 すべて	試料 1	試料2	試料3	
G7 基質	97	96	96	96	96	99.0	99.0	99.0	99.0	
G5 基質	77	76	76	76	77	98.7	98.7	98.7	100.0	
G3 基質	16	16	16	16	16	100.0	100.0	100.0	100.0	
G2 基質	19	18	18	18	19	94.7	94.7	94.7	100.0	

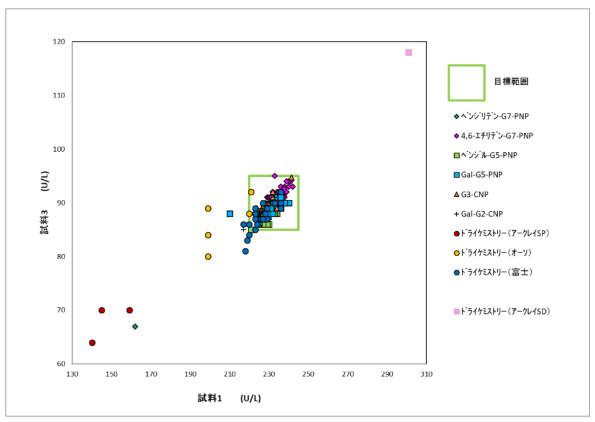



図 2. 散布図 (全体)

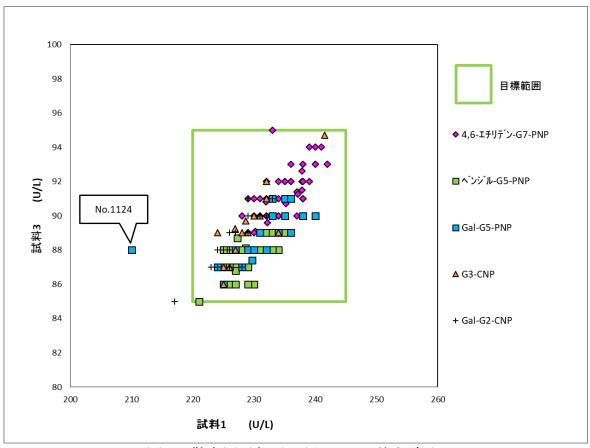



図3. 散布図(ドライケミストリー、その他を除く)

#### 【基準範囲の状況】

- 1. JCCLS 共用基準範囲採用施設は 98 施設 (40.7%) であった。
- 2. 施設 No. 1101、No.1331 は、測定法や分析機が同じである他施設と基準範囲が異なっている。 基準範囲の確認をお願いしたい。

#### 【その他】

ドライケミストリー法のメーカー測定値、許容範囲を付記する。また、ドライケミストリー法の散布図を図4に示した。

<アークレイ SP>

試料 1:140 (126~154)、試料 2:111 (100~122)、試料 3:64 (58~70) U/L

<アークレイ SD>

試料 1:297 (267~327)、試料 2:212 (191~233)、試料 3:118 (106~130) U/L

< オーソ・クリニカル・タ゛イアク゛ノスティックス >

溶液法と同様

<富士フィルムメディカル>

試料 1:227 (208~246)、試料 2:170 (156~184)、試料 3:87 (80~94) U/L

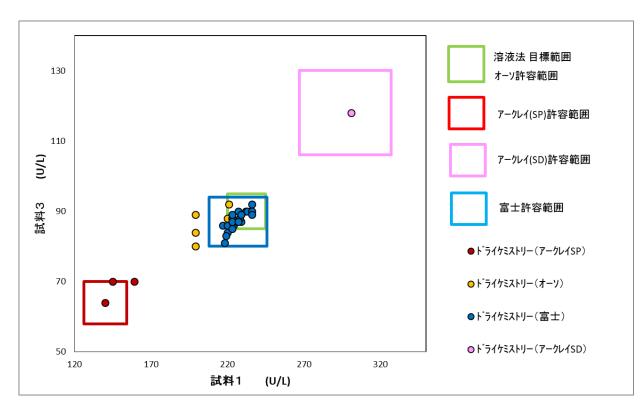



図4. ドライケミストリー法の散布図

メーカーには精確度の向上を望むとともに、各施設においても再度手技などの確認をお願いしたい。

27 AMY 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲	討	式料報告値
No	例足原垤	武衆/一//	7英 台译	下限	上限	下限	上限	試料01 試料02 試	料03
	4,6-エチリテ`ン-G7	関東化学	目立LABOSPE	44.00	132.0			○ 228.0 ○ 172.0 ○ 87	
	4,6-エチリテ`ン-G7	積水メディカル	日立LABOSPE	42.00	132.0			O 241.0 O 184.0 O 94	
	4,6-エチリテ`ン-G7	積水メディカル	日立LABOSPE	44.00	132.0	44.00	132.0	O 233.0 O 177.0 O 90	
	4,6-エチリテ`ン-G7	シノテスト	目立LABOSPE	44.00	132.0	41.00	100.0	O 237.8 O 179.2 O 91	
	4,6-エチリテン-G7	セロテック	東芝TBA-cシリー	41.00	132.0			O 228.0 O 171.0 O 88	
	4,6-エチリデン-G7 G3-CNP基質	シノテスト 関東化学	日本電子JCA-B 日本電子JCA-B	39.00 44.00	130.0 132.0	39.00		○ 231.0 ○ 174.0 ○ 89 ○ 228.6 ○ 172.2 ○ 89	
	G5 CNF 委員 ベンシ・ルーG5-PN	和光純薬	日立7140-7170	44.00	132.0	44.00	132.0	O 229.0 O 172.0 O 88	
	4,6-エチリテ`ン-G7	関東化学	日本電子JCA-B	11.00	102.0			○ 225.0 ○ 170.0 ○ 87	
	G3-CNP基質	関東化学	日本電子JCA-B	44.00	132.0	44.00	132.0	○ 225.0 ○ 170.0 ○ 87	
	4,6-エチリテ゛ン-G7	ロシュ・ダイアグ	日本電子JCA-B	39.00	134.0			○ 231.0 ○ 176.0 ○ 90	
1023	へ*ンシ*ル-G5-PN	シノテスト	日本電子JCA-B	44.00	132.0			○ 233.0 ○ 176.0 ○ 90	0.00
1024	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	目立LABOSPE	42.00	132.0			○ 230.0 ○ 174.0 ○ 90	0.00
1026	4,6-エチリテ`ン-G7	セロテック	東芝25FR_Accut	44.00	132.0			○ 235.0 ○ 176.0 ○ 89	9.00
1029	4,6-エチリテ`ン-G7	積水メディカル	日立7140-7170	44.00	132.0	44.00	132.0	○ 233.0 ○ 177.0 ○ 90	0.00
1031	ヘンシッルーG5-PN	和光純薬	東芝TBA-cシリー	44.00	132.0			○ 228.0 ○ 174.0 ○ 88	8.00
1032	G3-CNP基質	シーメンス	シーメンスHCDDim	37.00	125.0			○ 234.0 ○ 173.0 ○ 89	9.00
	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	日立7140-7170	39.00	134.0	39.00		O 226.0 O 172.0 O 88	
	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	日立7140-7170	39.00	134.0	39.00	134.0	O 229.0 O 174.0 O 91	
	4,6-エチリテン-G7	セロテック	日本電子JCA-B	42.00	132.0			O 233.0 O 177.0 O 91	
	4,6-エチリデン-G7 G3-CNP基質	シノテスト 関東化学	日立LABOSPE 日立7140-7170	44.00 44.00	132.0 132.0			○ 236.0 ○ 179.0 ○ 93	
	4,6-エチリテン-G7	関末に子 セロテック	日立LABOSPE	44.00	132.0	44 00	132.0	○ 228.0 ○ 174.0 ○ 89 ○ 226.0 ○ 171.0 ○ 87	
	4,6-エチリテン-G7	積水メディカル	東芝25FR_Accut	42.00	132.0			○ 232.0 ○ 175.0 ○ 90	
	ヘ*ンシ*ルーG5-PN	和光純薬	ヘックマン・コールター	42.00		42.00		O 232.0 O 174.0 O 89	
	4,6-エチリテ`ン-G7	シノテスト	日本電子JCA-B	44.00	132.0			O 230.2 O 174.5 O 89	
1051	4,6-エチリテ゛ン-G7	シノテスト	日本電子JCA-B	37.00	125.0	37.00	125.0	○ 225.0 ○ 170.0 ○ 88	8.00
1054	ヘンシットーG5-PN	シノテスト	東芝TBA-cシリー	50.00	130.0			○ 236.0 ○ 176.0 ○ 89	9.00
1055	G3-CNP基質	シーメンス	シーメンスHCDDim	44.00	132.0			○ 227.0 ○ 171.0 ○ 88	8.00
1056	4,6-エチリテ`ン-G7	シノテスト	日立7140-7170	42.00	132.0	42.00	132.0	○ 238.0 ○ 180.0 ○ 92	2.00
1057	ヘンシルーG5-PN	シノテスト	東京貿易ビオナリス5	39.00	134.0			○ 234.0 ○ 173.0 ○ 89	9.00
	4,6-エチリテ`ン-G7	LSIメディエンス	日本電子JCA-B	40.00	122.0			○ 230.0 ○ 175.0 ○ 89	
	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	東京貿易ビオナリス2	39.00	134.0	39.00	134.0	O 233.0 O 177.0 O 91	
	4,6-エチリテ`ン-G7	LSIメディエンス	日本電子JCA-B	39.00	134.0	44.00	100.0	O 236.0 O 180.0 O 91	
	4,6-エチリテン-G7	関東化学	日立LABOSPE	44.00	132.0	44.00		O 228.0 O 173.0 O 88	
	Gal-G2-CNP基 Gal-G2-CNP基	積水メディカル 積水メディカル	日本電子JCA-B 日立LABOSPE	44.00 42.00	140.0 132.0	44.00		○ 224.0 ○ 167.0 ○ 87 ○ 226.0 ○ 172.0 ○ 88	
	4,6-エチリテン-G7	関東化学	日立LABOSPE	42.00	132.0			○ 227.0 ○ 172.0 ○ 88	
	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	東京貿易ビオリス2	39.00	134.0			○ 237.0 ○ 168.0 ○ 90	
	G3-CNP基質	シーメンス	シーメンスHCDDim	37.00	123.0			○ 230.0 ○ 174.0 ○ 90	
1081	へ*ンシ*ル-G5-PN	和光純薬	東芝TBA-cシリー	44.00	132.0	44.00	132.0	○ 227.0 ○ 171.0 ○ 87	7.00
1084	ベンジルーG5-PN	和光純薬	東京貿易ビオナリス2	44.00	132.0	44.00	132.0	○ 229.0 ○ 169.0 ○ 87	7.00
1088	G3-CNP基質	関東化学	日立LABOSPE	42.00	132.0	42.00	132.0	○ 232.0 ○ 177.0 ○ 92	2.00
1089	ベンジルーG5-PN	シノテスト	日立7140-7170	44.00	132.0	44.00	132.0	○ 229.7 ○ 173.9 ○ 87	7.40
1090	4,6-エチリテ`ン-G7	デンカ生研	日立7140-7170	44.00	132.0	44.00	132.0	○ 226.0 ○ 171.0 ○ 88	8.00
1093	Gal-G2-CNP基	関東化学	日本電子JCA-B	42.00	132.0	42.00	132.0	○ 227.0 ○ 173.0 ○ 89	9.00
	4,6-エチリテ`ン-G7	関東化学	日本電子JCA-B	42.00	132.0			O 227.0 O 170.0 O 87	
	Gal-G2-CNP基	積水メディカル	東芝TBA-cシリー	60.00	190.0	60.00	190.0	O 224.0 O 170.0 O 88	
	4,6-エチリテン-G7	関東化学	東芝TBA-cシリー	44.00	132.0			O 229.0 O 172.0 O 88	
	4,6-エチリテン-G7 ヘンシル-G5-PN	ベックマン・コー シノテスト	ヘ、ックマン・コールター 東京貿易ビオリス5	39.00 42.00	134.0 132.0	49 00	129 0	○ 238.0 ○ 182.0 ○ 93 ○ 234.0 ○ 177.0 ○ 89	
	ベンシルーG5-PN ベンシルーG5-PN	和光純薬	R 京 貝 勿 に 4 り へ う 日 本 電 子 J C A - B	37.00	132.0			O 228.0 O 177.0 O 88	
	ベンシル G5 FN ベンシル-G5-PN	和光純薬	東芝TBA-cシリー	44.00	132.0	51.00	140.0	O 228.0 O 172.0 O 87	
	4,6-エチリテ`ン-G7	デンカ生研	東芝25FR_Accut	42.00	132.0	42.00	132.0	○ 226.0 ○ 171.0 ○ 88	
	4,6-エチリテ`ン-G7	ベックマン・コー	ヘックマン・コールター	37.00	125.0			○ 237.8 ○ 181.0 ○ 92	
	G3-CNP基質	シーメンス	シーメンスHCDDim	39.00	134.0			○ 241.5 ○ 179.9 ○ 94	
1124	ベンジルーG5ーPN		目立7020-7080					210.0 134.0 0 88	8.00

27 AMY 施設No.が低い順に並んでいます

施設	Note the least rest.	±1.7#* ) )	MY HU	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1127	4,6-エチリテ・ン-G7	ロシュ・ダイアグ	日本電子JCA-B	39.00	134.0			○ 232.0 ○	177.0 🔾	91.00
1128	Gal-G5-PNP(C	シスメックス	日本電子JCA-B	44.00	132.0	44.00	132.0	○ 235.0 ○	178.0 🔾	91.00
1129	4,6-エチリテ [*] ン-G7	ベックマン・コー	ヘックマン・コールター	39.00	134.0			○ 240.0 ○	182.0 🔾	94.00
1130	ベンジルーG5-PN	和光純薬	日本電子JCA-B	44.00	132.0	44.00	132.0	○ 221.0 ○	167.0 🔾	85.00
1134	4,6-エチリテ [*] ン-G7	ロシュ・ダイアグ	日立7140-7170	42.00	132.0	42.00	132.0	○ 229.0 ○	172.0 🔾	89.00
1135	4,6-エチリテ`ン-G7	ベックマン・コー	ヘックマン・コールター	42.00	132.0			○ 242.0 ○	181.0 🔾	93.00
1136	ヘンシャルーG5-PN	シノテスト	日本電子JCA-B	44.00	132.0			○ 236.0 ○	176.0 🔾	89.00
1300	ヘンシルーG5-PN	和光純薬		44.00	132.0			○ 228.6 ○	171.1 🔾	88.10
1301	ベンシルーG5-PN	和光純薬	日本電子JCA-B	42.00	132.0	42.00	132.0	○ 230.0 ○	173.0 🔾	88.00
1302	4,6-エチリテ`ン-G7	ベックマン・コー	ヘックマン・コールター	44.00	132.0			○ 235.0 ○	180.0 🔾	92.00
1305	4,6-エチリテ`ン-G7	シノテスト	日本電子JCA-B	44.00	132.0			○ 234.0 ○	177.0 ○	90.00
1308	ヘンシルーG5-PN	和光純薬	東芝25FR_Accut	44.00	132.0			○ 234.0 ○	177.0 ○	88.00
	ヘンシルーG5-PN	和光純薬	東芝TBA-200F	42.00	132.0	42.00		○ 230.0 ○		
	ベンシルーG5-PN	和光純薬	日本電子JCA-B	42.00	132.0			○ 231.0 ○		
	4,6-エチリテン-G7	LSIメディエンス	日本電子JCA-B	44.00	132.0	44.00		○ 232.0 ○		
	4,6-エチリテ`ン-G7	LSIメディエンス	日本電子JCA-B	42.00	132.0			O 233.0 C		
	4,6-エチリテン-G7	ロシュ・ダイアグ	日本電子JCA-B	44.00	132.0			O 230.0 C		
	ベンシャルーG5-PN	和光純薬	日本電子JCA-B	44.00		44.00		O 228.0 C		
	4,6-エチリテン-G7	ベックマン・コー	ヘックマン・コールター	44.00	132.0	44.00		O 238.0 C		
	Gal-G5-PNP(C	シスメックス 和光純薬	日本電子JCA-B	44.00	132.0	44.00		○ 236.0 ○ ○ 227.0 ○		
	ベンシ・ルーG5-PN Gal-G2-CNP基	和ル純栄 積水メディカル	日本電子JCA-B 東芝TBA-cシリー	42.00 60.00	132.0 190.0			O 224.0 C		
	Gal G2 CN 金 ヘンジルーG5-PN	和光純薬	日本電子JCA-B	44.00	132.0			O 225.0 C		
	4,6-エチリテン-G7	LSIメディエンス	日本電子JCA B	44.00	132.0			○ 223.0 C		
	へ"ンシ"ルーG5-PN	和光純薬	日本電子JCA-B	44.00		44.00		○ 239.0 C		
	4,6-エチリテ*ン-G7	ロシュ・ダイアグ	日本電子JCA-B	39.00	134.0			○ 230.0 ○		
	G3-CNP基質	関東化学	日立LABOSPE	44.00	132.0	00.00		O 225.0 C		
	4,6-エチリテ`ン-G7	シノテスト	日立7140-7170	44.00	132.0	44.00		O 232.0 C		
	4,6-エチリテ [*] ン-G7	ロシュ・ダイアグ	日本電子JCA-B	40.00	130.0			○ 229.0 ○		
	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	ロシュコハ ス8000c5	44.00	132.0			○ 231.0 ○		
1348	Gal-G2-CNP基	積水メディカル		42.00	132.0	42.00	132.0	○ 228.0 ○	171.0 🔾	87.00
1349	4,6-エチリデン-G7	ロシュ・ダイアグ	ロシュコハ ス8000c5	44.00	132.0	44.00	132.0	○ 232.0 ○	177.0 🔾	90.00
1350	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	日本電子JCA-B	42.00	132.0			○ 239.0 ○	181.0 🔾	94.00
1351	4,6-エチリテ`ン-G7	シノテスト	ベックマン・コールター	44.00	132.0	44.00	132.0	○ 236.0 ○	178.0 🔾	92.00
1352	ヘンシルーG5-PN	和光純薬	日本電子JCA-B	42.00	132.0	42.00	132.0	○ 230.0 ○	172.0 🔾	88.00
1355	Gal-G5-PNP(C	シスメックス	東芝TBA-cシリー	44.00	132.0	44.00	132.0	○ 233.0 ○	176.0 🔾	90.00
1356	ヘンシャルーG5-PN	和光純薬	日本電子JCA-B	44.00	132.0	44.00	132.0	○ 226.0 ○	170.0 🔾	86.00
1357	ヘンシルーG5-PN	和光純薬	目立7140-7170	42.00	132.0	42.00	132.0	○ 232.0 ○	175.0 🔾	89.00
1358	4,6-エチリテ`ン-G7	シノテスト	日本電子JCA-B	44.00	132.0			○ 235.2 ○	177.6 🔾	90.70
	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	日本電子JCA-B	44.00	132.0	44.00	132.0	○ 234.0 ○	179.0 🔾	92.00
	ヘンシルーG5-PN	和光純薬	日本電子JCA-B	40.00	126.0	40.00	126.0	○ 228.0 ○	172.0 ○	87.00
	ベンシルーG5-PN	和光純薬	東芝TBA-20-3	44.00	132.0			○ 226.0 ○		
	Gal-G5-PNP(C	シスメックス	ヘックマン・コールター	42.00	132.0			O 227.0 C		
	ベンシルーG5-PN	和光純薬	日立7140-7170	44.00	132.0	44.00		O 229.0 C		
	ヘンシャルーG5-PN	和光純薬	東芝TBA-cシリー	44.00	132.0			O 227.0 C		
	4,6-エチリテン-G7	関東化学	日立LABOSPE	44.00		44.00		O 228.0 C		
	4,6-エチリテン-G7	シノテスト	東京貿易ビオナリス5	44.00	132.0			O 233.0 C		
	ベンシブルーG5-PN	和光純薬	日立LABOSPE	44.00	128.0			O 235.0 C		
	ヘンシャーG5-PN Gol-G2-CNP其	和光純薬	東芝25FR_Accut 東芝TBA-cシリー	44.00 50.00	132.0 159.0	50.00	159.0	○ 225.0 ○ 217.0		
	Gal-G2-CNP基 ベンシル-G5-PN	積水メディカル シノテスト	東之1BA-c29- 日立7140-7170	37.00	125.0	37.00		217.0 ○ 240.0 ○	165.0 C	
	Gal-G2-CNP基	協和メデックス	東京貿易ビオナリス5	44.00	132.0	51.00		O 226.0 C		
	4,6-エチリテン-G7	シノテスト	東京貿易ビオナリス2	44.00	132.0	44 00		○ 226.0 C		
	G3-CNP基質	シーメンス	東京員勿これりへ2 シーメンスHCDDim	44.00	132.0			O 229.0 C		
	4,6-エチリテ [*] ン-G7	シノテスト	日本電子JCA-B	44.00	132.0	11.00		O 231.0 C		
	4,6-エチリテ [*] ン-G7	セロテック	日本電子JCA-B	44.00	132.0	44.00		O 224.0 C		
	4,6-エチリテ`ン-G7	関東化学	東芝TBA-cシリー	42.00	132.0			O 226.0 C		
	, ,,,, ,		= /	12.50					0	

27 AMY 施設No.が低い順に並んでいます

	.NO.//31区V //河尺/C	- 业ル C V · よ 9							
施設	測定原理	試薬メーカー	機器	男性基準範		(性基準範囲			試料報告値
No				下限 上	限于	下限 上限	試料01	試料02	試料03
1405	G3-CNP基質	関東化学	東京貿易ビオリス1	39.00 134	4.0 39	9.00 134.0	○ 231.0 ○	174.0 🔾	90.00
1407	その他		セントラル科学Picc	14.00 97.	.00		162.0	126.0	67.00
1411	ベンシルーG5-PN	和光純薬	日本電子JCA-B	44.00 132	2.0 44	4.00 132.0	○ 227.0 ○	170.9 🔾	86.80
1419	4,6-エチリテ`ン-G7	ベックマン・コー	ヘックマン・コールター	42.00 132	2.0 42	2.00 132.0	○ 240.0 ○	183.0 🔾	93.00
1501	Gal-G2-CNP基	関東化学	目立LABOSPE	42.00 132	2.0 42	2.00 132.0	○ 225.0 ○	171.0 🔾	88.00
1502	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	日本電子JCA-B	42.00 132	2.0 42	2.00 132.0	○ 232.0 ○	176.0 🔾	90.00
1505	ヘンシルーG5-PN	和光純薬	目立LABOSPE	44.00 132	2.0		○ 226.0 ○	171.0 🔾	87.00
	4,6-エチリテ゛ン-G7	関東化学	目立LABOSPE		5.0 37	7.00 125.0	○ 230.0 ○	174.0 〇	89.00
	4,6-エチリテ゛ン-G7	ロシュ・ダイアグ	日本電子JCA-B	44.00 132	2.0		○ 236.0 ○		
1512	4,6-エチリテ゛ン-G7	ロシュ・ダイアグ	目立7140-7170		2.0 44	4.00 132.0	○ 232.0 ○	177.0 🔾	91.00
	Gal-G5-PNP(C	シスメックス	目立LABOSPE	44.00 132			○ 233.0 ○		
	ベンシルーG5-PN	和光純薬	目立LABOSPE				○ 224.0 ○		
	ベンシルーG5-PN	和光純薬	東京貿易ビオリス2		2.0 44	4.00 132.0	○ 228.0 ○		
	ベンシルーG5-PN	和光純薬	東芝25FR_Accut	44.00 132			O 233.0 O		
	ベンシャーG5-PN	和光純薬	日立7140-7170		2.0 44		○ 234.0 ○		
	ベンシルーG5-PN	和光純薬	目立LABOSPE	42.00 132			○ 228.0 ○		
	ベンシャーG5-PN	和光純薬					O 225.0 O		
	G3-CNP基質	シーメンス	シーメンスHCDDim		9.0 50		○ 226.0 ○		
	Gal-G5-PNP(C	シスメックス	目立7140-7170	44.00 132		4.00 132.0	○ 236.0 ○		
	G3-CNP基質	シーメンス	シーメンスHCDDim	44.00 132			O 224.0 O		
1538	Gal-G5-PNP(C	ニットーボー	東京貿易ビオリス2	44.00 132			O 229.0 O		
	4,6-エチリテ`ン-G7	LSIメディエンス	日本電子JCA-B		2.0 44	4.00 132.0	O 234.0 O		
	ベンシャーG5-PN	シノテスト	東芝25FR_Accut	42.00 132			○ 240.0 ○		
	Gal-G2-CNP基	関東化学	日立7140-7170	37.00 125			O 233.0 O		
1543	Gal-G5-PNP(C	シスメックス	東芝TBA-20-3			2.00 132.0	O 231.0 O		
	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	日立7140-7170	39.00 134			O 231.0 O		
	ヘンシル-G5-PN	シノテスト	日立7140-7170		5.0 37		O 238.0 O		
	ベンシャーG5-PN	和光純薬	日本電子JCA-B		2.0 44		O 225.0 O		
	Gal-G2-CNP基	ミズホメディ	日本電子JCA-B	44.00 132			O 226.0 O		
	ベンシルーG5-PN	和光純薬	ヘックマン・コールター		2.0 42	2.00 132.0	O 233.0 O		
	4,6-エチリテン-G7	ロシュ・ダイアグ	日本電子JCA-B	39.00 134			O 232.0 O		
	Gal-G2-CNP基	関東化学	目立7600Dモジュ	37.00 125			O 229.0 O		
	ペンシャーG5-PN	和光純薬	目立LABOSPE	42.00 132			O 228.0 O		
	Gal-G5-PNP(C	シスメックス	ヘックマン・コールター	42.00 132			O 225.0 O		
	ベンシルーG5-PN	和光純薬	日本電子JCA-B	44.00 132		0.00 100.0	O 235.0 O		
	ヘンシャーG5-PN ヘンシャーG5-PN	和光純薬	目立LABOSPE			2.00 132.0	O 228.0 O		
		和光純薬	目立3100 目立7140-7170				<ul><li>○ 226.0 ○</li><li>○ 229.0 ○</li></ul>		
	Gal-G2-CNP基	関東化学	日立7140-7170	37.00 125					
	Gal-G2-CNP基 G3-CNP基質	関東化学 関東化学	ロ <u>リ</u> .7140-7170 ヘ [*] ックマン・コールター	37.00 125 37.00 125	5.0 5.0 37	7.00 125.0	○ 231.0 ○ ○ 232.0 ○		
	Gal-G2-CNP基	関東化学	東芝TBA-200F		0.0 - 40		O 223.0 O		
1928	Gal-G2-CNP基	関東化学	ベックマン・コールター	37.00 125		0.00 120.0	O 226.0 O		
	Gai G2 CN 基 ヘンシルーG5-PN	和光純薬	ベックマン・コールター		$2.0  ext{ } 42$	2.00 132.0	0 227.0 0		
	ペンシャーG5-PN	和光純薬	ベックマン・コールター		2.0   42		O 233.0 O		
	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	日本電子JCA-B	39.00 134		2.00 132.0	O 233.0 O		
	へ`ンシ`ル-G5-PN	和光純薬	ベックマン・コールター	42.00 132			O 231.0 O		
	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	目立7140-7170		4.0 39	9.00 134.0	O 232.0 O		
	4,6-エチリテ`ン-G7	セロテック	日本電子JCA-B		2.0 42		O 230.0 O		
	Gal-G5-PNP(C	, , , ,	日本電子JCA B 日本電子JCA-H		2.0  42 $2.0  42$		0 224.0 0		
	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	日本電子JCA-B	44.00 132		2.50 102.0	0 228.0 0		
	4,6-エチリテ`ン-G7	関東化学	目立LABOSPE	40.00 132			O 230.0 O		
	4,6-エチリテン-G7	シノテスト	ロシュコハ ス8000c7		0.0 2.0 44	4 00 139 0	O 240.0 O		
	4,6-エチリテ`ン-G7	シノテスト	日本電子JCA-B		0.0 50		0 234.0 0		
	4,6-エチリテ`ン-G7	シノテスト	目立7140-7170		5.0 37		0 232.0 0		
	へ`ンシ`ル-G5-PN	和光純薬	ベックマン・コールター				0 228.0 0		
	ベンシャーG5-PN	和光純薬	日本電子JCA-B		2.0 44		0 227.3 0		
	4,6-エチリテ`ン-G7	ベックマン・コー	ベックマン・コールター	40.00 126		102.0	0 238.0 0		
5010	-,0 /// 01	// ·• —	// ·• · · · · //	10.00 120				100.0	

27 AMY 施設No.が低い順に並んでいます

施設	测学医理	±4± ±1.	44¢ p.p.	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
3022	4,6-エチリテ`ン-G7	シノテスト	日本電子JCA-B	44.00	132.0	44.00	132.0	O 232.2 C	176.4 〇	89.60
3027	Gal-G2-CNP基	関東化学	日立7600Dモジュ	37.00	125.0			○ 229.0 ○	175.0 〇	89.00
3048	ヘンシャルーG5-PN	和光純薬	日本電子JCA-B	44.00	132.0	44.00	132.0	○ 225.0 ○	169.0 〇	86.00
3055	Gal-G5-PNP(C	シスメックス	日本電子JCA-B	44.00	132.0			○ 231.0 ○	175.0 〇	89.00
3056	4,6-エチリテ`ン-G7	積水メディカル	日本電子JCA-B	44.00	132.0	44.00	132.0	○ 242.0 ○	182.0 🔾	93.00
3907	4,6-エチリテ`ン-G7	セロテック	日本電子JCA-B	44.00	132.0	44.00	132.0	○ 231.0 ○	173.0 🔾	88.00
4002	4,6-エチリテ`ン-G7	セロテック	日本電子JCA-B	44.00	132.0			○ 228.0 ○	173.0 🔾	88.00
4040	4,6-エチリテ`ン-G7	ベックマン・コー	ヘ、ックマン・コールター	37.00	125.0			○ 239.0 ○	181.0 🔾	92.00
4902	ヘンシャルーG5-PN	シノテスト	日立7140-7170	45.00	140.0			○ 230.0 ○	174.0 〇	88.00
5003	4,6-エチリテ`ン-G7	シノテスト	日立7140-7170	42.00	132.0	42.00	132.0	○ 235.0 ○	179.0 🔾	91.00
5005	4,6-エチリテ゛ン-G7	関東化学	日本電子JCA-B	44.00	132.0			○ 226.0 ○	170.0 〇	87.00
5006	4,6-エチリテ゛ン-G7	デンカ生研	日本電子JCA-B	44.00	132.0	44.00	132.0	○ 229.0 ○	172.0 〇	88.00
5010	4,6-エチリテ゛ン-G7	シノテスト	日本電子JCA-B	44.00	132.0	44.00	132.0	○ 237.0 ○	178.8 🔾	91.40
6008	4,6-エチリテ゛ン-G7	セロテック	東芝TBA-200F	44.00	132.0			○ 229.0 ○	174.0 〇	89.00
6015	Gal-G5-PNP(C	シスメックス	目立LABOSPE	42.00	158.0			○ 229.0 ○	173.0 🔾	88.00
6016	G3-CNP基質	関東化学	東芝TBA-200F	37.00	125.0	37.00	125.0	○ 225.0 ○	170.0 🔾	86.00
7001	Gal-G5-PNP(C	ニットーボー	日本電子JCA-B	40.00	125.0	40.00	125.0	○ 230.0 ○	175.0 〇	88.00
7002	4,6-エチリテ゛ン-G7	LSIメディエンス	日本電子JCA-B	44.00	132.0			○ 233.0 ○	176.0 〇	90.00
7007	4,6-エチリテ゛ン-G7	関東化学	ヘ、ックマン・コールター	40.00	130.0	40.00	130.0	○ 228.0 ○	171.0 〇	87.00
7011	4,6-エチリテ゛ン-G7	セロテック	東芝TBA-cシリー	44.00	132.0			○ 231.0 ○	173.0 🔾	89.00
7025	Gal-G5-PNP(C	ニットーボー	日本電子JCA-B	40.00	125.0			○ 228.0 ○	173.0 🔾	87.00
7901	Gal-G5-PNP(C	ニットーボー	日立LABOSPE	40.00	125.0			○ 228.0 ○	170.0 〇	87.00
8004	Gal-G5-PNP(C	シスメックス	日本電子JCA-B	40.00	123.0			○ 235.0 ○	178.0 🔾	90.00
9004	Gal-G2-CNP基	協和メデックス	日立7140-7170					○ 224.0 ○	170.0 〇	87.00
9008	4,6-エチリテ゛ン-G7	シノテスト	日立7140-7170					○ 235.0 ○	179.0 🔾	91.00
9012	4,6-エチリテ゛ン-G7	デンカ生研	日立7140-7170	33.00	120.0	33.00	120.0	○ 225.0 ○	170.0 〇	86.00
9014	Gal-G5-PNP(C	ニットーボー	日立7140-7170					○ 228.0 ○	171.0 🔾	87.00
9022	Gal-G2-CNP基	ミズホメディ	日立7140-7170	34.00	121.0			○ 232.0 ○	175.0 🔾	90.00
9023	ヘンシルーG5-PN	和光純薬	日立7140-7170					○ 230.0 ○	174.0 〇	88.00
9024	4,6-エチリテ`ン-G7	関東化学	日本電子JCA-B	37.00	125.0	37.00	125.0	○ 225.0 ○	169.0 〇	86.00
9033	4,6-エチリテ`ン-G7	極東製薬	日本電子JCA-B	44.00	132.0			○ 234.0 ○	178.0 🔾	90.00
9035	4,6-エチリテ`ン-G7	積水メディカル	積水EV800					○ 235.0 ○	177.0 🔾	90.00
9043	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	ロシュコハ*ス8000c5					○ 231.9 ○	175.4 🔾	90.81
9044	4,6-エチリテ`ン-G7	ロシュ・ダイアグ	ロシュコハ*ス8000c7					○ 237.2 ○	178.7 🔾	91.26
9046	ベンジルーG5-PN	栄研化学	日立7140-7170	37.00	125.0	37.00	125.0	○ 232.0 ○	174.0 〇	88.00
9047	4,6-エチリデン-G7	ベックマン・コー	ヘックマン・コールター					○ 237.8 ○	179.1 🔾	92.60
9049	Gal-G5-PNP(C	シスメックス	日立7140-7170	40.00	130.0			○ 231.0 ○	174.0 〇	89.00
9050	G3-CNP基質	シーメンス	シーメンスHCDDim					○ 226.9 ○	171.1 🔾	89.25

測定状況・測定データー覧表

105 AMY(F) 施設No.が低い順に並んでいます

施設	测点压用	試薬メーカー	146 00	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	武楽 グーガー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1044		富士フィルムメ	富士ドライケムNX5	37.00	125.0			O 232.0 C	172.0 (	90.00
1053		富士フィルムメ	富士ドライケム400	50.00	130.0			○ 217.0 ○	173.0	86.00
1076		富士フィルムメ	富士ドライケム700	42.00	132.0			○ 235.0 ○	179.0 🤇	90.00
1097		富士フィルムメ	富士ドライケム700	39.00	134.0	39.00	134.0	○ 229.0 ○	170.0	87.00
1104		富士フィルムメ	富士ドライケム350	37.00	125.0			○ 233.0 ○	174.0 (	90.00
1126		富士フィルムメ	富士ドライケム700	42.00	132.0	42.00	132.0	○ 220.0 ○	167.0 🤇	86.00
1133		富士フィルムメ	富士ドライケム400	37.00	125.0			○ 224.0 ○	170.0	86.00
1137		富士フィルムメ	富士ドライケム400	37.00	125.0	37.00	125.0	○ 220.0 ○	166.0	84.00
1367		富士フィルムメ	富士ドライケム700	37.00	125.0			○ 236.0 ○	179.0 🤇	90.00
1374		富士フィルムメ	富士ドライケム700	39.00	134.0	39.00	134.0	○ 218.0 ○	161.0	81.00
1375		富士フィルムメ	富士ドライケム400	39.00	134.0			O 223.0 C	167.0	88.00
1393		富士フィルムメ	富士ドライケムNX5	42.00	132.0	42.00	132.0	O 227.0 C	173.0	90.00
1415		富士フィルムメ	富士ドライケム700	37.00	125.0	37.00	125.0	○ 226.0 ○	172.0	87.00
1523		富士フィルムメ	富士ドライケム700	44.00	132.0			○ 236.0 ○	178.0	92.00
1525		富士フィルムメ	富士ドライケム350	42.00	132.0			O 223.0 C	172.0	88.00
1545		富士フィルムメ	富士ドライケム400	44.00	132.0			○ 219.0 ○	161.0	83.00
1546		富士フィルムメ	富士ドライケム700	37.00	125.0			O 223.0 C	169.0	87.00
1548		富士フィルムメ	富士ドライケム700	44.00	132.0	44.00	132.0	○ 223.0 ○	167.0 🤇	85.00
1552		富士フィルムメ	富士ドライケム400	37.00	125.0			○ 228.0 ○	173.0 🤇	88.00
1557		富士フィルムメ	富士ドライケム700					○ 236.0 ○	171.0 🤇	89.00
1559		富士フィルムメ	富士ドライケム700	44.00	132.0	44.00	132.0	○ 229.0 ○	174.0	89.00
1561		富士フィルムメ	富士ドライケム700	44.00	132.0	44.00	132.0	○ 223.0 ○	174.0	89.00
9038		富士フィルムメ	富士ドライケム700	37.00	125.0			O 227.0 C	170.0 (	87.00

#### 140 AMY(A1)

施	投測空原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値	
N	測定原理 17 ト・ライケミストリー法 78 ト・ライケミストリー法	F	7及4世	下限 上限 下限 上限 試料01 試料02 試料03	
13	17 ドライケミストリー法	アークレイ	アークレイスポットケム	39.00 134.0 39.00 134.0 159.0 $\bigcirc$ 119.0 $\bigcirc$ 70.00	
13	78 ドライケミストリー法	アークレイ	アークレイスホットケム	42.00 132.0 $\bigcirc$ 145.0 $\bigcirc$ 113.0 $\bigcirc$ 70.00	
90	41 ドライケミストリー法	アークレイ	アークレイスホットケム	○ 140.0 ○ 111.0 ○ 64.00	

170 AMY(A2)

施設	测点原理	試薬メーカー	機器	男性基	準範囲	女性基準範囲				試料報告値	
No	測定原理			下限	上限	下限	上限	試料01	試料02	試料03	
1521	「ライケミストリー法	アークレイ	アークレイスポットケム	44.00	132.0	44.00	132.0	301.0 (	218.0 (	) 118.0	

200 AMY(O)

施設	測定原理	試薬メーカー	機器	男性基準範囲	女性基準算	範囲			試料報告値
No	例足原垤	武衆/一ガー	79文台计	下限 上限	下限  」	上限	試料01	試料02	試料03
1075		オーソ・クリニカ	オーソビトロス250_3	44.00 132.0	42.00 1	32.0 🔾	221.0 C	175.0 〇	92.00
1100		オーソ・クリニカ	オーソビトロス250_3				199.0	155.0	84.00
8011		オーソ・クリニカ	オーソビトロス250_3	38.00 136.0	38.00 1	36.0	199.0	154.0	80.00
9039		オーソ・クリニカ	オーソヒトロス5600				199.0	158.0 🔾	89.00
9040		オーソ・クリニカ	オーソヒトロス5600				220.0 ℂ	171.0 〇	88.00

### 乳酸脱水素酵素(LD)

九州大学病院 検査部 酒本 美由紀

#### 【参加状况】

今回の参加は241施設であり前回より9施設増加した。

#### 【測定方法の状況】

- 1. 測定原理は JSCC 標準化対応法が 215 施設(89.2%)、ドライケミストリー法が 26 施設(10.8%)であった。
- 2. ドライケミストリー法を採用している施設数の内訳は、富士フイルムメディカルが 18 施設、アークレイが 4 施設、ホ ーソ・クリニカル・ダイアグノスティックスが 4 施設であった。
- 3. 認証 ERM を使用している施設は 2 施設、検量用 ERM を表示値で使用している施設は 209 施設であった。市販管理血清を検量用に使用している施設が 3 施設あった。

#### 【測定値の状況】

1. 測定原理別の平均値と CV%を表 1 に示す。JSCC 標準化対応法・ドライケミストリー法ともに昨年と同様の結果であった。

	試料1	試料2	試料3
JSCC標準化対応法	350.1 (1.4%)	298.5 (1.5%)	220.4 (1.6%)
ドライケミストリー法	344.3 (4.5%)	295.8 (5.7%)	223.0 (3.2%)
日趰荷	250.2	207 0	220 1

表1 試料1の測定原理別平均値(U/L)とCV%

2. 試料 1~3 全てが目標値±3.9%以内の許容幅に入った施設は、全体で223 施設(92.5%)、その内訳は JSCC 標準化対応法209 施設、ドライケミストリー法14 施設であった。ドライケミストリー法は昨年が3 施設であったため、大幅に改善していた。試料ごとの測定原理別目標範囲達成状況を表2に示す。

表 2 試料ごとの測定原理別目標範囲内達成状況

目標範囲	試料1:336~364 U/L	試料2:286~310 U/L	試料3:211~229 U/L
JSCC標準化対応法	99. 1% (213/215)	98.6% (212/215)	99.5% (214/215)
ト゛ライケミストリー法	76.9% (20/26)	65.3% (17/26)	73. 1% (19/26)

4.2012年度の検証により、LDにおいては、ドライケミストリー法に試料の影響は認められていない。 ドライケミストリー各社から提示された参考範囲・ドライケミストリー法における測定値の状況と目標値範囲を表3・図1に示す。 オーソは JSCC 標準化対応法と同じく参考目標範囲を3.9%、富士は8.3%、アークレイは10%と設定している。アークレイは昨年同様参考目標範囲が低めに設定されており、目標範囲が10%と広い設定であるにもかかわらず外れている施設がある。

表3 ドライケミストリー法のメーカー別参考目標範囲

	試料1	試料2	試料3
オーソ	336~364	286~310	211~229
アークレイ(共通)	301.5~368.5	246.6~301.4	175. 5~214. 5
富士	322~380	288~340	210~248

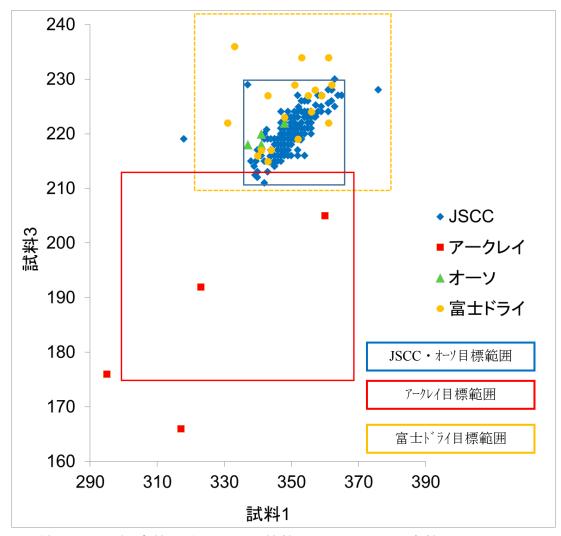



図1 ドライケミストリー法メーカー別の測定値の状況と目標値範囲およびメーカー許容範囲

#### 【基準範囲の状況】

JCCLS 共用基準範囲は  $124\sim222$  U/L であり、この基準範囲を使用している施設は、昨年は 79 施設(34.1%)であったが、今年は 100 施設(41.5%)であった。

 $119\sim229~\text{U/L}$  を使用している施設が 58 施設、 $120\sim245~\text{U/L}$  を使用している施設が 22 施設であった。

28 LD 施設No.が低い順に並んでいます

施設	110.73年以 別民(	- <del>-</del>		男性基	進節囲	女性基	進節囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1001	L→PUV法(JSC	関東化学	目立LABOSPE	124.0	222.0		(	O 348.0 C	298.0 🔾	220.0
1002	L→PUV法(JSC	シノテスト	目立LABOSPE	119.0	229.0			○ 355.0 ○	302.0 🔾	221.0
1004	L→PUV法(JSC	積水メディカル	目立LABOSPE	124.0	222.0	124.0	222.0	○ 354.0 ○	297.0 🔾	216.0
1006	L→PUV法(JSC	シノテスト	目立LABOSPE	124.0	222.0			○ 347.5 ○	297.2 🔾	219.3
1010	L→PUV法(JSC	セロテック	東芝TBA-cシリー	119.0	229.0	119.0	229.0	○ 350.0 ○	299.0 🔾	219.0
1011	L→PUV法(JSC	和光純薬	日本電子JCA-B	120.0	245.0	120.0	245.0	○ 345.0 ○	290.0 🔾	215.0
1012	L→PUV法(JSC	関東化学	日本電子JCA-B	124.0	222.0	124.0	222.0	○ 349.5 ○	295.3 🔾	221.1
1013	L→PUV法(JSC	和光純薬	目立7140-7170	124.0	222.0			○ 352.0 ○	301.0 🔾	221.0
1015	L→PUV法(JSC	関東化学	日本電子JCA-B				(	○ 349.0 ○	299.0 🔾	220.0
1018	L→PUV法(JSC	関東化学	日本電子JCA-B	124.0	222.0	124.0	222.0	○ 357.0 ○	302.0 🔾	223.0
1021	L→PUV法(JSC	和光純薬	日本電子JCA-B	120.0	245.0	120.0	245.0	O 347.0 C	294.0 🔾	217.0
1023	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0		(	○ 353.0 ○	299.0 🔾	222.0
1024	L→PUV法(JSC	和光純薬	目立LABOSPE	119.0	229.0		(	○ 352.0 ○	301.0 🔾	221.0
1026	L→PUV法(JSC	セロテック	東芝25FR_Accut	124.0	222.0			○ 349.0 ○		
1029	L→PUV法(JSC	LSIメディエンス	目立7140-7170	124.0	222.0	124.0		○ 345.0 ○		
	L→PUV法(JSC	和光純薬	東芝TBA-cシリー	124.0	222.0			○ 352.0 ○		
	L→PUV法(JSC	シーメンス	シーメンスHCDDim	115.0	245.0			○ 343.0 ○		
	L→PUV法(JSC	和光純薬	日立7140-7170	120.0	245.0			355.0 (		
	L→PUV法(JSC	和光純薬	日立7140-7170	120.0		120.0		356.0		
	L→PUV法(JSC	関東化学	日本電子JCA-B	119.0	229.0			O 347.0 C		
	L→PUV法(JSC	和光純薬	日立LABOSPE	124.0	222.0			O 347.0 C		
	L→PUV法(JSC	関東化学	目立7140-7170	124.0	222.0	104.0		352.0		
	L→PUV法(JSC	和光純薬	目立LABOSPE	124.0		124.0		345.0		
	L→PUV法(JSC	シノテスト	東芝25FR_Accut	119.0	229.0			O 347.0 C		
	L→PUV法(JSC	和光純薬	ヘックマン・コールター	119.0		119.0		O 355.0 C		
	L→PUV法(JSC L→PUV法(JSC	シノテスト	日本電子JCA-B	124.0	222.0	115.0		<ul><li>352.0 (</li><li>349.0 (</li></ul>		
	L→PUV法(JSC	シノテストシノテスト	日本電子JCA-B 東芝TBA-cシリー	115.0 106.0	220.0	110.0		354.0		
	L→PUV法(JSC	和光純薬	シーメンスHCDDim	124.0	222.0			340.0 C		
	L→PUV法(JSC	シノテスト	日立7140-7170	119.0		119.0		348.0 C		
	L→PUV法(JSC	シノテスト	東京貿易ピオリス5	120.0	245.0	110.0		O 354.0 C		
	L→PUV法(JSC	LSIメディエンス	日本電子JCA-B	119.0	229.0			O 350.0 C		
	L→PUV法(JSC	和光純薬	東京貿易ピオリス2	120.0	245.0	120.0		O 347.0 C		
	L→PUV法(JSC	LSIメディエンス	日本電子JCA-B	120.0	245.0			○ 350.0 ○		
1062	L→PUV法(JSC	和光純薬	目立LABOSPE	124.0	222.0	124.0	222.0	○ 351.0 ○	301.0 🔾	221.0
1064	L→PUV法(JSC	LSIメディエンス	日本電子JCA-B	115.0	245.0	115.0	245.0	○ 346.0 ○	300.0 🔾	219.0
1072	L→PUV法(JSC	関東化学	目立LABOSPE	119.0	229.0	119.0	229.0	○ 347.0 ○	298.0 🔾	221.0
1073	L→PUV法(JSC	関東化学	目立LABOSPE	119.0	229.0	119.0	229.0	○ 354.0 ○	299.0 🔾	223.0
1074	L→PUV法(JSC	和光純薬	東京貿易ビオリス2	120.0	245.0	120.0	245.0	○ 356.0 ○	304.0 🔾	221.0
1077	L→PUV法(JSC	和光純薬	シーメンスHCDDim	115.0	245.0	115.0	245.0	○ 339.0 ○	289.0 🔾	214.0
1081	L→PUV法(JSC	和光純薬	東芝TBA-cシリー	124.0	222.0	124.0	222.0	○ 349.0 ○	301.0 🔾	218.0
1084	L→PUV法(JSC	和光純薬	東京貿易ビオปス2	124.0	222.0	124.0	222.0	○ 361.0 ○	310.0 🔾	228.0
1088	L→PUV法(JSC	関東化学	目立LABOSPE	119.0	229.0	119.0	229.0	○ 351.0 ○	297.0 🔾	222.0
1089	L→PUV法(JSC	デンカ生研	日立7140-7170	124.0	222.0	124.0	222.0	○ 347.7 ○	294.1 🔾	216.4
1090	L→PUV法(JSC	デンカ生研	日立7140-7170	124.0	222.0	124.0	222.0	○ 350.0 ○	296.0 🔾	216.0
1093	L→PUV法(JSC	関東化学	日本電子JCA-B	119.0	229.0	119.0	229.0	○ 349.0 ○	300.0 🔾	223.0
1094	L→PUV法(JSC	関東化学	日本電子JCA-B	119.0	229.0		(	○ 347.0 ○	297.0 🔾	222.0
1101	L→PUV法(JSC	和光純薬	東芝TBA-cシリー	106.0	211.0	106.0	211.0	○ 359.0 ○	307.0 🔾	225.0
	L→PUV法(JSC	関東化学	東芝TBA-cシリー	124.0	222.0			○ 354.0 ○		
	L→PUV法(JSC	ベックマン・コー	ヘックマン・コールター	120.0	245.0			O 363.0 C		230.0
	L→PUV法(JSC	シノテスト	東京貿易ビオナリス5	115.0	245.0			352.0		
	L→PUV法(JSC	和光純薬	日本電子JCA-B	115.0		115.0		352.0		
	L→PUV法(JSC	和光純薬	東芝TBA-cシリー	124.0	222.0	116.0		348.0		
	L→PUV法(JSC	デンカ生研	東芝25FR_Accut	119.0	229.0			O 349.0 C		
	L→PUV法(JSC	ベックマン・コー	ベックマン・コールター シーナンフLCDDim	115.0	245.0			O 362.1	311.4 〇	
	L→PUV法(JSC	和光純薬シノテスト	シーメンスHCDDim 日 <del>オ</del> 7020-7080	120.0	Z45.U	120.0	Z40.U	342.7 (		
1124	L→PUV法(JSC	シノテスト	目立7020-7080					318.0	221.0 🔾	413.U

28 LD 施設No.が低い順に並んでいます

施設			L46 DD	男性基準	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01	試料02	試料03
1127	L→PUV法(JSC	和光純薬	日本電子JCA-B	120.0	245.0			○ 348.0 ○	297.0 🔾	219.0
1128	L→PUV法(JSC	シスメックス	日本電子JCA-B	124.0	222.0	124.0	222.0	○ 356.0 ○	300.0 ○	223.0
1129	L→PUV法(JSC	ベックマン・コー	ヘックマン・コールター	120.0	245.0			365.0 ○	307.0 ○	227.0
	L→PUV法(JSC	LSIメディエンス	日本電子JCA-B	124.0	222.0			○ 353.0 ○		
	L→PUV法(JSC	和光純薬	目立7140-7170	119.0		119.0		O 353.0 O		
	L→PUV法(JSC	ベックマン・コー	ベックマン・コールター ロ大電 ス・ICA_D	119.0	229.0			○ 363.0 ○		
	L→PUV法(JSC L→PUV法(JSC	シノテスト和光純薬	日本電子JCA-B	124.0 124.0	222.0 222.0			<ul><li>○ 354.0 ○</li><li>○ 339.3 ○</li></ul>		
	L→PUV法(JSC	和光純薬	日本電子JCA-B	102.0	204.0	102.0		349.0 O		
	L→PUV法(JSC	ベックマン・コー	ベックマン・コールター	124.0	222.0	10210	20110	376.0	313.0 🔾	
	L→PUV法(JSC	シノテスト	日本電子JCA-B	124.0	222.0			○ 346.0 ○		
1308	L→PUV法(JSC	和光純薬	東芝25FR_Accut	124.0	222.0			○ 356.0 ○	301.0 〇	224.0
1310	L→PUV法(JSC	和光純薬	東芝TBA-200F	119.0	229.0	119.0	229.0	○ 352.0 ○	299.0 🔾	223.0
1313	L→PUV法(JSC	和光純薬	日本電子JCA-B	119.0	229.0			○ 351.0 ○	296.0 🔾	223.0
1315	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0	124.0	222.0	○ 348.0 ○	301.0 🔾	222.0
	L→PUV法(JSC	LSIメディエンス	日本電子JCA-B	119.0	229.0			○ 349.0 ○		
	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0			O 351.0 O		
	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0	124.0		O 350.0 O		
	L→PUV法(JSC L→PUV法(JSC	ベックマン・コー シスメックス	ヘックマン・コールター 日本電子ICA-P	124.0 124.0	222.0 222.0	194.0		○ 362.0 ○ ○ 356.0 ○		
	L→PUV法(JSC	和光純薬	日本電子JCA-B 日本電子JCA-B	119.0	229.0	124.0		342.0 O		
	L→PUV法(JSC	和光純薬	東芝TBA-cシリー	106.0	211.0			O 354.0 O		
	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0			○ 342.0 ○		
1339	L→PUV法(JSC	LSIメディエンス	日本電子JCA-B	124.0	222.0			○ 346.0 ○	294.0 🔾	217.0
1341	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0	124.0	222.0	○ 353.0 ○	301.0 〇	219.0
1342	L→PUV法(JSC	和光純薬	日本電子JCA-B	120.0	245.0	120.0	245.0	○ 344.0 ○	294.0 🔾	216.0
1343	L→PUV法(JSC	LSIメディエンス	目立LABOSPE	124.0	222.0			○ 347.0 ○	296.0 🔾	218.0
	L→PUV法(JSC	シノテスト	日立7140-7170	124.0	222.0	124.0		○ 350.0 ○		
	L→PUV法(JSC	和光純薬	日本電子JCA-B	119.0	229.0			O 345.0 O		
	L→PUV法(JSC	ロシュ・ダイアグ	ロシュコハ ス8000c5	124.0	222.0	110.0		O 351.0 O		
	L→PUV法(JSC L→PUV法(JSC	和光純薬 ロシュ・ダイアグ	ロシュコハ*ス8000c5	119.0 124.0	229.0 222.0			<ul><li>○ 348.0 ○</li><li>○ 353.0 ○</li></ul>		
	L→PUV法(JSC	和光純薬	日本電子JCA-B	119.0	229.0	124.0		○ 361.0 ○		
	L→PUV法(JSC	シノテスト	ベックマン・コールター	124.0	222.0	124.0		356.0 O		
	L→PUV法(JSC	和光純薬	日本電子JCA-B	119.0	229.0			○ 353.0 ○		
1355	L→PUV法(JSC	和光純薬	東芝TBA-cシリー	124.0	222.0	124.0	222.0	○ 350.0 ○	299.0 🔾	222.0
1356	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0	124.0	222.0	○ 341.0 ○	292.0 🔾	216.0
1357	L→PUV法(JSC	和光純薬	日立7140-7170	119.0	229.0	119.0	229.0	○ 359.0 ○	302.0 ○	224.0
	L→PUV法(JSC	シノテスト	日本電子JCA-B	124.0	222.0			○ 352.2 ○		
	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0			O 353.0 O		
	L→PUV法(JSC	和光純薬	日本電子JCA-B 東茶TPA 20.2	106.0	220.0	106.0		O 349.0 O		
	L→PUV法(JSC L→PUV法(JSC	和光純薬 シスメックス	東芝TBA-20-3 ヘックマン・コールター	124.0 119.0	222.0 229.0			○ 351.0 ○ ○ 351.0 ○		
	L→PUV法(JSC	和光純薬	目立7140-7170	124.0	222.0	124 0		348.0 O		
	L→PUV法(JSC	和光純薬	東芝TBA-cシリー	124.0	222.0	121.0		O 349.0 O		
	L→PUV法(JSC	シノテスト	日立LABOSPE	124.0	222.0	124.0		○ 352.0 ○		
1371	L→PUV法(JSC	シノテスト	東京貿易ビオリス5	124.0	222.0			○ 337.0 ○	294.0 🔾	229.0
1373	L→PUV法(JSC	関東化学	東京貿易ビオリス1	119.0	229.0			○ 353.0 ○	299.0 🔾	219.0
1382	L→PUV法(JSC	和光純薬	目立LABOSPE	124.0	222.0			○ 338.0 ○	290.0 🔾	215.0
	L→PUV法(JSC	和光純薬	東芝25FR_Accut	124.0	222.0			○ 350.0 ○		
	L→PUV法(JSC	積水メディカル	東芝TBA-cシリー	119.0	229.0			○ 354.0 ○		
	L→PUV法(JSC	シノテスト	目立7140-7170	119.0	229.0	119.0		O 364.0 O		
	L→PUV法(JSC L→PUV法(JSC	LSIメディエンス 和光純薬	東京貿易ビオリス5 シーメンスHCDDim	124.0 124.0	222.0 222.0	194 0		<ul><li>○ 350.0 ○</li><li>○ 340.0 ○</li></ul>		
	L→PUV法(JSC L→PUV法(JSC	和元純楽 シノテスト	東京貿易ビオリス2	124.0	222.0			346.0 O		
	L→PUV法(JSC	シーメンス	シーメンスHCDDim	124.0	222.0			346.0 O		
	L→PUV法(JSC	シノテスト	日本電子JCA-B	124.0	222.0			O 346.0 O		

28 LD 施設No.が低い順に並んでいます

加収		- W C V · よ y								
施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No				下限	上限	下限	上限	試料01	試料02	試料03
1403	L→PUV法(JSC	セロテック	日本電子JCA-B	124.0	222.0	124.0	222.0	○ 340.0 ○	292.0 ○	213.0
1404	L→PUV法(JSC	関東化学	東芝TBA-cシリー	119.0	229.0			○ 354.0 ○	302.0 ○	224.0
1405	L→PUV法(JSC	関東化学	東京貿易ビオปス1	120.0	245.0	120.0	245.0	○ 350.0 ○	297.0 ○	219.0
1411	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0	124.0	222.0	○ 352.9 ○	297.7 ○	218.9
1419	L→PUV法(JSC	ベックマン・コー	ヘックマン・コールター	119.0	229.0	119.0	229.0	○ 345.0 ○	299.0 ○	219.0
1501	L→PUV法(JSC	関東化学	日立LABOSPE	119.0	229.0	119.0	229.0	○ 347.0 ○	298.0 ○	216.0
1502	L→PUV法(JSC	和光純薬	日本電子JCA-B	119.0	229.0	119.0	229.0	○ 348.0 ○	299.0 ○	217.0
1505	L→PUV法(JSC	和光純薬	日立LABOSPE	124.0	222.0			○ 348.0 ○		
1506	L→PUV法(JSC	関東化学	日立LABOSPE	115.0	245.0	115.0	245.0	○ 359.0 ○	307.0 ○	227.0
1511	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0			○ 355.0 ○	304.0 ○	223.0
1512	L→PUV法(JSC	和光純薬	日立7140-7170	124.0	222.0	124.0	222.0	○ 352.0 ○	303.0 ○	220.0
1513	L→PUV法(JSC	和光純薬	日立LABOSPE	124.0	222.0			○ 347.0 ○	300.0 ○	221.0
1514	L→PUV法(JSC	和光純薬	日立LABOSPE	124.0	222.0	124.0	222.0	○ 345.0 ○	293.0 🔾	214.0
	L→PUV法(JSC	和光純薬	東京貿易ビオリス2	124.0		124.0		○ 346.0 ○		
	L→PUV法(JSC	和光純薬	東芝25FR_Accut	124.0	222.0			○ 351.0 ○		
1528	L→PUV法(JSC	和光純薬	目立7140-7170	124.0	222.0	124.0	222.0	○ 355.0 ○		
	L→PUV法(JSC	和光純薬	日立LABOSPE	119.0		119.0		○ 347.0 ○		
1530	L→PUV法(JSC	和光純薬		124.0		124.0		○ 349.0 ○		
	L→PUV法(JSC	和光純薬	シーメンスHCDDim	119.0		119.0		○ 341.0 ○		
1532	L→PUV法(JSC	シスメックス	日立7140-7170	124.0	222.0	124.0	222.0	○ 357.4 ○	300.5 ○	223.1
1533	L→PUV法(JSC	和光純薬	シーメンスHCDDim	124.0	222.0			○ 342.0 ○	294.0 🔾	219.0
1534	L→PUV法(JSC	和光純薬	東京貿易ビオリス2	124.0	222.0			○ 354.0 ○	303.0 ○	223.0
1538	L→PUV法(JSC	積水メディカル	東京貿易ビオリス2	124.0	222.0			○ 352.0 ○	300.0 ○	227.0
1540	L→PUV法(JSC	LSIメディエンス	日本電子JCA-B	124.0	222.0	124.0	222.0	○ 353.0 ○	302.0 ○	224.0
1541	L→PUV法(JSC	シノテスト	東芝25FR_Accut	119.0	229.0			○ 350.0 ○	297.0 ○	223.0
1542	L→PUV法(JSC	関東化学	目立7140-7170	115.0	245.0			○ 353.0 ○	301.0 ○	221.0
1543	L→PUV法(JSC	シスメックス	東芝TBA-20-3	119.0	229.0	119.0	229.0	○ 342.0 ○	290.0 ○	211.0
1549	L→PUV法(JSC	積水メディカル	東京貿易ビオリス2	119.0	229.0			○ 358.0 ○	301.0 〇	224.0
1550	L→PUV法(JSC	和光純薬	日立7140-7170	120.0	245.0			○ 358.0 ○	307.0 ○	227.0
1554	L→PUV法(JSC	シノテスト	目立7140-7170	119.0	229.0	119.0	229.0	○ 354.0 ○	298.0 🔾	221.0
1558	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0	124.0	222.0	○ 344.0 ○	292.0 🔾	217.0
1562	L→PUV法(JSC	シノテスト	日本電子JCA-B	124.0	222.0	124.0	222.0	○ 354.0 ○	302.0 ○	224.0
1901	L→PUV法(JSC	和光純薬	ヘックマン・コールター	119.0	229.0	119.0	229.0	○ 347.0 ○	291.0 🔾	219.0
1902	L→PUV法(JSC	和光純薬	日本電子JCA-B	120.0	245.0			○ 351.0 ○	299.0 🔾	221.0
1903	L→PUV法(JSC	関東化学	日立7600Dモジュ	115.0	245.0			○ 349.0 ○	301.0 〇	223.0
1909	L→PUV法(JSC	和光純薬	日立LABOSPE	119.0	229.0			○ 352.0 ○	302.0 ○	224.0
1911	L→PUV法(JSC	シスメックス	ヘ、ックマン・コールター	119.0	229.0			○ 353.0 ○	299.0 🔾	221.0
1916	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0			○ 347.0 ○	296.0 🔾	215.0
1917	L→PUV法(JSC	和光純薬	日立LABOSPE	119.0	229.0	119.0	229.0	○ 351.0 ○	299.0 🔾	221.0
1920	L→PUV法(JSC	和光純薬	日立3100	119.0	229.0			○ 344.0 ○	296.0 🔾	219.0
1922	L→PUV法(JSC	関東化学	日立7140-7170	115.0	245.0			○ 350.0 ○	298.0 🔾	222.0
1923	L→PUV法(JSC	関東化学	目立7140-7170	115.0	245.0			○ 353.0 ○	300.0 ○	222.0
1925	L→PUV法(JSC	関東化学	ヘックマン・コールター	115.0	245.0	115.0	245.0	○ 353.0 ○	304.0 ○	226.0
1926	L→PUV法(JSC	LSIメディエンス	東芝TBA-200F	119.0	229.0	119.0	229.0	○ 350.0 ○	300.0 ○	221.0
1928	L→PUV法(JSC	関東化学	ヘックマン・コールター	115.0	245.0			○ 348.0 ○	297.0 ○	218.0
1930	L→PUV法(JSC	和光純薬	ヘックマン・コールター	119.0	229.0	119.0	229.0	○ 347.0 ○	294.0 🔾	219.0
1931	L→PUV法(JSC	和光純薬	ヘックマン・コールター	19.00	229.0			○ 353.0 ○	299.0 ○	222.0
1932	L→PUV法(JSC	和光純薬	日本電子JCA-B	120.0	245.0			○ 351.0 ○	297.0 ○	219.0
1934	L→PUV法(JSC	和光純薬	ヘックマン・コールター	119.0	229.0			○ 349.0 ○	296.0 ○	220.0
1935	L→PUV法(JSC	和光純薬	日立7140-7170	120.0	245.0	120.0		○ 350.0 ○		
1936	L→PUV法(JSC	セロテック	日本電子JCA-B	120.0	240.0	120.0	240.0	○ 352.0 ○	297.0 ○	219.0
1937	L→PUV法(JSC	シノテスト	日本電子JCA-H	120.0	240.0	120.0	240.0	○ 350.0 ○	300.0 ○	223.0
2002	L→PUV法(JSC	関東化学	日本電子JCA-B	124.0	222.0			○ 347.0 ○	298.0 ○	220.0
2006	L→PUV法(JSC	関東化学	目立LABOSPE	120.0	230.0			○ 351.0 ○	298.0 ○	222.0
2008	L→PUV法(JSC	和光純薬	ロシュコハ [*] ス8000c7	124.0	222.0	124.0	222.0	○ 352.0 ○	300.0 ○	223.0
2009	L→PUV法(JSC	シノテスト	日本電子JCA-B	106.0	211.0	106.0	211.0	○ 347.0 ○	296.0 ○	218.0
2010	L→PUV法(JSC	シノテスト	日立7140-7170	115.0	245.0	115.0	245.0	○ 351.0 ○	302.0 ○	223.0

28 LD 施設No.が低い順に並んでいます

施設	测合压细	**************************************	+4% ¤.¤	男性基準	<b>準範囲</b>	女性基	準範囲	試料報告值
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料01 試料02 試料03
2011	L→PUV法(JSC	和光純薬	ベックマン・コールター	119.0	229.0	119.0	229.0	○ 356.0 ○ 304.0 ○ 222.0
3001	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0	124.0	222.0	$\bigcirc$ 343.8 $\bigcirc$ 293.6 $\bigcirc$ 215.8
3013	L→PUV法(JSC	和光純薬	シーメンスHCDDim	115.0	245.0			$\bigcirc$ 340.0 $\bigcirc$ 288.0 $\bigcirc$ 212.0
3018	L→PUV法(JSC	ベックマン・コー	ヘ゛ックマン・コールター	111.0	229.0			$\bigcirc$ 362.0 $\bigcirc$ 306.0 $\bigcirc$ 228.0
3022	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0	124.0	222.0	$\bigcirc$ 343.7 $\bigcirc$ 287.5 $\bigcirc$ 214.8
3027	L→PUV法(JSC	関東化学	目立7600Dモジュ	115.0	245.0			$\bigcirc$ 347.0 $\bigcirc$ 297.0 $\bigcirc$ 224.0
3048	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0	124.0	222.0	$\bigcirc$ 345.0 $\bigcirc$ 293.0 $\bigcirc$ 216.0
3055	L→PUV法(JSC	LSIメディエンス	日本電子JCA-B	124.0	222.0			$\bigcirc$ 348.0 $\bigcirc$ 299.0 $\bigcirc$ 220.0
3056	L→PUV法(JSC	シスメックス	日本電子JCA-B	124.0	222.0	124.0	222.0	$\bigcirc$ 349.0 $\bigcirc$ 292.0 $\bigcirc$ 219.0
3907	L→PUV法(JSC	セロテック	日本電子JCA-B	124.0	222.0	124.0	222.0	$\bigcirc$ 343.0 $\bigcirc$ 290.0 $\bigcirc$ 213.0
4002	L→PUV法(JSC	栄研化学	日本電子JCA-B	124.0	222.0			$\bigcirc$ 348.0 $\bigcirc$ 296.0 $\bigcirc$ 221.0
4039	L→PUV法(JSC	シノテスト	東芝25FR_Accut	112.0	213.0	112.0	213.0	$\bigcirc$ 354.0 $\bigcirc$ 306.0 $\bigcirc$ 224.0
4040	L→PUV法(JSC	ベックマン・コー	ヘ゛ックマン・コールター	115.0	245.0			365.0 ○ 309.0 ○ 227.0
4902	L→PUV法(JSC	LSIメディエンス	日立7140-7170	112.0	213.0			$\bigcirc$ 351.0 $\bigcirc$ 298.0 $\bigcirc$ 219.0
5003	L→PUV法(JSC	関東化学	日立7140-7170	120.0	230.0	120.0	230.0	$\bigcirc$ 350.0 $\bigcirc$ 296.0 $\bigcirc$ 220.0
5005	L→PUV法(JSC	関東化学	日本電子JCA-B	124.0	222.0			$\bigcirc$ 351.0 $\bigcirc$ 299.0 $\bigcirc$ 220.0
5006	L→PUV法(JSC	LSIメディエンス	日本電子JCA-B	124.0	222.0	124.0	222.0	$\bigcirc$ 348.0 $\bigcirc$ 297.0 $\bigcirc$ 218.0
5010	L→PUV法(JSC	和光純薬	日本電子JCA-B	124.0	222.0	124.0	222.0	$\bigcirc$ 351.2 $\bigcirc$ 299.4 $\bigcirc$ 221.0
6006	L→PUV法(JSC	シスメックス	東芝25FR_Accut	100.0	225.0			$\bigcirc$ 350.0 $\bigcirc$ 300.0 $\bigcirc$ 219.0
6008	L→PUV法(JSC	シノテスト	東芝TBA-200F	124.0	222.0			$\bigcirc$ 354.0 $\bigcirc$ 301.0 $\bigcirc$ 224.0
6015	L→PUV法(JSC	カイノス	目立LABOSPE	115.0	245.0			$\bigcirc$ 345.0 $\bigcirc$ 289.0 $\bigcirc$ 218.0
6016	L→PUV法(JSC	関東化学	東芝TBA-200F	119.0	229.0	119.0	229.0	$\bigcirc$ 348.0 $\bigcirc$ 295.0 $\bigcirc$ 218.0
7001	L→PUV法(JSC	関東化学	日本電子JCA-B	119.0	229.0	119.0	229.0	$\bigcirc$ 348.0 $\bigcirc$ 301.0 $\bigcirc$ 218.0
7002	L→PUV法(JSC	LSIメディエンス	日本電子JCA-B	124.0	222.0			$\bigcirc$ 351.0 $\bigcirc$ 303.0 $\bigcirc$ 221.0
7007	L→PUV法(JSC	和光純薬	ヘックマン・コールター	106.0	211.0	106.0	211.0	$\bigcirc$ 347.0 $\bigcirc$ 299.0 $\bigcirc$ 220.0
7011	L→PUV法(JSC	関東化学	東芝TBA-cシリー	124.0	222.0			○ 350.0 ○ 299.0 ○ 221.0
7025	L→PUV法(JSC	ニットーボー	日本電子JCA-B	119.0	229.0			○ 355.0 ○ 303.0 ○ 226.0
7901	L→PUV法(JSC	ニットーボー	目立LABOSPE	119.0	229.0			$\bigcirc$ 349.0 $\bigcirc$ 299.0 $\bigcirc$ 224.0
8004	L→PUV法(JSC	積水メディカル	日本電子JCA-B	120.0	230.0			$\bigcirc$ 353.0 $\bigcirc$ 302.0 $\bigcirc$ 221.0
9004	L→PUV法(JSC	LSIメディエンス	日立7140-7170					$\bigcirc$ 351.0 $\bigcirc$ 296.0 $\bigcirc$ 220.0
9008	L→PUV法(JSC	シノテスト	日立7140-7170					○ 356.0 ○ 301.0 ○ 224.0
9009	L→PUV法(JSC	LSIメディエンス	日立7140-7170	80.00	200.0			$\bigcirc$ 344.6 $\bigcirc$ 292.7 $\bigcirc$ 214.6
9012	L→PUV法(JSC	デンカ生研	日立7140-7170	106.0	211.0	106.0	211.0	$\bigcirc$ 348.0 $\bigcirc$ 293.0 $\bigcirc$ 216.0
9014	L→PUV法(JSC	ニットーボー	日立7140-7170					$\bigcirc$ 348.0 $\bigcirc$ 297.0 $\bigcirc$ 222.0
9023	L→PUV法(JSC	和光純薬	日立7140-7170					○ 355.0 ○ 303.0 ○ 222.0
9024	L→PUV法(JSC	関東化学	日本電子JCA-B	119.0	229.0	119.0	229.0	○ 351.0 ○ 299.0 ○ 219.0
9033	L→PUV法(JSC	極東製薬	日本電子JCA-B	100.0	190.0			$\bigcirc$ 346.0 $\bigcirc$ 294.0 $\bigcirc$ 217.0
9035	L→PUV法(JSC	積水メディカル	積水EV800					$\bigcirc$ 346.0 $\bigcirc$ 292.0 $\bigcirc$ 216.0
9043	L→PUV法(JSC	ロシュ・ダイアグ	ロシュコハ・ス8000c5					$\bigcirc$ 357.3 $\bigcirc$ 304.2 $\bigcirc$ 225.2
9044	L→PUV法(JSC	ロシュ・ダイアグ	ロシュコハ・ス8000c7					$\bigcirc$ 354.2 $\bigcirc$ 302.8 $\bigcirc$ 223.7
9046	L→PUV法(JSC	栄研化学	日立7140-7170	106.0	211.0	106.0	211.0	$\bigcirc$ 351.0 $\bigcirc$ 294.0 $\bigcirc$ 220.0
9047	L→PUV法(JSC	ベックマン・コー	ヘ゛ックマン・コールター					○ 361.1 ○ 309.1 ○ 225.6
9049	L→PUV法(JSC	シスメックス	目立7140-7170	119.0	229.0			○ 351.0 ○ 300.0 ○ 219.0
9050	L→PUV法(JSC	和光純薬	シーメンスHCDDim					○ 339.6 ○ 289.8 ○ 214.9

106 LD(F) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値	
No	例足原垤	武衆/一ガー	7% 台	下限	上限	下限	上限	試料01	試料02	試料03	
1053		富士フィルムメ	富士ドライケム400	106.0	220.0		(	○ 344.0 ○	313.0 〇	217.0	
1076		富士フィルムメ	富士ドライケム700	119.0	229.0		(	○ 357.0 ○	304.0 ○	228.0	
1097		富士フィルムメ	富士ドライケム700	120.0	245.0	120.0	245.0	○ 361.0 ○	315.0 ○	222.0	
1104		富士フィルムメ	富士ドライケム350	106.0	211.0		(	○ 362.0 ○	302.0 ○	229.0	
1126		富士フィルムメ	富士ドライケム700	119.0	229.0	119.0	229.0	○ 341.0 ○	299.0 ○	217.0	
1137		富士フィルムメ	富士ドライケム400	119.0	229.0	119.0	229.0	○ 333.0 ○	322.0 ○	236.0	
1336		富士フィルムメ	富士ドライケム700	106.0	211.0		(	○ 356.0 ○	303.0 ○	224.0	
1367		富士フィルムメ	富士ドライケム700	106.0	211.0		(	○ 348.0 ○	295.0 ○	223.0	
1374		富士フィルムメ	富士ドライケム700	120.0	245.0	120.0	245.0	○ 331.0 ○	297.0 ○	222.0	
1375		富士フィルムメ	富士ドライケム400	120.0	245.0		(	○ 353.0 ○	315.0 ○	234.0	
1523		富士フィルムメ	富士ドライケム700	124.0	222.0		(	○ 361.0 ○	301.0 ○	234.0	
1545		富士フィルムメ	富士ドライケム400	124.0	222.0		(	○ 359.0 ○	303.0 ○	227.0	
1548		富士フィルムメ	富士ドライケム700	124.0	222.0	124.0	222.0	○ 352.0 ○	292.0 ○	219.0	
1552		富士フィルムメ	富士ドライケム400	106.0	211.0		(	○ 340.0 ○	290.0 ℂ	216.0	
1559		富士フィルムメ	富士ドライケム700	124.0	222.0	124.0	222.0	○ 343.0 ○	288.0 ○	215.0	
1560		富士フィルムメ	富士ドライケム700	106.0	211.0		(	○ 355.0 ○	302.0 ○	227.0	
1561		富士フィルムメ	富士ドライケム700	124.0	222.0	124.0	222.0	○ 343.0 ○	307.0 ○	227.0	
9038		富士フィルムメ	富士ドライケム700	106.0	211.0		(	○ 351.0 ○	314.0 ○	229.0	

#### 141 LD(A1)

施詞	型 測定原理	試薬メーカー	7- 機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原垤	武楽ノーガー	79交石计	下限 上限 下限 上限 試料01 試料02 試料03
13	17 ドライケミストリー法	アークレイ	アークレイスポットケム	120.0 245.0 120.0 245.0 295.0 250.0 176.0
13'	78 ドライケミストリー法	アークレイ	アークレイスポットケム	119.0 229.0 $\bigcirc$ 360.0 $\bigcirc$ 293.0 $\bigcirc$ 205.0
904	11 ドライケミストリー法	アークレイ	アークレイスホットケム	○ 323.0 ○ 266.0 ○ 192.0

#### 171 LD(A2)

施設	設 測定原理 試薬メーカ		機器	男性基	準範囲	女性基	準範囲			試料報告値	
No	侧止原理	武楽メールー	<del>恢</del>	下限	上限	下限	上限	試料01	試料02	試料03	
1521	・ブライケミストリー法	アークレイ	アークレイスホ°ットケム	124.0	222.0	124.0	222.0	317.0 (	261.0	166.0	

#### 201 LD(O)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値	
No	例足尔生	<b>以来</b> 人 人	17交布計	下限 上限 下限 上限 試料01 試料02 試料03	
1075		オーソ・クリニカ	オーソビトロス250_3	124.0 222.0 124.0 222.0 $\bigcirc$ 337.0 $\bigcirc$ 290.0 $\bigcirc$ 218.0	
1100		オーソ・クリニカ	オーソビトロス250_3	○ 341.0 284.0 ○ 218.0	
8011		オーソ・クリニカ	オーソビトロス250_3	121.0 245.0 121.0 245.0 $\bigcirc$ 341.0 $\bigcirc$ 290.0 $\bigcirc$ 220.0	
9040		オーソ・クリニカ	オーソヒトロス5600	$\bigcirc$ 348.0 $\bigcirc$ 295.0 $\bigcirc$ 222.0	

### コリンエステラーゼ (ChE)

産業医科大学病院 臨床検査・輸血部 比嘉 幸枝 早原 千恵

#### 【参加状况】

参加施設 191 施設(前回 180 施設)

#### 【測定方法の状況】

- 1. 原理別では、JSCC 標準化対応法が 182 施設(95.3%)、ドライケミストリー法が 9 施設(4.7%)であった。
- 2. JSCC 標準化対応法における検量方法は、検量用 ERM を使用している施設が 177 施設(97.3%)、認証 ERM を使用している施設が 2 施設(1.1%)、管理血清などを使用している施設が 3 施設 (1.6%)であった。

#### 【測定値の状況】

1. 試料 1~3 の測定原理別 CV%を表 1 に示した。JSCC 標準化対応法の CV%は 1.5~1.6 %と収束していた。一方、ドライケミストリー法の CV%は 2.4~3.5 %と若干のばらつきを認めた。

測定法			平均值		CV%				
例 足 伝	n	試料 1	試料 2	試料 3	試料 1	試料 2	試料 3		
全体	191	233.3	280.6	353.1	1.7	1.6	1.5		
JSCC 標準化対応法	182	233.3	280.7	353.1	1.6	1.5	1.5		
ト゛ライケミストリー法	9	232.1	278.8	351.6	3.5	2.4	2.4		

表 1. 測定原理別 CV%

2. 目標値(目標範囲)は、試料 1:232.8(221~244)、試料 2:280.0(266~294)、試料 3:352.8(336~370)U/L である。試料別の目標範囲達成状況を表 2 に、試料 1 と 3 の散布図を図 1、2 に示した。JSCC 標準化対応法で 3 試料すべてを達成できていた施設は 182 施設(100.0%)であり、トブライケミストリー法では 7 施設(77.8%)であった。

衣 2. 科別日倧魁团(日倧祖二3.0%)											
	目標範囲達成										
測定法	n		施設	<b>设数</b>		達成率(%)					
		3 試料 すべて	試料1	試料2	試料3	3 試料 すべて	試料1	試料 2	試料3		
全体	191	189	190	191	190	99.0	99.5	100.0	99.5		
JSCC 標準化対応法	182	182	182	182	182	100.0	100.0	100.0	100.0		
ト゛ライケミストリー法	9	7	8	9	8	77.8	88.9	100.0	88.9		

表 2. 試料別目標範囲(目標値±5.0%) 達成状況

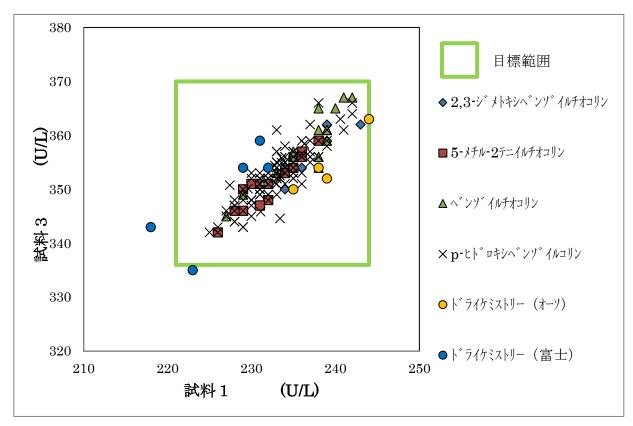



図 1. 散布図 (全体)

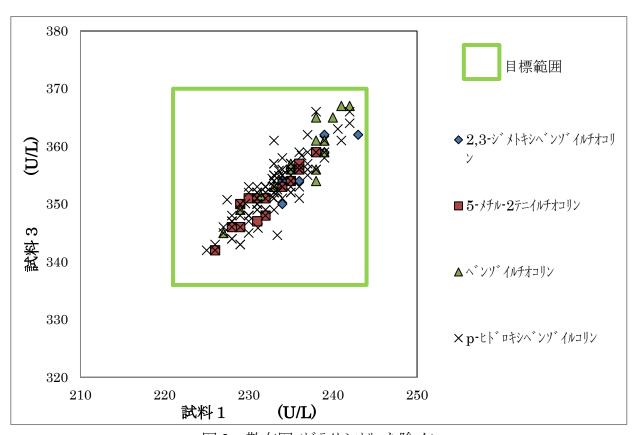



図2. 散布図(ドライケミストリーを除く)

#### 【基準範囲の状況】

- 1. JCCLS 共用基準範囲採用施設は88施設(46.1%)であった。
- 2. 施設 No.1348 は、測定法や分析機が同じである他施設と基準範囲が異なっている。基準 範囲の確認をお願いしたい。

#### 【その他】

ト ゙ ライケミストリー法のメーカー測定値、許容範囲を付記する。また、ト ゙ ライケミストリー法の散布図を図3に示した。

< オーソ・クリニカル・タ゛イアク゛ノスティックス >

溶液法と同様

<富士フィルムメディカル>

試料 1:223 (209~237)、試料 2:258 (251~285)、試料 3:335 (314~356) U/L 前回より測定値は収束傾向であるが、メーカーには精確度の向上を望むとともに、各施設においても再度手技などの確認をお願いしたい。

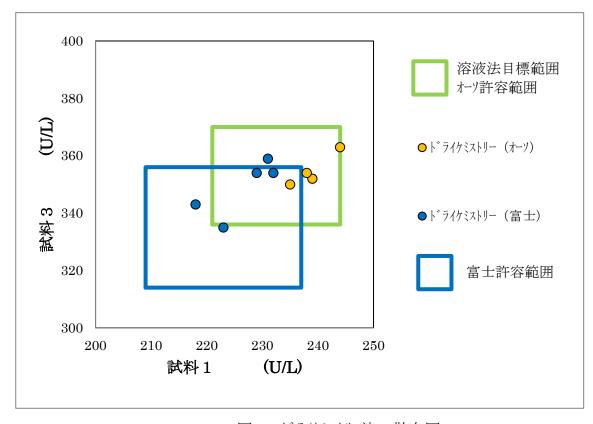



図3. ドライケミストリー法の散布図

30 CHE 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲		試料	報告値
No				下限	上限	下限	上限	試料01 試料	02 試料0	3
	ヘンゾイルチオコリン	関東化学	目立LABOSPE	240.0	486.0	201.0		O 238.0 O 286		
	P-ヒドロキシベンゾイ P-ヒドロキシベンゾイ	シノテスト	目立LABOSPE	214.0	466.0	201.0		<ul><li>235.0</li><li>282</li><li>235.0</li><li>282</li></ul>		
	P-ヒドロキシベンゾイ	シノテストシノテスト	日立LABOSPE 日立LABOSPE	240.0 240.0	486.0 486.0	201.0 201.0		$\bigcirc$ 233.0 $\bigcirc$ 282 $\bigcirc$ 232.8 $\bigcirc$ 279		
	P-ヒドロキシベンゾイ	セロテック	東芝TBA-cシリー	210.0	459.0	210.0		$\bigcirc$ 232.8 $\bigcirc$ 279		
	P-ヒドロキシベンゾイ	シノテスト	日本電子JCA-B	208.0	504.0	208.0		O 232.8 O 282		
	ベンゾイルチオコリン	関東化学	日本電子JCA-B	240.0	486.0	201.0		O 231.4 O 278		
	プロピオニルチオコリン	和光純薬	日立7140-7170	240.0	486.0			O 238.0 O 285		
1015	ヘ゛ンソ゛イルチオコリン	関東化学	日本電子JCA-B					○ 235.0 ○ 283	.0 🔾 356.0	
1018	P-ヒドロキシベンゾイ	協和メデックス	日本電子JCA-B	240.0	486.0	201.0	421.0	○ 236.0 ○ 283	.0 🔾 356.0	)
1021	P-ヒドロキシベンゾイ	セロテック	日本電子JCA-B	245.0	495.0	198.0	452.0	○ 233.0 ○ 281	.0 🔾 353.0	
1023	P-ヒドロキシベンゾイ	シノテスト	日本電子JCA-B	240.0	486.0	201.0	421.0	○ 234.0 ○ 282	.0 🔾 354.0	)
1024	P-ヒドロキシベンゾイ	セロテック	日立LABOSPE	214.0	466.0			○ 237.0 ○ 284	.0 🔾 355.0	
	P-ヒドロキシベンゾイ	シノテスト	東芝25FR_Accut	240.0	486.0	201.0		O 232.0 O 278		
	P-ヒドロキシベンゾイ	LSIメディエンス	日立7140-7170	240.0	485.0			O 232.0 O 278		
	プロピオニルチオコリン	和光純薬	東芝TBA-cシリー	240.0	486.0	201.0		O 232.0 O 280		
	P-ヒドロキシベンゾイ	セロテック	日立7140-7170	245.0	495.0			O 230.0 O 275		
	P-ヒドロキシベンゾイ P-ヒドロキシベンゾイ	セロテックシノテスト	目立7140-7170	245.0		198.0		$\bigcirc$ 235.0 $\bigcirc$ 283		
	P-ヒドロキシベンゾイ	和光純薬	日本電子JCA-B 日立LABOSPE	200.0 240.0	500.0 486.0	201.0		<ul><li>229.0 </li><li>275</li><li>235.0 </li><li>283</li></ul>		
	ヘンゾイルチオコリン	関東化学	日立7140-7170	240.0	486.0	201.0		○ 239.0 ○ 285		
	P-ヒドロキシベンゾイ	セロテック	目立LABOSPE	240.0	486.0	201.0		O 235.0 O 281		
	P-ヒドロキシベンゾイ	シノテスト	東芝25FR_Accut	214.0	466.0			O 234.0 O 280		
	P-ヒドロキシベンゾイ	シノテスト	日本電子JCA-B	240.0	486.0			O 233.4 O 276		
1054	P-ヒドロキシベンゾイ	シノテスト	東芝TBA-cシリー	185.0	430.0			O 232.0 O 279		
1055	プロピオニルチオコリン	和光純薬	シーメンスHCDDim	240.0	486.0	201.0	421.0	O 229.0 O 277	.0 🔾 346.0	
1056	P-ヒドロキシベンゾイ	シノテスト	日立7140-7170	214.0	466.0	214.0	466.0	○ 237.0 ○ 285	.0 🔾 362.0	)
1057	P-ヒドロキシベンゾイ	シノテスト	東京貿易ピオナリス5	245.0	495.0	198.0	452.0	○ 228.0 ○ 274	.0 🔾 344.0	
1058	P-ヒドロキシベンゾイ	LSIメディエンス	日本電子JCA-B	214.0	466.0			○ 231.0 ○ 277	.0 🔾 350.0	)
1060	P-ヒドロキシベンゾイ	LSIメディエンス	日本電子JCA-B	245.0	495.0	198.0	452.0	O 234.0 O 281	.0 🔾 355.0	
	P-ヒドロキシベンゾイ	和光純薬	日立LABOSPE	240.0	486.0	201.0		O 232.0 O 280		
	P-ヒドロキシベンゾイ	LSIメディエンス	日本電子JCA-B	242.0	495.0	200.0		O 234.0 O 283		
	ヘンゾイルチオコリン	関東化学	目立LABOSPE	214.0	466.0			O 233.0 O 278		
	P-ヒドロキシベンゾイ	シノテスト	目立LABOSPE	180.0	415.0			O 231.0 O 280		
	プロピオニルチオコリン P-ヒトロキシヘンゾイ	和光純薬和光純薬	シーメンスHCDDim 東芝TBA-cシリー	242.0 240.0	495.0 486.0	200.0 201.0		$\bigcirc$ 232.0 $\bigcirc$ 279 $\bigcirc$ 230.0 $\bigcirc$ 277		
	P-ヒドロキシベンゾイ	シノテスト	目立LABOSPE	203.0	460.0	203.0		O 231.0 O 278		
	P-ヒドロキシベンゾイ		日立7140-7170	240.0		201.0		O 233.4 O 280		
	2,3-ジメトキシベンソ		目立7140-7170	240.0	486.0			O 235.0 O 282		
	ベンソ・イルチオコリン	関東化学	日本電子JCA-B	214.0	466.0			O 227.0 O 274		
1101	P-ヒドロキシベンゾイ	和光純薬	東芝TBA-cシリー	203.0	460.0	203.0	460.0	○ 233.0 ○ 280	.0 🔾 352.0	
1102	P-ヒドロキシベンゾイ	協和メデックス	東芝TBA-cシリー	240.0	486.0	201.0	421.0	O 235.0 O 283	.0 🔾 357.0	)
1105	P-ヒドロキシベンゾイ	ベックマン・コー	ヘックマン・コールター	245.0	495.0	198.0	452.0	○ 236.0 ○ 284	.0 🔾 359.0	)
1112	P-ヒドロキシベンゾイ	シノテスト	東京貿易ピオナリス5	214.0	466.0	214.0	466.0	○ 236.0 ○ 284	.0 🔾 351.0	
1116	プロピオニルチオコリン	和光純薬	日本電子JCA-B	242.0	495.0	200.0	459.0	O 230.0 O 277	.0 🔾 351.0	)
	P-ヒドロキシベンゾイ	和光純薬	東芝TBA-cシリー	240.0	486.0	201.0	421.0	O 230.0 O 276	.0 🔾 348.0	
	P-ヒドロキシベンゾイ	ベックマン・コー	ヘ、ックマン・コールター	242.0	495.0	200.0		O 233.6 O 280		
	P-ヒドロキシベンゾイ	セロテック	日本電子JCA-B	245.0	495.0			O 233.0 O 282		
	2,3-ジメトキシベンソ	シスメックス	日本電子JCA-B	240.0	486.0			O 239.0 O 287		
	プロピオニルチオコリン	和光純薬	日本電子JCA-B 日本7140-7170	240.0	486.0			$\bigcirc$ 228.0 $\bigcirc$ 274		
	P-ヒドロキシベンゾイ P-ヒドロキシベンゾイ	セロテック	目立7140-7170 日本電子ICA-R	214.0	466.0			$\bigcirc$ 235.0 $\bigcirc$ 282		
	P-thロキシヘンソイ	シノテスト 協和メデックス	日本電子JCA-B	240.0 240.0	486.0 486.0			<ul><li>232.0 </li><li>240.6 </li><li>286</li></ul>		
	P-ヒドロキシベンゾイ	和光純薬	日本電子JCA-B	214.0	466.0			O 231.0 O 278		
	P-ヒドロキシベンゾイ		ベックマン・コールター	240.0	486.0			O 242.0 O 289		
	P-ヒドロキシベンゾイ		日本電子JCA-B	240.0	486.0			O 235.0 O 280		
	P-ヒドロキシベンゾイ		東芝25FR_Accut	240.0		201.0		O 233.0 O 280		

30 CHE 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基準	準範囲			試料報告値
No	例足原生	内来 ハ	75是有計	下限	上限	下限	上限	試料01	試料02	試料03
1310	P-ヒドロキシベンゾイ	和光純薬	東芝TBA-200F	214.0	466.0	214.0	466.0	○ 231.0 ○	277.0 🔾	349.0
	P-ヒドロキシベンゾイ	和光純薬	日本電子JCA-B	214.0	466.0			O 231.0 O		
	P-ヒドロキシベンゾイ	シノテスト	日本電子JCA-B	240.0		201.0		O 226.0 O		
	P-ヒドロキシベンゾイ	シノテスト	日本電子JCA-B	187.0	436.0	201.0		O 229.0 O		
	P-ヒドロキシベンゾイ P-ヒドロキシベンゾイ	セロテック 和光純薬	日本電子JCA-B 日本電子JCA-B	240.0 240.0	486.0 486.0	201.0 201.0		<ul><li>235.0 </li><li>231.0 </li></ul>		
	P-ヒドロキシベンゾイ	ベックマン・コー	ヘックマン・コールター	240.0	486.0	201.0		O 233.0 O		
	P-ヒドロキシベンゾイ	協和メデックス	日本電子JCA-B	240.0	486.0	201.0		O 233.0 O		
	P-ヒドロキシベンゾイ	和光純薬	日本電子JCA-B	214.0	466.0			O 229.0 O		
1331	プロヒ゜オニルチオコリン	和光純薬	東芝TBA-cシリー	203.0	460.0			○ 234.0 ○	282.0 🔾	353.0
1337	P-ヒドロキシベンゾイ	和光純薬	日本電子JCA-B	240.0	486.0	201.0	421.0	○ 228.0 ○	274.0 🔾	344.0
1339	P-ヒドロキシベンゾイ	LSIメディエンス	日本電子JCA-B	240.0	486.0	201.0	421.0	○ 230.0 ○	280.0 🔾	352.0
1341	P-ヒドロキシベンゾイ	和光純薬	日本電子JCA-B	240.0	486.0	201.0	421.0	○ 233.0 ○	281.0 🔾	352.0
	P-ヒドロキシベンゾイ	セロテック	日本電子JCA-B	245.0	495.0	198.0		○ 241.0 ○		
	ヘンゾイルチオコリン	関東化学	日立LABOSPE	240.0	486.0	201.0		O 229.0 O		
	P-ヒドロキシベンゾイ	シノテスト	日立7140-7170	240.0	486.0	201.0		O 231.0 O		
	P-ヒドロキシベンゾイ P-ヒドロキシベンゾイ	セロテック ロシュ・ダイアグ	日本電子JCA-B ロシュコハ、ス8000c5	214.0	466.0 486.0	201.0		<ul><li>231.0 </li><li>234.0 </li></ul>		
	プロピオニルチオコリン	和光純薬	15371/ V9000C0	240.0 107.0		201.0 107.0		O 229.0 O		
	P-ヒドロキシベンゾイ	シノテスト	ヘックマン・コールター	240.0	486.0	201.0		O 233.0 O		
	P-ヒドロキシベンゾイ	和光純薬	日本電子JCA-B	214.0	466.0	214.0		O 232.0 O		
1355	2,3-ジメトキシベンソ	シスメックス	東芝TBA-cシリー	240.0	486.0	201.0	421.0	○ 243.0 ○	289.0 🔾	362.0
1356	P-ヒドロキシベンゾイ	和光純薬	日本電子JCA-B	240.0	486.0	201.0	421.0	○ 229.0 ○	275.0 🔾	346.0
1357	プロピオニルチオコリン	和光純薬	目立7140-7170	214.0	466.0	214.0	466.0	○ 235.0 ○	281.0 🔾	354.0
1359	P-ヒドロキシベンゾイ	シノテスト	日本電子JCA-B	240.0	486.0	201.0	421.0	○ 234.0 ○	283.0 🔾	358.0
	P-ヒドロキシベンゾイ	和光純薬	日本電子JCA-B	168.0	470.0	168.0		○ 230.0 ○		
	プロピオニルチオコリン	和光純薬	東芝TBA-20-3	240.0	486.0	201.0		O 236.0 O		
	ベンソブイルチオコリン	関東化学	ヘックマン・コールター	214.0	466.0	201.0		O 238.0 O		
	プロピオニルチオコリン P-ヒトロキシヘンゾイ	和光純薬和光純薬	日立7140-7170 東芝TBA-cシリー	240.0 240.0	486.0 486.0	201.0 201.0		<ul><li>231.0 </li><li>225.0 </li></ul>		
	P-ヒドロキシベンゾイ	関東化学	目立LABOSPE	240.0	486.0	201.0		O 235.0 O		
	P-ヒドロキシベンゾイ	シノテスト	東京貿易ビオリス5	240.0	486.0	201.0		O 233.0 O		
1382	P-ヒドロキシベンゾイ	和光純薬	日立LABOSPE	240.0	486.0	201.0	421.0	○ 231.0 ○	279.0 🔾	352.0
1385	P-ヒドロキシベンゾイ	和光純薬	東芝25FR_Accut	240.0	486.0	201.0	421.0	○ 233.0 ○	282.0 🔾	357.0
1390	プ゜ロヒ゜オニルチオコリン	和光純薬	東芝TBA-cシリー	214.0	466.0	214.0	466.0	○ 224.0 ○	269.0 🔾	342.0
	P-ヒドロキシベンゾイ	シノテスト	日立7140-7170	185.0		185.0		○ 237.0 ○		
	プロピオニルチオコリン		シーメンスHCDDim	240.0		201.0		○ 231.0 ○		
	P-ヒドロキシベンゾイ		日本電子JCA-B	240.0		201.0		O 228.0 O		
	P-ヒドロキシベンゾイ ベンゾイルチオコリン	セロテック 関東化学	日本電子JCA-B 東芝TBA-cシリー	240.0	486.0 415.0	201.0		<ul><li>233.0 </li><li>239.0 </li></ul>		
	P-ヒドロキシベンゾイ	協和メデックス	日本電子JCA-B	180.0 240.0		201.0		O 236.0 O		
	P-ヒドロキシベンゾイ	ベックマン・コー	ヘックマン・コールター	214.0		214.0		O 237.0 O		
	ベンソ・イルチオコリン	関東化学	目立LABOSPE	214.0		214.0		○ 239.0 ○		
1502	P-ヒドロキシベンゾイ	セロテック	日本電子JCA-B	214.0	466.0	214.0		○ 228.0 ○		
1505	P-ヒドロキシベンゾイ	和光純薬	目立LABOSPE	240.0	486.0	201.0	421.0	○ 227.0 ○	275.0 🔾	346.0
1506	P-ヒドロキシベンゾイ	シノテスト	日立LABOSPE	242.0	495.0	200.0	459.0	○ 236.0 ○	284.0 🔾	356.0
1511	P-ヒドロキシベンゾイ	セロテック	日本電子JCA-B	240.0	486.0	201.0	421.0	○ 232.0 ○	280.0 🔾	352.0
	P-ヒドロキシベンゾイ	セロテック	日立7140-7170	240.0	486.0	201.0		○ 236.0 ○		
	2,3-ジメトキシヘンソ	シスメックス	日立LABOSPE	240.0	486.0	201.0		O 234.0 O		
	P-ヒドロキシベンゾイ	和光純薬	目立LABOSPE 東芝25FR Accept	240.0		201.0		O 228.0 O		
	P-ヒドロキシベンゾイ P-ヒドロキシベンゾイ	和光純薬和光純薬	東芝25FR_Accut 日立7140-7170	240.0 240.0	486.0 486.0	201.0 201.0		<ul><li>○ 229.0 ○</li><li>○ 232.0 ○</li></ul>		
	P-ヒドロキシベンゾイ	和光純薬	日立LABOSPE	214.0		214.0		0 227.0 0		
	プロヒ。オニルチオコリン	和光純薬	日本電子JCA-B	240.0		201.0		O 236.0 O		
	2,3-ジメトキシベンソ		日立7140-7170	240.0		201.0		O 235.0 O		
1533	プロヒ°オニルチオコリン	和光純薬	シーメンスHCDDim	240.0	486.0	201.0	421.0	○ 226.0 ○	272.0 🔾	342.0
1538	P-ヒドロキシベンゾイ	ニットーボー	東京貿易ビオปス2	240.0	486.0	201.0	421.0	○ 233.0 ○	282.0 🔾	357.0

30 CHE 施設No.が低い順に並んでいます

	.NO.//31以V //iji(C	- 业ル ( いより								
施設	測定原理	試薬メーカー	機器	男性基準		女性基				試料報告值
No			5,2,42	下限	上限	下限	上限	試料01	試料02	試料03
1540	P-ヒドロキシベンゾイ	LSIメディエンス	日本電子JCA-B	240.0	486.0	201.0	421.0	○ 239.0 ○	288.0 🔾	361.0
1541	P-ヒドロキシベンゾイ	シノテスト	東芝25FR_Accut	214.0	466.0			○ 231.0 ○	280.0 🔾	353.0
1542	ヘ゛ンソ゛イルチオコリン	関東化学	目立7140-7170	242.0	495.0	200.0	459.0	○ 238.0 ○	289.0 🔾	365.0
1550	P-ヒドロキシベンゾイ	セロテック	日立7140-7170	245.0	495.0	198.0	452.0	○ 239.0 ○	288.0 🔾	359.0
1554	P-ヒドロキシベンゾイ	シノテスト	日立7140-7170	185.0	431.0	185.0	431.0	○ 238.0 ○	286.0 🔾	359.0
1558	P-ヒドロキシベンゾイ	和光純薬	日本電子JCA-B	240.0	486.0	201.0	421.0	○ 228.0 ○	275.0 🔾	347.0
1562	P-ヒドロキシベンゾイ	シノテスト	日本電子JCA-B			201.0		○ 235.0 ○		
1901	P-ヒドロキシベンゾイ	和光純薬	ヘ・ックマン・コールター			214.0		○ 233.0 ○		
1902	P-ヒドロキシベンゾイ	セロテック	日本電子JCA-B		495.0			○ 235.0 ○		
1903	ベンソ・イルチオコリン	関東化学	目立7600Dモジュ		495.0	200.0		○ 242.0 ○		
	P-ヒドロキシベンゾイ	シノテスト	目立LABOSPE		466.0			○ 226.0 ○		
1911	ベンソ・イルチオコリン	関東化学	ヘ゛ックマン・コールター		466.0			○ 238.0 ○		
	P-ヒドロキシベンゾイ	和光純薬	日本電子JCA-B		486.0	201.0	421.0	○ 233.0 ○		
	P-ヒドロキシベンゾイ	シノテスト	目立LABOSPE					○ 228.0 ○		
	ベンソ「イルチオコリン	関東化学	東芝TBA-200F					O 235.0 O		
	ベンソ・イルチオコリン	関東化学	ベックマン・コールター		495.0	200.0		O 240.0 O		
	P-ヒドロキシベンゾイ	和光純薬	ベックマン・コールター		466.0			O 230.0 O		
	P-ヒドロキシベンゾイ	和光純薬	ベックマン・コールター		466.0			O 231.0 O		
	P-ヒドロキシベンゾイ	セロテック	日本電子JCA-B		495.0			O 234.0 O		
	P-ヒドロキシベンゾイ	和光純薬	ベックマン・コールター		466.0	130.0	102.0	O 235.0 O		
	P-ヒドロキシベンゾイ	セロテック	日立7140-7170			198.0	452 O	O 234.0 O		
	P-ヒドロキシベンゾイ	セロテック	日本電子JCA-B					O 238.0 O		
	P-ヒドロキシベンゾイ	シノテスト	日本電子JCA-H			220.0		O 239.0 O		
	P-ヒドロキシベンゾイ	カイノス	日本電子JCA II 日本電子JCA-B			201.0		O 234.0 O		
	P-ヒドロキシベンゾイ	シノテスト	日本電子JCA-B 日立LABOSPE		430.0	201.0	421.0	O 238.0 O		
	P-ヒドロキシベンゾイ		ロシュコハ、ス8000c7			201.0	491 A	O 231.0 O		
	P-ヒドロキシベンゾイ	和光純薬 シノテスト	日本電子JCA-B					O 233.0 O		
	P-ヒドロキシベンゾイ				431.0					
	P-ヒドロキシベンゾイ	シノテスト	日 立7140-7170 ヘ [、] ックマン・コールター			200.0		O 238.0 O		
	P-ヒドロキシベンゾイ	和光純薬			466.0 486.0	214.0		<ul><li>○ 233.0 ○</li><li>○ 229.6 ○</li></ul>		
	P-ヒドロキシベンゾイ		日本電子JCA-B ヘ、ックマン・コールター		431.0	201.0	421.0			
		シノテスト				201.0	401 A	O 236.0 O		
	P-ヒドロキシベンゾイ	セロテック	日本電子JCA-B			201.0		O 236.3 O		
	ヘンソ・イルチオコリン	関東化学	日立7600Dモジュ		495.0	200.0		O 241.0 O		
	P-ヒドロキシベンゾイ	和光純薬	日本電子JCA-B			201.0		O 231.0 O		
	P-ヒドロキシベンゾイ P-ヒドロキシベンゾイ	協和メデックス	日本電子JCA-B 日本電子JCA-B		486.0	201.0		O 235.0 O		
	P-ヒドロキシベンゾイ	協和メデックス セロテック	日本電子JCA-B		486.0	201.0		O 242.0 O		
					486.0	201.0		O 232.0 O		
	P-ヒドロキシベンゾイ		日本電子JCA-B			201.0		O 234.0 O		
	P-ヒドロキシベンゾイ P-ヒドロキシベンゾイ	カイノス	ベックマン・コールター			200.0	459.0	○ 235.0 ○ ○ 237.0 ○		
			日立7140-7170		460.0	201.0	401 A			
	P-ヒドロキシベンゾイ	関東化学	日本電子JCA-B		486.0			O 229.0 O		
	P-ヒドロキシベンゾイ	栄研化学	日本電子JCA-B		486.0			O 237.0 O		
	P-ヒドロキシベンゾイ	セロテック	日本電子JCA-B		486.0	201.0	421.0	O 233.6 O		
	2,3-ジメトキシヘンソ		東芝25FR_Accut		466.0	001.0	401.0	O 234.0 O		
	P-ヒドロキシベンゾイ	協和メデックス	東芝TBA-200F		486.0	201.0	421.0	O 232.0 O		
	P-ヒドロキシベンゾイ	協和メデックス	目立LABOSPE		431.0	40=0		O 234.0 O		
	ベンゾイルチオコリン	関東化学	東芝TBA-200F		431.0			O 233.0 O		
	P-ヒドロキシベンゾイ		日本電子JCA-B		431.0			O 238.0 O		
	P-ヒドロキシベンゾイ		日本電子JCA-B			201.0		O 228.0 O		
	P-ヒドロキシベンゾイ	シノテスト	ベックマン・コールター		466.0			O 234.0 O		
	P-ヒドロキシベンゾイ		東芝TBA-cシリー		486.0	201.0	421.0	○ 235.0 ○		
	P-ヒドロキシベンゾイ		日本電子JCA-B		466.0			○ 230.0 ○		
	P-ヒドロキシベンゾイ		目立LABOSPE		494.0	196.0	452.0	○ 235.0 ○		
	P-ヒドロキシベンゾイ		日本電子JCA-B	209.0	485.0			○ 232.0 ○		
	P-ヒドロキシベンゾイ	協和メデックス	目立7140-7170					○ 232.0 ○		
	P-ヒドロキシベンゾイ		目立7140-7170					○ 234.0 ○		
9012	2,3-ジメトキシベンソ	デンカ生研	目立7140-7170	168.0	470.0	168.0	470.0	○ 236.0 ○	284.0 🔾	354.0

30 CHE 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値	
No	例是床垤	<b>科果</b> 人 从	75% 有計	下限	上限	下限	上限	試料01	試料02	試料03	
9014	P-ヒドロキシベンゾイ	ニットーボー	日立7140-7170					○ 234.0 ○	282.0	356.0	
9023	P-ヒドロキシベンゾイ	和光純薬	日立7140-7170					○ 231.0 ○	280.0	351.0	
9024	P-ヒドロキシベンゾイ	関東化学	日本電子JCA-B	213.0	501.0	213.0	501.0	○ 228.0 ○	275.0	347.0	
9033	P-ヒドロキシベンゾイ	極東製薬	日本電子JCA-B	240.0	486.0	201.0	421.0	○ 235.0 ○	280.0	352.0	
9035	P-ヒドロキシベンゾイ	積水メディカル	積水EV800					○ 233.0 ○	280.0	351.0	
9043	P-ヒドロキシベンゾイ	シノテスト	ロシュコハ ス8000c5					○ 227.4 ○	277.2	350.8	
9044	P-ヒドロキシベンゾイ		ロシュコハ [*] ス8000c7					○ 231.1 ○	276.1	345.8	
9046	P-ヒドロキシベンゾイ	栄研化学	目立7140-7170	168.0	470.0	168.0	470.0	○ 230.0 ○	277.0	348.0	
9047	P-ヒドロキシベンゾイ	ベックマン・コー	ヘックマン・コールター					○ 233.4 ○	281.3	352.0	
9049	2,3-ジメトキシベンソ	シスメックス	日立7140-7170	240.0	486.0	201.0	421.0	○ 239.0 ○	288.0	359.0	
9050	プ [°] ロヒ [°] オニルチオコリン	和光純薬	シーメンスHCDDim					○ 231.0 ○	278.0	347.0	

#### 107 CHE(F)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲			試料報告値
No	例足原垤	武衆グーガー		下限 上限 7	下限 上限	試料01 試料02	試料03
1053	ドライケミストリー法	富士フィルムメ	富士ドライケム400			○ 218.0 ○ 270.0 ○	343.0
1375	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム400	245.0 495.0 19	198.0 452.0	○ 229.0 ○ 276.0 ○	354.0
1559	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	214.0 466.0 2	214.0 466.0	○ 231.0 ○ 281.0	359.0
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	240.0 486.0 20	201.0 421.0	○ 232.0 ○ 278.0 ○	354.0
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	170.0 420.0		○ 223.0 ○ 268.0 ○	335.0

202 CHE(O)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原生	四条/ ハ		下限 上限 下限 上限 試料01 試料02 試料03
1075		オーソ・クリニカ	オーソビトロス250_3	240.0 486.0 201.0 421.0 $\bigcirc$ 235.0 $\bigcirc$ 280.0 $\bigcirc$ 350.0
1100		オーソ・クリニカ	オーソヒ・トロス250_3	○ 239.0 ○ 283.0 ○ 352.0
8011		オーソ・クリニカ	オーソヒトロス250_3	213.0 501.0 213.0 501.0 $\bigcirc$ 244.0 $\bigcirc$ 289.0 $\bigcirc$ 363.0
9040		オーソ・クリニカ	オーソヒ・トロス5600	○ 238.0 ○ 284.0 ○ 354.0

## 蛋白分画

社会医療法人長門莫記念会 長門記念病院 検査科 濱野 貴磨

#### 【参加状況】

1. 参加施設数の推移を表に示す。ここ数年減少傾向であり、前年度調査時と比較して2施設の減少であった。

年度	平成 25 年度	平成 26 年度	平成 27 年度	平成 28 年度	平成 29 年度
施設数	39	38	33	29	27

### 【測定方法の状況】

1. 採用支持体の推移を年度ごとに表に示す。キャピラリー電気泳動での参加が6施設あった。

支持体	平成 25 年度	平成 26 年度	平成 27 年度	平成 28 年度	平成 29 年度
セレカ-VSP	28(71.8)	25(65.8)	17(51.5)	14(48.3)	12(44.4)
シーメル J	4(10.3)	4(10.5)	4(12.1)	3(10.3)	3(11.1)
クイックシ゛ェル SP			1(3.0)	4(13.8)	4(14.8)
キャヒ。ラリー	1(2.6)	3(7.9)	5(15.2)	5(17.2)	6(22.2)
その他	6(15.8)	6(15.8)	6(18.2)	3(10.3)	2(7.4)

2. 測定機器メーカーの推移を示す。

機器メーカー	平成 25 年度	平成 26 年度	平成 27 年度	平成 28 年度	平成 29 年度
ヘ゛ックマンコールター	21	18	11	9	8
常光	15	14	13	11	9
ヘレナ	2	3	4	4	4
フィンカ゛ルリンク	1	3	5	5	6
その他					

### 【測定値の状況】

1. 試料1について、支持体別の平均値および CV%を表に示す。セレカ-VSP 膜以外は参加施設数が 少ないため、参考値としていただきたい。セレカ-VSP とシーメル J、クイックシ゛ェル-SP とキャヒ゜ラリーがそれ ぞれ近似した値となっている。

#### 支持体別平均值

	N	ALB分画	α1分画	α2分画	β分画	γ 分画
セレカ-VSP	12	65.9	2.4	8.0	7.7	16.3
シーメル J	3	65.9	2.6	7.2	8.8	15.5
クイックシ゛ェル <b>-SP</b>	4	59.7	3.0	6.5	11.1	19.8
キャヒ。ラリー	6	61.3	3.7	7.8	10.9	16.3
総平均		64.0	2.8	7.6	9.1	16.6

#### 支持体別 CV%

	N	ALB分画	α1分画	α2分画	β分画	γ分画
セレカ-VSP	12	1.4	4.8	6.4	6.3	5.5
シーメル J	3	1.1	12.5	7.3	8.5	1.3
クイックシ゛ェル <b>-SP</b>	4	2.8	24.5	5.0	5.5	1.7
キャヒ。ラリー	6	1.8	3.5	4.9	3.5	3.0

2. 試料 6 について、支持体別の平均値および CV%を表に示す。セレカ-VSP 膜以外は参加施設数が少ないため、参考値としていただきたい。試料 1 と同様にセレカ-VSP とシーメル J、 クイックシェル-SP とキャピ ラリーがそれぞれ近似した値となっている。

#### 支持体別平均值

	N	ALB分画	α1分画	α2分画	β分画	γ分画
セレカ-VSP	12	53.8	3.7	10.4	18.0	14.2
シーメル J	3	53.8	3.8	9.8	19.1	13.5
クイックシ゛ェル <b>-SP</b>	4	48.8	4.1	8.5	22.1	16.7
キャヒ。ラリー	6	47.9	5.1	10.9	22.2	14.0
総平均		51.8	4.1	10.1	19.7	14.4

#### 支持体別 CV%

	N	ALB分画	α1分画	α2分画	β分画	γ分画
セレカ-VSP	12	1.7	3.4	5.5	5.3	6.0
シーメル J	3	1.1	3.7	13.4	6.3	2.4
クイックシ゛ェル <b>-SP</b>	4	1.7	13.2	9.0	3.5	4.1
キャヒ。ラリー	6	1.6	2.7	2.6	1.5	2.0

#### 【基準範囲の状況】

1. 基準範囲の上下限について支持体別に表に示す。測定値と同様に、セレカ-VSP 膜とシーメル J、クイック ジェル-SP とキャピラリーの基準範囲の状況は近似していた。

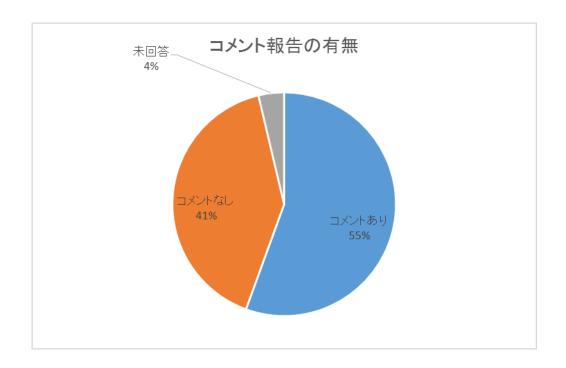
#### 基準範囲下限値の状況

		ALB分画	α1分画	α2分画	β分画	γ 分画
セレカ-VSP	範囲	56.0~62.0	2.2~2.6	5.3~6.9	6.4~8.0	10.0~11.6
EVN-VSP	平均	59.3	2.4	5.8	6.9	10.7
SALAN I	範囲	57.0~60.3	2.4~3.1	5.3~7.0	6.0~7.3	8.7~10.5
シーメル J	平均	58.7	2.6	5.9	6.6	9.7
クイックシ゛ェル	範囲	53.9~59.2	2.3~4.2	4.8~6.3	7.0~9.0	11.8~13.2
-SP	平均	55.7	3.0	5.3	8.5	12.7
キャト [®] ラリー	範囲	54.4~55.8	3.5~3.9	6.2~7.1	7.8~8.5	11.1~12.3
キャヒ。ラリー	平均	55.5	3.7	6.9	8.1	11.5

#### 基準範囲上限値の状況

		ALB分画	α1分画	α2分画	β分画	γ 分画
セレカ-VSP	範囲	69.4~72.3	3.6~4.0	8.9~11.3	10.2~12.2	20.1~22.9
	平均	71.1	3.7	9.9	11.0	20.9
34 Ja. T	範囲	71.0~73.7	3.6~3.9	9.2~11.9	9.1~11.5	20.2~20.5
シーメル J	平均	72.4	3.8	10.5	10.5	20.4
クイックシ゛ェル	範囲	65.4~69.7	3.5~4.9	8.9~9.6	10.8~14.6	21.2~23.9
-SP	平均	66.9	4.1	9.2	13.6	23.2
キャト [®] ラリー	範囲	66.0~66.1	4.8~5.2	10.5~11.8	13.1~14.1	18.8~22.8
キャヒ。ラリー	平均	66.1	5.1	11.4	13.6	20.0

#### 【その他のコメント】


1. 診療科へのコメントについて以下に示す。

#### 試料 1

- ① 正常範囲内です。
- ② アルブミン低下。
- ③ 低蛋白血症ならびに低アルブミン血症が認められる。
- ④ alb、総蛋白の低下。
- ⑤ 蛋白分画は正常パターンを呈していますが、生化学検査の結果、炎症マーカーをはじめ精密検査を要します。
- ⑥ 正常範囲内である。Sebia 社のキャピラリー電気泳動の為 $\beta$ 分画は $\beta$ 1(7.2%)と $\beta$ 2(3.8%)の2分画にて報告している。

#### 試料 6

- β2分画 M蛋白あり。
- ② M蛋白疑い。
- ③ ALB の低下、 $\alpha$ 1, $\alpha$ 2 分画の上昇は急性相反応蛋白を反映  $\beta$  分画上昇には M 蛋白が重なっている可能性がある為、M 蛋白(多発性骨髄腫など?)が疑われます。免疫不全や蛋白漏出が考えられます。尿中蛋白定量、血清免疫、尿、免疫電気泳動、CRP 等の検査をお勧めします。
- ④  $\beta$  分画が増加しています。  $\beta$  -M の可能性もありますので、免疫電気泳動等での精査をご検討ください。
- ⑤ 低アルブシン血症が認められる。
- ⑥ β分画の増高が認められます。IgA も高値であることから、M 蛋白の存在が疑われますので、免疫電気泳動による精査をお勧めします。
- ⑦ 高脂血症ならびに腎機能異常の疑いありの為、再検査フォローを要します。
- ⑧  $\beta$  分画の増加は炎症性疾患を疑わせる。IgA は慢性肝疾患、膠原病、IgA 腎症、ネフローゼ症 候群等で増加する。
- ⑨ アルブミン分画の減少と IgA と C3 の増量による  $\beta$  分画の増加を認める。アルブミンの減少をクレアチ ン、シスタチン C、炎症を CRP、 $\beta$  分画の増加を TG、Tcho と、明瞭な M 蛋白のパターンは見られないが、形質細胞の検索と尿中のベンズジョーンズ蛋白を依頼してもらう。



実際にコメントを付記して結果報告を行っている施設は15施設(55%)であり、参加施設の過半数を超えていた。

2. 試料 1 は献血者由来、試料 6 は M 蛋白を有する患者由来のプール血清を配布した。形質細胞の腫瘍化により単クローン性の異常免疫グロブリンが産生され、電気泳動上急峻な peak(M-peak)を認めるのが特徴的である。M-peak を認めた場合は、免疫電気泳動等を追加し、異常産生されている M 蛋白の同定を行うことが大切である。免疫固定法の結果、試料 6 は  $\beta$  位の M 蛋白(IgA- $\lambda$ )であった。

(参考) 試料 6 測定結果

TP	6.65g/dL
ALB	3.04g/dL
IgG	879mg/dL
IgA	989mg/dL
IgM	59mg/dL
C3	115.5mg/dL
C4	24mg/dL

蛋白分画はスクリーニング検査であり、確定診断に用いることはできない。コメントの記載にあたっては検査の特性を十分理解し、疾患名や診断名ではなく病態を記載することが原則となる。診断名に至るような過剰なコメントは避け、得られた結果から推測される病態について適切なコメントを報告することが重要となる。

見落としてはいけない病態として、①M蛋白型②肝硬変型③ネフローゼ型④急性炎症型⑤慢性炎症型などがあげられる。これら基本的な泳動パターンは確実に把握し、日常診療へのフィード バックを行っていただきたい。

36 ALB 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	男性基準範囲		女性基準範囲			試料報告値
No	例足原垤	武衆/一//	79英 有計	下限	上限	下限	上限	試料01	試料06	
1006	キャピラリー電気泳		フィンカ [*] ルリンクMini	55.20	66.00	55.20	66.00	61.70	47.60	
1026	セハ°ラックスSP		常光CTE700-1	58.90	73.70	58.90	73.70	65.00	53.90	
1040	キャピラリー電気泳		フィンカ [*] ルリンクMini	54.40	66.10	54.40	66.10	59.50	46.70	
1089	セパラックスSP		ヘックマン・コールター	62.00	71.00	62.00	71.00	66.80	55.80	
1300	セレカ膜		ヘックマン・コールター	61.20	71.50	61.20	71.50	65.50	53.70	
1301	セレカ膜		常光CTE2800/	59.40	72.30	59.40	72.30	67.60	54.40	
1315	その他		ヘレナエハ゜ライサ゛2	59.20	69.70	59.20	69.70	60.70	48.50	
1341	セレカ膜		常光CTE700-1	56.00	70.00	56.00	70.00	66.70	53.90	
1343	セレカ膜		ヘックマン・コールター	59.60	71.40	59.60	71.40	65.90	54.70	
1362	セレカ膜		ヘックマン・コールター	60.20	71.40	60.20	71.40	65.70	53.40	
1505	その他		ヘレナエハ゜ライサ゛2	54.80	65.40	54.80	65.40	56.90	47.60	
1901	セレカ膜		ヘックマン・コールター	58.10	70.10	58.10	70.10	66.30	54.30	
1902	セレカ膜		ヘックマン・コールター	60.80	71.80	60.80	71.80	63.90	52.50	
1909	セレカ膜		常光CTE2800/	57.90	71.50	57.90	71.50	66.20	53.50	
1911	セレカ膜		ヘックマン・コールター	60.20	71.40	60.20	71.40	65.60	54.10	
1916	その他セ・ア膜		常光CTE700-1	57.00	71.00	57.00	71.00	66.00	53.00	
3022	セレカ膜		ヘックマン・コールター	59.60	71.40	59.60	71.40	64.60	52.20	
3027	キャピラリー電気泳		フィンカ・ルリンクCapil	55.80	66.10	55.80	66.10	61.50	47.70	
3907	セレカ膜		常光CTE8000-	60.50	73.20	60.50	73.20	68.20	55.40	
4002	キャピラリー電気泳		フィンカ [*] ルリンクMini	55.80	66.10	55.80	66.10	63.10	49.30	
4902	セパラックスSP		常光デンシトロンC	59.00	70.50	59.00	70.50	66.60	55.10	
6008	その他		ヘレナエハ゜ライサ゛2フ゜	54.80	65.40	54.80	65.40	61.10	49.80	
7001	セレカ膜		常光CTE8000-	56.40	69.40	56.40	69.40	65.40	53.30	
7002	キャピラリー電気泳		フィンカ [*] ルリンクMini	55.80	66.10	55.80	66.10	60.90	47.70	
7011	キャピラリー電気泳		フィンカ [*] ルリンクCapil	55.80	66.10	55.80	66.10	61.00	48.10	
7901	セパラックスSP		常光CTE8000-	60.30	72.40	60.30	72.40	66.70	54.40	
8004	その他		ヘレナエハ°ライサ˙2	53.90	66.90	53.90	66.90	60.00	49.10	

37 A1-G 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	男性基準範囲		女性基準範囲			試料報告値
No	側足原理	八条ノールー	1茂石子	下限	上限	下限	上限	試料01	試料06	
1006	キャピラリー電気泳		フィンカ [*] ルリンクMini	2.900	4.500	2.900	4.500	3.700	5.200	
1026	セハ°ラックスSP		常光CTE700-1	1.500	4.500	1.500	4.500	3.100	3.900	
1040	キャピラリー電気泳		フィンカ [*] ルリンクMini	2.700	4.300	2.700	4.300	3.800	5.200	
1089	セハ°ラックスSP		ヘックマン・コールター	2.000	3.200	2.000	3.200	2.400	3.800	
1300	セレカ膜		ヘックマン・コールター	1.800	2.900	1.800	2.900	2.200	3.600	
1301	セレカ膜		常光CTE2800/	1.800	2.900	1.800	2.900	2.300	3.800	
1315	その他		ヘレナエハ°ライサ*2	1.900	2.900	1.900	2.900	2.500	3.700	
1341	セレカ膜		常光CTE700-1	1.900	4.000	1.900	4.000	2.300	3.600	
1343	セレカ膜		ベックマン・コールター	1.900	3.400	1.900	3.400	2.300	3.600	
1362	セレカ膜		ベックマン・コールター	1.900	3.300	1.900	3.300	2.600	4.000	
1505	その他		ヘレナエハ°ライサ*2	2.300	3.800	2.300	3.800	4.200	4.900	
1901	セレカ膜		ベックマン・コールター	1.800	3.200	1.800	3.200	2.300	3.600	
1902	セレカ膜		ベックマン・コールター	1.700	2.900	1.700	2.900	2.300	3.700	
1909	セレカ膜		常光CTE2800/	1.700	3.300	1.700	3.300	2.400	3.700	
1911	セレカ膜		ベックマン・コールター	1.900	3.300	1.900	3.300	2.500	3.900	
1916	その他セ・ア膜		常光CTE700-1	1.600	3.500	1.600	3.500	2.400	3.900	
3022	セレカ膜		ヘックマン・コールター	1.900	3.400	1.900	3.400	2.500	3.800	
3027	キャピラリー電気泳		フィンカ [*] ルリンクCapil	2.900	4.900	2.900	4.900	3.600	5.000	
3907	セレカ膜		常光CTE8000-	1.700	2.900	1.700	2.900	2.000	3.400	
4002	キャピラリー電気泳		フィンカ [*] ルリンクMini	2.900	4.900	2.900	4.900	3.500	4.800	
4902	セハ°ラックスSP		常光デンシトロンC	1.700	4.300	1.700	4.300	2.000	3.400	
6008	その他		ヘレナエハ゜ライサ゛2フ゜	2.300	3.800	2.300	3.800	2.300	4.100	
7001	セレカ膜		常光CTE8000-	1.600	3.200	1.600	3.200	2.500	3.800	
7002	キャピラリー電気泳		フィンカ [*] ルリンクMini	2.900	4.900	2.900	4.900	3.900	5.100	
7011	キャピラリー電気泳		フィンカ [*] ルリンクCapil	2.900	4.900	2.900	4.900	3.700	5.100	
7901	セハ [°] ラックスSP		常光CTE8000-	1.700	3.000	1.700	3.000	2.400	3.600	
8004	その他		ヘレナエハ°ライサ*2	2.100	4.400	2.100	4.400	3.100	3.500	

38 A 2-G 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基準範囲		女性基準範囲				試料報告値
No	例足尔生	<b>此来</b> 人		下限	上限	下限	上限	試料01	試料06	
1006	キャピラリー電気泳		フィンカ [*] ルリンクMini	6.900	10.90	6.900	10.90	7.800	11.20	
1026	セハ°ラックスSP		常光CTE700-1	7.000	11.90	7.000	11.90	6.600	8.500	
1040	キャピラリー電気泳		フィンカ [*] ルリンクMini	6.200	10.50	6.200	10.50	8.000	11.00	
1089	セハ°ラックスSP		ヘ、ックマン・コールター	5.800	9.600	5.800	9.600	8.400	10.30	
1300	セレカ膜		ヘ、ックマン・コールター	5.600	8.900	5.600	8.900	7.800	10.20	
1301	セレカ膜		常光CTE2800/	5.500	9.900	5.500	9.900	7.200	9.600	
1315	その他		ヘレナエハ゜ライサ・2	6.300	9.600	6.300	9.600	6.200	8.800	
1341	セレカ膜		常光CTE700-1	6.000	11.00	6.000	11.00	6.700	9.500	
1343	セレカ膜		ヘックマン・コールター	5.700	9.800	5.700	9.800	8.000	10.30	
1362	セレカ膜		ヘ、ックマン・コールター	5.700	9.700	5.700	9.700	8.300	11.10	
1505	その他		ヘレナエハ°ライサ*2	5.000	8.900	5.000	8.900	6.600	8.400	
1901	セレカ膜		ヘックマン・コールター	6.900	11.30	6.900	11.30	7.900	10.40	
1902	セレカ膜		ヘックマン・コールター	5.700	9.500	5.700	9.500	8.400	11.30	
1909	セレカ膜		常光CTE2800/	5.300	10.10	5.300	10.10	8.000	10.00	
1911	セレカ膜		ヘックマン・コールター	5.700	9.700	5.700	9.700	8.500	10.90	
1916	その他セ・ア膜		常光CTE700-1	5.300	10.50	5.300	10.50	7.900	11.60	
3022	セレカ膜		ヘックマン・コールター	5.700	9.800	5.700	9.800	8.200	11.20	
3027	キャピラリー電気泳		フィンカ [*] ルリンクCapil	7.100	11.80	7.100	11.80	7.600	10.80	
3907	セレカ膜		常光CTE8000-	5.300	8.800	5.300	8.800	7.500	9.300	
4002	キャピラリー電気泳		フィンカ [*] ルリンクMini	7.100	11.80	7.100	11.80	7.100	10.30	
4902	セハ°ラックスSP		常光デンシトロンC	6.100	11.50	6.100	11.50	6.800	9.100	
6008	その他		ヘレナエハ゜ライサ゛2フ゜	5.000	8.900	5.000	8.900	6.900	9.400	
7001	セレカ膜		常光CTE8000-	5.500	9.800	5.500	9.800	8.300	10.10	
7002	キャピラリー電気泳		フィンカ [*] ルリンクMini	7.100	11.80	7.100	11.80	8.000	11.00	
7011	キャピラリー電気泳		フィンカ [*] ルリンクCapil	7.100	11.80	7.100	11.80	8.300	11.00	
7901	セハ°ラックスSP		常光CTE8000-	5.300	9.200	5.300	9.200	7.200	9.300	
8004	その他		ヘレナエハ゜ライサ・2	4.800	9.300	4.800	9.300	6.100	7.300	

39 B-G 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基準範囲		女性基準範囲				試料報告值
No	例足原垤	武架/一//	7戏台	下限	上限	下限	上限	試料01	試料06	
1006	キャピラリー電気泳		フィンカ [*] ルリンクMini	7.800	13.10	7.800	13.10	10.70	22.40	
1026	セハ°ラックスSP		常光CTE700-1	6.000	9.100	6.000	9.100	9.800	20.40	
1040	キャピラリー電気泳		フィンカ [*] ルリンクMini	8.500	14.10	8.500	14.10	11.30	22.70	
1089	セハ°ラックスSP		ヘ、ックマン・コールター	7.000	11.00	7.000	11.00	8.100	18.20	
1300	セレカ膜		ヘ、ックマン・コールター	6.600	10.40	6.600	10.40	6.900	17.50	
1301	セレカ膜		常光CTE2800/	6.800	11.20	6.800	11.20	8.200	19.10	
1315	その他		ヘレナエハ゜ライサ゛2	7.000	10.80	7.000	10.80	10.90	22.00	
1341	セレカ膜		常光CTE700-1	7.500	12.00	7.500	12.00	8.600	19.40	
1343	セレカ膜		ヘ・ックマン・コールター	6.600	10.70	6.600	10.70	7.300	17.70	
1362	セレカ膜		ヘ、ックマン・コールター	6.900	10.70	6.900	10.70	7.500	16.70	
1505	その他		ヘレナエハ [°] ライサ [*] 2	9.000	14.60	9.000	14.60	12.00	21.80	
1901	セレカ膜		ヘ・ックマン・コールター	6.400	10.20	6.400	10.20	7.200	17.20	
1902	セレカ膜		ヘ・ックマン・コールター	7.200	11.10	7.200	11.10	7.500	16.50	
1909	セレカ膜		常光CTE2800/	6.500	11.30	6.500	11.30	7.900	19.00	
1911	セレカ膜		ヘックマン・コールター	6.900	10.70	6.900	10.70	7.300	17.20	
1916	その他セ・ア膜		常光CTE700-1	6.500	11.50	6.500	11.50	8.000	17.50	
3022	セレカ膜		ヘックマン・コールター	6.600	10.70	6.600	10.70	7.400	17.90	
3027	キャピラリー電気泳		フィンカ゛ルリンクCapil	7.900	13.70	7.900	13.70	11.30	22.20	
3907	セレカ膜		常光CTE8000-	6.400	10.40	6.400	10.40	7.900	18.90	
4002	キャピラリー電気泳		フィンカ゛ルリンクMini	7.900	13.70	7.900	13.70	10.20	21.80	
4902	セハ°ラックスSP		常光デンシトロンC	5.500	10.00	5.500	10.00	9.100	19.10	
6008	その他		ヘレナエハ゜ライサ゛2フ゜	9.000	14.60	9.000	14.60	10.30	21.20	
7001	セレカ膜		常光CTE8000-	8.000	12.20	8.000	12.20	8.100	19.10	
7002	キャピラリー電気泳		フィンカ・ルリンクMini	7.900	13.70	7.900	13.70	11.00	22.30	
7011	キャピラリー電気泳		フィンカ [*] ルリンクCapil	8.400	13.10	8.400	13.10	10.80	21.80	
7901	セハ [°] ラックスSP		常光CTE8000-	7.300	10.90	7.300	10.90	8.600	19.50	
8004	その他		ヘレナエハ゜ライサ゛2	9.000	14.50	9.000	14.50	11.20	23.30	

40 Γ-G 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告值
No	例足原垤	武衆/一//	7改石计	下限	上限	下限	上限	試料01	試料06	
1006	キャピラリー電気泳		フィンカ [*] ルリンクMini	12.30	22.00	12.30	22.00	16.10	13.60	
1026	セハ [°] ラックスSP		常光CTE700-1	8.700	20.20	8.700	20.20	15.50	13.30	
1040	キャピラリー電気泳		フィンカ゛ルリンクMini	12.30	22.80	12.30	22.80	17.40	14.40	
1089	セハ°ラックスSP		ヘ、ックマン・コールター	10.60	21.50	10.60	21.50	16.60	13.00	
1300	セレカ膜		ヘ、ックマン・コールター	10.70	20.30	10.70	20.30	17.60	15.00	
1301	セレカ膜		常光CTE2800/	10.00	20.50	10.00	20.50	14.70	13.10	
1315	その他		ヘレナエハ゜ライサ・2	11.80	21.20	11.80	21.20	19.70	17.00	
1341	セレカ膜		常光CTE700-1	11.00	22.00	11.00	22.00	15.70	13.60	
1343	セレカ膜		ヘックマン・コールター	10.30	20.30	10.30	20.30	16.50	13.70	
1362	セレカ膜		ヘックマン・コールター	10.50	20.30	10.50	20.30	15.90	14.80	
1505	その他		ヘレナエハ゜ライサ・2	13.20	23.90	13.20	23.90	20.30	17.30	
1901	セレカ膜		ヘックマン・コールター	11.60	21.40	11.60	21.40	16.30	14.50	
1902	セレカ膜		ヘックマン・コールター	10.20	20.40	10.20	20.40	17.90	16.00	
1909	セレカ膜		常光CTE2800/	10.70	20.10	10.70	20.10	15.50	13.80	
1911	セレカ膜		ヘ、ックマン・コールター	10.50	20.30	10.50	20.30	16.10	13.90	
1916	その他セ・ア膜		常光CTE700-1	10.50	20.50	10.50	20.50	15.70	14.00	
3022	セレカ膜		ヘ、ックマン・コールター	10.30	20.30	10.30	20.30	17.30	14.90	
3027	キャピラリー電気泳		フィンカ゛ルリンクCapil	11.10	18.80	11.10	18.80	16.00	14.30	
3907	セレカ膜		常光CTE8000-	11.00	21.10	11.00	21.10	14.40	13.00	
4002	キャピラリー電気泳		フィンカ [*] ルリンクMini	11.10	18.80	11.10	18.80	16.10	13.80	
4902	セハ°ラックスSP		常光デンシトロンC	9.500	18.50	9.500	18.50	15.50	13.30	
6008	その他		ヘレナエハ゜ライサ゛2フ゜	13.20	23.90	13.20	23.90	19.40	15.50	
7001	セレカ膜		常光CTE8000-	11.60	22.90	11.60	22.90	15.70	13.70	
7002	キャピラリー電気泳		フィンカ [*] ルリンクMini	11.10	18.80	11.10	18.80	16.20	13.90	
7011	キャピラリー電気泳		フィンカ [*] ルリンクCapil	11.10	18.80	11.10	18.80	16.20	14.00	
7901	セハ°ラックスSP		常光CTE8000-	10.00	20.50	10.00	20.50	15.20	13.30	
8004	その他		ヘレナエハ [°] ライサ [*] 2	12.40	23.60	12.40	23.60	19.60	16.80	

久留米大学病院 臨床検査部 井上 賢二

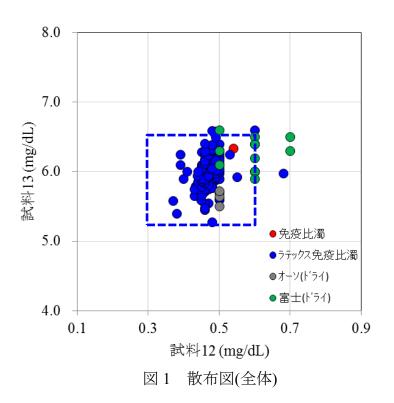
### 【参加状况】

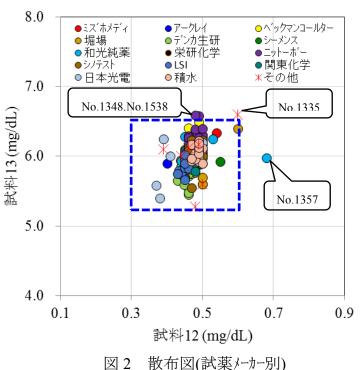
参加施設 248 施設 (前回 234 施設)

### 【測定方法の状況】

1. ラテックス免疫比濁法が最も多く 232 施設(93.5%)、ドライケミストリー法が 15 施設(6.1%)、免疫比濁法が 1 施設(0.4%)であった。

### 【測定値の状況】


1. 試料 12~試料 14 における 3SD 除去後の全体 CV%は 3.7~4.1%であった。 試料 12~試料 14 における各測定法の平均値および CV%を表 1 に、ラテックス免疫比濁法試薬 メーカー別の平均値および CV%を表 2 に示す。また全体の散布図を図 1 に、各メーカー別の散布図を図 2 に示す。試料 13 および試料 14 において、ニットーボーメディカルおよびベックマンコールターの試薬を使用している施設がやや高めに測定されている。また日本光電の試薬を使用している施設の CV%が大きくなっている。


表 1	各測定法の平均値(mg/dL)および CV%(3SD N	除去後)
1 1.		$M \rightarrow M \times I$

測定法	施設数	試料 12		試彩	<b>∤</b> 13	試料 14	
例足伝	旭奴奴	平均値	CV%	平均値	CV%	平均値	CV%
免疫比濁法	1	0.54	<b>-</b> %	6.34	<b>-%</b>	12.34	-%
ラテックス免疫比濁法	232	0.47	3.7%	6.05	3.5%	11.43	4.0%
ト゛ライケミストリー法	15	0.57	12.3%	6.11	5.4%		

表 2. 試薬メーカー別の平均値(mg/dL)および CV%(n≥5)

	2. FVX / // // // // // // // // // // // //								
試薬メーカー名	施設数	試彩	ŀ 12	試彩	∤ 13	試彩	ŀ 14		
四条/ // 石	旭取奴	平均值	CV%	平均値	CV%	平均値	CV%		
ヘ゛ックマンコールター	10	0.48	2.6%	6.25	2.2%	11.98	2.0%		
ニットーホ゛ー	55	0.48	2.5%	6.21	2.2%	11.87	2.3%		
和光純薬	36	0.47	8.4%	6.13	1.9%	11.52	3.7%		
シノテスト	17	0.48	2.8%	6.07	2.7%	11.32	4.0%		
積水	20	0.49	1.8%	6.06	1.8%	11.41	1.9%		
堀場	6	0.52	7.9%	5.98	5.3%	10.78	8.3%		
シーメンス	8	0.48	1.3%	5.94	0.8%	10.86	0.6%		
日本光電	6	0.43	14.0%	5.92	5.9%	11.13	4.0%		
デンカ生研	43	0.46	2.9%	5.85	3.1%	11.15	2.7%		
LSIメディエンス	12	0.45	2.1%	5.83	1.9%	10.97	2.6%		





- 2. 目標値および目標範囲は試料 12:0.45(0.3~0.6) mg/dL、試料 13:5.84(5.2~6.5) mg/dL、試料 14:11.09(10.0~12.2) mg/dL である。
- 3. 各試料における測定原理別の目標範囲達成率を表 3 に示す。 試料 12~試料 14 の全試料が目標範囲内の施設は、免疫比濁法を使用している群では、1 施設中 1 施設(100.0%)、ラテックス免疫比濁法を使用している群では、232 施設中 217 施設 (93.5%)であった。

表 3. 測定原理別目標範囲達成率

	施設数	試料 12	試料 13	試料 14
免疫比濁法	1	100.0%	100.0%	100.0%
ラテックス免疫比濁法	232	99.1%	98.3%	95.3%

4. ドライケミストリー法の平均値および CV%を表 4に示す。

表 4. ドライメーカー別の平均値(mg/dL)および CV%

試薬メーカー名	施設数	試料 12		試彩	<b>∤</b> 13	試料 14	
	旭畝剱	平均値	CV%	平均値	CV%	平均値	CV%
富士ドライケム	12	0.59	11.3%	6.23	3.8%	10.72	26.1%
オーソヒ゛トロス	3	0.50	0.0%	5.62	2.0%	9.00	0.0%

5. ドライケミストリー法におけるメーカー別の参考値および参考範囲を表 5 に、メーカー参考値による各試料の参考範囲達成率を表 6 に示す。いずれの試料においても達成率 100.0%と良好な結果である。

### 表 5. ドライメーカー別の参考値および参考範囲(mg/dL)

試薬メーカー名	試	料 12	高	<b>式料 13</b>	試料 14					
	参考値	参考範囲	参考値	参考範囲	参考値	参考範囲				
富士ドライケム	0.7	$(0.4 \sim 1.0)$	6.5	(5.5~)	>7.0	_				
オーソヒ゛トロス	< 0.5		5.64	$(5.36\sim5.92)$	>9.0					

表 6. ドライメーカー別の参考範囲達成率

試薬メーカー名	施設数	試料 12	試料 13	試料 14
富士ドライケム	12	100.0%	100.0%	100.0%
オーソヒ゛トロス	3	100.0%	100.0%	100.0%

### 【基準範囲の状況】

1. JCCLS 共用基準範囲である  $0\sim0.14$  mg/dL を採用している施設が 96 施設(38.7%)であり、 昨年度と比較すると 22 施設増加している。変更が可能な施設で、まだ変更していない施設は早急な変更をお願いしたい。

### 【その他のコメント】

1. 試料 13 および試料 14 は目標値設定施設により設定された目標値と、サーベイ参加施設の測定値に乖離が認められたため、試料 13 および試料 14 の目標範囲を目標値±3SD とした。

41 CRP 施設No.が低い順に並んでいます

施設	NO.//1区V 7原C		Day Men	男性基準範囲 女	x性基準範囲	試料報告値
No	測定原理	試薬メーカー	機器		下限 上限	試料12 試料13 試料14
1001	ラテックス免疫比	積水メディカル	目立LABOSPE	0.140	(	○ 0.490 ○ 6.040 ○ 11.48
1002	ラテックス免疫比	和光純薬	目立LABOSPE	0.300	(	○ 0.470 ○ 6.070 ○ 11.41
1004	ラテックス免疫比	デンカ生研	目立LABOSPE	0.140	0.140	○ 0.440 ○ 5.500 ○ 10.44
1006	ラテックス免疫比	デンカ生研	目立LABOSPE	0.140	(	○ 0.430 ○ 5.650 ○ 10.70
1010	ラテックス免疫比	デンカ生研	東芝TBA-cシリー	0.300	0.300	○ 0.460 ○ 5.860 ○ 11.16
1011	ラテックス免疫比	和光純薬	日本電子JCA-B	0.300	0.300	○ 0.460 ○ 6.120 ○ 11.52
1012	ラテックス免疫比	関東化学	日本電子JCA-B	0.140	0.140	○ 0.480 ○ 5.780 ○ 10.94
	ラテックス免疫比	和光純薬	目立7140-7170	0.140		○ 0.450 ○ 6.060 ○ 11.45
	ラテックス免疫比	ニットーボー	日本電子JCA-B	0.140		○ 0.490 ○ 6.130 ○ 11.75
	ラテックス免疫比	ニットーボー	日本電子JCA-B	0.140		○ 0.470 ○ 6.130 ○ 11.77
		ニットーボー	日本電子JCA-B	0.300		0.490 0 6.220 0 11.80
	ラテックス免疫比 ラテックス免疫比	シノテスト	日本電子JCA-B 日立LABOSPE	0.140 0.200		$\bigcirc$ 0.480 $\bigcirc$ 6.160 $\bigcirc$ 11.39 $\bigcirc$ 0.480 $\bigcirc$ 6.240 $\bigcirc$ 11.82
		デンカ生研	東芝25FR_Accut	0.140		○ 0.472 ○ 6.047 ○ 11.69
	ラテックス免疫比		目立LABOSPE	0.200		○ 0.480 ○ 6.150 ○ 11.56
		LSIメディエンス	目立7140-7170			○ 0.450 ○ 5.900 ○ 11.50
	ラテックス免疫比	積水メディカル	東芝TBA-cシリー	0.140		○ 0.490 ○ 6.220 ○ 11.66
1032	ラテックス免疫比	シーメンス	シーメンスHCDDim	0.300	0.300	○ 0.480 ○ 5.930 ○ 10.87
1033	ラテックス免疫比	ニットーボー	目立7140-7170	0.300	0.300	○ 0.480 ○ 6.040 ○ 11.49
1034	ラテックス免疫比	ニットーボー	目立7140-7170	0.300	0.300	○ 0.490 ○ 6.330 ○ 12.07
1035	ラテックス免疫比	デンカ生研	日本電子JCA-B	0.300	(	○ 0.460 ○ 6.280 ○ 11.71
1038	ラテックス免疫比	デンカ生研	目立LABOSPE	0.140	(	○ 0.450 ○ 5.790 ○ 10.90
1039	ラテックス免疫比	積水メディカル	目立7140-7170	0.140	(	$\bigcirc$ 0.500 $\bigcirc$ 6.120 $\bigcirc$ 11.62
	ラテックス免疫比	LSIメディエンス	目立LABOSPE	0.140		○ 0.450 ○ 5.660 ○ 11.00
	ラテックス免疫比	積水メディカル	東芝25FR_Accut	0.200		○ 0.480 ○ 6.050 ○ 11.36
	ラテックス免疫比	デンカ生研	ヘックマン・コールター	0.300		○ 0.460 ○ 5.540 ○ 10.65
	ラテックス免疫比	デンカ生研	日本電子JCA-B	0.140		0.439 0 5.938 0 11.61
	ラテックス免疫比 ラテックス免疫比	デンカ生研 積水メディカル	日本電子JCA-B 東芝TBA-cシリー	0.300 0.500		$\bigcirc$ 0.440 $\bigcirc$ 5.810 $\bigcirc$ 10.98 $\bigcirc$ 0.490 $\bigcirc$ 6.220 $\bigcirc$ 11.92
		シーメンス	シーメンスHCDDim	0.140		○ 0.470 ○ 6.040 ○ 10.90
		ニットーボー	目立7140-7170	0.200		○ 0.480 ○ 6.280 ○ 11.62
	ラテックス免疫比		東京貿易ビオリス5	0.300		○ 0.480 ○ 6.190 ○ 11.52
	ラテックス免疫比		日本電子JCA-B	0.300		○ 0.460 ○ 5.830 ○ 11.10
1059	ラテックス免疫比	ニットーボー	東京貿易ビオリス2	0.300	0.300	○ 0.480 ○ 6.320 ○ 11.97
1060	ラテックス免疫比	LSIメディエンス	日本電子JCA-B	0.300	(	○ 0.450 ○ 5.900 ○ 10.84
1062	ラテックス免疫比	LSIメディエンス	目立LABOSPE	0.140	0.140	○ 0.450 ○ 5.840 ○ 10.81
1064	ラテックス免疫比	LSIメディエンス	日本電子JCA-B	0.300	0.300	○ 0.450 ○ 5.680 ○ 10.51
1072	ラテックス免疫比	積水メディカル	目立LABOSPE	0.200	0.200	○ 0.500 ○ 6.050 ○ 11.21
	ラテックス免疫比	ニットーボー	目立LABOSPE	0.200		$\bigcirc$ 0.480 $\bigcirc$ 6.210 $\bigcirc$ 11.93
	ラテックス免疫比		東京貿易ビオリス2	0.300		○ 0.470 ○ 6.160 ○ 11.61
	ラテックス免疫比		シーメンスHCDDim	0.300		○ 0.480 ○ 5.900 ○ 10.82
	ラテックス免疫比	和光純薬	東芝TBA-cシリー	0.140 0.140		$\bigcirc$ 0.470 $\bigcirc$ 6.170 $\bigcirc$ 11.49 $\bigcirc$ 0.500 $\bigcirc$ 6.100 $\bigcirc$ 11.60
	ラテックス免疫比 ラテックス免疫比	和光純薬和光純薬	東京貿易ビオナリス2 日立LABOSPE	0.300		○ 0.460 ○ 6.110 ○ 11.40
	ラテックス免疫比	デンカ生研	日立7140-7170	0.140		○ 0.450 ○ 6.000 ○ 11.15
		デンカ生研	日立7140-7170	0.140		○ 0.450 ○ 5.870 ○ 11.25
	ラテックス免疫比	積水メディカル	日本電子JCA-B	0.400		○ 0.480 ○ 5.960 ○ 11.20
		ニットーボー	日本電子JCA-B	0.300		○ 0.490 ○ 6.150 ○ 11.80
	ラテックス免疫比	ニットーボー	東芝TBA-cシリー	0.450		○ 0.480 ○ 6.280 ○ 11.75
1102	ラテックス免疫比	ニットーボー	東芝TBA-cシリー	0.140	(	○ 0.480 ○ 6.180 ○ 11.91
1105	ラテックス免疫比	ベックマン・コー	ヘックマン・コールター	0.300	(	○ 0.490 ○ 6.490 12.22
1108	ラテックス免疫比	シノテスト	シノテストクイックターホ	0.200	0.200	○ 0.460 ○ 6.120 ○ 11.90
1112	ラテックス免疫比	シノテスト	東京貿易ビオリス5	0.800	0.800	○ 0.470 ○ 6.230 ○ 11.61
	ラテックス免疫比	積水メディカル	日本電子JCA-B	0.300		○ 0.470 ○ 6.170 ○ 11.57
	ラテックス免疫比	和光純薬	東芝TBA-cシリー	0.140		○ 0.460 ○ 6.260 ○ 11.42
		デンカ生研	東芝25FR_Accut	0.200		○ 0.460 ○ 5.820 ○ 11.08
1122	ラテックス免疫比	ベックマン・コー	ヘックマン・コールター	0.300	0.300	○ 0.480 ○ 6.160 ○ 11.69

41 CRP 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基準範囲	女性基準範囲	試料報告值	
No	例足原垤	武衆/一刀一	7改 位	下限 上限	下限 上限	試料12 試料13 試料14	
	ラテックス免疫比		シーメンスHCDDim	0.030		$\bigcirc$ 0.490 $\bigcirc$ 5.900 $\bigcirc$ 10.80	
	ラテックス免疫比		目立7020-7080	0.300		0.500 0 6.000 0 11.60	
	ラテックス免疫比		エルマラテシェ	0.300		0.390 0 6.100 0 11.80	
	ラテックス免疫比		日本電子JCA-B	0.300		0.480 0 6.250 0 11.84	
	ラテックス免疫比 ラテックス免疫比	シスメックス ベックマン・コー	日本電子JCA-B ベックマン・コールター	0.140	0.300	○ 0.490 ○ 6.080 ○ 11.41 ○ 0.460 ○ 6.410 12.38	
	ラテックス免疫比		日本電子JCA-B	0.300		○ 0.440 ○ 5.750 ○ 10.77	
	ラテックス免疫比	2007	他のディスクリート	0.300		○ 0.390 ○ 6.250 ○ 11.50	
	ラテックス免疫比	ニットーボー	日立7140-7170	0.200		○ 0.490 ○ 6.320 ○ 12.17	
1135	ラテックス免疫比	ベックマン・コー	ヘックマン・コールター	0.300	)	○ 0.460 ○ 6.100 ○ 11.72	
1136	ラテックス免疫比	シノテスト	日本電子JCA-B	0.140	)	$\bigcirc \ 0.460 \bigcirc \ 6.120 \bigcirc \ 11.51$	
1137	ラテックス免疫比	ホリバ(堀場製作	堀場LT-128_13	0.500	0.500	○ 0.500 ○ 5.600 9.800	
1300	ラテックス免疫比	和光純薬	日本電子JCA-B	0.140	0.140	$\bigcirc$ 0.464 $\bigcirc$ 6.035 $\bigcirc$ 11.53	
	ラテックス免疫比	和光純薬	日本電子JCA-B	0.500		○ 0.470 ○ 6.190 ○ 11.69	
	ラテックス免疫比	ベックマン・コー	ベックマン・コールター	0.140		○ 0.490 ○ 6.160 ○ 12.09	
	ラテックス免疫比	ニットーボー	日本電子JCA-B	0.140		○ 0.480 ○ 6.180 ○ 11.75	
	ラテックス免疫比 ラテックス免疫比	和光純薬和光純薬	東芝25FR_Accut 東芝TBA-200F	0.140		○ 0.490 ○ 6.230 ○ 11.44 ○ 0.460 ○ 6.010 ○ 11.45	
	ラテックス免疫比	和光純薬	日本電子JCA-B	0.500 0.200		$\bigcirc$ 0.460 $\bigcirc$ 6.020 $\bigcirc$ 11.43	
	ラテックス免疫比	デンカ生研	日本電子JCA-B	0.140		○ 0.440 ○ 5.740 ○ 10.85	
	ラテックス免疫比	ニットーボー	日本電子JCA-B	0.250		○ 0.460 ○ 6.150 ○ 11.93	
1325	ラテックス免疫比	ニットーボー	日本電子JCA-B	0.140		○ 0.480 ○ 6.060 ○ 11.53	
1327	ラテックス免疫比	和光純薬	日本電子JCA-B	0.140	0.140	$\bigcirc$ 0.470 $\bigcirc$ 6.200 $\bigcirc$ 11.62	
1328	ラテックス免疫比	ベックマン・コー	ヘックマン・コールター	0.140	)	$\bigcirc \ 0.470 \bigcirc \ 6.340 \bigcirc \ 11.94$	
1329	ラテックス免疫比	デンカ生研	日本電子JCA-B	0.140	0.140	$\bigcirc \ 0.460 \bigcirc \ 5.850 \bigcirc \ 11.18$	
	ラテックス免疫比	和光純薬	日本電子JCA-B	0.200	)	$\bigcirc$ 0.470 $\bigcirc$ 6.120 $\bigcirc$ 11.59	
	ラテックス免疫比	ニットーボー	東芝TBA-cシリー	0.450		○ 0.480 ○ 6.300 ○ 12.12	
		シノテスト	シノテストクイックターホ	0.300		0.600 6.600 13.40	
	ラテックス免疫比 ラテックス免疫比	和光純薬	日本電子JCA-B 日本電子JCA-B	0.140 0.140		○ 0.450 ○ 6.070 ○ 11.33 ○ 0.460 ○ 5.940 ○ 10.78	
	ラテックス免疫比	ニットーボー	日本電子JCA-B	0.140		○ 0.460 ○ 6.290 12.36	
	ラテックス免疫比	ニットーボー	日本電子JCA-B	0.300		○ 0.480 ○ 6.320 12.22	
	ラテックス免疫比		目立LABOSPE	0.140		○ 0.450 ○ 5.930 ○ 11.28	
1344	ラテックス免疫比	シノテスト	目立7140-7170	0.140	0.140	○ 0.500 ○ 6.230 ○ 11.41	
1346	ラテックス免疫比	ニットーボー	日本電子JCA-B	0.300	)	$\bigcirc \ 0.500 \bigcirc \ 6.240 \bigcirc \ 11.91$	
1347	ラテックス免疫比	ロシュ・ダイアグ	ロシュコハ [*] ス8000c5	0.140	)	○ 0.500 ○ 5.980 ○ 11.36	
		ニットーボー	東芝TBA-cシリー	0.450	)	$\bigcirc$ 0.490 6.580 $\bigcirc$ 12.17	
	ラテックス免疫比		ロシュコハ、ス8000c5	0.140		○ 0.470 ○ 6.200 ○ 11.50	
	ラテックス免疫比		日本電子JCA-B	0.300		○ 0.490 ○ 6.240 ○ 11.92	
	ラテックス免疫比 ラテックス免疫比	カ光純薬	ヘックマン・コールター	0.140		○ 0.500 ○ 6.030 ○ 11.68 ○ 0.470 ○ 6.260 ○ 12.01	
	ラテックス免疫比	デンカ生研	日本電子JCA-B 東芝TBA-cシリー	0.140		○ 0.470 ○ 0.200 ○ 12.01 ○ 0.470 ○ 5.810 ○ 11.16	
	ラテックス免疫比	ニットーボー	日本電子JCA-B	0.140		○ 0.480 ○ 6.200 ○ 11.88	
	ラテックス免疫比	和光純薬	日立7140-7170	0.300		0.680 ○ 5.980 ○ 10.73	
		デンカ生研	目本電子JCA-B	0.140		○ 0.456 ○ 6.034 ○ 11.25	
1359	ラテックス免疫比	ニットーボー	日本電子JCA-B	0.140	0.140	○ 0.480 ○ 6.390 12.22	
1360	ラテックス免疫比	和光純薬	日本電子JCA-B	0.300	0.300	$\bigcirc \ 0.450 \bigcirc \ 6.000 \bigcirc \ 11.31$	
	ラテックス免疫比	和光純薬	東芝TBA-20-3			○ 0.480 ○ 6.370 ○ 11.85	
	ラテックス免疫比	デンカ生研	ヘックマン・コールター	0.200		O 0.470 O 6.010 O 11.22	
	ラテックス免疫比	和光純薬	目立7140-7170	0.140		○ 0.440 ○ 5.930 ○ 11.06	
	ラテックス免疫比	和光純薬	東芝TBA-cシリー	0.140		○ 0.480 ○ 6.330 ○ 11.79	
	ラテックス免疫比 ラテックス免疫比	ニットーボー シノテスト	日立LABOSPE 東京貿易ビオオリス5	0.140		○ 0.490 ○ 6.240 ○ 11.95 ○ 0.500 ○ 0.260 ○ 11.72	
	ファックへ免疫にラテックス免疫比	関東化学	東京貿易ビオリス1	0.140		○ 0.300	
	ラテックス免疫比	和光純薬	目立LABOSPE	0.140		○ 0.500 ○ 6.300 ○ 11.90	
	ラテックス免疫比	和光純薬	東芝25FR_Accut	0.140		○ 0.530 ○ 6.250 13.50	
	ラテックス免疫比		東芝TBA-cシリー	0.450		○ 0.500 ○ 6.170 ○ 11.93	

41 CRP 施設No.が低い順に並んでいます

施設	.NO.//4 区V 沙良(C			男性基準範囲 女	女性基準範囲			試料報告値
No	測定原理	試薬メーカー	機器		下限 上限	試料12 :	式料13	
1391	ラテックス免疫比	デンカ生研	目立7140-7170	0.140	0.140	○ 0.450 ○	5.970 🔾	11.43
1393	ラテックス免疫比	日本光電	光電セルタックケミC	0.300	0.300	○ 0.500 ○	6.100 〇	11.40
1394	ラテックス免疫比	積水メディカル	東京貿易ビオリス5	14.00	(	○ 0.470 ○	5.930 🔾	11.20
1396	ラテックス免疫比	シーメンス	シーメンスHCDDim	0.140	0.140	○ 0.490 ○	5.880 〇	10.78
1400	ラテックス免疫比	シノテスト	東京貿易ビオリス2	0.140	0.140	○ 0.480 ○	5.990 🔾	11.29
1401	ラテックス免疫比	シーメンス	シーメンスHCDDim	0.140	0.140	○ 0.480 ○	5.950 🔾	10.90
1402	ラテックス免疫比	デンカ生研	日本電子JCA-B	0.140	(	○ 0.450 ○	5.780 🔾	11.18
1403	ラテックス免疫比	LSIメディエンス	日本電子JCA-B	0.140	0.140	○ 0.430 ○	5.750 🔾	11.09
1404	ラテックス免疫比	ニットーボー	東芝TBA-cシリー	0.300	(	○ 0.490 ○	6.290 🔾	11.96
1405	ラテックス免疫比	関東化学	東京貿易ビオリス1	0.300	0.300	○ 0.480 ○	5.910 🔾	10.97
1407	ラテックス免疫比	日本光電	日本光電CHM-	0.500	(	○ 0.410 ○	6.000 🔾	11.60
1408	ラテックス免疫比	ホリバ(堀場製作	堀場LT-128_13	0.450	0.450	○ 0.500 ○	6.300	12.40
1410	ラテックス免疫比	日本光電	光電セルタックケミC	0.450	0.450	○ 0.500 ○	6.200 🔾	11.10
	ラテックス免疫比	和光純薬	日本電子JCA-B	0.140		○ 0.470 ○		
1413	ラテックス免疫比	ホリバ(堀場製作	堀場LC-660_66	0.200	0.200	○ 0.500 ○	5.900 🔾	10.30
	ラテックス免疫比	ホリバ(堀場製作	堀場LC170?275	0.300		○ 0.500 ○		
	ラテックス免疫比	日本光電	日本光電CHM-	0.300		○ 0.380 ○		
	ラテックス免疫比	ベックマン・コー	ベックマン・コールター	0.200		0.490		
1501		積水メディカル	目立LABOSPE	0.200		0.490		
	ラテックス免疫比	ニットーボー	日本電子JCA-B	0.300		0.470		
	ラテックス免疫比	和光純薬	目立LABOSPE	0.140		0.470 0		
	ラテックス免疫比	ニットーボー	目立LABOSPE	0.300		0.460		
		ニットーボー	日本電子JCA-B	0.140		0.480		
	ラテックス免疫比	ニットーボー	目立7140-7170	0.140		0.490		
	ラテックス免疫比	和光純薬	目立LABOSPE	0.140		0.460 0		
	ラテックス免疫比 ラテックス免疫比	和光純薬 ニットーボー	日立LABOSPE 東京貿易ビオナリス2	0.140 0.140		<ul><li>○ 0.460 ○</li><li>○ 0.460 ○</li></ul>		
	ラテックス免疫比	和光純薬	東芝25FR_Accut	0.140	0.140	1.480 🔾		
	ラテックス免疫比	シノテスト	シノテストクイックターホ	0.300		0.440		12.41
	ラテックス免疫比	和光純薬	目立7140-7170	0.140		0.450		
	ラテックス免疫比	和光純薬	目立LABOSPE	0.200		0.450		
	ラテックス免疫比	和光純薬	日本電子JCA-B	0.140		0.470		
	ラテックス免疫比	シーメンス	シーメンスHCDDim	0.500		0.480		
	ラテックス免疫比	和光純薬	日立7140-7170	0.140		0.450		
1533	ラテックス免疫比	シーメンス	シーメンスHCDDim	0.140	(	○ 0.550 ○	5.920 🔾	10.69
1534	ラテックス免疫比	ニットーボー	東京貿易ビオリス2	0.140	(	○ 0.480 ○	6.050 〇	12.10
1538	ラテックス免疫比	ニットーボー	東京貿易ビオリス2	0.140	(	0.480	6.590	12.73
1540	ラテックス免疫比	LSIメディエンス	日本電子JCA-B	0.140	0.140	○ 0.450 ○	6.020 🔾	11.29
1541	ラテックス免疫比	シノテスト	東芝25FR_Accut	0.200	(	○ 0.460 ○	5.920 〇	10.40
1542	ラテックス免疫比	積水メディカル	日立7140-7170	0.300	(	○ 0.490 ○	6.130 🔾	11.53
1543	ラテックス免疫比	シスメックス	東芝TBA-20-3	0.300	0.300	○ 0.480 ○	5.280 🔾	10.86
1546	ラテックス免疫比	ホリバ(堀場製作	堀場LC-667CR	0.300	0.300	○ 0.500 ○	5.700 🔾	10.40
1549	ラテックス免疫比	シノテスト	東京貿易ビオリス2	0.300 0.	0.300 0.300	○ 0.480 ○	6.170 🔾	10.87
1550	ラテックス免疫比	ニットーボー	目立7140-7170	0.300	0.300	○ 0.480 ○	6.310 🔾	12.09
1554	ラテックス免疫比	シノテスト	日立7140-7170	0.300	0.300	○ 0.480 ○	6.170 🔾	11.65
1558	ラテックス免疫比	積水メディカル	日本電子JCA-B	0.140	0.140	○ 0.480 ○	6.160 🔾	11.49
	ラテックス免疫比	ホリバ(堀場製作	堀場LT-128_13	0.140		○ 0.600 ○		
		デンカ生研	日本電子JCA-B	0.140		○ 0.480 ○		
	ラテックス免疫比		ヘックマン・コールター	0.300		○ 0.450 ○		
	ラテックス免疫比		日本電子JCA-B	0.300		0.470		
1903		積水メディカル	目立7600Dモシ゛ュ	0.300		0.480		
	ラテックス免疫比	ニットーボー	目立LABOSPE	0.300		0.490		
	ラテックス免疫比	デンカ生研	ヘックマン・コールター	0.200		0.470 0		
	ラテックス免疫比	和光純薬	日本電子JCA-B	0.140		0.470 0		
	ラテックス免疫比	ニットーボー	目立LABOSPE	0.200		0.470 0		
		ニットーボー	日立3100	0.300		0.500		
1922	ラテックス免疫比	食小メナイカル	目立7140-7170	0.300	(	○ 0.490 ○	ა.920 ∪	11.24

41 CRP 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器			女性基準筆				試料報告値
No				下限	上限	下限 上	:限		試料13	<del></del>
	ラテックス免疫比	積水メディカル	目立7140-7170	0.300	0.000	0	000	0.4900		
	ラテックス免疫比 ラテックス免疫比	ニットーボー	ベックマン・コールター 東 英 TP A - 200 E	0.010	0.300			0.480 0		
	ファックへ免疫にラテックス免疫比	デンカ生研 積水メディカル	東芝TBA-200F ベックマン・コールター	0.010	0.300	0.010 0.	300	<ul><li>○ 0.470 ○</li><li>○ 0.490 ○</li></ul>		
	ラテックス免疫比	デンカ生研	ベックマン・コールター		0.300	0.	300	0.460		
	ラテックス免疫比	デンカ生研	ヘックマン・コールター		0.300			0.460		
	ラテックス免疫比	ニットーボー	日本電子JCA-B		0.300			○ 0.480 ○		
1934	ラテックス免疫比	デンカ生研	ヘ゛ックマン・コールター		0.300			○ 0.470 ○	5.750 🔾	11.00
1935	ラテックス免疫比	ニットーボー	日立7140-7170		0.300	0.	300	○ 0.480 ○	6.220 🔾	11.82
1936	ラテックス免疫比	シノテスト	日本電子JCA-B		0.300	0.	300	○ 0.470 ○	6.100 🔾	11.40
		シノテスト	日本電子JCA-B		0.300	0.	300	○ 0.460 ○		
		デンカ生研	日本電子JCA-B		0.140			0.4500		
	ラテックス免疫比	デンカ生研	日立LABOSPE		0.300	0	1.40	0.4400		
	ラテックス免疫比 ラテックス免疫比	和光純薬	ロシュコハ*ス8000c7		0.140			0.470 0		
	ファックへ免疫にラテックス免疫比	デンカ生研ニットーボー	日本電子JCA-B 日立7140-7170		0.300			<ul><li>○ 0.449 ○</li><li>○ 0.450 ○</li></ul>		
	ラテックス免疫比	デンカ生研	ヘックマン・コールター		0.300			0.460		
	ラテックス免疫比	ホリバ(堀場製作	堀場LT-128_13		0.200			0.500		
	ラテックス免疫比	デンカ生研	日本電子JCA-B		0.140			○ 0.448 ○		
3018	ラテックス免疫比	ベックマン・コー	ヘックマン・コールター		0.300			○ 0.470 ○	6.200 〇	11.80
3022	ラテックス免疫比	デンカ生研	日本電子JCA-B		0.140	0.	140	○ 0.440 ○	5.850 〇	11.07
3027	欠番	積水メディカル	目立7600Dモジュ		0.300			○ 0.470 ○	5.970 🔾	11.34
3048	ラテックス免疫比	デンカ生研	日本電子JCA-B		0.140	0.	140	○ 0.451 ○	6.079 🔾	11.57
	ラテックス免疫比	栄研化学 ※ 研 ル ※	日本電子JCA-B		0.140			0.4600		
	ラテックス免疫比	栄研化学	日本電子JCA-B		0.140			0.4600		
	ラテックス免疫比 ラテックス免疫比	シノテスト	日本電子JCA-B		0.140	0.	140	<ul><li>○ 0.470 ○</li><li>○ 0.450 ○</li></ul>		
		デンカ生研 シノテスト	日本電子JCA-B 東芝25FR_Accut		0.140	0	300	0.4300		
	ラテックス免疫比	ベックマン・コー	ベックマン・コールター		0.300	0.	500	0.490		
	ラテックス免疫比	ニットーボー	日立7140-7170		0.300			○ 0.500 ○		
5003	ラテックス免疫比	ニットーボー	目立7140-7170		0.300	0.	300	○ 0.490 ○	6.020 〇	11.89
5005	ラテックス免疫比	ニットーボー	日本電子JCA-B		0.140			○ 0.450 ○	6.050 〇	11.73
5006	ラテックス免疫比	デンカ生研	日本電子JCA-B		0.140	0.	140	○ 0.450 ○	5.980 🔾	11.43
	ラテックス免疫比	ニットーボー	日本電子JCA-B		0.140	0.	140	○ 0.490 ○		
	ラテックス免疫比	日本光電	日本光電CHM-		0.300			0.3700		
	ラテックス免疫比	デンカ生研	東芝TBA-200F		0.140			0.460 0		
	ラテックス免疫比 ラテックス免疫比	カイノス	日立LABOSPE 東等TRA_200F		0.400	0	200	0.490 0		
	ファックへ免疫にラテックス免疫比		東芝TBA-200F 日本電子JCA-B		0.200			<ul><li>○ 0.480 ○</li><li>○ 0.470 ○</li></ul>		
	ラテックス免疫比		日本電子JCA-B		0.140	0.	000	0.470 0		
	ラテックス免疫比		日本電子JCA-B		0.030	0.	030	○ 0.460 ○		
7011	ラテックス免疫比	デンカ生研	東芝TBA-cシリー		0.140			○ 0.460 ○	5.750 🔾	11.12
7025	ラテックス免疫比	栄研化学	日本電子JCA-B		0.400			○ 0.490 ○	6.030 🔾	11.35
7901	ラテックス免疫比	ニットーボー	目立LABOSPE		0.300			○ 0.490 ○	6.270 🔾	12.04
8004	ラテックス免疫比	デンカ生研	日本電子JCA-B		0.260			○ 0.460 ○	5.920 🔾	11.26
	ラテックス免疫比		目立7140-7170					○ 0.470 ○		
	ラテックス免疫比		日立7140-7170		0.300	0	200	0.433 0		
		デンカ生研	日立7140-7170		0.300	0.	300	0.4400		
9014	ラテックス免疫比	ミズホメディ	目立7140-7170 日立7140-7170		0.300			<ul><li>○ 0.500 ○</li><li>○ 0.540 ○</li></ul>		12.34
	ラテックス免疫比	和光純薬	日立7140-7170		0.000			0.460		
	ラテックス免疫比	関東化学	日本電子JCA-B		0.300	0.	300	0.480		
	ラテックス免疫比	積水メディカル	日本電子JCA-B		0.140			0.480		
9035	ラテックス免疫比	積水メディカル	積水EV800					○ 0.490 ○	5.980 🔾	11.39
9043	ラテックス免疫比	ロシュ・ダイアグ	ロシュコハ*ス8000c5					○ 0.452 ○	5.850 〇	11.25
	ラテックス免疫比	和光純薬	ロシュコハ*ス8000c7					○ 0.472 ○		
9046	ラテックス免疫比	栄研化学	日立7140-7170		0.180	0.	180	○ 0.496 ○	6.181 🔾	11.86

### 41 CRP

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足尽生	政果/ //	79文 有计	下限 上限 下限 上限 試料12 試料13 試料14
9047	ラテックス免疫比	ベックマン・コー	ベックマン・コールター	○ 0.480 ○ 6.060 ○ 11.73
9049	ラテックス免疫比	シスメックス	目立7140-7170	$0.300$ $\bigcirc 0.500 \bigcirc 5.900 \bigcirc 11.20$
9050	ラテックス免疫比	シーメンス	シーメンスHCDDim	$\bigcirc \ 0.484 \bigcirc \ 5.940 \bigcirc \ 10.86$

108 CRP(F)

施設	測定原理	試薬メーカー	機器	男性基準範囲	女性基準範囲	試料報告値
No	例是原理	四来/ //	7次2、台台	下限 上限	下限 上限	試料12 試料13 試料14
1044	ト゛ライケミストリー法	富士フィルムメ	富士ドライケムNX5	0.500		○ 0.500 ○ 6.300 ○ 13.30
1076	ト゛ライケミストリー法	富士フィルムメ	富士ドライケム700	0.300		○ 0.700 ○ 6.300 ○ 12.50
1097	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.300	0.300	$\bigcirc$ 0.600 $\bigcirc$ 6.000 $\bigcirc$ 7.000
1336	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.500		○ 0.600 ○ 6.200 ○ 7.000
1367	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.500		○ 0.600 ○ 6.400 ○ 13.50
1374	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.300	0.300	○ 0.500 ○ 6.100 ○ 12.30
1375	ドライケミストリー法	富士フィルムメ	富士ドライケム400	0.300		$\bigcirc$ 0.600 $\bigcirc$ 6.500 $\bigcirc$ 12.10
1523	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.300	0.300	○ 0.600 ○ 5.900 ○ 12.40
1548	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.140	0.140	○ 0.500 ○ 6.600 ○ 13.00
1557	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.500		○ 0.600 ○ 6.000 ○ 7.000
1561	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.140	0.140	○ 0.600 ○ 6.000 ○ 11.50
9038	ドライケミストリー法	富士フィルムメ	富士ドライケム700	0.500		○ 0.700 ○ 6.500 ○ 7.000

### 143 CRP(A1)

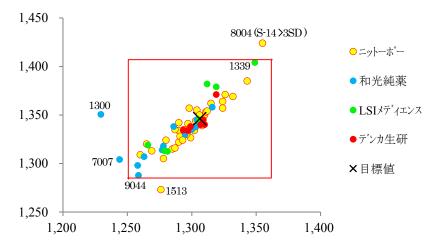
施設	測定原理	試薬メーカー	機器	男性基準範囲	女性基準範囲			試料報告値
No	例足原垤	武架/一刀一	行交石计	下限 上限	下限 上限	試料12	試料13	試料14
1079			アークレイスポットケムI			0.400	5.900	11.10
1555			アークレイスポットケムI			0.500	5.600	10.80

203 CRP(O)

施設	測定原理	試薬メーカー	機器	男性基準範囲 女性基準範囲 試料報告値
No	例足原生	叫来/ //	17英百計	下限 上限 下限 上限 試料12 試料13 試料14
1075	ドライケミストリー法	オーソ・クリニカ	オーソビトロス250_3	0.140 0.140 0.500 5.500 9.000
8011	ト゛ライケミストリー法	オーソ・クリニカ	オーソヒ・トロス250_3	$0.300$ $0.300 \bigcirc 0.500 \bigcirc 5.720 \bigcirc 9.000$
9040	ト゛ライケミストリー法	オーソ・クリニカ	オーソビトロス5600	$\bigcirc$ 0.500 $\bigcirc$ 5.640 $\bigcirc$ 9.000

【参加状况】65 施設(前回62 施設、前々回60 施設)

### 【測定方法の状況】


- 1. 測定原理 免疫比濁(TIA)法 65 施設
- 2. 測定方法 汎用分析機 65 施設

### 【測定値の状況】

3SD 除外後の平均値、CV%と目標範囲(BA:目標値±4.2%)達成

•		,									
	試料12(目標:BA) 試料14 (目標:2SD*)										  実測値/予測値
	目標範囲 1,251 ~ 1,362 mg/dL   目標範囲 1,285 ~ 1,407 mg/dL										天侧胆/ 广侧胆
		平均值	CV	未達	達成率		平均值	S14-S12			
	n	(mg/dL)	(%)	成数	(%)	n	(mg/dL)	(%)	成数	(%)	(S13-S12)×2
目標値		1,306.2					1,346.1				1.02
ニットーホ゛ー	38	1,300.3	1.5	0	100	37	1,337.6	1.6	2	95	0.82
和光純薬	13	1,277.9	2.0	2	85	13	1,324.9	1.6	1	92	1.03
LSIメティエンス	7	1,301.7	2.2	0	100	7	1,350.6	2.8	1	86	4.57
デンカ生研	7	1,304.9	0.7	0	100	7	1,343.2	1.17			
全施設	65	1,296.3	1.8	2	97	64	1,337.0	1.13			

2SD*:目標値設定施設間の2SD幅:4.5%



試料 12(x) と試料 14(v) の試薬別ツインプロット

#### 【基準範囲の状況(医療機関)】

JCCLS 共用基準範囲の861~1,747mg/dL に設定している施設はこの1年で、32 施設(58.2%)から42 施設(72.4%)に増加し、血漿蛋白基準範囲設定プロジェクトチームの870~1,700mg/dL に設定している施設は、18 施設(32.7%)から13 施設(22.4%)に減少している。

#### 【まとめ】

今回は3 濃度の試料で実施した。試料12 は CRP・RF 低濃度プール血清、試料14 は CRP・RF 高濃度プール血清、試料13 は試料12、14 を等量混合し、試料12、14 の中央値になるように調整した。昨年は濃度調整のため生理食塩水で希釈したためか、測定値にマトリックスの影響と思われるバラッキが見られたが、今回はプール血清原液ということからか、良好な結果が得られた。試料14 の目標範囲である 2SD* 幅は BA 相当値  $\pm 56.5$  mg/dL に比べて  $\pm 60.3$  mg/dL とわずかに広いだけである。

3SD 除外 未達成 基準範囲 施設コート 3SDhyl 3SDhyl 3SDhy メーカー 使用試薬名 No.12 Ва No.13 Ва No.14 Ва 下限 SDI SDI SDI -2.8 1513 1,276 -0.9 -2.3 1,250 -5.7 1,273 -54 861 1,747 ニットーホー N-アッセイ TIA IgG-SH 聖マリア 1,244 1,304 ナートワコー IgG・ N 7007 -1.6-3.7 808 2,020 和光純薬 1,288 Maker 和光純薬 9044 1 259 -3.6 -2.1 -4.3 オートワコー IgG・ N -1.6 -3.6 1,278 -1.6 Maker **ロシュ(B)** 1,747 ニットーホー 1040 1,260 -1.6 -3.5 1,279 -1.5 -3.5 1,309 -1.2 -2.8 861 N-アッセイ TIA IgG-SH 3048 1,266 -1.3 -3.1 1,280 -1.5 -3.5 1,319 -0.8 -2.0 861 1,747 LSIメデ、ィエンス ተፖト¤ IgG 1901 1,279 -0.8 -2.1 1,280 -1.5 -3.5 1,313 -1.0 -2.5 870 1,700 LSIメディエンス イアトロ IgG 1529 1,258 -1.7 -3.71.282 -1.4 -3.3 1.298 -1.7-3.6 870 1,700 和光純薬 オートワコー IgG・ N 1018 1,269 -1.2 -2.8 1.282 -1.4 -3.3 1.313 -1.0 -2.5 861 1.747 ニットーホ N-アッセイ TIA IgG-SH 9009 1.281 -0.7-1.9 1.284 -1.3-3.21,313 -1.0-2.5 Maker Maker LSIメディエンス イアトロ IgG LSIメディエンス オートワコー IgG・ N 1038 1,263 -1.5 -3.3 -1.0 -2.7 1,307 -1.3 -2.9 1,747 和光純薬 1,290 861 1,278 -22 -2.7 1 700 ニットーボー N-アッセイ TIA IgG-SH 1404 -0.8 1 290 -10 1,305 -1.4 -3.1 870 オートワコー IgG・ N 1120 1,277 -0.8 -2.2 1,293 -0.9 -2.5 1,314 -1.0 -2.4 861 1,747 和光純薬 -2.1 N-アッセイ TIA IgG-SH 1402 1,302 0.2 -0.3 1,298 -0.7 1,334 -0.1 -09 861 1,747 ニットーホー 9046 1,285 -0.5 -1.6 1,299 -0.7 -2.0 1,315 -0.9 -2.3 Maker N-アッセイ TIA IgG-SH 栄研化学 Maker ニットーホ゛-1300 1,230 -2.9 -5.9 1,299 -0.7 -2.0 1,351 0.6 0.3 861 1,747 和光純薬 オートワコー IgG・ N 産業医大 1505 1,278 -0.8 -2.2 1,301 -0.6 -1.9 1,318 -0.8 -2.1 1,747 和光純薬 オートワコー Ig**G・** N 861 **人留米大学** 1302 1,290 -0.3-1.2 1,302 -0.5 -1.81,322 -0.6 -18 861 1,747 ニットーホー N-アッセイ TIA IgG-SH 7001 1,280 -0.7 -2.0 1,303 -0.5 -1.7 1,324 -0.6 -1.6 870 1,700 N-アッセイ TIA IgG-SH(E) ニットーホ゛ -0 4 -0.9 1094 1.287 -0.4 -1.51 304 -1.6 1.316 -22 870 1.700 ニットーホー N-アッセイ TIA IgG-SH 1,747 ニットーホー 7011 1,265 -1.4 -3.2 1,305 -0.4 -1.6 1,320 -0.7 -1.9 861 N-アッセイ TIA IgG-SH(E) 1368 1,295 -0.1 -0.9 1,305 -04 -1.6 1,330 -0.3 -1.2 861 1,747 和光純薬 オートワコー IgG・ N 3001 1,299 0.1 -0.5 1,305 -0.4 -1.5 1,327 -0.4 -1.5 1,747 ニットーホ N-アッセイ TIA IgG-SH 861 1,747 和光純薬 1 286 -0.5 -1.5 1,306 -0 4 -1.5 1,338 0.0 -0.6 1337 861 オートワコー IgG・ N N-アッセイ TIA IgG-SH 5005 1,290 -0.3 -1.2 1,308 -0.3 -1.3 1,334 -0.1 -0.9 861 1,747 ニットーホー 9043 1,293 -0.1 -1.0 1,310 -0.2 -1.2 1,334 -0.1 -0.9 Maker Maker デンカ生研 IgG-TIA NX 「生研」 ロシュ(A) 3907 1,297 0.0 -0.7 1,310 -0.2 -1.2 1,333 -0.2 -1.0 861 1,747 N-アッセイ TIA IgG-SH ニットーホ゛ 1102 1,291 -0.2-1.21.311 -0.1 -1.1 1,328 -0.4-1.3861 1,747 ニットーホー N-アッセイ TIA IgG-SH(E) IgG-TIA NX 「生研」 1010 1,297 0.0 -0.7 1.311 -0.1 -1.1 1,334 -0.1 -0.9 870 1,700 デンカ生研 1.294 1329 -0.1-0.9 1,312 -0.1-1.01,335 -0.1 -0.8 861 1,747 ニットーホー N-アッセイ TIA IgG-SH 2002 1,293 -0.2 -1.0 1,313 -0.1 -1.0 1,324 -0.6 -1.6 861 1,747 ニットーホ N-アッセイ TIA IgG-SH(E) 1.5 1 371 3056 1 326 1.3 1 313 -0.1 -10 14 1.8 861 1 747 ニットーホ N-アッセイ TIA IgG-SH N-アッセイ TIA IgG-SH 1039 1,297 0.0 -0.7 1,314 0.0 -0.9 1,341 0.2 -0.4 861 1,747 ニットーホー 1001 1,287 -0.4 -1.5 1,315 0.0 -0.8 1,335 -0.1 -0.8 861 1,747 ニットーホー N-アッセイ TIA IgG-SH(E) 1301 1,304 0.3 -0.2 1,316 0.1 -0.7 1,345 0.3 -0.1 870 1,700 オートワコー IgG・ N 和光純薬 イアトロ IgG 1072 1,306 0.4 0.0 1,316 0.1 -0.7 1,345 0.3 -0.1 870 1,700 LSIメディエンス 9023 1,300 0.2 -0.5 1,318 0.2 -0.6 1,335 -0.1 -0.8 Maker Maker 和光純薬 オートワコー IgG・N 和光純薬 1902 1.306 0.4 0.0 1,318 0.2 -0.6 1.342 0.2 -0.3820 1,740 ニットーホー N-アッセイ TIA IgG-SH 1316 1.303 0.3 -0.2 1.319 0.2 -0.5 1.344 0.3 -0.2 870 1.700 ニットーホ゛ N-アッセイ TIA IgG-SH(E) 0.2 0.0 1,747 ニットーホー 1015 1 303 0.3 -0.21 320 -0.41 338 -0.6 861 N-アッセイ TIA IgG-SH(E) 9012 1,299 0.1 1,321 0.3 -0.4 1,338 0.0 -0.6 デンカ生研 IgG-TIA NX 「生研」 -0.6 Maker Maker ・ シカ牛研 7002 1,304 0.3 -0.2 1,321 0.3 -0.4 1,355 0.8 0.7 861 1,747 ニットーホー N-アッセイ TIA IgG-SH 鹿児島大学 1062 1,296 0.0 -0.8 1,322 0.3 -0.3 1,330 -0.3 -1.2 861 1,747 N-アッセイ TIA IgG-SH ニットーホ 1031 1,310 0.6 0.3 1 322 0.3 -0.3 1,340 0.1 -0.5 861 1,747 デンカ生研 IgG-TIA NX 「生研」 N-アッセイ TIA IgG-SH 1327 1,306 0.4 0.0 1,323 0.4 -0.2 1,341 0.2 -0.4 861 1,747 ニットーホー 1315 1,307 0.5 0.1 1,323 0.4 -0.2 1,340 0.1 -0.5 861 1,747 デンカ生研 IgG-TIA NX 「生研」 飯塚病院 4002 1,308 0.5 0.1 1,324 0.4 -0.1 1,339 0.1 -0.5 861 1,747 ニットーホー N-アッセイ TIA IgG-SH 熊本大学 3055 1.310 0.6 0.3 1.324 0.4 -0.11.350 0.5 0.3 861 1,747 ニットーホー N-アッセイ TIA IgG-SH 諫早 N-アッセイ TIA IgG-SH 7901 1.306 0.4 0.0 1.325 0.5 -0.1 1.350 0.5 0.3 1.700 ニットーホー 1,290 0.6 0.2 1073 -0.3 -1.2 1.329 0.2 1.342 -0.3870 1,700 ニットーホー N-アッセイ TIA IgG-SH 9014 1,311 0.6 0.4 1,329 0.6 0.2 1,353 0.7 0.5 N-アッセイ TIA IgG-SH ニット-ホ゛-Maker Maker 0.7 1,747 和光純薬 2008 1 303 0.3 -0.2 1 330 0.3 1 338 0.0 -0.6 861 オートワコー IgG・ N 佐賀大学 IgG-TIA NX 「生研」 6008 1,309 0.5 0.2 1,332 0.8 0.5 1,345 0.3 -0.1 861 1,747 デンカ生研 宮崎大学 IgG-TIA NX 「生研」 1343 1,319 1.0 1.0 1,335 0.9 0.7 1,371 1.4 1.8 861 1,747 デンカ生研 1002 1,319 1.0 1.0 1,337 1.0 0.8 1,379 1.8 2.4 890 1,770 LSIメディエンス 1ፖト¤ IgG **福岡赤十字** 1341 1,312 0.7 0.4 1,338 1.0 0.9 1,354 0.7 0.6 861 1,747 N-アッセイ TIA IgG-SH ニットーホ゛ー -0.6 6016 1,298 0.1 1.342 1.2 1.2 1,357 0.8 0.8 870 1.700 ニットーホー N-アッセイ TIA IgG-SH 1411 1,316 0.8 0.8 1.342 1.2 1.2 1.358 0.9 0.9 861 1,747 和光純薬 オートワコー IgG・ N 1403 1,312 0.7 0.4 1.344 1.3 1.4 1,382 1.9 2.7 861 1.747 LSIメディエン ίፖト¤ IgG 0.8 0.7 1 345 1 4 1.2 1325 1.315 13 1.362 1.1 861 1.747 ニットーホー N-アッセイ TIA IgG-SH(E) 5006 1,324 1.2 1.4 1,345 1.3 1.4 1,357 0.8 0.8 861 1 747 ニットーホー N-アッセイ TIA IgG-SH(E) 大分大学 3022 1,332 1.5 2.0 1,359 19 2.5 1,369 1.4 1.7 861 1,747 ニットーホー N-アッセイ TIA IgG-SH(E) 長崎大学 イアトロ IgG 1339 1,349 2.3 3.3 1,359 1.9 2.5 1,404 2.8 4.3 861 1,747 LSIメディエン 2.7 1.1 ニットーホ゛ー 1006 1 324 12 1.4 1 361 20 1,364 13 861 1,747 N-アッセイ TIA IgG-SH 九州大学 1004 1,343 2.0 2.8 1,374 2.6 3.6 1,385 2.0 2.9 861 1,747 ニットーホー N-アッセイ TIA IgG-SH(E) 福岡大学 3.7 8004 1,355 2.5 3.7 1.407 4.0 6.1 1.424 5.8 870 1,700 ニットーホー N-アッセイ TIA IgG-SH 琉球大学 1,296.5 AVG (mg/dL) 1314.4 1,337.0 SD (mg/dL)233 23.6

 $B_A = 4.2\%$  目標 S-12 1306.2 1,251  $\sim$  1,362 S-13 1325.8 1,266  $\sim$  1,386 S-14 1346.1 1,285  $\sim$  1,407

1.8

1.8

C V (%)

1.8

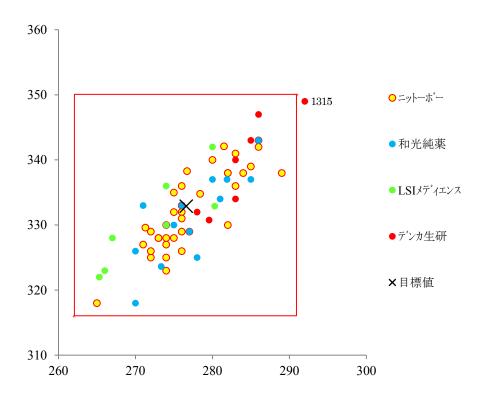
施設	ニットーホ゛ー (ニ ┃	ットーホ゛ー) 全施設	同一試薬		全施設	3SD 除夕 同一試薬		全施設	未達成同一試薬	S14-S12	1
コート	No.12	ВА	B _A	No.13	BA	B _A	No.14	ВА	B _A	$(S13-S12) \times 2$	
1402	1,302	-0.3	0.1	1,298	-2.1	-1.4	1,334	-0.9	-0.3	-4.00	
3056	1,326	1.5	2.0	1,313	-1.0	-0.3	1,371	1.8	2.5	-1.73	
1513	1,276	-2.3	-1.9	1,250	-5.7	-5.1	1,273	-5.4	-4.8	0.06	聖マリア
1006	1,324	1.4	1.8	1,361	2.7	3.3	1,364	1.3	2.0	0.54	九州大
1062	1,296	-0.8	-0.3	1,322	-0.3	0.4	1,330	-1.2	-0.6	0.65	r#: r#L
8004	1,355	3.7	4.21	1,407	6.1 0.2	6.8 0.9	1,424	5.8 -0.3	6.5	0.66	琉球大
1073 6016	1,290 1,298	-1.2 -0.6	-0.8 -0.2	1,329 1,342	1.2	1.9	1,342 1,357	0.8	0.3 1.5	0.67 0.67	
1004	1,343	2.8	3.3	1,374	3.6	4.3	1,385	2.9	3.5	0.68	福岡大
3022	1,332	2.0	2.4	1,359	2.5	3.2	1,369	1.7	2.3	0.69	長崎大
7011	1,265	-3.2	-2.7	1,305	-1.6	-0.9	1,320	-1.9	-1.3	0.69	
2002	1,293	-1.0	-0.6	1,313	-1.0	-0.3	1,324	-1.6	-1.0	0.78	
1325	1,315	0.7	1.1	1,345	1.4	2.1	1,362	1.2	1.8	0.78	
5006	1,324	1.4	1.8	1,345	1.4	2.1	1,357	0.8	1.5	0.79	大分け
1341	1,312	0.4	0.9	1,338	0.9	1.6	1,354	0.6	1.2	0.81	
1094	1,287	-1.5	-1.0	1,304	-1.6	-1.0	1,316	-2.2	-1.6	0.85	_
1001	1,287	-1.5	-1.0	1,315	-0.8	-0.2	1,335	-0.8	-0.2	0.86	
1102	1,291	-1.2	-0.7	1,311	-1.1	-0.5	1,328	-1.3	-0.7	0.93	1
7001 4002	1,280 1,308	-2.0 0.1	-1.6 0.6	1,303 1,324	-1.7 -0.1	-1.1 0.5	1,324 1,339	-1.6 -0.5	-1.0 0.1	0.96 0.97	能士山
1327	1,308	0.1	0.6	1,324	-0.1	0.5	1,339	-0.5	0.1	1.03	熊本ナ
1015	1,303	-0.2	0.4	1,323	-0.2	0.3	1,341	-0.4	0.3	1.03	1
9046	1,285	-1.6	-1.2	1,299	-2.0	-1.4	1,315	-2.3	-1.7	1.07	栄研化
1404	1,278	-2.2	-1.7	1,290	-2.7	-2.1	1,305	-3.1	-2.4	1.13	215-91-11
1329	1,294	-0.9	-0.5	1,312	-1.0	-0.4	1,335	-0.8	-0.2	1.14	
7901	1,306	0.0	0.4	1,325	-0.1	0.6	1,350	0.3	0.9	1.16	
9014	1,311	0.4	0.8	1,329	0.2	0.9	1,353	0.5	1.2	1.17	ニットーホ
5005	1,290	-1.2	-0.8	1,308	-1.3	-0.7	1,334	-0.9	-0.3	1.22	
1316	1,303	-0.2	0.2	1,319	-0.5	0.1	1,344	-0.2	0.5	1.28	
1040	1,260	-3.5	-3.1	1,279	-3.5 -0.9	-2.9	1,309	-2.8	-2.1	1.29	1
1039 1302	1,297 1,290	-0.7 -1.2	-0.3 -0.8	1,314	-0.9	-0.2 -1.1	1,341 1,322	-0.4 -1.8	0.3	1.29 1.33	
3907	1,290	-0.7	-0.8	1,302	-1.8	-0.5	1,333	-1.0	-0.3	1.38	1
3055	1,310	0.3	0.7	1,310	-0.1	0.5	1,350	0.3	0.9	1.43	諫早
1902	1,306	0.0	0.4	1,318	-0.6	0.1	1,342	-0.3	0.3	1.50	IDK 1
7002	1,304	-0.2	0.3	1,321	-0.4	0.3	1,355	0.7	1.3	1.50	鹿児島
1018	1,269	-2.8	-2.4	1,282	-3.3	-2.7	1,313	-2.5	-1.8	1.69	
3001	1,299	-0.5	-0.1	1,305	-1.5	-0.9	1,327	-1.5	-0.8	2.20	
AVG (mg/dL)	1,300.3			1,317.1			1,337.6			0.82	
S D (mg/dL)	20.0			23.5			21			<b></b>	<u>.</u>
C V (%)	1.5			1.8			1.6			<u></u>	<u>]</u>
コーIgG(和光純)		-0.2	2.0	1,330	0.3	2.1	1,338	-0.6	1.0	0.65	14- 70 J
2008 9044	1,303 1258.6	-3.6	-1.5	1,278	-3.6	-1.9	1,288	-4.3	-2.8	0.03	_ 佐賀ナ ロシュ(B
1411	1,316	0.8	3.0	1,342	1.2	3.0	1,358	0.9	2.5	0.81	P > 7 (D
1038	1,263	-3.3	-1.2	1,290	-2.7	-1.0	1,307	-2.9	-1.3	0.81	1
1529	1,258	-3.7	-1.6	1,282	-3.3	-1.6	1,298	-3.6	-2.0	0.83	
1300	1229.5	-5.9	-3.8	1,299	-2.0	-0.3	1,351	0.3	1.9	0.87	産業医
1505	1,278	-2.2	0.0	1,301	-1.9	-0.1	1,318	-2.1	-0.5	0.87	久留き
7007	1,244	-4.8	-2.6	1,277	-3.7	-2.0	1,304	-3.1	-1.6	0.91	
9023	1,300	-0.5	1.7	1,318	-0.6	1.2	1,335	-0.8	0.8	0.97	和光絲
1120	1,277	-2.2	-0.1	1,293	-2.5	-0.8	1,314	-2.4	-0.8	1.16	_
1337	1,286	-1.5	0.6	1,306	-1.5	0.2	1,338	-0.6	1.0	1.30	-
1301	1,304	-0.2 -0.9	2.0 1.3	1,316	-0.7	1.0	1,345 1,330	-0.1	1.5 0.4	1.71 1.75	1
1368 AVG (mg/dL)	1,295 1,277.9	-0.9	1.3	1,305 1,302.9	-1.6	0.2	1,330	-1.2	0.4	1.75	1
S D (mg/dL)	26.0			1,302.9			21.7			1.03	1
C V (%)	2.0			1.5			1.6				1
											_
<u>IgG(L</u> SIメテ イエン	т———	0.4	0.8	1,344	1.4	2.3	1,382	2.7	2.3	1.09	
IgG(LSIメディエン 1403	1,312	0.4			0.8	1.7	1,379	2.4	2.1	1.67	福岡が
1403 1002	1,319	1.0	1.3	1,337						1.89	1
1403 1002 3048	1,319 1,266	1.0 -3.1	-2.7	1,280	-3.5	-2.6	1,319	-2.0	-2.3		4
1403 1002 3048 1072	1,319 1,266 1,306	1.0 -3.1 0.0	-2.7 0.3	1,280 1,316	-3.5 -0.7	-2.6 0.1	1,345	-0.1	-0.4	1.95	
1403 1002 3048 1072 1339	1,319 1,266 1,306 1,349	1.0 -3.1 0.0 3.3	-2.7 0.3 3.6	1,280 1,316 1,359	-3.5 -0.7 2.5	-2.6 0.1 3.4	1,345 1,404	-0.1 4.3	-0.4 4.0	1.95 2.75	
1403 1002 3048 1072 1339 9009	1,319 1,266 1,306 1,349 1,281	1.0 -3.1 0.0 3.3 -1.9	-2.7 0.3 3.6 -1.6	1,280 1,316 1,359 1,284	-3.5 -0.7 2.5 -3.2	-2.6 0.1 3.4 -2.3	1,345 1,404 1,313	-0.1 4.3 -2.5	-0.4 4.0 -2.8	1.95 2.75 5.61	LSIメテ
1403 1002 3048 1072 1339 9009 1901	1,319 1,266 1,306 1,349 1,281 1,279	1.0 -3.1 0.0 3.3	-2.7 0.3 3.6	1,280 1,316 1,359 1,284 1,280	-3.5 -0.7 2.5 -3.2 -3.5	-2.6 0.1 3.4	1,345 1,404 1,313 1,313	-0.1 4.3	-0.4 4.0	1.95 2.75 5.61 17.00	LSI≯テ
1403 1002 3048 1072 1339 9009 1901 AVG (mg/dL)	1,319 1,266 1,306 1,349 1,281 1,279 1,301.7	1.0 -3.1 0.0 3.3 -1.9	-2.7 0.3 3.6 -1.6	1,280 1,316 1,359 1,284 1,280 1,314.3	-3.5 -0.7 2.5 -3.2 -3.5	-2.6 0.1 3.4 -2.3	1,345 1,404 1,313 1,313 1,350.6	-0.1 4.3 -2.5	-0.4 4.0 -2.8	1.95 2.75 5.61	LSIメテ
1403 1002 3048 1072 1339 9009 1901 AVG (mg/dL) S D (mg/dL)	1,319 1,266 1,306 1,349 1,281 1,279 1,301.7 28.5	1.0 -3.1 0.0 3.3 -1.9	-2.7 0.3 3.6 -1.6	1,280 1,316 1,359 1,284 1,280 1,314.3 33.4	-3.5 -0.7 2.5 -3.2 -3.5	-2.6 0.1 3.4 -2.3	1,345 1,404 1,313 1,313 1,350.6 37.7	-0.1 4.3 -2.5	-0.4 4.0 -2.8	1.95 2.75 5.61 17.00	LSI≯₹
1403 1002 3048 1072 1339 9009 1901 AVG (mg/dL) S D (mg/dL) C V (%)	1,319 1,266 1,306 1,349 1,281 1,279 1,301.7 28.5 2.2	1.0 -3.1 0.0 3.3 -1.9	-2.7 0.3 3.6 -1.6	1,280 1,316 1,359 1,284 1,280 1,314.3	-3.5 -0.7 2.5 -3.2 -3.5	-2.6 0.1 3.4 -2.3	1,345 1,404 1,313 1,313 1,350.6	-0.1 4.3 -2.5	-0.4 4.0 -2.8	1.95 2.75 5.61 17.00	LSI≯テ
1403 1002 3048 1072 1339 9009 1901 AVG (mg/dL) S D (mg/dL) C V (%)	1,319 1,266 1,306 1,349 1,281 1,279 1,301.7 28.5 2.2 **/ 少生研)	1.0 -3.1 0.0 3.3 -1.9 -2.1	-2.7 0.3 3.6 -1.6 -1.7	1,280 1,316 1,359 1,284 1,280 1,314.3 33.4 2.5	-3.5 -0.7 2.5 -3.2 -3.5	-2.6 0.1 3.4 -2.3 -2.6	1,345 1,404 1,313 1,313 1,350.6 37.7 2.8	-0.1 4.3 -2.5 -2.5	-0.4 4.0 -2.8 -2.8	1.95 2.75 5.61 17.00 4.57	
1403 1002 3048 1072 1339 9009 1901 AVG (mg/dL) S D (mg/dL) C V (%)	1,319 1,266 1,306 1,349 1,281 1,279 1,301.7 28.5 2.2	1.0 -3.1 0.0 3.3 -1.9	-2.7 0.3 3.6 -1.6	1,280 1,316 1,359 1,284 1,280 1,314.3 33.4	-3.5 -0.7 2.5 -3.2 -3.5	-2.6 0.1 3.4 -2.3	1,345 1,404 1,313 1,313 1,350.6 37.7	-0.1 4.3 -2.5	-0.4 4.0 -2.8	1.95 2.75 5.61 17.00	宮崎ナ
1002 3048 1072 1339 9009 1901 AVG (mg/dL) S D (mg/dL) C V (%) 1A X1「生研」(疗	1,319 1,266 1,306 1,349 1,281 1,279 1,301.7 28.5 2.2 */ 少生研) 1,309	1.0 -3.1 0.0 3.3 -1.9 -2.1	-2.7 0.3 3.6 -1.6 -1.7	1,280 1,316 1,359 1,284 1,280 1,314.3 33.4 2.5	-3.5 -0.7 2.5 -3.2 -3.5	-2.6 0.1 3.4 -2.3 -2.6	1,345 1,404 1,313 1,313 1,350.6 37.7 2.8	-0.1 4.3 -2.5 -2.5 -2.5	-0.4 4.0 -2.8 -2.8	1.95 2.75 5.61 17.00 4.57	  宮崎ナ  デンカ生
1403 1002 3048 1072 1339 9009 1901 AVG (mg/dL) S D (mg/dL) C V (%) 1A XI「生研」(テ	1,319 1,266 1,306 1,349 1,281 1,279 1,301.7 28.5 2.2 **/ 力生研) 1,309 1,299	1.0 -3.1 0.0 3.3 -1.9 -2.1	-2.7 0.3 3.6 -1.6 -1.7	1,280 1,316 1,359 1,284 1,280 1,314.3 33.4 2.5	-3.5 -0.7 2.5 -3.2 -3.5 -3.5	-2.6 0.1 3.4 -2.3 -2.6 0.8 -0.1	1,345 1,404 1,313 1,313 1,350.6 37.7 2.8 1,345 1,338	-0.1 4.3 -2.5 -2.5 -2.5 -0.1 -0.6	-0.4 4.0 -2.8 -2.8 -2.8	1.95 2.75 5.61 17.00 4.57	  宮崎ナ  デンカ生
1403 1002 3048 1072 1339 9009 1901 AVG (mg/dL) S D (mg/dL) C V (%) TA XI「生研」(7 6008 9012 1315 1031 9043	1,319 1,266 1,306 1,349 1,281 1,279 1,301.7 28.5 2.2 '为生研) 1,309 1,309 1,307 1,310 1,293	1.0 -3.1 0.0 3.3 -1.9 -2.1 0.2 -0.6 0.1 0.3 -1.0	-2.7 0.3 3.6 -1.6 -1.7 -1.7	1,280 1,316 1,359 1,284 1,280 1,314.3 33.4 2.5 1,332 1,321 1,323 1,322 1,310	-3.5 -0.7 2.5 -3.2 -3.5 -3.5 -3.5	-2.6 0.1 3.4 -2.3 -2.6 0.8 -0.1 0.1	1,345 1,404 1,313 1,313 1,350.6 37.7 2.8 1,345 1,345 1,340 1,340 1,334	-0.1 4.3 -2.5 -2.5 -2.5 -0.1 -0.6 -0.5 -0.5 -0.9	-0.4 4.0 -2.8 -2.8 -2.8 -2.8 0.1 -0.4 -0.2 -0.2 -0.7	1.95 2.75 5.61 17.00 4.57 0.78 0.89 1.03 1.25 1.27	宮崎ナデンカ生飯塚稲
1403 1002 3048 1072 1339 9009 1901 AVG (mg/dL) S D (mg/dL) C V (%) TA XI「生研」(テ 6008 9012 1315 1031 9043 1010	1,319 1,266 1,306 1,349 1,281 1,279 1,301.7 28.5 2.2 * > 为生研) 1,309 1,299 1,307 1,310 1,293 1,297	1.0 -3.1 0.0 3.3 -1.9 -2.1 0.2 -0.6 0.1 0.3 -1.0	-2.7 0.3 3.6 -1.6 -1.7 0.3 -0.5 0.2 0.4 -0.9 -0.6	1,280 1,316 1,359 1,284 1,280 1,314.3 33.4 2.5 1,332 1,321 1,323 1,322 1,310 1,311	-3.5 -0.7 2.5 -3.2 -3.5 -0.4 -0.2 -0.3 -1.2 -1.1	-2.6 0.1 3.4 -2.3 -2.6 -0.1 0.1 0.0 -0.9 -0.8	1,345 1,404 1,313 1,313 1,350.6 37.7 2.8 1,345 1,345 1,340 1,340 1,334 1,334	-0.1 4.3 -2.5 -2.5 -2.5 -0.1 -0.6 -0.5 -0.5 -0.9 -0.9	-0.4 4.0 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8	1.95 2.75 5.61 17.00 4.57 0.78 0.89 1.03 1.25 1.27 1.32	宮崎 プテ゛ンカ 生飯 塚 塚 塚
1403 1002 3048 1072 1339 9009 1901 AVG (mg/dL) S D (mg/dL) C V (%) TA XI「生研」(テ 6008 9012 1315 1031 9043 1010	1,319 1,266 1,306 1,349 1,281 1,279 1,301.7 28.5 2.2 *>步步任研) 1,309 1,299 1,307 1,310 1,293 1,297 1,319	1.0 -3.1 0.0 3.3 -1.9 -2.1 0.2 -0.6 0.1 0.3 -1.0	-2.7 0.3 3.6 -1.6 -1.7 0.3 -0.5 0.2 0.4 -0.9	1,280 1,316 1,359 1,284 1,280 1,314.3 33.4 2.5 1,322 1,321 1,322 1,310 1,311 1,335	-3.5 -0.7 2.5 -3.2 -3.5 -0.4 -0.2 -0.3 -1.2 -1.1 0.7	-2.6 0.1 3.4 -2.3 -2.6 0.8 -0.1 0.0 -0.9	1,345 1,404 1,313 1,313 1,350.6 37.7 2.8 1,345 1,345 1,340 1,340 1,334 1,334 1,371	-0.1 4.3 -2.5 -2.5 -2.5 -0.1 -0.6 -0.5 -0.5 -0.9	-0.4 4.0 -2.8 -2.8 -2.8 -2.8 0.1 -0.4 -0.2 -0.2 -0.7	1.95 2.75 5.61 17.00 4.57 0.78 0.89 1.03 1.25 1.27 1.32	宮崎 プテ゛ンカ 生飯 塚 塚 塚
1403 1002 3048 1072 1339 9009 1901 AVG (mg/dL) S D (mg/dL) C V (%) TA X1「生研」(テ 6008 9012 1315 1031 9043	1,319 1,266 1,306 1,349 1,281 1,279 1,301.7 28.5 2.2 * > 为生研) 1,309 1,299 1,307 1,310 1,293 1,297	1.0 -3.1 0.0 3.3 -1.9 -2.1 0.2 -0.6 0.1 0.3 -1.0	-2.7 0.3 3.6 -1.6 -1.7 0.3 -0.5 0.2 0.4 -0.9 -0.6	1,280 1,316 1,359 1,284 1,280 1,314.3 33.4 2.5 1,332 1,321 1,323 1,322 1,310 1,311	-3.5 -0.7 2.5 -3.2 -3.5 -0.4 -0.2 -0.3 -1.2 -1.1 0.7	-2.6 0.1 3.4 -2.3 -2.6 -0.1 0.1 0.0 -0.9 -0.8	1,345 1,404 1,313 1,313 1,350.6 37.7 2.8 1,345 1,345 1,340 1,340 1,334 1,334	-0.1 4.3 -2.5 -2.5 -2.5 -0.1 -0.6 -0.5 -0.5 -0.9 -0.9	-0.4 4.0 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8	1.95 2.75 5.61 17.00 4.57 0.78 0.89 1.03 1.25 1.27 1.32	LSIメテ 宮崎大 デンカ生 飯塚炉 ロシュ(A)

42 IGG 施設No.が低い順に並んでいます

施設	110.77   EXT /   EXT		LIV BB	男性基準	<b>準範囲</b>	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料12 試	料13	試料14
1001	免疫比濁法(汎	ニットーボー	目立LABOSPE	861.0	1747			O 1287 O 1	1315 🔾	1335
1002	免疫比濁法(汎	LSIメディエンス	目立LABOSPE	890.0	1770			O 1319 O	1337 🔾	1379
1004	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0	1747	861.0	1747	O 1343 O	1374 🔾	1385
1006	免疫比濁法(汎	ニットーボー	目立LABOSPE	861.0	1747			O 1324 O	1361 🔾	1364
1010	免疫比濁法(汎	デンカ生研	東芝TBA-cシリー	870.0		870.0	1700			
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0	1747			O 1303 O 1		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0		861.0	1747	O 1269 O 1		
	免疫比濁法(汎	デンカ生研	東芝TBA-cシリー	861.0	1747			0 1310 0		
	免疫比濁法(汎	和光純薬	日立LABOSPE	861.0	1747			○ 1263 ○ 1 ○ 1297 ○ 1		
1039 1040	免疫比濁法(汎 免疫比濁法(汎	ニットーボー	日立7140-7170 日立LABOSPE	861.0 861.0	1747	861.0	1747			
	免疫比濁法(汎	ニットーボー	目立LABOSPE	861.0	1747		1747			
	免疫比濁法(汎	LSIメディエンス	目立LABOSPE	870.0		870.0	1700			
	免疫比濁法(汎	ニットーボー	目立LABOSPE	870.0			1700			
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	870.0	1700			O 1287 O		
	免疫比濁法(汎	ニットーボー	東芝TBA-cシリー	861.0	1747			O 1291 O 1		
1120	免疫比濁法(汎	和光純薬	東芝TBA-cシリー	861.0	1747			O 1277 O :	1293 🔾	1314
1300	免疫比濁法(汎	和光純薬	日本電子JCA-B	861.0	1747	861.0	1747	1230 🔾	1299 🔾	1351
1301	免疫比濁法(汎	和光純薬	日本電子JCA-B	870.0	1700			○ 1304 ○	1316 🔾	1345
1302	免疫比濁法(汎	ニットーボー	ヘ、ックマン・コールター	861.0	1747			○ 1290 ○	1302 🔾	1322
1315	免疫比濁法(汎	デンカ生研	日本電子JCA-B	861.0	1747	861.0	1747	O 1307 O	1323 🔾	1340
1316	免疫比濁法(汎	ニットーボー	日本電子JCA-B	870.0	1700			○ 1303 ○	1319 🔾	1344
1325	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0	1747	861.0	1747	O 1315 O	1345 🔾	1362
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0		861.0		O 1306 O :		
1329	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0		861.0	1747	O 1294 O 1		
1337	免疫比濁法(汎	和光純薬	日本電子JCA-B	861.0	1747			O 1286 O 1		
1339	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	861.0	1747	061.0	1747	O 1349 O 1		
	免疫比濁法(汎 免疫比濁法(汎	ニットーボー デンカ生研	日本電子JCA-B ロシュコバス8000c5	861.0 861.0	1747	861.0	1/4/	<ul><li>1312 </li><li>1319 </li></ul>	1335 🔾	
	免疫比濁法(汎	和光純薬	東芝25FR_Accut	861.0	1747				1305 🔾	
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0	1747				1298 🔾	
	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	861.0		861.0	1747	0 1312 0		
	免疫比濁法(汎	ニットーボー	東芝TBA-cシリー	870.0	1700			O 1278 O		
1411	免疫比濁法(汎	和光純薬	日本電子JCA-B	861.0	1747	861.0	1747	O 1316 O 1		
1505	免疫比濁法(汎	和光純薬	目立LABOSPE	861.0	1747			O 1278 O :	1301 🔾	1318
1513	免疫比濁法(汎	ニットーボー	日立LABOSPE	861.0	1747			O 1276	1250	1273
1529	免疫比濁法(汎	和光純薬	日立LABOSPE	870.0	1700	870.0	1700	O 1258 O 1	1282 🔾	1298
1901	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	870.0	1700	870.0	1700	O 1279 O	1280 🔾	1313
1902	免疫比濁法(汎	ニットーボー	日本電子JCA-B	820.0	1740			○ 1306 ○	1318 🔾	1342
2002	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0	1747			O 1293 O	1313 🔾	1324
	免疫比濁法(汎	和光純薬	ロシュコハ ス8000c7	861.0		861.0		O 1303 O 1		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0		861.0		O 1299 O 1		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0		861.0		O 1332 O 1		
	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	861.0		861.0	1747	0 1266 0 1		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0	1747	001.0	1747	O 1310 O :		
	免疫比濁法(汎 免疫比濁法(汎	栄研化学 ニットーボー	日本電子JCA-B 日本電子JCA-B	861.0 861.0		861.0 861.0		<ul><li>○ 1326 ○ 1</li><li>○ 1297 ○ 1</li></ul>		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0	1747	001.0	1/4/	O 1308 O 1		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0	1747			0 1290 0 1		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0		861.0	1747	0 1324 0		
	免疫比濁法(汎	デンカ生研	東芝TBA-200F	861.0	1747			O 1309 O		
	免疫比濁法(汎	ニットーボー	東芝TBA-200F	870.0		870.0	1700	O 1298 O :		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	870.0		870.0		O 1280 O		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	861.0	1747			○ 1304 ○	1321 🔾	1355
7007	免疫比濁法(汎	和光純薬	日本電子JCA-B	808.0	2020	808.0	2020	1244 🔾	1277 🔾	1304
7011	免疫比濁法(汎	ニットーボー	東芝TBA-cシリー	861.0	1747			O 1265 O	1305 🔾	1320
7901	免疫比濁法(汎	ニットーボー	目立LABOSPE	870.0	1700			○ 1306 ○	1325 🔾	1350

42 IGG 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告值
No	例足原理	武衆 グーガー	(残谷)	下限	上限	下限	上限	試料12	試料13	試料14
8004	免疫比濁法(汎	ニットーボー	日本電子JCA-B	870.0	1700			O 1355	1407	1424
9009	免疫比濁法(汎	LSIメディエンス	日立7140-7170	870.0	1700			○ 1281 ○	1284 €	) 1313
9012	免疫比濁法(汎	デンカ生研		680.0	1620	680.0	1620	○ 1299 ○	1321 €	) 1338
9014	免疫比濁法(汎	ニットーボー	日立7140-7170					O 1311 O	1329 €	) 1353
9023	免疫比濁法(汎	和光純薬	日立7140-7170					○ 1300 ○	1318 €	) 1335
9043	免疫比濁法(汎	デンカ生研	ロシュコハ ス8000c5					○ 1293 ○	1310 €	) 1334
9044	免疫比濁法(汎	和光純薬	ロシュコハ ス8000c7					○ 1259 ○	1278 €	) 1288
9046	免疫比濁法(汎	栄研化学	目立7140-7170	870.0	1700	870.0	1700	○ 1285 ○	1299 €	1315


【参加状况】65 施設(前回62 施設、前々回60 施設)

【測定方法の状況】IgGと同じ。

### 【測定値の状況】

3SD 除去後の平均値、CV%と目標範囲(BA:目標値±5.0%)達成率

		試料1	2(目標	₹:Ba)			試料1	実測値/予測値			
		目標範囲	262 ~	291m	ng/dL		目標範囲 3	美側個/丁側個			
		平均值	CV	未達	達成率		平均値	S14-S12			
	n	(mg/dL)	(%)	成数	(%)	n	(mg/dL)	(%)	成数	(%)	(S13-S12)×2
目標値		276.6					332.9				1.00
ニットーホー	38	277.2	1.9	0	100	38	331.2	1.8	0	100	1.01
和光純薬	13	277.3	1.9	0	100	13	299.4	2.1	0	100	0.97
LSIメディエ	7	272.4	2.3	0	100	7	330.6	2.2	0	100	1.08
デンカ生研	7	283.9	1.6	1	86	7	339.4	0.99			
全施設	65	277.4	2.1	1	98	61	332.6	1.00			



試料 12(x) と試料 14(y) の試薬別ツインプロット

#### 【基準範囲の状況】

JCCLS 共用基準範囲の93~393mg/dL に設定している施設は32 施設(58.2%)から42 施設(72.4%) に増加し、血漿蛋白基準範囲設定プロジェクトチームの110~410mg/dL に設定している施設は18 施設(32.7%)から13 施設(22.4%)に減少している。

### 【まとめ】

IgG同様、希釈を行わないプール血清では良好な収束がみられた。3SDを外れる施設が1施設もなく、試料12で施設No.1513が、試料13で施設No.1368が高値側に2.5SD相当、目標値から外れただけである。試薬別ではデンカ生研が極わずかではあるが高値寄りに分布している。

IgA (No.13でソート)

	<i>C</i> .					3SD 除外			未達成					
施設コード		3SDカット		括	料 3SDカット			3SDカット		基準		メーカー	使用試薬名	
	No.12	SDI	Ва	No.13	SDI	Ва	No.14	SDI	Ва	下限	上限			
9009 6016	265.3 265	-2.1 -2.1	-4.1 -4.2	291.2 292	-2.2 -2.1	-4.5 -4.2	322.0 318	-1.6 -2.2	-3.3 -4.5	110 110		LSIメテ゛ィエンス ニットーホ゛ー		LSIメディエンフ
1901	266	-2.1	-3.8	294	-1.7	-3.5	323	-1.4	-3.0	110		LSIメテ゛ィエンス	N-アッセイ TIA IgA-SH イアトロ IgA	
1002	267	-1.8	-3.5	296	-1.4	-2.9	328	-0.7	-1.5	114		LSIメディエンス	-	福岡赤十字
1529	270	-1.3	-2.4	296	-1.4	-2.9	318	-2.2	-4.5	110		和光純薬		
1040	274	-0.6	-0.9	297	-1.3	-2.6	323	-1.4	-3.0	93	393		N-アッセイ TIA IgA-SH	4
1302 1513	275 282	-0.4 0.8	-0.6 2.0	297 297	-1.3 -1.3	-2.6 -2.6	328 330	-0.7 -0.4	-1.5 -0.9	93 93	393 393		N-7ッセイ TIA IgA-SH N-7ッセイ TIA IgA-SH	聖マリア
7007	278	0.1	0.5	298	-1.1	-2.2	325	-1.1	-2.4	81	545		オートワコー IgA・N	± ·//
5005	272	-0.9	-1.7	299	-1.0	-1.9	325	-1.1	-2.4	93	393	ニットーホ゛ー	N-アッセイ TIA IgA-SH	
1404	272	-0.9	-1.7	300	-0.8	-1.6	326	-1.0	-2.1	110	410		N-アッセイ TIA IgA-SH	
7001	271	-1.1	-2.0	300	-0.8	-1.6	327	-0.8	-1.8	110	410		N-アッセイ TIA IgA-SH(E)	-
1072 9044	274 273.35	-0.6 -0.7	-0.9 -1.2	300 300.8	-0.8 -0.7	-1.6 -1.3	330 323.625	-0.4 -1.3	-0.9 -2.8	110 Maker	410 Maker	LSIメディエンス 和光純薬	イアトロ IgA オートワコー IgA・ N	р <b>ў</b> д(В)
8004	276	-0.7	-0.2	301	-0.6	-1.2	323.023	-0.5	-1.2	110	410		N-79t/ TIA IgA-SH	琉球大学
1402	277	-0.1	0.1	301	-0.6	-1.2	329	-0.5	-1.2	93	393		N-アッセイ TIA IgA-SH	
1038	270	-1.3	-2.4	301	-0.6	-1.2	326	-1.0	-2.1	93	393	和光純薬	オートワコー IgA・ N	
9046	274	-0.6	-0.9	302	-0.5	-0.9	325	-1.1	-2.4	110	410		N-アッセイ TIA IgA-SH	栄研化学
1094 1039	274	-0.6	-0.9 -0.9	302 302	-0.5 -0.5	-0.9 -0.9	327 330	-0.8 -0.4	-1.8 -0.9	110 93	410	/	N-7971 TIA IgA-SH	-
1102	274 273	-0.6 -0.8	-0.9	302	-0.5 -0.5	-0.9	330	-0.4	-0.9	93	393 393		N-アッセイ TIA IgA-SH N-アッセイ TIA IgA-SH(E)	1
1015	274	-0.6	-0.9	302	-0.5	-0.9	328	-0.7	-1.5	93	393	ニットーホ゛ー	N-アッセイ TIA IgA-SH(E) N-アッセイ TIA IgA-SH(E)	1
1339	274	-0.6	-0.9	302	-0.5	-0.9	336	0.5	0.9	93		LSIメディエンス	イプトロ IgA	
3048	280.3	0.5	1.3	302.5	-0.4	-0.8	332.9	0.0	0.0	93	393		<b>ተ</b> ፖト¤ <b>IgA</b>	
6008	278	0.1	0.5	303	-0.3	-0.6	332	-0.1	-0.3	93	393	デンカ生研	IgA-TIA NX 「生研」	宮崎大学
1327 1001	272	-0.9 -0.2	-1.7 -0.2	303 303	-0.3 -0.3	-0.6	329 326	-0.5	-1.2 -2.1	93 93	393		N-アッセイ TIA IgA-SH	
2002	276 276	-0.2	-0.2	303	-0.3	-0.6 -0.6	331	-1.0 -0.2	-0.6	93	393 393	ニットーホ゛ー	N-アッセイ TIA IgA-SH(E) N-アッセイ TIA IgA-SH(E)	1
1329	276	-0.2	-0.2	304	-0.2	-0.3	333	0.1	0.0	93	393		N-アッセイ TIA IgA-SH	1
3907	276	-0.2	-0.2	304	-0.2	-0.3	333	0.1	0.0	93	393	ニットーホ゛ー	N-アッセイ TIA IgA-SH	
1004	273	-0.8	-1.3	304	-0.2	-0.3	328	-0.7	-1.5	93	393	/! !	N-アッセイ TIA IgA-SH(E)	福岡大学
9023	277	-0.1	0.1	304	-0.2	-0.3	329	-0.5	-1.2	Maker	Maker	和光純薬	オートワコー IgA・ N	和光純薬
1018	276 275	-0.2 -0.4	-0.2 -0.6	305 305	0.0	0.1	332 335	-0.1 0.4	-0.3	93 110	393	ニットーホ゛ー	N-アッセイ TIA IgA-SH N-アッセイ TIA IgA-SH(E)	-
1411	271	-1.1	-2.0	305	0.0	0.1	333	0.1	0.0	93			オートワコー IgA・ N	
1120	276	-0.2	-0.2	305	0.0	0.1	333	0.1	0.0	93	393		オートワコー IgA・ N	
3055	276.7	-0.1	0.0	305.2	0.0	0.1	338.3	0.8	1.6	93	393	ニットーホ゛ー	N-アッセイ TIA IgA-SH	諫早
3001	278.4	0.2	0.7	305.5	0.1	0.2	334.8	0.3	0.6	93	393	2	N-アッセイ TIA IgA-SH	
1010 7011	283 275	1.0 -0.4	-0.6	306 306	0.1	0.4	334 332	-0.1	-0.3	110 93	393		IgA-TIA NX 「生研」	4
1301	275	-0.4	-0.6	306	0.1	0.4	330	-0.1	-0.9	110		和光純薬	N-アッセイ TIA IgA-SH(E) オートワコー IgA・ N	1
1300	281.9	0.8	1.9	306.3	0.2	0.5	337.0	0.6	1.2	93			オートワコー IgA・ N	産業医大
3022	271.3	-1.0	-1.9	306.4	0.2	0.5	329.6	-0.4	-1.0	93		ニットーホ゛ー	N-アッセイ TIA IgA-SH(E)	長崎大学
7002	276	-0.2	-0.2	307	0.3	0.7	336	0.5	0.9	93	393		N-アッセイ TIA IgA-SH	鹿児島大学
7901 9014	282 282	0.8	2.0	308 308	0.5	1.0	338 338	0.8	1.5	110 Melser	410 Maker	ニットーホ゛ー	N-79t/ TIA IgA-SH	ニット-ホ゛-
1006	284	1.1	2.7	308	0.5	1.0	338	0.8	1.5	Maker 93		ニットーホ゛ー	N-アッセイ TIA IgA-SH N-アッセイ TIA IgA-SH	九州大学
1505	281	0.6	1.6	308	0.5	1.0	334	0.2	0.3	93		和光純薬		久留米大学
1337	285	1.3	3.0	309	0.6	1.4	337	0.6	1.2	93		和光純薬	·	
2008	280	0.5	1.2	309	0.6	1.4	337	0.6	1.2	93			オートワコー IgA・ N	佐賀大学
9043	279.57	0.4	1.1	309.87	0.8	1.7	330.77	-0.3	-0.6	Maker	Maker		IgA-TIA NX 「生研」	₽シュ(A)
1341 3056	285 283	1.3	3.0 2.3	310 310	0.8	1.7 1.7	339 341	0.9	1.8	93 93	393 393	ニットーホ゛ー	N-アッセイ TIA IgA-SH N-アッセイ TIA IgA-SH	1
5006	283	1.0	2.3	310	0.8	1.7	336	0.5	0.9	93	393		N-アッセイ TIA IgA-SH(E)	大分大学
1403	280	0.5	1.2	311	0.9	2.0	342	1.4	2.7	93	393	LSIメディエンス	イアトロ IgA	]
9012	283	1.0	2.3	313	1.3	2.7	340	1.1	2.1	84			IgA-TIA NX 「生研」	デンカ生研
1902	280	0.5	1.2	313	1.3	2.7	340	1.1	2.1	90		ニットーホ゛ー	N-アッセイ TIA IgA-SH	-
1073 1062	281.5 286	0.7	1.8 3.4	313 313	1.3	2.7	342.1 343	1.4	3.0	110 93		ニットーホ゛ー	N-7971 TIA IgA-SH	1
4002	286	2.0	4.5	313	1.3	3.0	338	0.8	1.5	93		ニットーホー	N-アッセイ TIA IgA-SH N-アッセイ TIA IgA-SH	熊本大学
1031	285	1.3	3.0	315	1.6	3.3	343	1.5	3.0	93		-	IgA-TIA NX 「生研」	パイナハナ
1325	286	1.5	3.4	315	1.6	3.3	342	1.4	2.7	93			N-アッセイ TIA IgA-SH(E)	
1343	286	1.5	3.4	319	2.2	4.7	347	2.1	4.2	93			IgA-TIA NX 「生研」	
1315	292	2.5	5.6	320	2.4	4.99	349	2.4	4.8	93			IgA-TIA NX 「生研」	飯塚病院
1368	286	1.5	3.4	321	2.5	5.3	343	1.5	3.0	93	393	和光純薬	オートワコー IgA・ N	J
AVG (mg/dL) S D (mg/dL)	277.4 5.8			305.1			332.6							
CV(%)	2.1			2.1			2.0							
()														

B_A = 5.0% 目標 S-12 S-13 262 289 ~ 291 ~ 321 ~ 350 276.6 304.8 332.9 S-14 316

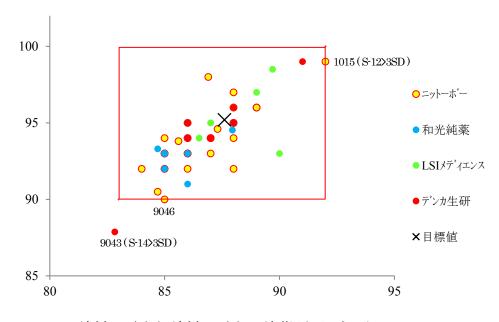
							3SD 除外			未達成		
N-アッコ	ZイTIA IgA-SH 施設		ットーホ`ー) 全施設	同一試薬		全施設	同一試薬		全施設	同一試薬	S14-S12	]
	かし 点文 コート*	No.12	上加取 BA	B _A	No.13	土,旭成 Ba	B _A	No.14	主,加克 B _A	B _A	$(S13-S12) \times 2$	
	3022	271.3	-1.9	-2.1	306	0.5	0.6	330	-1.0	-0.8	0.83	長崎大学
	1004	273	-1.3	-1.5	304	-0.3	-0.2	328	-1.5	-1.3	0.89	福岡大学
	1902	280	1.2	1.0	313	2.7	2.7	340	2.1	2.3	0.91	
	9046	274	-0.9	-1.1	302	-0.9	-0.9	325	-2.4	-2.2	0.91	栄研化学
	7011 1327	275 272	-0.6 -1.7	-0.8 -1.9	306 303	0.4 -0.6	0.4 -0.5	332 329	-0.3 -1.2	-0.1 -1.0	0.92 0.92	-
	1001	276	-0.2	-0.4	303	-0.6	-0.5	326	-2.1	-1.9	0.92	
	1094	274	-0.9	-1.1	302	-0.9	-0.9	327	-1.8	-1.6	0.95	
	1102	273	-1.3	-1.5	302	-0.9	-0.9	328	-1.5	-1.3	0.95	
	1073	281.5	1.8	1.6	313	2.7	2.7	342	2.8	3.0	0.96	
	1015	274	-0.9	-1.1	302	-0.9	-0.9	328	-1.5	-1.3	0.96	
	1404 1325	272 286	-1.7 3.4	-1.9 3.2	300 315	-1.6 3.3	-1.5 3.4	326 342	-2.1 2.7	-1.9 2.9	0.96 0.97	
	1018	276	-0.2	-0.4	305	0.1	0.1	332	-0.3	-0.1	0.97	
	7001	271	-2.0	-2.2	300	-1.6	-1.5	327	-1.8	-1.6	0.97	
	7002	276	-0.2	-0.4	307	0.7	0.8	336	0.9	1.1	0.97	鹿児島大学
	4002	289	4.5	4.3	314	3.0	3.1	338	1.5	1.7	0.98	熊本大学
	5006	283	2.3	2.1	310	1.7	1.8	336	0.9	1.1	0.98	大分大学
	5005	272	-1.7	-1.9	299 292	-1.9	-1.9	325	-2.4	-2.2 -4.3	0.98 0.98	
	6016 1039	265 274	-4.2 -0.9	-4.4 -1.1	302	-4.2 -0.9	-4.2 -0.9	318	-4.5 -0.9	-4.3	1.00	•
	1316	275	-0.6	-0.8	305	0.1	0.1	335	0.6	0.8	1.00	
	1329	276	-0.2	-0.4	304	-0.3	-0.2	333	0.0	0.2	1.02	
	3907	276	-0.2	-0.4	304	-0.3	-0.2	333	0.0	0.2	1.02	
	2002	276	-0.2	-0.4	303	-0.6	-0.5	331	-0.6	-0.4	1.02	
	3001 1062	278.4 286	0.7 3.4	0.4 3.2	306 313	0.2 2.7	0.3 2.7	335 343	0.6 3.0	0.8 3.2	1.04 1.06	
	8004	286	-0.2	-0.4	301	-1.2	-1.2	329	-1.2	-1.0	1.06	琉球大学
	1040	274	-0.9	-1.1	297	-2.6	-2.5	323	-3.0	-2.8	1.07	5/12/2/1
	3056	283	2.3	2.1	310	1.7	1.8	341	2.4	2.6	1.07	
	7901	282	2.0	1.7	308	1.0	1.1	338	1.5	1.7	1.08	
	9014	282	2.0	1.7	308	1.0	1.1	338	1.5	1.7	1.08	ニットーホ゛ー
	1341 3055	285 276.7	3.0 0.0	2.8 -0.2	310 305	1.7 0.1	1.8 0.2	339 338	1.8	2.0 1.8	1.08 1.08	諫早
	1402	277	0.0	-0.2	301	-1.2	-1.2	329	-1.2	-1.0	1.08	DA
	1006	284	2.7	2.5	308	1.0	1.1	338	1.5	1.7	1.13	九州大学
	1302	275	-0.6	-0.8	297	-2.6	-2.5	328	-1.5	-1.3	1.20	
	1513	282	2.0	1.7	297	-2.6	-2.5	330	-0.9	-0.7	1.60	聖マリア
			2.0	1.7		2.0	-2.5		-0.9	-0.7		王 177
	AVG (mg/dL)	277.2	2.0	1.7	304.7	2.0	-2.3	332.3	-0.9	-0.7	1.01	至 177
	AVG (mg/dL) S D (mg/dL)		2.0	1.7		2.0	-2.3		-0.9	-0.7		至 177
オートワ	AVG (mg/dL)	277.2 5.1 1.9	2.0	1.7	304.7 5.2	2.0	-2.3	332.3 6.0	-0.9	-0.7		至 (7)
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) □-IgA (和光純詞	277.2 5.1 1.9 軽)	3.4	3.2	304.7 5.2 1.7 321	5.3	5.1	332.3 6.0 1.8	3.0	3.6	0.81	] = \//
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純達 1368 1301	277.2 5.1 1.9 期) 286 275	3.4	3.2	304.7 5.2 1.7 321 306	5.3 0.4	5.1 0.2	332.3 6.0 1.8 343 330	3.0	3.6 -0.4	0.81 0.89	<u> </u>
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) 二—IgA (和光純達 1368 1301 1038	277.2 5.1 1.9 薬) 286 275 270	3.4 -0.6 -2.4	3.2 -0.8 -2.6	304.7 5.2 1.7 321 306 301	5.3 0.4 -1.2	5.1 0.2 -1.4	332.3 6.0 1.8 343 330 326	3.0 -0.9 -2.1	3.6 -0.4 -1.6	0.81 0.89 0.90	至 (7)
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) III 1368 1301 1038 1411	277.2       5.1       1.9       薬)       286       275       270       271	3.4 -0.6 -2.4 -2.0	3.2 -0.8 -2.6 -2.3	304.7 5.2 1.7 321 306 301 305	5.3 0.4 -1.2 0.1	5.1 0.2 -1.4 -0.1	332.3 6.0 1.8 343 330 326 333	3.0 -0.9 -2.1 0.0	3.6 -0.4 -1.6 0.5	0.81 0.89 0.90 0.91	
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) 二—IgA (和光純達 1368 1301 1038	277.2 5.1 1.9 薬) 286 275 270	3.4 -0.6 -2.4	3.2 -0.8 -2.6	304.7 5.2 1.7 321 306 301	5.3 0.4 -1.2	5.1 0.2 -1.4	332.3 6.0 1.8 343 330 326	3.0 -0.9 -2.1	3.6 -0.4 -1.6	0.81 0.89 0.90 0.91	車 ヾ / / / / / / / / / / / / / / / / / /
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純) 1368 1301 1038 1411 9044 1529 9023	277.2 5.1 1.9 聚) 286 275 270 271 273.35 270 277	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1	304.7 5.2 1.7 321 306 301 305 301 296 304	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4	332.3 6.0 1.8 343 330 326 333 324 318 329	3.0 -0.9 -2.1 -0.0 -2.8 -4.5 -1.2	3.6 -0.4 -1.6 -0.5 -2.3 -4.0 -0.7	0.81 0.89 0.90 0.91 0.92 0.92	ロシュ(B) 和光純薬
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純) 1368 1301 1038 1411 9044 1529 9023 1505	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 277 281	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.4	304.7 5.2 1.7 321 306 301 305 301 296 304 308	5.3 0.4 -1.2 -1.3 -2.9 -0.3 1.0	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9	332.3 6.0 1.8 343 330 326 323 324 318 329 334	3.0 -0.9 -2.1 -0.0 -2.8 -4.5 -1.2 0.3	3.6 -0.4 -1.6 -0.5 -2.3 -4.0 -0.7 0.8	0.81 0.89 0.90 0.91 0.92 0.92 0.96 0.98	ロシュ(B) 和光純薬 久留米大学
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純) 1368 1301 1038 1411 9044 1529 9023 1505 2008	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 277 281 280	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.4 1.0	304.7 5.2 1.7 321 306 301 305 301 296 304 308 309	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.3 1.2	3.6 -0.4 -1.6 -0.5 -2.3 -4.0 -0.7 -0.8 1.8	0.81 0.89 0.90 0.91 0.92 0.92 0.96 0.98	ロシュ(B) 和光純薬
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 277 281 280 276	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2 -0.2	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.4 1.0 -0.5	304.7 5.2 1.7 321 306 301 305 301 296 304 308 309 305	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.1	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337 333	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.3 1.2 0.0	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 1.8 0.5	0.81 0.89 0.90 0.91 0.92 0.92 0.96 0.98 0.98	ロシュ(B) 和光純薬 久留米大学
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純) 1368 1301 1038 1411 9044 1529 9023 1505 2008	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 277 281 280	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.4 1.0	304.7 5.2 1.7 321 306 301 305 301 296 304 308 309	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.3 1.2	3.6 -0.4 -1.6 -0.5 -2.3 -4.0 -0.7 -0.8 1.8	0.81 0.89 0.90 0.91 0.92 0.92 0.96 0.98	ロシュ(B) 和光純薬 久留米大学
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 277 281 280 276 285 285 281.9	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.4 1.0 -0.5 2.8	304.7 5.2 1.7 321 306 301 305 301 296 304 308 309 305 309 306 298	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.1	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337 337 337 325	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.3 1.2	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 1.8 0.5	0.81 0.89 0.90 0.91 0.92 0.92 0.96 0.98 0.98 1.08 1.13 1.18	19½ (B) 和光純薬 久留米大学 佐賀大学
オートグ	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL)	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 277 281 280 276 285 285 278 278 278	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 1.9	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.0 -0.5 2.8 1.7	304.7 5.2 1.7 321 306 301 305 301 296 304 308 309 305 309 306 309 305 305 307 306 308 309 309 309 309 309 309 309 309	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.1 1.4 0.5	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337 337 337 325 331.2	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.3 1.2 0.0 1.2	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 0.5 1.8	0.81 0.89 0.90 0.91 0.92 0.92 0.96 0.98 0.98 1.08	19½ (B) 和光純薬 久留米大学 佐賀大学
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) =—IgA (和光純) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL)	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 277 281 280 276 285 285 285 278 278 278 278 278 278 278 278	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 1.9	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.0 -0.5 2.8 1.7	304.7 5.2 1.7 321 306 301 305 301 296 304 308 309 305 309 305 309 305 305 306 307 308 309 309 305 306 307 308 308 309 309 309 309 309 309 309 309	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.1 1.4 0.5	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337 337 337 325 331.2 6.8	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.3 1.2 0.0 1.2	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 0.5 1.8	0.81 0.89 0.90 0.91 0.92 0.92 0.96 0.98 0.98 1.08 1.13 1.18	19½ (B) 和光純薬 久留米大学 佐賀大学
	AVG (mg/dL) S D (mg/dL) C V (%)  —IgA (和光純) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) S D (mg/dL) C V (%)	277.2 5.1 1.9 聚) 286 275 270 271 273.35 270 277 281 280 276 285 285 285 278 279 271 271 271 271 271 271 271 271	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 1.9	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.0 -0.5 2.8 1.7	304.7 5.2 1.7 321 306 301 305 301 296 304 308 309 305 309 306 309 305 305 307 306 308 309 309 309 309 309 309 309 309	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.1 1.4 0.5	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337 337 337 325 331.2	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.3 1.2 0.0 1.2	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 0.5 1.8	0.81 0.89 0.90 0.91 0.92 0.92 0.96 0.98 0.98 1.08 1.13 1.18	1921(B) 和光純薬 久留米大学 佐賀大学
	AVG (mg/dL) S D (mg/dL) C V (%) =—IgA (和光純) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL)	277.2 5.1 1.9 聚) 286 275 270 271 273.35 270 277 281 280 276 285 285 285 278 279 271 271 271 271 271 271 271 271	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 1.9	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.0 -0.5 2.8 1.7	304.7 5.2 1.7 321 306 301 305 301 296 304 308 309 305 309 305 309 305 305 306 307 308 309 309 305 306 307 308 308 309 309 309 309 309 309 309 309	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.1 1.4 0.5	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337 337 337 325 331.2 6.8	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.3 1.2 0.0 1.2	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 0.5 1.8	0.81 0.89 0.90 0.91 0.92 0.92 0.96 0.98 0.98 1.08 1.13 1.18	1921(B) 和光純薬 久留米大学 佐賀大学
	AVG (mg/dL) S D (mg/dL) C V (%) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) S D (mg/dL) C V (%) gA (LSIメデ (4エノ)	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 277 277 281 280 276 285 281.9 278 279 278 279 270 277 277 277 277 277 277 277	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 1.9	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.4 1.0 -0.5 2.8 1.7	304.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 309 305 309 305 309 305 309 305 309 305 306 307 307 308 308 309 309 309 309 309 309 309 309	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.1 1.4 0.5 -2.2	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4	332.3 6.0 1.8 343 330 326 333 324 318 329 337 337 337 337 325 331.2 6.8 2.1	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.3 1.2 0.0 1.2 -2.4	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 0.5 1.8 -1.9	0.81 0.89 0.90 0.91 0.92 0.92 0.96 0.98 0.98 1.08 1.13 1.18 0.97	1921(B) 和光純薬 久留米大学 佐賀大学
	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純語) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) C V (%) gA (LSIメディエング 1403 1901 1002	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 277 281 280 276 285 281.9 278 277.3 5.4 1.9 ズン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 -0.2 3.0 1.9 0.5	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.4 1.0 -0.5 2.8 1.7 0.3	304.7 5.2 1.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 305 309 306 298 305.3 6.2 2.0 311 294 296	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 0.1 1.4 0.5 -2.2 2.0 -3.5 -2.9	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337 337 325 331.2 6.8 2.1	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.3 1.2 0.0 1.2 -2.4	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 1.8 -1.9 3.5 -2.3 -0.8	0.81 0.89 0.90 0.91 0.92 0.92 0.96 0.98 1.08 1.13 1.18 0.97	19½ (B) 和光純薬 久留米大学 佐賀大学
	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) C V (%) gA (LSIメディエンフ 1403 1901 1002 1072	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 277 281 280 276 285 281.9 278 277.3 5.4 1.9 ※)	3.4 -0.6 -2.4 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 1.9 0.5	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.4 1.0 -0.5 2.8 1.7 0.3 2.8 -2.3 -2.0 0.6	304.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 305 309 305 309 305 311 294 296 300	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.5 -2.2 2.0 -3.5 -2.9	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2 0.2	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337 337 325 331.2 6.8 2.1	3.0 -0.9 -2.1 -0.2 -4.5 -1.2 0.3 1.2 0.0 1.2 -2.4 2.7 -3.0 -1.5 -0.9	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 1.8 0.5 1.8 -1.9	0.81 0.89 0.90 0.91 0.92 0.92 0.98 0.98 1.08 1.18 0.97	nシュ(B) 和光純素 久賀 佐賀 医業 医 十字
	AVG (mg/dL) S D (mg/dL) C V (%) コーIgA (和光純) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) S D (mg/dL) C V (%) IgA (LSIメディエンフ 1403 1901 1002 1072 9009	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 277 281 280 276 285 281.9 278 277.3 5.4 1.9 ※)	3.4 -0.6 -2.4 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 0.5 1.2 -3.8 -3.5 -0.9 -4.1	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.4 1.0 -0.5 2.8 1.7 0.3 2.8 -2.0 0.6 -2.6	304.7 5.2 1.7 5.2 1.7 321 306 301 305 301 296 304 308 309 305 309 306 298 305.3 6.2 2.0 311 294 296 300 291	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.5 -2.2 2.0 -3.5 -2.9 -1.6 -4.5	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2 0.2 -2.8	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337 337 325 331.2 6.8 2.1	3.0 -0.9 -2.1 -0.2 -2.8 -4.5 -1.2 0.3 1.2 0.0 1.2 -2.4 -2.4	3.6 -0.4 -1.6 -0.5 -2.3 -4.0 -0.7 0.8 1.8 0.5 1.8 -1.9 3.5 -2.3 -4.0 -0.5	0.81 0.89 0.90 0.91 0.92 0.92 0.98 0.98 1.08 1.13 1.18 0.97	10½1(B) 和光純薬 久留大 佐賀大 産業医大
	AVG (mg/dL) S D (mg/dL) C V (%) コーIgA (和光純語 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) S D (mg/dL) C V (%) gA (LSIメディエンフ 1403 1901 1002 1072 9009 1339	277.2 5.1 1.9 \$\bar{x}\$)  286 275 270 271 273.35 270 271 280 276 285 281.9 278 279 278 279 270 280 276 285 281.9 278 279 279 279 270 280 270 271 280 276 285 285 281.9 276 277 278 279 279 279 279 279 279 279 279	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.2 -0.2 3.0 1.9 0.5	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.0 -0.5 2.8 1.7 0.3	304.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 305 309 305 309 305 309 305 309 306 298 305.3 6.2 2.0 311 294 294 300 291 302	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.5 -2.2 2.0 -3.5 -2.9 -1.6 -4.5 -0.9	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2 0.2 -2.8 0.8	332.3 6.0 1.8 343 330 326 333 324 318 329 337 337 337 337 325 31.2 6.8 2.1 342 323 323 324 337 337 337 337 337 337 337 337 337 33	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.0 1.2 -2.4  2.7 -3.0 -3.3 -3.3 -3.9	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 0.5 1.8 1.8 -1.9 3.5 -2.3 -0.2 -2.6 -1.6	1.01  0.81  0.89  0.90  0.91  0.92  0.92  0.96  0.98  1.08  1.13  1.18  0.97	nシュ(B) 和光純素 久賀 佐賀 医業 医十 十字
	AVG (mg/dL) S D (mg/dL) C V (%) コーIgA (和光純) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) S D (mg/dL) C V (%) IgA (LSIメディエンフ 1403 1901 1002 1072 9009	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 277 281 280 276 285 281.9 278 277.3 5.4 1.9 ※)	3.4 -0.6 -2.4 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 0.5 1.2 -3.8 -3.5 -0.9 -4.1	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.4 1.0 -0.5 2.8 1.7 0.3 2.8 -2.0 0.6 -2.6	304.7 5.2 1.7 5.2 1.7 321 306 301 305 301 296 304 308 309 305 309 306 298 305.3 6.2 2.0 311 294 296 300 291	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.5 -2.2 2.0 -3.5 -2.9 -1.6 -4.5	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2 0.2 -2.8	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337 337 325 331.2 6.8 2.1	3.0 -0.9 -2.1 -0.2 -2.8 -4.5 -1.2 0.3 1.2 0.0 1.2 -2.4 -2.4	3.6 -0.4 -1.6 -0.5 -2.3 -4.0 -0.7 0.8 1.8 0.5 1.8 -1.9 3.5 -2.3 -4.0 -0.5	0.81 0.89 0.90 0.91 0.92 0.92 0.98 0.98 1.08 1.13 1.18 0.97	nシュ(B) 和光純素 久賀 佐賀 医業 医十 十字
	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純語 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) C V (%) gA (LSIメディエング 1403 1901 1002 1072 9009 1339 3048 AVG (mg/dL) S D (mg/dL) S D (mg/dL)	277.2   5.1   1.9   東	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.2 -0.2 3.0 1.9 0.5	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.0 -0.5 2.8 1.7 0.3	304.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 305 309 306 298 305.3 6.2 2.0 311 294 296 300 291 302 303 299.5 6.6	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.5 -2.2 2.0 -3.5 -2.9 -1.6 -4.5 -0.9	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2 0.2 -2.8 0.8	332.3 6.0 1.8 343 330 326 333 324 318 329 337 337 325 331.2 6.8 2.1 342 323 328 330 329 320 331 321 321 322 323 328 330 330 331 329 331 331 331 331 331 331 331 331 331 33	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.0 1.2 -2.4  2.7 -3.0 -3.3 -3.3 -3.9	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 0.5 1.8 1.8 -1.9 3.5 -2.3 -0.2 -2.6 -1.6	1.01  0.81  0.89  0.90  0.91  0.92  0.92  0.98  0.98  1.08  1.13  1.18  0.97	nシュ(B) 和光純素 久賀 佐賀 医業 医 十字
<i>ሳ</i> ፖኑם	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純語 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) C V (%) gA (LSIメディエング 1403 1901 1002 1072 9009 1339 3048 AVG (mg/dL) S D (mg/dL) C V (%)	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 271 281 280 276 285 281.9 278 277.3 5.4 1.9 ズン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.2 -0.2 3.0 1.9 0.5	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.0 -0.5 2.8 1.7 0.3	304.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 306 298 305.3 6.2 2.0 311 294 296 300 291 302 303 299.5	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.5 -2.2 2.0 -3.5 -2.9 -1.6 -4.5 -0.9	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2 0.2 -2.8 0.8	332.3 6.0 1.8 343 330 326 333 324 318 329 337 337 337 325 331.2 6.8 2.1 342 323 328 330 330 331 331 325 331 331 331 331 331 331 331 331 331 33	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.0 1.2 -2.4  2.7 -3.0 -3.3 -3.3 -3.9	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 0.5 1.8 1.8 -1.9 3.5 -2.3 -0.2 -2.6 -1.6	1.01  0.81  0.89  0.90  0.91  0.92  0.92  0.98  0.98  1.08  1.13  1.18  0.97	nシュ(B) 和光純素 久賀 佐賀 医業 医 十字
<i>ሳ</i> ፖኑם	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純語) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) C V (%) 1368 1491 1002 1072 9009 1339 3048 AVG (mg/dL) C V (%) S D (mg/dL) C V (%) IA XI「生研」(デ	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 271 281 280 276 285 281.9 278 277.3 5.4 1.9 ズ) 280 276 281.9 278 279 279 279 279 279 270 280 276 281 277 281 278 279 279 279 279 279 279 279 279	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 1.9 0.5 -1.2 -3.8 -3.5 -0.9 -4.1 -0.9 1.3	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.4 1.0 -0.5 2.8 1.7 0.3 -2.8 -2.0 0.6 -2.6 -0.6 -0.5 2.8	304.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 306 298 305.3 6.2 2.0 311 294 296 300 291 302 303 299.5 6.6 2.2	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.5 -2.2 2.0 -3.5 -2.9 -1.6 -4.5 -0.8	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2 0.2 -2.8 0.8 1.0	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337 337 325 331.2 6.8 2.1 342 323 328 330 322 336 337 325 331.2 6.8 2.1	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.3 1.2 0.0 1.2 -2.4  2.7 -3.0 -1.5 -0.9 -3.3 0.9 0.0	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 1.8 0.5 1.8 -1.9  3.5 -2.3 -0.8 -0.2 -1.6 0.7	1.01  0.81 0.89 0.90 0.91 0.92 0.92 0.98 0.98 1.08 1.13 1.18 0.97  1.00 1.02 1.05 1.08 1.08 1.11 1.18 1.08	ロジュ(B) 和光純素 久賀 佐賀 大 大 大 大 大 大 大 大 十 十 十 字 字 字
<i>ሳ</i> ፖኑם	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) C V (%) IgA (LSIメディエンフ 1403 1901 1002 1072 9009 1339 1304 AVG (mg/dL) C V (%) S D (mg/dL) C V (%) IA XI「生研」(デ 9043	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 271 281 280 276 281 278 277,3 5.4 1.9 ※) 280 266 267 274 265.3 274 280.3 274 280.3 274 280.3 274 280.3 274 280.3 274 280.3 274 280.3 275 277 281 281 278 278 278 279 279 279 279 279 279 279 279	3.4 -0.6 -2.4 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 1.9 0.5 -1.2 -3.0 1.9 0.5	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.4 1.0 -0.5 2.8 1.7 0.3 -2.0 0.6 -2.6 -0.6 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -	304.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 305 306 298 305.3 6.2 2.0 311 294 296 300 291 302 303 299.5 6.6 2.2	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.1 1.4 0.5 -2.2 2.0 -3.5 -2.9 -1.6 -4.5 -0.9 -0.8	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.8 -1.2 0.2 -2.8 0.8 1.0	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337 337 325 331.2 6.8 2.1 342 323 328 330 322 336 333 337 325 331.2 6.8 2.1	3.0 -0.9 -2.1 -0.0 -2.8 -4.5 -1.2 -0.3 -1.2 -1.2 -2.4 -1.5 -0.9 -3.3 -1.5 -0.9 -0.6	3.6 -0.4 -1.6 -0.5 -2.3 -4.0 -0.7 -0.8 -1.8 -1.9 -1.9 -1.9 -1.6 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	1.01  0.81 0.89 0.90 0.91 0.92 0.92 0.98 0.98 1.13 1.18 0.97  1.00 1.02 1.05 1.08 1.09 1.11 1.18 1.08	nシュ(B) 和光純素 久賀 佐賀 医業 医十 十字
<i>ሳ</i> ፖኑם	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純語) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) C V (%) 1368 1491 1002 1072 9009 1339 3048 AVG (mg/dL) C V (%) S D (mg/dL) C V (%) IA XI「生研」(デ	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 271 281 280 276 285 281.9 278 277.3 5.4 1.9 ズ) 280 276 281.9 278 279 279 279 279 279 270 280 276 281 277 281 278 279 279 279 279 279 279 279 279	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 1.9 0.5 -1.2 -3.8 -3.5 -0.9 -4.1 -0.9 1.3	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.4 1.0 -0.5 2.8 1.7 0.3 -2.8 -2.0 0.6 -2.6 -0.6 -0.5 2.8	304.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 306 298 305.3 6.2 2.0 311 294 296 300 291 302 303 299.5 6.6 2.2	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.5 -2.2 2.0 -3.5 -2.9 -1.6 -4.5 -0.8	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2 0.2 -2.8 0.8 1.0	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337 337 325 331.2 6.8 2.1 342 323 328 330 322 336 337 325 331.2 6.8 2.1	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.3 1.2 0.0 1.2 -2.4  2.7 -3.0 -1.5 -0.9 -3.3 0.9 0.0	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 1.8 0.5 1.8 -1.9  3.5 -2.3 -0.8 -0.2 -1.6 0.7	1.01  0.81 0.89 0.90 0.91 0.92 0.92 0.98 0.98 1.08 1.13 1.18 0.97  1.00 1.02 1.05 1.08 1.08 1.11 1.18 1.08	ロジュ(B) 和光純米大 佐賀大 医 大 十 十 十 よ に は に は は た た た た た た た た た た た た た た た
<i>ሳ</i> ፖኑם	AVG (mg/dL) S D (mg/dL) C V (%) コーIgA (和光純語 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) S D (mg/dL) C V (%) IgA (LSIメディエンフ 1403 1901 1002 1072 9009 1339 3048 AVG (mg/dL) S D (mg/dL) C V (%) IA XI「生研」(テ	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 277 278 280 276 285 281.9 278 277.3 5.4 1.9 280 266 267 274 265.3 274 280.3 272.4 6.4 2.3 **ンル生研) 280 280 280	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 1.9 0.5 -3.8 -3.5 -0.9 -4.1 -0.9 1.3	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.4 1.0 -0.5 2.8 1.7 0.3 -2.6 -2.0 -0.6 -2.9	304.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 305 309 305 309 305 309 305 309 305 309 305 309 305 309 305 309 305 309 305 309 305 309 305 309 305 309 305 309 306 298 305 300 291 302 303 299.5 6.6 2.2	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.5 -2.2 2.0 -3.5 -2.9 -1.6 -4.5 -0.9 -0.8	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2 0.2 -2.8 0.8 1.0	332.3 6.0 1.8 343 330 326 333 324 318 329 337 337 337 325 331.2 6.8 2.1 342 328 330 322 336 333 330.6 7.1 2.2	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.0 1.2 1.2 -2.4  2.7 -3.0 -1.5 -0.9 -3.3 0.9 0.0	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 0.5 1.8 0.5 1.8 -1.9  3.5 -2.3 -0.8 -0.2 -2.6 1.6 0.7	1.01  0.81 0.89 0.90 0.91 0.92 0.92 0.98 0.98 1.08 1.13 1.18 0.97  1.00 1.02 1.05 1.08 1.09 1.11 1.18 1.08	ロジュ(B) 和久佐 難米大 医 業 医 ホ ホ よ にSIメデ・ィエンス ロジュ(A)
<i>ሳ</i> ፖኑם	AVG (mg/dL) S D (mg/dL) C V (%) コーIgA (和光純語) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) S D (mg/dL) C V (%) gA (LSIメディスング 1403 1901 1002 1072 9009 1339 3048 AVG (mg/dL) S D (mg/dL) C V (%) IA XI「生研」(デ 9043 1343 9012 1031 1315	277.2   5.1   1.9   東	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 -0.2 3.0 1.9 0.5 -1.2 -3.8 -3.5 -0.9 1.3 -0.9 1.3 -0.9 -0.5	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.0 -0.5 2.8 1.7 0.3 -2.0 0.6 -2.6 -0.6 -0.5 2.8 -1.7 0.3	304.7 5.2 1.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 305 309 306 298 305.3 6.2 2.0 311 294 296 300 291 302 303 299.5 6.6 2.2 310 319 319 319 315 320	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.1 1.4 0.5 -2.2 2.0 -3.5 -2.9 -1.6 -4.5 -0.9 -0.8	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2 0.2 -2.8 0.8 1.0	332.3 6.0 1.8 343 330 326 333 324 318 329 337 337 325 331.2 6.8 2.1 342 323 328 330 326 331 337 325 331.2 347 347 347 347	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.0 1.2 1.2 -2.4  2.7 -3.0 -1.5 -0.9 0.0 0.0  -0.6 -4.6 2.1 3.0 4.8	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 0.5 1.8 1.8 -1.9  3.5 -2.3 -0.8 -0.2 -1.6 0.7  -2.5 -2.6 1.1 2.8	1.01  0.81 0.89 0.90 0.91 0.92 0.92 0.98 0.98 1.08 1.13 1.18 0.97  1.00 1.02 1.05 1.08 1.09 1.11 1.18 1.08  0.85 0.92 0.95 0.97 1.02	ロジュ(B) 和久佐 業 に 所 来大学 大 十 に に に に に に に に に た に た に た い た に た い た い
<i>ጎ</i> ፖトロ]	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純語 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) S D (mg/dL) C V (%) gA (LSIメディエング 1403 1901 1002 1072 9009 1339 3048 AVG (mg/dL) S D (mg/dL) C V (%) IA XI「生研」(デ 9043 1343 1901 1343 1901 1 (C V (%) 1 (T を) 1 (T を	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 271 281 280 276 285 281.9 278 278 277.3 5.4 1.9 ×) 280 266 267 274 265.3 272.4 6.4 2.3 **ンル生研) 280 280 276 285 287 278 278 278 278 278 278 278	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 1.9 0.5 -1.2 -3.8 -3.5 -0.9 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.0 -0.5 2.8 1.7 0.3 -2.3 -2.0 0.6 -2.6 -0.5 2.8 -1.7 0.3	304.7 5.2 1.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 306 298 305.3 6.2 2.0 311 294 296 300 291 302 303 299.5 6.6 2.2 310 319 311 315 320 303	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.1 1.4 0.5 -2.2 2.0 -3.5 -2.9 -1.6 -4.5 -0.9 -0.8	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2 0.2 -2.8 0.8 1.0	332.3 6.0 1.8 343 330 326 333 324 318 329 337 337 325 331.2 6.8 2.1 342 323 328 330 326 331 337 327 327 327 328 330 329 331 330 331 331 331 331 331 331 331 331	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.0 1.2 0.0 1.2 -2.4  2.7 -3.0 -1.5 -0.9 0.0  -0.6 -4.6 2.1 3.0 4.8 -0.3	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 0.8 0.5 1.8 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	1.01  0.81 0.89 0.90 0.91 0.92 0.92 0.98 0.98 1.08 1.13 1.18 0.97  1.00 1.02 1.05 1.08 1.01 1.18 1.08  0.85 0.92 0.92 0.92 0.92 0.93	ロジュ(B) 和久佐 業 大 経 業 大 大 大 大 大 大 大 十 よ ス イ ス ス 大 、 大 、 大 、 大 、 大 、 大 、 大 、 イ ス ス ス ス ス ス ス ス ス ス ス ス ス ス ス ス ス ス
<i>ጎ</i> ፖトロ]	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純語) 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) C V (%) gA (LSIメディエング 1403 1901 1002 1072 9009 1339 3048 AVG (mg/dL) S D (mg/dL) C V (%) IA XI「生研」(デ 9043 1343 9012 1031 1315 6008 1010	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 271 281 280 276 281,9 278 277,3 5.4 1.9 ズ) 280 266 267 274 265,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 274 280,3 275 280,3 276 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 277 280,3 278 280,3 279 280,3 279 280,3 280,3 279 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 280,3 2	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 -0.2 3.0 1.9 0.5 -1.2 -3.8 -3.5 -0.9 1.3 -0.9 1.3 -0.9 -0.5	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.0 -0.5 2.8 1.7 0.3 -2.0 0.6 -2.6 -0.6 -0.5 2.8 -1.7 0.3	304.7 5.2 1.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 306 298 305.3 6.2 2.0 311 294 296 300 291 302 303 299.5 6.6 2.2 310 319 313 315 320 303 306	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.1 1.4 0.5 -2.2 2.0 -3.5 -2.9 -1.6 -4.5 -0.9 -0.8	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2 0.2 -2.8 0.8 1.0	332.3 6.0 1.8 343 330 326 333 324 318 329 334 337 325 331.2 6.8 2.1 342 328 330 322 336 333 330 322 336 333 330.6 7.1 2.2 331 347 340 343 349 349 332 334	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.0 1.2 1.2 -2.4  2.7 -3.0 -1.5 -0.9 0.0 0.0  -0.6 -4.6 2.1 3.0 4.8	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 0.5 1.8 1.8 -1.9  3.5 -2.3 -0.8 -0.2 -1.6 0.7  -2.5 -2.6 1.1 2.8	1.01  0.81 0.89 0.90 0.91 0.92 0.92 0.98 0.98 1.08 1.13 1.18 0.97  1.00 1.02 1.05 1.08 1.09 1.11 1.18 1.08  0.85 0.92 0.95 0.97 1.02 1.08 1.11	ロジュ(B) 和久佐 業 に 所 来大学 大 十 に に に に に に に に に た に た に た い た に た い た い
<i>ሳ</i> ፖኑם	AVG (mg/dL) S D (mg/dL) C V (%) =-IgA (和光純語 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) S D (mg/dL) C V (%) gA (LSIメディエング 1403 1901 1002 1072 9009 1339 3048 AVG (mg/dL) S D (mg/dL) C V (%) IA XI「生研」(デ 9043 1343 1901 1343 1901 1 (C V (%) 1 (T を) 1 (T を	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 271 281 280 276 285 281.9 278 278 277.3 5.4 1.9 ×) 280 266 267 274 265.3 272.4 6.4 2.3 **ンル生研) 280 280 276 285 287 278 278 278 278 278 278 278	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 1.9 0.5 -1.2 -3.8 -3.5 -0.9 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.0 -0.5 2.8 1.7 0.3 -2.3 -2.0 0.6 -2.6 -0.5 2.8 -1.7 0.3	304.7 5.2 1.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 306 298 305.3 6.2 2.0 311 294 296 300 291 302 303 299.5 6.6 2.2 310 319 311 315 320 303	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.1 1.4 0.5 -2.2 2.0 -3.5 -2.9 -1.6 -4.5 -0.9 -0.8	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2 0.2 -2.8 0.8 1.0	332.3 6.0 1.8 343 330 326 333 324 318 329 337 337 325 331.2 6.8 2.1 342 323 328 330 326 331 337 327 327 327 328 330 329 331 330 331 331 331 331 331 331 331 331	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.0 1.2 0.0 1.2 -2.4  2.7 -3.0 -1.5 -0.9 0.0  -0.6 -4.6 2.1 3.0 4.8 -0.3	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 0.8 0.5 1.8 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	1.01  0.81 0.89 0.90 0.91 0.92 0.92 0.98 0.98 1.08 1.13 1.18 0.97  1.00 1.02 1.05 1.08 1.01 1.18 1.08  0.85 0.92 0.92 0.92 0.92 0.93	ロジュ(B) 和久佐 業 に 所 来大学 大 十 に に に に に に に に に た に た に た い た に た い た い
<i>ረ</i> ንኑם	AVG (mg/dL) S D (mg/dL) C V (%) コーIgA (和光純語 1368 1301 1038 1411 9044 1529 9023 1505 2008 1120 1337 1300 7007 AVG (mg/dL) S D (mg/dL) C V (%) I403 1901 1002 1072 9009 1339 3048 AVG (mg/dL) S D (mg/dL) C V (%) IA XIT 生研」(テ 9043 1343 9012 1031 1315 6008 1010 AVG (mg/dL)	277.2 5.1 1.9 薬) 286 275 270 271 273.35 270 271 280 276 285 281.9 278 278 279 278 279 279 271 280 276 285 281.9 278 279 279 279 270 280 276 277 280 276 285 281.9 278 279 279 279 279 279 279 279 279	3.4 -0.6 -2.4 -2.0 -1.2 -2.4 0.1 1.6 1.2 -0.2 3.0 1.9 0.5 -1.2 -3.8 -3.5 -0.9 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -	3.2 -0.8 -2.6 -2.3 -1.4 -2.6 -0.1 1.0 -0.5 2.8 1.7 0.3 -2.3 -2.0 0.6 -2.6 -0.5 2.8 -1.7 0.3	304.7 5.2 1.7 321 306 301 305 301 296 308 309 305 309 305 309 305 309 305 309 305 309 305 309 305 309 305 309 305 309 305 309 305 300 301 301 301 301 301 301 301 301 301	5.3 0.4 -1.2 0.1 -1.3 -2.9 -0.3 1.0 1.4 0.1 1.4 0.5 -2.2 2.0 -3.5 -2.9 -1.6 -4.5 -0.9 -0.8	5.1 0.2 -1.4 -0.1 -1.5 -3.1 -0.4 0.9 1.2 -0.1 1.2 0.3 -2.4 3.8 -1.8 -1.2 0.2 -2.8 0.8 1.0	332.3 6.0 1.8 343 330 326 333 324 318 329 337 337 337 335 325 36.8 2.1 342 323 328 330 322 336 333 330.6 7.1 2.2 331 347 340 343 349 339.4	3.0 -0.9 -2.1 0.0 -2.8 -4.5 -1.2 0.0 1.2 0.0 1.2 -2.4  2.7 -3.0 -1.5 -0.9 0.0  -0.6 -4.6 2.1 3.0 4.8 -0.3	3.6 -0.4 -1.6 0.5 -2.3 -4.0 -0.7 0.8 0.8 0.5 1.8 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	1.01  0.81 0.89 0.90 0.91 0.92 0.92 0.98 0.98 1.08 1.13 1.18 0.97  1.00 1.02 1.05 1.08 1.09 1.11 1.18 1.08  0.85 0.92 0.95 0.97 1.02 1.08 1.11	ロシュ(B) 和久佐 業 に M M M M M M M M M M M M M M M M M M

43 IGA 施設No.が低い順に並んでいます

施設	No. 10 PART		Lett. Par	男性基	準範囲	女性基	準範囲	試	<b>以料報告値</b>
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料12 試料13 試料	
1001	免疫比濁法(汎	ニットーボー	日立LABOSPE	93.00	393.0			○ 276.0 ○ 303.0 ○ 32	26.0
1002	免疫比濁法(汎	LSIメディエンス	日立LABOSPE	114.0	408.0			○ 267.0 ○ 296.0 ○ 32	28.0
1004	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00	393.0	93.00	393.0	○ 273.0 ○ 304.0 ○ 32	28.0
1006	免疫比濁法(汎	ニットーボー	目立LABOSPE	93.00	393.0			○ 284.0 ○ 308.0 ○ 33	38.0
	免疫比濁法(汎	デンカ生研	東芝TBA-cシリー	110.0	410.0	110.0	410.0	$\bigcirc$ 283.0 $\bigcirc$ 306.0 $\bigcirc$ 33	
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00	393.0			○ 274.0 ○ 302.0 ○ 32	
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00		93.00	393.0	O 276.0 O 305.0 O 33	
	免疫比濁法(汎	デンカ生研	東芝TBA-cシリー	93.00	393.0			$\bigcirc$ 285.0 $\bigcirc$ 315.0 $\bigcirc$ 34	
	免疫比濁法(汎	和光純薬	日立LABOSPE	93.00	393.0			$\bigcirc 270.0 \bigcirc 301.0 \bigcirc 32$	
	免疫比濁法(汎 免疫比濁法(汎	ニットーボー	日立7140-7170 日立LABOSPE	93.00 93.00	393.0	93.00	303 U	$\bigcirc$ 274.0 $\bigcirc$ 302.0 $\bigcirc$ 33 $\bigcirc$ 274.0 $\bigcirc$ 297.0 $\bigcirc$ 32	
	免疫比濁法(汎	ニットーボー	日立LABOSPE	93.00		93.00		$\bigcirc$ 286.0 $\bigcirc$ 313.0 $\bigcirc$ 34	
	免疫比濁法(汎	LSIメディエンス	目立LABOSPE	110.0	410.0			$\bigcirc$ 274.0 $\bigcirc$ 300.0 $\bigcirc$ 33	
	免疫比濁法(汎	ニットーボー	目立LABOSPE	110.0				$\bigcirc$ 281.5 $\bigcirc$ 313.0 $\bigcirc$ 34	
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	110.0	410.0			$\bigcirc$ 274.0 $\bigcirc$ 302.0 $\bigcirc$ 32	
1102	免疫比濁法(汎	ニットーボー	東芝TBA-cシリー	93.00	393.0			○ 273.0 ○ 302.0 ○ 32	28.0
1120	免疫比濁法(汎	和光純薬	東芝TBA-cシリー	93.00	393.0			○ 276.0 ○ 305.0 ○ 33	33.0
1300	免疫比濁法(汎	和光純薬	日本電子JCA-B	93.00	393.0	93.00	393.0	○ 281.9 ○ 306.3 ○ 33	37.0
1301	免疫比濁法(汎	和光純薬	日本電子JCA-B	110.0	410.0			○ 275.0 ○ 306.0 ○ 33	30.0
1302	免疫比濁法(汎	ニットーボー	ヘ・ックマン・コールター	93.00	393.0			$\bigcirc$ 275.0 $\bigcirc$ 297.0 $\bigcirc$ 32	28.0
1315	免疫比濁法(汎	デンカ生研	日本電子JCA-B	93.00	393.0	93.00	393.0	292.0 🔾 320.0 🔾 34	49.0
1316	免疫比濁法(汎	ニットーボー	日本電子JCA-B	110.0	410.0			$\bigcirc$ 275.0 $\bigcirc$ 305.0 $\bigcirc$ 33	35.0
1325	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00	393.0	93.00	393.0	○ 286.0 ○ 315.0 ○ 34	42.0
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00	393.0			O 272.0 O 303.0 O 32	
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00		93.00	393.0	O 276.0 O 304.0 O 33	
	免疫比濁法(汎	和光純薬	日本電子JCA-B	93.00	393.0			$\bigcirc$ 285.0 $\bigcirc$ 309.0 $\bigcirc$ 33	
	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	93.00	393.0	02.00	202.0	$\bigcirc 274.0 \bigcirc 302.0 \bigcirc 33$	
	免疫比濁法(汎 免疫比濁法(汎	ニットーボーデンカ生研	日本電子JCA-B ロシュコハ、ス8000c5	93.00 93.00	393.0	93.00	393.0	$\bigcirc$ 285.0 $\bigcirc$ 310.0 $\bigcirc$ 33 $\bigcirc$ 286.0 $\bigcirc$ 319.0 $\bigcirc$ 34	
	免疫比濁法(汎	和光純薬	東芝25FR_Accut	93.00	393.0			$\bigcirc$ 286.0 $\bigcirc$ 319.0 $\bigcirc$ 34	
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00	393.0			$\bigcirc$ 277.0 $\bigcirc$ 301.0 $\bigcirc$ 32	
	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	93.00		93.00	393.0	$\bigcirc$ 280.0 $\bigcirc$ 311.0 $\bigcirc$ 34	
	免疫比濁法(汎	ニットーボー	東芝TBA-cシリー	110.0	410.0			$\bigcirc$ 272.0 $\bigcirc$ 300.0 $\bigcirc$ 32	
	免疫比濁法(汎	和光純薬	日本電子JCA-B	93.00		93.00	393.0	○ 271.0 ○ 305.0 ○ 33	
1505	免疫比濁法(汎	和光純薬	目立LABOSPE	93.00	393.0			○ 281.0 ○ 308.0 ○ 33	34.0
1513	免疫比濁法(汎	ニットーボー	目立LABOSPE	93.00	393.0			○ 282.0 ○ 297.0 ○ 33	30.0
1529	免疫比濁法(汎	和光純薬	日立LABOSPE	110.0	410.0	110.0	410.0	○ 270.0 ○ 296.0 ○ 31	18.0
1901	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	110.0	410.0	110.0	410.0	○ 266.0 ○ 294.0 ○ 32	23.0
1902	免疫比濁法(汎	ニットーボー	日本電子JCA-B	90.00	400.0			○ 280.0 ○ 313.0 ○ 34	40.0
2002	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00	393.0			○ 276.0 ○ 303.0 ○ 33	
	免疫比濁法(汎	和光純薬	ロシュコハ [*] ス8000c7	93.00		93.00		O 280.0 O 309.0 O 33	
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00	393.0			O 278.4 O 305.5 O 33	
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00	393.0			$\bigcirc 271.3 \bigcirc 306.4 \bigcirc 32$	
	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	93.00		93.00	393.0	$\bigcirc 280.3 \bigcirc 302.5 \bigcirc 33$	
	免疫比濁法(汎 免疫比濁法(汎	ニットーボー	日本電子JCA-B 日本電子JCA-B	93.00 93.00	393.0 393.0	03.00	202.0	$\bigcirc$ 276.7 $\bigcirc$ 305.2 $\bigcirc$ 33 $\bigcirc$ 283.0 $\bigcirc$ 310.0 $\bigcirc$ 34	
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00		93.00		$\bigcirc$ 283.0 $\bigcirc$ 310.0 $\bigcirc$ 34	
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00	393.0	55.00	030.0	$\bigcirc$ 289.0 $\bigcirc$ 314.0 $\bigcirc$ 33	
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00	393.0			$\bigcirc$ 272.0 $\bigcirc$ 299.0 $\bigcirc$ 32	
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00		93.00	393.0	○ 283.0 ○ 310.0 ○ 33	
	免疫比濁法(汎	デンカ生研	東芝TBA-200F	93.00	393.0			○ 278.0 ○ 303.0 ○ 33	
	免疫比濁法(汎	ニットーボー	東芝TBA-200F	110.0		110.0	410.0	○ 265.0 ○ 292.0 ○ 31	
7001	免疫比濁法(汎	ニットーボー	日本電子JCA-B	110.0	410.0	110.0	410.0	○ 271.0 ○ 300.0 ○ 32	27.0
7002	免疫比濁法(汎	ニットーボー	日本電子JCA-B	93.00	393.0			○ 276.0 ○ 307.0 ○ 33	36.0
7007	免疫比濁法(汎	和光純薬	日本電子JCA-B	81.00	545.0	81.00	545.0	○ 278.0 ○ 298.0 ○ 32	25.0
	免疫比濁法(汎	ニットーボー	東芝TBA-cシリー	93.00	393.0			○ 275.0 ○ 306.0 ○ 33	32.0
7901	免疫比濁法(汎	ニットーボー	日立LABOSPE	110.0	410.0			○ 282.0 ○ 308.0 ○ 33	38.0

43 IGA 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値	
No	例足原垤	武楽/一//	70文石计	下限	上限	下限	上限	試料12	試料13	試料14	
8004	免疫比濁法(汎	ニットーボー	日本電子JCA-B	110.0	410.0			○ 276.0 ○	301.0	329.0	
9009	免疫比濁法(汎	LSIメディエンス	日立7140-7170	110.0	410.0			○ 265.3 ○	291.2	322.0	
9012	免疫比濁法(汎	デンカ生研		84.00	438.0	84.00	438.0	○ 283.0 ○	313.0 (	340.0	
9014	免疫比濁法(汎	ニットーボー	目立7140-7170					○ 282.0 ○	308.0	338.0	
9023	免疫比濁法(汎	和光純薬	目立7140-7170					○ 277.0 ○	304.0	329.0	
9043	免疫比濁法(汎	デンカ生研	ロシュコハ ス8000c5					○ 279.6 ○	309.9	330.8	
9044	免疫比濁法(汎	ロシュ・ダイアグ	ロシュコハ ス8000c7					○ 273.4 ○	300.8	323.6	
9046	免疫比濁法(汎	ニットーボー	日立7140-7170	110.0	410.0	110.0	410.0	○ 274.0 ○	302.0	325.0	


【参加状况】65 施設(前回62 施設、前々回60 施設)

【測定方法の状況】IgGと同じ。

### 【測定値の状況】

3SD 除去後の平均値、CV%と目標範囲(BA:目標値±5.0%)達成率

-	<u> </u>	<b>小</b> 一	1	=, 0	· /UC HI	小十日	<u>г</u> д ( <b>D</b> л • F		0.07	07 2 7-72 1	
		試料1	2(目標	票:Ba)			試料1	4(目标	票:Ba)		実測値/予測値
		目標範囲	50 ~	56mg	g/dL		目標範囲	107 ~	121m	ıg/dL	夫側他/ 1′側他
		平均值	CV	未達	達成率		平均値	CV	未達	達成率	S14-S12
	n	(mg/dL)	(%)	成数	(%)	n	(mg/dL)	(%)	成数	(%)	(S13-S12)×2
目標値		87.6					95.2				1.09
ニットーホー	36	86.6	1.6	1	97	37	94.1	2.0	1	97	1.01
和光純薬	13	86.2	1.5	0	100	13	93.6	1.4	0	100	0.97
LSIメディエ	7	88.2	1.6	0	100	7	95.5	1.9	0	100	1.08
デンカ生研	7	87.7	2.1	1	86	6	95.5	2.0	1	86	1.38
全施設	64	86.7	1.8	2	97	64	94.3	2.0	2	97	1.09



試料 12(x)と試料 14(y)の試薬別ツインプロット

#### 【基準範囲の状況】

基準範囲を男女別に設定している施設は共用基準範囲の採用にともなってか、昨年の43施設(78.2%)から49施設(84.4%)に増加しているが男女共通基準範囲を採用している施設が9施設(15.5%)残っている。JCCLS 共用基準範囲の男性33~183mg/dL、女性50~269mg/dLに設定している施設は31施設(56.4%)から41施設(70.7%)に増加し、血漿蛋白基準範囲設定プロジェクトチームの男性33~190mg/dL、女性46~260mg/dLに設定している施設は11施設(20.0%)から7施設(12.1%)に減少している。

#### 【まとめ】

希釈を行わないプール血清では良好な収束がみられた。3SDを外れる施設が試料12で1施設、試料14で1施設あったがSD幅が収束のため小さくなっているので問題ないと思われる。施設No9046は昨年も目標範囲から外れているがこれは試薬とかの報告値である。

IgM (No.13でソート)

			, ()			3SD 除夕	<b>k</b>		未達成							
施設コード		3SDカット		î	式 米 3SDカット			3SDカット			适囲(M)		色囲(F)	メーカー	使用試薬名	
	No.12	SDI	BA	No.13	SDI	Ва	No.14	SDI	Ва	下限	上限	下限	上限	7-71-		
9043	82.83	-2.5	-5.4	85.70	-2.3	-5.9	87.87	-3.5	-7.7	Maker	Maker	Maker	Maker	デンカ生研	IgM-TIA NX 「生研」	□シュ(A
9046 1102	85 85	-1.1 -1.1	-3.0 -3.0	87 87	-1.7 -1.7	-4.5 -4.5	90 92	-2.3 -1.2	-5.5 -3.4	Maker 33	Maker 183	Maker 50	Maker 269	ニットーホ゛ー	N-7921 TIA IgM-SH	栄研化
2002	84	-1.7	-4.1	87	-1.7	-4.5	92	-1.2	-3.4	33	183	50	269		N-アッセイ TIA IgM-SH(E) N-アッセイ TIA IgM-SH(E)	1
1073	84.7	-1.3	-3.3	87.2	-1.6	-4.3	90.5	-2.0	-4.9	33	190	33	190	/	N-アッセイ TIA IgM-SH	1
1300	84.7	-1.3	-3.3	87.7	-1.3	-3.7	93.3	-0.5	-2.0	33	183	50	269		オートワコー IgM・ N	産業医
1062	85	-1.1	-3.0	88	-1.1	-3.4	93	-0.7	-2.3	33	183	50	269	ニットーホ゛ー	N-アッセイ TIA IgM-SH	
1402	86	-0.5	-1.8	88	-1.1	-3.4	93	-0.7	-2.3	33	183	50	269	ニットーホ゛ー	N-アッセイ TIA IgM-SH	
5005	85	-1.1	-3.0	88	-1.1	-3.4	92	-1.2	-3.4	33	183	50	269	71.	N-アッセイ TIA IgM-SH	
7011	85	-1.1	-3.0	88	-1.1	-3.4	93	-0.7	-2.3	33	183	50	269	/	N-アッセイ TIA IgM-SH(E)	
1038	85	-1.1	-3.0	88	-1.1	-3.4	93	-0.7	-2.3	33	183	50	269	11170710710	オートワコー IgM・ N	-
1120 7007	85 85	-1.1 -1.1	-3.0 -3.0	88 88	-1.1 -1.1	-3.4	92 93	-1.2 -0.7	-3.4	33 35	183 305	50 35	269 305	11170110710	オートワコー IgM・ N オートワコー IgM・ N	+
9023	86	-0.5	-1.8	88	-1.1	-3.4	91	-1.8	-4.4	Maker	Maker	Maker	Maker	和光純薬和光純薬	オートワコー IgM・ N	和光絲
1010	87	0.2	-0.7	89	-0.6	-2.3	94	-0.2	-1.3	33	190	46	260		IgM-TIA NX 「生研」	1476/
9012	86	-0.5	-1.8	89	-0.6	-2.3	94	-0.2	-1.3	Maker	Maker	Maker	Maker	デンカ生研	IgM-TIA NX 「生研」	デンカク
1329	86	-0.5	-1.8	89	-0.6	-2.3	95	0.4	-0.2	33	183	50	269		N-アッセイ TIA IgM-SH	1
1513	88	0.8	0.5	89	-0.6	-2.3	92	-1.2	-3.4	33	183	50	269	ニットーホ゛ー	N-アッセイ TIA IgM-SH	聖マリア
1316	85	-1.1	-3.0	89	-0.6	-2.3	94	-0.2	-1.3	35	220			ニットーホ゛ー	N-アッセイ TIA IgM-SH(E)	
7001	85	-1.1	-3.0	89	-0.6	-2.3	93	-0.7	-2.3	33	190	46	260	/	N-アッセイ TIA IgM-SH(E)	1
1368	85	-1.1	-3.0	89	-0.6	-2.3	93	-0.7	-2.3	33	183	50	269		オートワコー IgM・ N	1
1505	86	-0.5	-1.8	89	-0.6	-2.3	93	-0.7	-2.3	33	183	50		和光純薬	オートワコー IgM・ N	久留米:
3001	85.6	-0.7	-2.3	89.5	-0.4	-1.8	93.8	-0.3	-1.5	33 Malson	183	50 Malson	269 Molson	ニットーホー	N-アッセイ TIA IgM-SH	
9009	86.5 88	-0.1 0.8	-1.3 0.5	89.8 90	-0.2 -0.1	-1.4	94 95	-0.2 0.4	-1.3	Maker 33	Maker 183	Maker 50	Maker 269	LSIメディエンス デンカ生研	イアトロ IgM IgM-TIA NX 「生研」	LSI/7°
6008	86	-0.5	-1.8	90	-0.1	-1.2	95	0.4	-0.2	33	183	50		デンカ生研	IgM-TIA NX 「生研」	宮崎
1018	87	0.2	-0.7	90	-0.1	-1.2	94	-0.2	-1.3	33	183	50	269		N-アッセイ TIA IgM-SH	四門人
1040	88	0.8	0.5	90	-0.1	-1.2	95	0.4	-0.2	33	183	50	269	/	N-アッセイ TIA IgM-SH	1
1302	87	0.2	-0.7	90	-0.1	-1.2	94	-0.2	-1.3	33	183	50	269		N-アッセイ TIA IgM-SH	1
1327	87	0.2	-0.7	90	-0.1	-1.2	94	-0.2	-1.3	33	183	50	269	ニットーホ゛ー	N-アッセイ TIA IgM-SH	1
1404	88	0.8	0.5	90	-0.1	-1.2	94	-0.2	-1.3	35	220			ニットーホ゛ー	N-アッセイ TIA IgM-SH	
6016	87	0.2	-0.7	90	-0.1	-1.2	93	-0.7	-2.3	35	220	35	220	ニットーホ゛ー	N-アッセイ TIA IgM-SH	
7901	86	-0.5	-1.8	90	-0.1	-1.2	94	-0.2	-1.3	35	220			ニットーホ゛ー	N-アッセイ TIA IgM-SH	1
9014	86	-0.5	-1.8	90	-0.1	-1.2	93	-0.7	-2.3	Maker	Maker	Maker	Maker	ニットーホ゛ー	N-アッセイ TIA IgM-SH	ニットー
1001	86	-0.5	-1.8	90 90	-0.1	-1.2	93 92	-0.7	-2.3	33	183 183	50 50		ニットーホー	N-79t/ TIA IgM-SH(E)	Aur ron
1004 9024	86 87.95	-0.5 0.8	-1.8 0.4	90.90	-0.1 0.4	-1.2 -0.2	94.53	-1.2 0.1	-3.4 -0.7	Maker	Maker	Maker	269 Maker	コットーボー	N-アッセイ TIA IgM-SH(E) オートワコー IgM・ N	福岡: ロシュ()
1341	88	0.8	0.4	90.90	0.4	-0.2	94.33	0.1	-0.7	33	183	50	269	-	N-79t/ TIA IgM-SH	1,27(1
1902	86	-0.5	-1.8	91	0.4	-0.1	95	0.4	-0.2	31	200	52	270	71.	N-アッセイ TIA IgM-SH	1
3056	86	-0.5	-1.8	91	0.4	-0.1	94	-0.2	-1.3	33	183	50	269		N-アッセイ TIA IgM-SH	1
3907	88	0.8	0.5	91	0.4	-0.1	96	0.9	0.8	33	190	46	260	ニットーホ゛ー	N-アッセイ TIA IgM-SH	1
7002	88	0.8	0.5	91	0.4	-0.1	95	0.4	-0.2	33	183	50	269	ニットーホ゛ー	N-アッセイ TIA IgM-SH	鹿児島
1002	88	0.8	0.5	91	0.4	-0.1	96	0.9	0.8	37	220			LSIメディエンス		福岡赤
1339	87	0.2	-0.7	91	0.4	-0.1	95	0.4	-0.2	33	183	50	269			4
1901	87	0.2	-0.7	91	0.4	-0.1	95	0.4	-0.2	33	190	46		LSIメテ゛ィエンス	-	4
1301	86	-0.5	-1.8	91	0.4	-0.1	94	-0.2	-1.3	34	220	-1		和光純薬	オートワコー IgM・ N	-
1411 2008	86 88	-0.5 0.8	-1.8 0.5	91 91	0.4	-0.1 -0.1	95 95	0.4	-0.2 -0.2	33	183 183	50 33	183	和光純薬	オートワコー IgM・ N オートワコー IgM・ N	佐賀:
3055	87.3	0.8	-0.3	91.1	0.47	0.0	94.6	0.4	-0.2	33	183	50	269		N-79t/ TIA IgM-SH	佐賀
1031	88	0.4	0.5	92	0.47	1.0	96	0.2	0.8	33	183	50		デンカ生研	IgM-TIA NX 「生研」	10% -
1006	89	1.4	1.6	92	0.9	1.0	96	0.9	0.8	33	183	50		ニットーホー	N-アッセイ TIA IgM-SH	九州
1039	88	0.8	0.5	92	0.9	1.0	95	0.4	-0.2	33	183	50	269	-	N-アッセイ TIA IgM-SH	1
8004	89	1.4	1.6	92	0.9	1.0	96	0.9	0.8	33	190	46	260	ニットーホ゛ー	N-アッセイ TIA IgM-SH	琉球
4002	86	-0.5	-1.8	92	0.9	1.0	94	-0.2	-1.3	33	183	50	269	ニットーホ゛ー	N-アッセイ TIA IgM-SH	熊本
1325	88	0.8	0.5	92	0.9	1.0	96	0.9	0.8	33	183	50	269		N-アッセイ TIA IgM-SH(E)	1
5006	88	0.8	0.5	92	0.9	1.0	97	1.5	1.9	33	183	50	269	/	N-アッセイ TIA IgM-SH(E)	大分:
1072	90	2.1	2.7	92	0.9	1.0	93	-0.7	-2.3	33	190	46		LSIメディエンス		-
1337	88	0.8	0.5	92	0.9	1.0	95	0.4	-0.2	33	183	50	269		オートワコー IgM. N	4
1529	88	0.8	0.5	92	0.9	1.0	95	0.4	-0.2	35	220	35	220	7. 7 = 7 = 714	オートワコー IgM・N	+
1403 3048	89 89.7	1.4	1.6	93 93	1.5	2.1	97 98.5	1.5 2.3	1.9 3.5	33	183 183	50 50		LSIメテ [*] イエンス LSIメテ [*] イエンス	-	+
3022	86.9	0.1	-0.8	93.6	1.8	2.7	98.3	2.0	2.9	33	183	50		ニットーホー	N-7yt/ TIA IgM-SH(E)	長崎:
1315	91	2.7	3.9	93.0	2.0	3.2	99	2.5	4.0	33	183	50		デンカ生研	IgM-TIA NX 「生研」	飯塚
1094	89	1.4	1.6	94	2.0	3.2	96	0.9	0.8	33	190	46		ニットーホー	N-アッセイ TIA IgM-SH	
1015	92	3.3	5.02	95	2.5	4.3	99	2.5	4.0	33	183	50		ニットーホ゛ー	N-7971 TIA IgM-SH(E)	1
				90.2			94.3								(/	_
VG (mg/dL)	86.7			70.2			,									

B_A = 5.0% 目標 S-12 S-13 S-14 87.6 91.1 95.2  $\begin{array}{cccc} 83 & \sim & 92 \\ 86 & \sim & 96 \\ 90 & \sim & 100 \end{array}$ 

		*/*			-		3SD 除外			未達成		
N-Ty	セイTIA IgM-SH 施設	ニットーホ`ー(ニ	ットーホ ー) 全施設	同一試薬		全施設	同一試薬		全施設	同一試薬	S14-S12	1
	コート	No.12	上加取 B _A	B _A	No.13	土,旭成 Ba	B _A	No.14	主,加京 B _A	B _A	$(S13-S12) \times 2$	
	4002	86	-1.8	-0.7	92	1.0	2.0	94	-1.3	-0.1	0.67	熊本大学
	1094	89	1.6	2.8	94	3.2	4.2	96	0.8	2.0	0.70	
	1004	86	-1.8	-0.7	90	-1.2	-0.2	92	-3.4	-2.2	0.75	福岡大学
	3056	86	-1.8	-0.7	91	-0.1	0.9	94	-1.3	-0.1	0.80	
	3022	86.9	-0.8	0.3	94	2.7	3.8	98	2.9	4.1	0.83	長崎大学
	1039	88	0.5	1.6	92	1.0	2.0	95	-0.2	1.0	0.88	
	9014	86	-1.8	-0.7	90 90	-1.2	-0.2	93	-2.3	-1.2	0.88	ニットーホ゛ー
	1001 1902	86 86	-1.8 -1.8	-0.7 -0.7	90	-1.2 -0.1	-0.2 0.9	95	-2.3 -0.2	-1.2 1.0	0.88	
	3055	87.3	-0.3	0.8	91	0.0	1.0	95	-0.2	0.5	0.96	諫早
	6016	87.3	-0.7	0.5	90	-1.2	-0.2	93	-2.3	-1.2	1.00	17水十
	7901	86	-1.8	-0.7	90	-1.2	-0.2	94	-1.3	-0.1	1.00	
	1325	88	0.5	1.6	92	1.0	2.0	96	0.8	2.0	1.00	
	7001	85	-3.0	-1.9	89	-2.3	-1.3	93	-2.3	-1.2	1.00	
	3001	85.6	-2.3	-1.2	90	-1.8	-0.7	94	-1.5	-0.3	1.05	
	1316	85	-3.0	-1.9	89	-2.3	-1.3	94	-1.3	-0.1	1.13	
	5006	88	0.5	1.6	92	1.0	2.0	97	1.9	3.1	1.13	大分大学
	1073	84.7	-3.3	-2.2	87	-4.3	-3.3	91	-4.9	-3.8	1.16	
	1006	89	1.6	2.8	92	1.0 -1.2	2.0 -0.2	96 94	0.8 -1.3	2.0	1.17	九州大学
	1018 1302	87 87	-0.7 -0.7	0.5 0.5	90 90	-1.2	-0.2	94	-1.3	-0.1 -0.1	1.17 1.17	
	1302	87	-0.7	0.5	90	-1.2	-0.2	94	-1.3	-0.1	1.17	
	1341	88	0.5	1.6	91	-0.1	0.9	95	-0.2	1.0	1.17	
	5005	85	-3.0	-1.9	88	-3.4	-2.4	92	-3.4	-2.2	1.17	1
	7002	88	0.5	1.6	91	-0.1	0.9	95	-0.2	1.0	1.17	鹿児島大学
	8004	89	1.6	2.8	92	1.0	2.0	96	0.8	2.0	1.17	琉球大学
	1015	92	5.0	6.2	95	4.3	5.4	99	4.0	5.2	1.17	
	9046	85	-3.0	-1.9	87	-4.5	-3.5	90	-5.5	-4.4	1.25	栄研化学
	1062	85	-3.0	-1.9	88	-3.4	-2.4	93	-2.3	-1.2	1.33	
	3907	88	0.5	1.6	91	-0.1	0.9	96	0.8	2.0	1.33	
	2002 7011	84 85	-4.1 -3.0	-3.0 -1.9	87 88	-4.5 -3.4	-3.5 -2.4	92 93	-3.4 -2.3	-2.2 -1.2	1.33 1.33	-
	1329	86	-1.8	-0.7	89	-2.3	-1.3	95	-0.2	1.0	1.50	
	1404	88	0.5	1.6	90	-1.2	-0.2	94	-1.3	-0.1	1.50	
	1040	88	0.5	1.6	90	-1.2	-0.2	95	-0.2	1.0	1.75	
	1402	86	-1.8	-0.7	88	-3.4	-2.4	93	-2.3	-1.2	1.75	
	1102	85	-3.0	-1.9	87	-4.5	-3.5	92	-3.4	-2.2	1.75	
	1513	88	0.5	1.6	89	-2.3	-1.3	92	-3.4	-2.2	2.00	聖マリア
	1313	00	0.5	1.0		-2.3	-1.5		-3.4	-2.2	2.00	主())
	AVG (mg/dL)	86.6	0.3	1.0	90.2	-2.3	-1.3	94.1	-3.4	-2.2	1.16	至 (7)
	AVG (mg/dL) S D (mg/dL)	86.6 1.4	0.3	1.0	90.2 1.9	-2.3	-1.3	94.1 1.9	-3.4	-2.2		主**//
÷\.	AVG (mg/dL) S D (mg/dL) C V (%)	86.6 1.4 1.6	0.3	1.0	90.2	-2.3	-1.3	94.1	-3.4	-2.2		至177
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純)	86.6 1.4 1.6 薬)			90.2 1.9 2.1			94.1 1.9 2.0			1.16	至(1)
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純)	86.6 1.4 1.6 薬)	-1.8	-0.2	90.2 1.9 2.1	-0.1	1.5	94.1 1.9 2.0	-1.3	0.4	0.80	至(1)
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純)	86.6 1.4 1.6 薬)			90.2 1.9 2.1			94.1 1.9 2.0			1.16	至(1)
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純) 1301 1337	86.6 1.4 1.6 期) 86 88	-1.8 0.5	-0.2 2.1	90.2 1.9 2.1 91 92	-0.1 1.0	1.5 2.6	94.1 1.9 2.0 94 95	-1.3 -0.2	0.4	0.80 0.88	至(1)
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) ¬—IgM (和光純) 1301 1337 1529	86.6 1.4 1.6 薬) 86 88 88	-1.8 0.5 0.5	-0.2 2.1 2.1	90.2 1.9 2.1 91 92 92	-0.1 1.0 1.0	1.5 2.6 2.6	94.1 1.9 2.0 94 95 95	-1.3 -0.2 -0.2	0.4 1.5 1.5	0.80 0.88 0.88	至初
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) =-1gM (和光純 1301 1337 1529 1411 1368 9024	86.6 1.4 1.6 薬) 86 88 88 86 85 87.95	-1.8 0.5 0.5 -1.8 -3.0 0.4	-0.2 2.1 2.1 -0.2 -1.4 2.0	90.2 1.9 2.1 91 92 92 92 91 89	-0.1 1.0 1.0 -0.1 -2.3 -0.2	1.5 2.6 2.6 1.5 -0.7 1.4	94.1 1.9 2.0 94 95 95 95 95 93	-1.3 -0.2 -0.2 -0.2 -0.2 -2.3 -0.7	0.4 1.5 1.5 1.5 -0.6 1.0	0.80 0.88 0.88 0.90 1.00	室 (7) Pシュ(B)
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) =-IgM (和光純 1301 1337 1529 1411 1368 9024 1120	86.6 1.4 1.6 薬) 86 88 88 86 85 87.95	-1.8 0.5 0.5 -1.8 -3.0 0.4 -3.0	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4	90.2 1.9 2.1 91 92 92 91 89 91	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9	94.1 1.9 2.0 94 95 95 95 95 93 95	-1.3 -0.2 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4	0.4 1.5 1.5 1.5 -0.6 1.0	0.80 0.88 0.88 0.90 1.00 1.11	<b>ロシュ (B)</b>
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) =-IgM (和光純 1301 1337 1529 1411 1368 9024 1120 1505	86.6 1.4 1.6 薬) 86 88 88 86 85 87.95 85	-1.8 0.5 0.5 -1.8 -3.0 0.4 -3.0 -1.8	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2	90.2 1.9 2.1 91 92 92 91 89 91 88 89	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -2.3	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -0.7	94.1 1.9 2.0 94 95 95 95 95 93 95 92	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3	0.4 1.5 1.5 1.5 -0.6 1.0 -1.7 -0.6	0.80 0.88 0.88 0.88 0.90 1.00 1.11 1.17	ロシュ(B) 久留米大学
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) =-IgM (和光純) 1301 1337 1529 1411 1368 9024 1120 1505 2008	86.6 1.4 1.6 東) 86 88 88 88 86 85 87.95 85	-1.8 0.5 0.5 -1.8 -3.0 0.4 -3.0 -1.8 0.5	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1	90.2 1.9 2.1 91 92 92 91 89 91 88 89	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -2.3 -0.1	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -0.7	94.1 1.9 2.0 94 95 95 95 95 93 95 92 93	-1.3 -0.2 -0.2 -0.2 -0.3 -0.7 -3.4 -2.3 -0.2	0.4 1.5 1.5 1.5 -0.6 1.0 -1.7 -0.6 1.5	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17	пシュ(B) 久留米大学 佐賀大学
オートワ	AVG (mg/dL) S D (mg/dL) C V (%)  二-IgM (和光純) 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023	86.6 1.4 1.6 聚) 86 88 88 86 85 87.95 85 86 88 88	-1.8 0.5 0.5 -1.8 -3.0 0.4 -3.0 -1.8 0.5 -1.8	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2	90.2 1.9 2.1 91 92 92 91 98 99 91 88 89 91 88	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -2.3 -0.1 -3.4	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -0.7 1.5 -1.9	94.1 1.9 2.0 94 95 95 95 95 93 95 92 93	-1.3 -0.2 -0.2 -0.2 -0.7 -3.4 -2.3 -0.2 -4.4	0.4 1.5 1.5 1.5 -0.6 1.0 -1.7 -0.6 1.5 -2.8	0.80 0.88 0.88 0.90 1.11 1.17 1.17 1.17	ロシュ(B) 久留米大学
<i>オー</i> トワ	AVG (mg/dL) S D (mg/dL) C V (%) =-IgM (和光純 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023	86.6 1.4 1.6 聚) 86 88 88 88 86 85 87.95 85 86 88 88	-1.8 0.5 0.5 -1.8 -3.0 0.4 -3.0 -1.8 -1.8 -3.0	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4	90.2 1.9 2.1 91 92 92 91 89 91 88 89 91 88	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -2.3 -0.1 -3.4 -3.4	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -0.7 1.5 -1.9	94.1 1.9 2.0 94 95 95 95 95 93 95 92 93 95 91	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -0.2 -4.4 -2.3	0.4 1.5 1.5 1.5 -0.6 1.0 -1.7 -0.6 1.5 -2.8	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.125 1.33	пシュ(B) 久留米大学 佐賀大学
オートワ	AVG (mg/dL) S D (mg/dL) C V (%)  二-IgM (和光純) 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023	86.6 1.4 1.6 聚) 86 88 88 86 85 87.95 85 86 88 88	-1.8 0.5 0.5 -1.8 -3.0 0.4 -3.0 -1.8 0.5 -1.8	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2	90.2 1.9 2.1 91 92 92 91 98 99 91 88 89 91 88	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -2.3 -0.1 -3.4	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -0.7 1.5 -1.9	94.1 1.9 2.0 94 95 95 95 95 93 95 92 93	-1.3 -0.2 -0.2 -0.2 -0.7 -3.4 -2.3 -0.2 -4.4	0.4 1.5 1.5 1.5 -0.6 1.0 -1.7 -0.6 1.5 -2.8	0.80 0.88 0.88 0.90 1.11 1.17 1.17 1.17	пシュ(B) 久留米大学 佐賀大学
オートワ	AVG (mg/dL) S D (mg/dL) C V (%) =-IgM (和光純道 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007	86.6 1.4 1.6 鏨) 86 88 88 88 86 85 87.95 86 88 88 88	-1.8 0.5 0.5 -1.8 -3.0 0.4 -3.0 -1.8 -1.8 -3.0 -3.0	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.4	90.2 1.9 2.1 91 92 92 91 89 91 88 89 91 88	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -2.3 -3.4 -3.4 -3.4	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -0.7 1.5 -1.9	94.1 1.9 2.0 94 95 95 95 95 95 95 95 95 95 95	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -4.4 -2.3 -2.3	0.4 1.5 1.5 1.5 -0.6 1.0 -1.7 -0.6 -1.5 -2.8 -0.6 -0.6	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.33	1921 (B) 久留米大学 在質純薬
オートワ	AVG (mg/dL) S D (mg/dL) C V (%)  1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL)	86.6 1.4 1.6 製) 86 88 88 86 85 87.95 86 88 88 86 85 87.95 86 88 88 86 87.95 86 88 88 86 87.95 86 88 88 88 88 88 88 88 88 88	-1.8 0.5 0.5 -1.8 -3.0 0.4 -3.0 -1.8 -1.8 -3.0 -3.0	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.4	90.2 1.9 2.1 91 92 92 91 89 91 88 89 91 88 88 88 88 87 1.7	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -2.3 -3.4 -3.4 -3.4	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -0.7 1.5 -1.9	94.1 1.9 2.0 94 95 95 95 95 95 92 93 95 91 93 93 93 93 93.6 1.3	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -4.4 -2.3 -2.3	0.4 1.5 1.5 1.5 -0.6 1.0 -1.7 -0.6 -1.5 -2.8 -0.6 -0.6	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.17 1.25 1.33 1.43	1921 (B) 久留米大学 在質純薬
	AVG (mg/dL) S D (mg/dL) C V (%)  1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%)	86.6 1.4 1.6 1.6 88 88 88 86 85 87.95 86 88 86 85 87.95 86 88 86 87.95 86 87.95 86 88 88 86 87.95 88 88 88 88 88 88 88 88 88 8	-1.8 0.5 0.5 -1.8 -3.0 0.4 -3.0 -1.8 -1.8 -3.0 -3.0	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.4	90.2 1.9 2.1 91 92 92 91 89 91 88 89 91 88 88 88 88	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -2.3 -3.4 -3.4 -3.4	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -0.7 1.5 -1.9	94.1 1.9 2.0 94 95 95 95 95 95 95 92 93 95 92 93 95 95 92 93 95 95 95 95 95 95 95 95 95 95	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -4.4 -2.3 -2.3	0.4 1.5 1.5 1.5 -0.6 1.0 -1.7 -0.6 -1.5 -2.8 -0.6 -0.6	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.17 1.25 1.33 1.43	1921 (B) 久留米大学 在質純薬
	AVG (mg/dL) S D (mg/dL) C V (%) □—IgM (和光純] 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) IgM (LSI ⋋ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬	86.6 1.4 1.6 88 88 88 88 85 87.95 85 86 88 88 86 85 87.95 86 87.95 88 88 88 88 88 88 88 88 88 8	-1.8 0.5 0.5 -1.8 -3.0 0.4 -3.0 -1.8 -3.0 -3.0 -3.0 -3.3	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7	90.2 1.9 2.1 91 92 92 91 89 91 88 89 91 88 88 88 89 7 1.7	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -3.4 -3.4 -3.4 -3.7	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -1.5 -1.9 -1.9 -2.2	94.1 1.9 2.0 94 95 95 95 95 93 95 91 93 93 93 93 93 1.4	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -0.2 -4.4 -2.3 -2.3 -2.0	0.4 1.5 1.5 1.5 -0.6 1.0 -1.7 -0.6 1.5 -2.8 -0.6 -0.6 -0.3	1.16  0.80  0.88  0.90  1.00  1.11  1.17  1.17  1.25  1.33  1.43  1.11	1921 (B) 久留米大学 在質純薬
	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 5008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) IgM (LSIメディエン 1072	86.6 1.4 1.6 1.6 88 88 88 88 86 85 87.95 86 88 88 86 85 87.95 86 87.95 87.95 88 88 88 88 88 88 88 88 88 8	-1.8 0.5 0.5 -1.8 -3.0 0.4 -3.0 -3.0 -1.8 -3.0 -3.0 -3.3 -3.3	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7	90.2 1.9 2.1 91 92 92 91 89 91 88 89 91 88 88 88 89.7 1.7 1.9	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -3.4 -3.4 -3.4 -3.7	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -0.7 1.5 -1.9 -1.9 -2.2	94.1 1.9 2.0 94 95 95 95 95 95 96 97 98 99 99 99 99 99 99 99 99 99	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -2.3 -2.3 -2.0	0.4 1.5 1.5 1.5 -0.6 1.0 -1.7 -1.7 -1.5 -2.8 -0.6 -0.3	1.16  0.80  0.88  0.88  0.90  1.00  1.11  1.17  1.17  1.25  1.33  1.43  1.11	1921 (B) 久留米大学 在質純薬
	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純道 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) IgM (LSLオディエン 1072 1339	86.6 1.4 1.6 聚) 86 88 88 88 86 85 87.95 86 88 86 85 87.95 86 87.95 87.95 88 88 88 88 88 88 88 88 88 8	-1.8 0.5 0.5 -1.8 -3.0 0.4 -3.0 -1.8 -1.8 -3.0 -3.0 -3.3 -3.0 -3.0	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7	90.2 1.9 2.1 91 92 92 91 89 91 88 89 91 88 88 88 88 7 1.7 1.9	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -2.3 -3.4 -3.4 -3.7	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -0.7 -1.5 -1.9 -1.9 -2.2	94.1 1.9 2.0 94 95 95 95 95 95 95 95 95 93 95 95 93 95 91 93 93 93 93 93 93 95 95 95 95 95 95 95 95 95 95	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -2.2 -4.4 -2.3 -2.0 -2.3 -2.0	0.4 1.5 1.5 1.5 -0.6 1.0 -1.7 -0.6 -1.5 -2.8 -0.6 -0.3	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.33 1.43 1.11	1921 (B) 久留米大学 在質純薬
	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) IgM (LSIメディエン 1072 1339 1403	86.6 1.4 1.6 聚) 86 88 88 88 88 85 87.95 86 86 85 87.95 86 87.95 86 87.95 87.95 88 88 88 88 88 88 88 88 88 8	-1.8 0.5 0.5 -1.8 -3.0 0.4 -3.0 -1.8 -3.0 -3.0 -3.0 -3.3 -3.0 -3.3 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.	-0.2 2.1 -0.2 -1.4 -0.2 -1.4 -0.2 2.1 -0.2 -1.4 -1.7 -1.7	90.2 1.9 2.1 91 92 92 92 91 88 89 91 88 88 88 88 87 1.7 1.9	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -3.4 -3.4 -3.7 -3.1 -3.4 -3.7	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -0.7 1.5 -1.9 -1.9 -2.2	94.1 1.9 2.0 94 95 95 95 95 95 93 95 91 93 93 93 93 93 93 93 93 93 93 93 93 93	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -2.3 -2.3 -2.0 -2.3 -2.0	0.4 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.5 2.8 -0.6 -0.6 -0.3	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.43 1.11 0.75 1.00 1.00	1921 (B) 久留米大学 在質純薬
	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) 1gM (LSIメディエン 1072 1339 1403 1901	86.6 1.4 1.6 聚) 86 88 88 88 88 85 87.95 85 86 88 86 85 87.95 86 87.95 87.95 88 88 88 88 88 88 88 88 88 8	-1.8 -0.5 -0.5 -1.8 -3.0 -1.8 -3.0 -1.8 -1.8 -3.0 -3.0 -3.3 -3.0 -3.3 -3.0 -3.3	-0.2 2.1 2.1 -0.2 -1.4 -0.2 2.1 -0.2 -1.4 -1.7 -1.7	90.2 1.9 2.1 91 92 92 92 91 88 89 91 88 88 88 88 87 1.7 1.9 92 91 91 92 91 91 92 91 91 91 92 93 94 95 96 97 97 97 97 97 97 97 97 97 97	-0.1 1.0 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -2.3 -0.1 -3.4 -3.4 -3.7	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -0.7 1.5 -1.9 -1.9 -2.2	94.1 1.9 2.0 94 95 95 95 95 95 93 95 92 93 95 91 93 93 93 93 93 93 93 93 93 95 97 95	-1.3 -0.2 -0.2 -0.2 -0.7 -3.4 -2.3 -0.2 -4.4 -2.3 -2.0 -2.0 -2.3 -0.0 -2.3 -0.0 -0.2	0.4 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.5 2.8 -0.6 -0.6 -0.3	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.43 1.11 0.75 1.00 1.00	Dジュ(B) 久留米大学 和大学薬 産業医大
	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) IgM (LSIメディエン 1072 1339 1403 1901 9009	86.6 1.4 1.6 影) 86 88 88 88 88 85 87.95 85 86 88 85 87.95 86 87 87 86.2 1.3 1.5 7.3 90 87 88 88	-1.8 0.5 0.5 -1.8 -3.0 0.4 -3.0 -1.8 -3.0 -3.3 -3.3 -3.3 -3.3 -3.6 -1.8 -3.0 -1.8 -3.0 -1.8 -3.0 -1.8 -3.0 -1.8 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.	-0.2 2.1 2.1 -0.2 -1.4 -0.2 2.1 -0.2 -1.4 -1.7 -1.7	90.2 1.9 2.1 91 92 92 92 91 88 89 91 88 88 88 88 87 1.7 1.9 92 91 91 92 91 92 91 92 91 92 91 92 93 94 95 96 97 97 97 97 97 97 97 97 97 97	-0.1 1.0 1.0 1.0 1.0 -2.3 -0.2 -3.4 -2.3 -0.1 -3.4 -3.4 -3.7	1.5 2.6 2.6 2.5 -0.7 1.4 -1.9 -0.7 1.5 -1.9 -1.9 -2.2 0.5 -0.6 -0.6 -1.9	94.1 1.9 2.0 94 95 95 95 95 95 92 93 95 91 93 93 93 93 93 93 93 94 1.4	-1.3 -0.2 -0.2 -0.2 -0.7 -3.4 -2.3 -0.2 -4.4 -2.3 -2.0 -2.0 -2.3 -2.0 -2.3	0.4 1.5 1.5 1.5 1.0 1.0 1.0 1.7 -0.6 1.5 -2.8 -0.6 -0.3	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.43 1.11 0.75 1.00 1.00 1.10	ロシェ(B) 久留米大学 和光維薬 産業医大 LSIメディエンス
	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) 1gM (LSIメディエン 1072 1339 1403 1901	86.6 1.4 1.6 聚) 86 88 88 88 88 85 87.95 85 86 88 86 85 87.95 86 87.95 87.95 88 88 88 88 88 88 88 88 88 8	-1.8 -0.5 -0.5 -1.8 -3.0 -1.8 -3.0 -1.8 -1.8 -3.0 -3.0 -3.3 -3.0 -3.3 -3.0 -3.3	-0.2 2.1 2.1 -0.2 -1.4 -0.2 2.1 -0.2 -1.4 -1.7 -1.7	90.2 1.9 2.1 91 92 92 92 91 88 89 91 88 88 88 88 87 1.7 1.9 92 91 91 92 91 91 92 91 91 91 92 93 94 95 96 97 97 97 97 97 97 97 97 97 97	-0.1 1.0 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -2.3 -0.1 -3.4 -3.4 -3.7	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -0.7 1.5 -1.9 -1.9 -2.2	94.1 1.9 2.0 94 95 95 95 95 95 93 95 92 93 95 91 93 93 93 93 93 93 93 93 93 95 97 95	-1.3 -0.2 -0.2 -0.2 -0.7 -3.4 -2.3 -0.2 -4.4 -2.3 -2.0 -2.0 -2.3 -0.0 -2.3 -0.0 -0.2	0.4 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.5 2.8 -0.6 -0.6 -0.3	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.43 1.11 0.75 1.00 1.00	Dジュ(B) 久留米大学 和大学薬 産業医大
	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) C V (%) IgM (LSIメディエン 1072 1339 1403 1901 9009 1002	86.6 1.4 1.6 88 88 88 88 86 85 87.95 86 88 88 86 85 85 81.3 1.5 2.3 2.3 3.3 3.5 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	-1.8 -0.5 -1.8 -3.0 -3.0 -1.8 -3.0 -1.8 -3.0 -3.0 -3.3 -3.3 -3.3 -3.1 -3.0 -3.3 -3.3 -3.3	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7 -1.7	90.2 1.9 2.1 91 92 92 91 89 91 88 88 88 88 87 1.7 1.9 92 91 90 91	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -3.4 -3.4 -3.7  1.0 -0.1 -0.1 -0.1	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -1.9 -1.9 -2.2 0.5 -0.6 -0.6 -1.9 -0.6	94.1 1.9 2.0 94 95 95 95 95 93 95 93 95 91 93 93 93 93 93 93 93 93 94 96	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -2.3 -2.0 -4.4 -2.3 -2.0 -1.3 -0.2 -1.3 -0.8	0.4 1.5 1.5 1.5 -0.6 1.0 -1.7 -1.7 -1.5 -2.8 -0.6 -0.3 -0.6 -0.3	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.43 1.11 0.75 1.00 1.00 1.14	ロシェ(B) 久留米大学 和光維薬 産業医大 LSIメディエンス
	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) IgM (LSLオディエン 1072 1339 1403 1901 9009 1002 3048 AVG (mg/dL) S D (mg/dL)	86.6 1.4 1.6 1.6 88 88 88 88 86 85 87.95 86 88 86 85 87.95 86 87.95 87 80.2 1.3 7.3 90 87 89 87 88 88 88 88 88 88 88 88 88	-1.8 -0.5 -1.8 -3.0 -3.0 -1.8 -3.0 -1.8 -3.0 -3.0 -3.3 -3.3 -3.3 -3.1 -3.0 -3.3 -3.3 -3.3	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7 -1.7	90.2 1.9 2.1 91 92 92 92 91 89 91 88 89 91 88 88 89 91 91 92 91 93 91 93 91 93 91.5 1.2	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -3.4 -3.4 -3.7  1.0 -0.1 -0.1 -0.1	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -1.9 -1.9 -2.2 0.5 -0.6 -0.6 -1.9 -0.6	94.1 1.9 2.0 94 95 95 95 95 95 93 95 92 93 93 93 93 93 93 93 93 94 94 95 97 95 94 96 99 95.5	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -2.3 -2.0 -4.4 -2.3 -2.0 -1.3 -0.2 -1.3 -0.8	0.4 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.5 -2.8 -0.6 -0.6 -0.3	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.43 1.11 0.75 1.00 1.00 1.14 1.33 1.33	ロシェ(B) 久留米大学 和光維薬 産業医大 LSIメディエンス
<i>ሳ</i> ፖኑロ.	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) C V (%) IgM (LSIメディエン 1072 1339 1403 1901 9009 1002 3048 AVG (mg/dL) S D (mg/dL) C V (%)	86.6 1.4 1.6 聚) 86 88 88 88 88 85 87.95 85 86 85 87.95 86 87.95 87.95 88 89 87 80 81 81 82 83 84 85 87.95 86 87.95 87.95 88 88 88 88 88 88 88 88 88 8	-1.8 -0.5 -1.8 -3.0 -3.0 -1.8 -3.0 -1.8 -3.0 -3.0 -3.3 -3.3 -3.3 -3.1 -3.0 -3.3 -3.3 -3.3	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7 -1.7	90.2 1.9 2.1 91 92 92 92 91 89 91 88 88 88 88 89 91 1.7 1.9 92 91 93 91 90 91 93 91.5	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -3.4 -3.4 -3.7  1.0 -0.1 -0.1 -0.1	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -1.9 -1.9 -2.2 0.5 -0.6 -0.6 -1.9 -0.6	94.1 1.9 2.0 94 95 95 95 95 93 95 92 93 93 93 93 93 93 93 93 94.1 1.4	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -2.3 -2.0 -4.4 -2.3 -2.0 -1.3 -0.2 -1.3 -0.8	0.4 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.5 -2.8 -0.6 -0.6 -0.3	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.43 1.11 0.75 1.00 1.00 1.14 1.33 1.33	ロシェ(B) 久留米大学 和光維薬 産業医大 LSIメディエンス
<i>ሳ</i> ፖኑロ.	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) C V (%) IgM (LSIメディエン 1372 1403 1901 9009 1002 3048 AVG (mg/dL) C V (%) S D (mg/dL) C V (%)	86.6 1.4 1.6 軽) 86 88 88 88 85 87.95 86 86 85 87.95 86 87 87 86.2 1.3 1.5 ス) 90 87 89 87 88 88 88 88 88 88 88 88 88 88 88 88	-1.8 -0.5 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7  -1.7  2.1 -1.3 0.9 -1.3 -1.9 -0.2 1.7	90.2 1.9 2.1 91 92 92 92 91 88 89 91 88 88 88 89 91 1.7 1.9 92 91 93 91 90 91 93 91.5 1.2	-0.1 1.0 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -2.3 -0.1 -3.4 -3.4 -3.7  1.0 -0.1 2.1 -0.1 -1.4 -0.1 2.1	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -1.9 -1.9 -2.2 0.5 -0.6 1.6 -0.6 -1.9	94.1 1.9 2.0 94 95 95 95 95 95 93 95 92 93 93 93 93 93 93 93 93 93 93 93 93 93	-1.3 -0.2 -0.2 -0.2 -0.3 -0.7 -3.4 -2.3 -0.2 -4.4 -2.3 -2.0 -2.3 -0.2 -1.9 -0.2 -1.3 0.8 3.5	0.4 1.5 1.5 1.5 1.6 1.0 1.0 1.7 -0.6 1.5 -2.8 -0.6 -0.3 -0.6 -0.3 -1.6 -0.5 1.6 -0.5 3.1	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.43 1.11 0.75 1.00 1.00 1.00 1.10 1.11	rジュ(B) 久佐和 産業 医 LSIメデホ++ にSIメデホ+字
<i>ሳ</i> ፖኑロ.	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) 1072 1339 1403 1901 9009 1002 3048 AVG (mg/dL) S D (mg/dL) C V (%) 17A XI「生研」(テ	86.6 1.4 1.6 薬) 86 88 88 88 88 88 85 87.95 86 88 86 85 84.7 86.2 1.3 1.5 ス) 90 87 89 87 88 88 89 87 80 80 80 80 80 80 80 80 80 80	-1.8 -0.5 -0.5 -1.8 -3.0 -1.8 -3.0 -1.8 -3.0 -3.0 -3.0 -3.0 -3.3 -3.0 -3.3 -3.0 -3.3 -3.2 -3.3 -3.3 -3.3	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7  -1.7  2.1 -1.3 0.9 -1.3 -1.9 -0.2 1.7	90.2 1.9 2.1 91 92 92 92 92 91 88 89 91 88 88 88 89.7 1.7 1.9 92 91 93 91 90 91 93 91.5 1.2 1.3	-0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.5 2.6 2.6 2.6 1.5 -0.7 1.4 -1.9 -0.7 1.5 -1.9 -1.9 -2.2 0.5 -0.6 1.6 -0.6 -0.6 -1.9 -0.6	94.1 1.9 2.0 94 95 95 95 95 95 93 95 92 93 95 91 93 93 93 93 93 93 93 93 93 93 93 93 93	-1.3 -0.2 -0.2 -0.2 -0.7 -3.4 -2.3 -0.2 -4.4 -2.3 -2.0 -2.0 -2.3 -2.0 -3.4 -4.4 -2.3 -2.3 -2.0 -3.4 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5	0.4 1.5 1.5 1.5 1.6 1.0 1.0 1.7 -0.6 1.5 -2.8 -0.6 -0.3 -2.6 -0.5 1.6 -0.5 3.1	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.43 1.11 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	ロシェ(B) 久留米大学 和光維薬 産業医大 LSIメディエンス
<i>ሳ</i> ፖኑロ.	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) IgM (LSIメディエン 1072 1339 1403 1901 9009 1002 3048 AVG (mg/dL) S D (mg/dL) C V (%) ITA XIT生研」(テ 9043 1031	86.6 1.4 1.6 88 88 88 88 88 85 87.95 85 86 85 87.95 87 86.2 1.5 ス) 90 87 88.8 89 87 87 86.5 88 89 87 87 87 87 87 88 88 88 88 88	-1.8 -0.5 -1.8 -3.0 -3.0 -1.8 -3.0 -3.0 -1.8 -3.0 -3.0 -3.3 -3.3 -3.3 -3.3 -3.3 -3.3	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7  -1.7  2.1 -1.3 0.9 -1.3 -1.9 -0.2 1.7	90.2 1.9 2.1 91 92 92 91 89 91 88 88 88 88 89 91 1.7 1.7 92 91 93 91 90 91 93 91.5 1.2 1.3	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -3.4 -3.4 -3.7  1.0 -0.1 -1.4 -0.1 -1.1 -0.1 -1.1 -1.1 -1.1 -1.1 -1.1	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -1.9 -1.9 -2.2 0.5 -0.6 -1.6 -0.6 -1.9 -0.6 1.6	94.1 1.9 2.0 94 95 95 95 95 93 95 91 93 93 93 93 1.4 93 95 97 95 94 96 99 95.5 1.8 1.9	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -2.3 -2.0 -4.4 -2.3 -2.0 -1.3 -0.2 -1.3 -0.8 -7.7 -0.8	0.4 1.5 1.5 1.5 1.6 1.0 1.0 1.7 -1.7 -1.6 1.5 -2.8 -0.6 -0.6 -0.3 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.43 1.41 0.75 1.00 1.00 1.14 1.33 1.33 1.08	ロシュ(B) 久佐和 米大学薬 大学薬 大 (ISI)メデ・ィエンス (A)
<i>ሳ</i> ፖኑロ.	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 508 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) IgM (LSI メデ・イエン 1072 1339 1403 1901 9009 1002 3048 AVG (mg/dL) C V (%) S D (mg/dL) C V (%) ITA XI「生研」(デ 9043 1031 6008	86.6 1.4 1.6 影 88 88 88 88 86 85 87.95 86 88 86 85 87.95 87 80.3 1.3 7.3 90 87 89 87 86.5 88 88 88 88 88 86 87 87 88 88 88 88 88 88 88 88	-1.8 -0.5 -1.8 -3.0 -3.0 -43.0 -3.0 -3.0 -3.3 -3.0 -3.3 -3.3 -3.	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7  -1.7  2.1 -1.3 0.9 -1.3 -1.9 -0.2 1.7	90.2 1.9 2.1 91 92 92 91 98 99 91 88 99 91 88 88 88 89.7 1.7 1.9 92 91 93 91 91 90 91 93 91.5 1.2 1.3	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -3.4 -3.4 -3.7  1.0 -0.1 2.1 -0.1 2.1 -0.1 -1.4 -0.1 2.1 -1.4 -1.1 2.1	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -1.9 -1.9 -2.2 0.5 -0.6 1.6 -0.6 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	94.1 1.9 2.0 94 95 95 95 95 93 95 93 95 91 93 93 93 93 93.6 1.3 1.4 93 95 97 95 94 96 99 95.5 1.8 1.9	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -2.0 -4.4 -2.3 -2.0 -1.9 -0.2 -1.3 -0.8 -7.7 -0.8 -0.2	0.4 1.5 1.5 1.5 1.6 1.0 1.0 1.7 -1.7 -1.6 -1.5 -2.8 -0.6 -0.3 -0.6 -0.3 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5	0.80 0.88 0.88 0.90 1.10 1.11 1.17 1.17 1.25 1.33 1.43 1.11 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.11	ロジュ(B) 久佐和 産 LSIA ロジュ (B) 米大純 医 メデ赤赤 (A) 大学薬 大 エイナ (A) 大学薬 ナ スタウ (A) 学
<i>ሳ</i> ፖኑ <b>ս</b>	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) IgM (LSIメディエン 1072 1339 1403 1901 1901 9009 1002 3048 AVG (mg/dL) S D (mg/dL) C V (%) TA XI「生研」(テ 9043 1031 6008 1315	86.6 1.4 1.6 影 88 88 88 88 86 85 87.95 85 86 85 87.95 86 87.95 87.95 87.95 88.3 84.7 86.2 1.5 ス) 90 87.85 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8	-1.8 -0.5 -1.8 -3.0 -4.4 -3.0 -1.8 -3.0 -3.0 -3.3 -3.3 -3.3 -3.3 -3.3 -3.3	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7  -1.7  -1.7  -1.7  -1.8 -1.9 -0.2 1.7  -5.6 0.4 -1.9 3.8	90.2 1.9 2.1 91 92 92 92 91 88 91 88 88 88 88 89.7 1.7 1.9 92 91 93 91 91 91 93 91.5 1.2 1.3	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -3.4 -3.4 -3.7  1.0 -0.1 2.1 -0.1 -1.4 -0.1 2.1 -1.2 3.2	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -1.9 -1.9 -1.9 -2.2 0.5 -0.6 1.6 -0.6 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.7 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -	94.1 1.9 2.0 94 95 95 95 95 95 95 93 95 91 93 93 93 93 93.6 1.4 93 95 97 95 94 96 99 95.5 1.8 1.9	-1.3 -0.2 -0.2 -0.2 -0.3 -0.7 -3.4 -2.3 -2.3 -2.0 -4.4 -2.3 -2.3 -2.0 -1.9 -0.2 -1.3 -0.8 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9	0.4 1.5 1.5 1.5 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.43 1.11 0.75 1.00 1.00 1.00 1.00 1.00 1.00	1 ³ 久佐和 産 LSI 岡 ^{1³} 宮飯 大学薬 大 ^{1⁴}
<i>ሳ</i> ፖኑロ.	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 508 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) IgM (LSI メデ・イエン 1072 1339 1403 1901 9009 1002 3048 AVG (mg/dL) C V (%) S D (mg/dL) C V (%) ITA XI「生研」(デ 9043 1031 6008	86.6 1.4 1.6 影 88 88 88 88 86 85 87.95 86 88 86 85 87.95 87 80.3 1.3 7.3 90 87 89 87 86.5 88 88 88 88 88 86 87 87 88 88 88 88 88 88 88 88	-1.8 -0.5 -1.8 -3.0 -3.0 -43.0 -3.0 -3.0 -3.3 -3.0 -3.3 -3.3 -3.	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7  -1.7  2.1 -1.3 0.9 -1.3 -1.9 -0.2 1.7	90.2 1.9 2.1 91 92 92 91 98 99 91 88 99 91 88 88 88 89.7 1.7 1.9 92 91 93 91 91 90 91 93 91.5 1.2 1.3	-0.1 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -3.4 -3.4 -3.7  1.0 -0.1 2.1 -0.1 2.1 -0.1 -1.4 -0.1 2.1 -1.4 -1.1 2.1	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -1.9 -1.9 -2.2 0.5 -0.6 1.6 -0.6 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	94.1 1.9 2.0 94 95 95 95 95 93 95 93 95 91 93 93 93 93 93.6 1.3 1.4 93 95 97 95 94 96 99 95.5 1.8 1.9	-1.3 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -2.0 -4.4 -2.3 -2.0 -1.9 -0.2 -1.3 -0.8 -7.7 -0.8 -0.2	0.4 1.5 1.5 1.5 1.6 1.0 1.0 1.7 -1.7 -1.6 -1.5 -2.8 -0.6 -0.3 -0.6 -0.3 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5 -1.6 -0.5	0.80 0.88 0.88 0.90 1.10 1.11 1.17 1.17 1.25 1.33 1.43 1.11 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.11	ロジュ(B) 久佐和 産 LSIA ロジュ (B) 米大純 医 メデ赤赤 (A) 大学薬 大 エイナ (A) 大学薬 ナ スタウ (A) 学
<i>ሳ</i> ፖኑ <b>ս</b>	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) IgM (LSLメディངངン 1072 1339 1403 1901 9009 3048 AVG (mg/dL) S D (mg/dL) C V (%) TA XI「生研」(テ 9043 1031 6008 1315	86.6 1.4 1.6 薬) 86 88 88 88 88 88 86 85 87.95 85 86 85 87.95 87 80.2 1.3 1.5 ズ) 90 87 89 87 88.8 88 89 87 80.2 1.5 ズ) 80.2 1.5 ズ) 80.2 1.6 80.2 1.7 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80	-1.8	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7  -1.7  -1.8 -1.9 -0.2 1.7  -5.6 0.4 -1.9 3.8 -1.9	90.2 1.9 2.1 91 92 92 92 91 89 91 88 88 88 88 88 89 91 1.7 1.9 92 91 93 91 93 91 91 93 91.5 1.2 1.3	-0.1 1.0 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -3.4 -3.4 -3.7  1.0 -0.1 2.1 -0.1 2.1 -0.1 2.1 -1.4 -0.1 2.1 -1.5 -1.0 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -1.9 -1.9 -2.2 0.5 -0.6 1.6 -0.6 -1.9 -0.6 -1.9 -1.9 -1.9 -1.9	94.1 1.9 2.0 94 95 95 95 95 95 93 95 95 93 95 91 93 93 93 93.6 1.3 1.4 93 95 97 95 96 99 99 95.5 1.8 1.9	-1.3 -0.2 -0.2 -0.2 -0.2 -2.3 -0.7 -3.4 -2.3 -2.0 -4.4 -2.3 -2.0 -1.3 -2.0 -2.3 -2.0 -2.3 -2.0 -2.3 -2.0 -1.3 -2.3 -2.0 -1.3 -2.3 -2.0 -1.3	0.4 1.5 1.5 1.5 1.6 1.0 1.0 1.0 1.15 1.5 1.5 1.6 1.0 1.0 1.0 1.0 1.0 1.5 1.6 1.0 1.0 1.5 1.6 1.6 1.0 1.5 1.6 1.6 1.0 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.33 1.43 1.11  0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.14 1.33 1.33 1.33 1.33 1.33 1.33 1.33	1 ³ 久佐和 産 LSI 岡 ^{1³} 宮飯 大学薬 大 ^{1⁴}
<i>ሳ</i> ፖኑ <b>ս</b>	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) S D (mg/dL) C V (%) IgM (LSIメディエン 1072 1339 1403 1901 9009 3048 AVG (mg/dL) S D (mg/dL) C V (%) TA XI「生研」(テ 9043 1031 6008 1315 9012 1010	86.6 1.4 1.6 薬) 86 88 88 88 88 88 85 87.95 85 86 85 87.95 86 87.95 87.95 88 88 86 85 87.95 87.95 88 88 88 88 88 88 88 88 88 8	-1.8 -0.5 -0.5 -1.8 -3.0 -3.0 -4 -3.0 -3.0 -3.0 -3.0 -3.3 -3.3 -3.0 -3.3 -3.3	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7  -1.7  -1.7  -1.7  -1.8 -1.9 -0.2 1.7  -5.6 -1.9 -0.8	90.2 1.9 2.1 91 92 92 92 91 89 91 88 89 91 88 88 89 91 91 92 92 91 93 91 93 91 93 91 91 93 91 93 91 94 89 89	-0.1 1.0 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -3.4 -3.4 -3.7  1.0 -0.1 2.1 -0.1 2.1 -1.4 -0.1 2.1 -1.9 -1.0 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -1.9 -1.9 -2.2 0.5 -0.6 1.6 -0.6 -1.9 -0.6 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -	94.1 1.9 2.0 94 95 95 95 95 95 95 93 95 91 93 93 93 93.6 1.3 1.4 93 95 97 95 94 96 99 95.5 1.8 1.9	-1.3 -0.2 -0.2 -0.2 -0.2 -0.3 -0.7 -3.4 -2.3 -2.3 -2.0  -2.3 -2.0  -2.3 -2.0  -2.3 -2.0  -1.3 -1.3	0.4 1.5 1.5 1.5 1.5 1.6 1.0 1.0 1.0 1.1.5 1.5 1.6 1.0 1.0 1.0 1.5 1.5 1.6 1.6 1.0 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.25 1.33 1.33 1.43 1.11  0.75 1.00 1.00 1.00 1.14 1.33 1.33 1.33 1.33 1.33 1.75	1 ³ 久佐和 産 LSI 岡 ^{1³} 宮飯 大学薬 大 ^{1⁴}
<i>ሳ</i> ፖኑ <b>ս</b>	AVG (mg/dL) S D (mg/dL) C V (%) コーIgM (和光純語 1301 1337 1529 1411 1368 9024 1120 1505 2008 9023 1038 7007 1300 AVG (mg/dL) C V (%) IgM (LSIメディエン 137 1403 1901 9009 1002 3048 AVG (mg/dL) S D (mg/dL) C V (%) IGM (LSI メディエン 1339 1403 1901 9009 1002 3048 AVG (mg/dL) C V (%) ITA XI「生研」(デ 9043 1031 6008 1315 9012 1010 1343	86.6 1.4 1.6 薬) 86 88 88 88 88 88 85 87.95 86 85 87.95 86 87.95 87 88 88 88 88 88 88 88 88 88	-1.8 -0.5 -0.5 -1.8 -3.0 -3.0 -4 -3.0 -3.0 -3.0 -3.0 -3.3 -3.3 -3.0 -3.3 -3.3	-0.2 2.1 2.1 -0.2 -1.4 2.0 -1.4 -0.2 2.1 -0.2 -1.4 -1.7  -1.7  -1.7  -1.7  -1.8 -1.9 -0.2 1.7  -5.6 -1.9 -0.8	90.2 1.9 2.1 91 92 92 92 91 88 89 91 88 88 88 88 89.7 1.7 1.9 92 91 93 91 90 91 93 91.5 1.2 1.3 85.7 92 90 94 89	-0.1 1.0 1.0 1.0 -0.1 -2.3 -0.2 -3.4 -3.4 -3.4 -3.7  1.0 -0.1 2.1 -0.1 2.1 -1.4 -0.1 2.1 -1.9 -1.0 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2	1.5 2.6 2.6 1.5 -0.7 1.4 -1.9 -1.9 -1.9 -2.2 0.5 -0.6 1.6 -0.6 -1.9 -0.6 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -	94.1 1.9 2.0 94 95 95 95 95 95 93 95 95 91 93 93 93 93 93.6 1.3 1.4 93 95 97 95 94 96 99 95.5 1.8 1.9	-1.3 -0.2 -0.2 -0.2 -0.2 -0.3 -0.7 -3.4 -2.3 -2.3 -2.0  -2.3 -2.0  -2.3 -2.0  -2.3 -2.0  -1.3 -1.3	0.4 1.5 1.5 1.5 1.5 1.6 1.0 1.0 1.0 1.1.5 1.5 1.6 1.0 1.0 1.0 1.5 1.5 1.6 1.6 1.0 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	0.80 0.88 0.88 0.90 1.00 1.11 1.17 1.17 1.17 1.25 1.33 1.33 1.43 1.11  0.75 1.00 1.00 1.00 1.00 1.14 1.33 1.33 1.33 1.33 1.35 1.75	1 ³ 久佐和 産 LSI 岡 ^{1³} 宮飯 大学薬 大 ^{1⁴}

44 IGM 施設No.が低い順に並んでいます

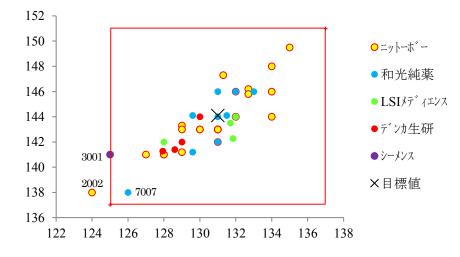
施設		- <u>业</u> ル (いより		男性基準	範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料12	試料13	試料14
1001	免疫比濁法(汎	ニットーボー	目立LABOSPE	33.00	183.0	50.00	269.0	○ 86.00 ○	90.00 〇	93.00
	免疫比濁法(汎	LSIメディエンス	日立LABOSPE		220.0			○ 88.00 ○		
1004	免疫比濁法(汎	ニットーボー	日本電子JCA-B	33.00	183.0	50.00	269.0	○ 86.00 ○	90.00 〇	92.00
1006	免疫比濁法(汎	ニットーボー	目立LABOSPE	33.00	183.0	50.00	269.0	○ 89.00 ○	92.00 〇	96.00
1010	免疫比濁法(汎	デンカ生研	東芝TBA-cシリー	33.00	190.0	46.00	260.0	○ 87.00 ○	89.00 🔾	94.00
1015	免疫比濁法(汎	ニットーボー	日本電子JCA-B	33.00	183.0	50.00	269.0	○ 92.00 ○	95.00 〇	99.00
1018	免疫比濁法(汎	ニットーボー	日本電子JCA-B	33.00	183.0	50.00	269.0	○ 87.00 ○	90.00 〇	94.00
1031	免疫比濁法(汎	デンカ生研	東芝TBA-cシリー	33.00	183.0	50.00	269.0	○ 88.00 ○	92.00 〇	96.00
1038	免疫比濁法(汎	和光純薬	目立LABOSPE	33.00	183.0	50.00	269.0	○ 85.00 ○	88.00 〇	93.00
1039	免疫比濁法(汎	ニットーボー	目立7140-7170	33.00	183.0	50.00	269.0	○ 88.00 ○	92.00 〇	95.00
1040	免疫比濁法(汎	ニットーボー	日立LABOSPE	33.00	183.0	50.00	269.0	○ 88.00 ○	90.00 〇	95.00
1062	免疫比濁法(汎	ニットーボー	日立LABOSPE	33.00	183.0	50.00	269.0	○ 85.00 ○	88.00 〇	93.00
1072	免疫比濁法(汎	LSIメディエンス	日立LABOSPE	33.00	190.0	46.00	260.0	○ 90.00 ○	92.00 〇	93.00
1073	免疫比濁法(汎	ニットーボー	日立LABOSPE	33.00	190.0	33.00	190.0	○ 84.70 ○	87.20 〇	90.50
1094	免疫比濁法(汎	ニットーボー	日本電子JCA-B	33.00	190.0	46.00	260.0	○ 89.00 ○	94.00 〇	96.00
1102	免疫比濁法(汎	ニットーボー	東芝TBA-cシリー	33.00	183.0	50.00	269.0	○ 85.00 ○	87.00 〇	92.00
1120	免疫比濁法(汎	和光純薬	東芝TBA-cシリー	33.00	183.0	50.00	269.0	○ 85.00 ○	88.00 〇	92.00
1300	免疫比濁法(汎	和光純薬	日本電子JCA-B	33.00	183.0	50.00	269.0	○ 84.70 ○	87.70 🔾	93.30
1301	免疫比濁法(汎	和光純薬	日本電子JCA-B	34.00	220.0			○ 86.00 ○	91.00 〇	94.00
1302	免疫比濁法(汎	ニットーボー	ベックマン・コールター	33.00	183.0	50.00	269.0	○ 87.00 ○	90.00 〇	94.00
1315	免疫比濁法(汎	デンカ生研	日本電子JCA-B	33.00	183.0	50.00	269.0	○ 91.00 ○	94.00 〇	99.00
1316	免疫比濁法(汎	ニットーボー	日本電子JCA-B	35.00	220.0			○ 85.00 ○	89.00 🔾	94.00
1325	免疫比濁法(汎	ニットーボー	日本電子JCA-B	33.00	183.0	50.00	269.0	○ 88.00 ○	92.00 〇	96.00
1327	免疫比濁法(汎	ニットーボー	日本電子JCA-B	33.00	183.0	50.00	269.0	○ 87.00 ○	90.00 〇	94.00
1329	免疫比濁法(汎	ニットーボー	日本電子JCA-B	33.00	183.0	50.00	269.0	○ 86.00 ○	89.00 🔾	95.00
1337	免疫比濁法(汎	和光純薬	日本電子JCA-B	33.00	183.0	50.00	269.0	○ 88.00 ○	92.00 〇	95.00
1339	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	33.00	183.0	50.00	269.0	○ 87.00 ○	91.00 〇	95.00
1341	免疫比濁法(汎	ニットーボー	日本電子JCA-B	33.00	183.0	50.00	269.0	○ 88.00 ○	91.00 〇	95.00
1343	免疫比濁法(汎	デンカ生研	ロシュコハ [*] ス8000c5	33.00	183.0	50.00	269.0	○ 88.00 ○	90.00 〇	95.00
1368	免疫比濁法(汎	和光純薬	東芝25FR_Accut	33.00	183.0	50.00	269.0	○ 85.00 ○	89.00 🔾	93.00
1402	免疫比濁法(汎	ニットーボー	日本電子JCA-B	33.00	183.0	50.00	269.0	○ 86.00 ○	88.00 〇	93.00
1403	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	33.00	183.0	50.00	269.0	○ 89.00 ○	93.00 🔾	97.00
1404	免疫比濁法(汎	ニットーボー	東芝TBA-cシリー	35.00	220.0			○ 88.00 ○	90.00 〇	94.00
1411	免疫比濁法(汎	和光純薬	日本電子JCA-B	33.00	183.0	50.00	269.0	○ 86.00 ○	91.00 〇	95.00
1505	免疫比濁法(汎	和光純薬	目立LABOSPE	33.00	183.0	50.00	269.0	○ 86.00 ○	89.00 🔾	93.00
	免疫比濁法(汎	ニットーボー	目立LABOSPE	33.00	183.0	50.00		○ 88.00 ○		
1529	免疫比濁法(汎	和光純薬	目立LABOSPE	35.00	220.0	35.00	220.0	○ 88.00 ○	92.00 〇	95.00
	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	33.00	190.0	46.00	260.0	○ 87.00 ○	91.00 〇	95.00
	免疫比濁法(汎	ニットーボー	日本電子JCA-B		200.0			○ 86.00 ○		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B		183.0			O 84.00 C		
	免疫比濁法(汎		ロシュコハ、ス8000c7		183.0			O 88.00 C		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B		183.0			○ 85.60 C		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B		183.0			○ 86.90 ○		
	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B		183.0			○ 89.70 ○		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B		183.0			○ 87.30 C		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B		183.0			O 86.00 C		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B			46.00		O 88.00 C		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B		183.0			○ 86.00 C		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B		183.0			○ 85.00 C		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B			50.00		○ 88.00 C		
	免疫比濁法(汎	デンカ生研	東芝TBA-200F		183.0			○ 86.00 C		
	免疫比濁法(汎	ニットーボー	東芝TBA-200F		220.0			○ 87.00 C		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B		190.0			○ 85.00 C		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B		183.0			○ 88.00 C		
	免疫比濁法(汎	和光純薬	日本電子JCA-B			35.00		○ 85.00 ○		
	免疫比濁法(汎	ニットーボー	東芝TBA-cシリー		183.0	ას.00		○ 85.00 C		
7901	免疫比濁法(汎	ニットーボー	目立LABOSPE	35.00	220.0			○ 86.00 ○	90.00 🔾	94.00

44 IGM 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値	
No	例足原垤	武衆/一//	7交 台	下限	上限	下限	上限	試料12	試料13	試料14	
8004	免疫比濁法(汎	ニットーボー	日本電子JCA-B	33.00	190.0	46.00	260.0	○ 89.00 ○	92.00 (	96.00	
9009	免疫比濁法(汎	LSIメディエンス	日立7140-7170	33.00	190.0	46.00	260.0	○ 86.50 ○	89.80	94.00	
9012	免疫比濁法(汎	デンカ生研		57.00	288.0	57.00	288.0	○ 86.00 ○	89.00 (	94.00	
9014	免疫比濁法(汎	ニットーボー	日立7140-7170					○ 86.00 ○	90.00 (	93.00	
9023	免疫比濁法(汎	和光純薬	日立7140-7170					○ 86.00 ○	88.00 (	91.00	
9043	免疫比濁法(汎	デンカ生研	ロシュコハ・ス8000c5					82.83	85.70	87.87	
9044	免疫比濁法(汎	ロシュ・ダイアグ	ロシュコハ・ス8000c7					○ 87.95 ○	90.90 🤇	94.53	
9046	免疫比濁法(汎	ニットーボー	目立7140-7170	35.00	220.0	35.00	220.0	○ 85.00 ○	87.00 (	90.00	

【参加状況】42施設(前回39施設、前々回40施設)

### 【測定方法の状況】


- 1. 測定原理
  - 免疫比濁(TIA)法 41 施設(97.6%)、免疫比ろう(NIA)法 1 施設(2.4%)
- 2. 測定方法
  - 汎用分析機 41 施設 (97.6%)、専用分析機 1 施設 (2.4%)

### 【測定値の状況】

3SD 除去後の平均値、CV%と目標範囲(BA:目標値±4.3%)達成率

				_,		· · · · -	<u> </u>				
		試料1	2 (目标	票:Ba)			試料1	4(目標	₹:BA)		字测荷/圣测荷
		目標範囲	56 ~	64mg	g/dL		目標範囲	121 ~	133m	ıg/dL	実測値/予測値
		平均值	CV	未達	達成率		平均値	CV	未達	達成率	S14-S12
	n	(mg/dL)	(%)	成数	(%)	n	(mg/dL)	(%)	成数	(%)	(S13-S12)×2
目標値		131.0					144.1				0.98
ニットーホ゛ー	24	130.8	1.9	1	96	24	143.7	1.8	1	96	1.04
和光純薬	9	130.5	1.5	0	100	9	143.5	1.9	1	89	0.91
LSIメテ゛ィエ	4	130.9	1.5	0	100	4	142.9	0.7	0	100	0.97
デンカ生研	4	128.9	0.7	0	100	4	142.2	0.9	0	100	0.84
シーメンス	0	125**		1	0	1	141		0	100	1.14
全施設	41	130.4	1.8	2	93	41	143.4	1.7	2	93	0.96

**3SD 除外データ



試料 12(x) と試料 14(y) の試薬別ツインプロット

#### 【基準範囲の状況】

JCCLS 共用基準範囲の 73~138mg/dL に設定している施設は 23 施設 (67.6%) から 26 施設 (70.3%) に増加し、血漿蛋白基準範囲設定プロジェクトチームの 86~160mg/dL に設定している施設は 2 施設のままであり、旧デイト・ベーリング 試薬説明書の 65~135mg/dL に設定している施設は 2 施設から 3 施設になっていた。

#### 【まとめ】

C3 と C4 ではシーシスのわエロオリー法が 1 施設残っている。従来、この施設の C3 の報告値は高値傾向にあるが今回は低値傾向にあった。 C3 では IgA と同じく 3SD を外れる施設が 1 施設も無いが、試料 12 で 2 施設、試料 13 で 3 施設、試料 14 で 2 施設、低値側に目標範囲を外れた。

### C3 (No.13でソート)

施設ュート* 1302 2002 7007	No.12 127 124 126	3SDカット SDI -1.4	Ва	試 No.13	料 3SDカット					基準	範囲			1
1302 2002 7007	127 124	SDI	BA	No 13	3SI)7191			2001				) J.	/+ m =4 == /-	
2002 7007	124	-1.4		110.13	SDI	Ва	No.14	3SDカット SDI	BA	下限	上限	メーカー	使用試薬名	
7007			-3.1	130.8	-2.5	-5.0	141	-1.0	-2.2	73		ニットーホ゛ー	N-アッセイ TIA C3-SH	
-	126	-2.7	-5.3	131	-2.4	-4.9	138	-2.3	-4.23	73	138	ニットーホ゛ー	N-アッセイ TIA C3-SH(E)	
		-1.8	-3.8	131	-2.4	-4.9	138	-2.3	-4.23	76	148	和光純薬	オートワコー C3 ・ N	
3001	125	-2.3	-4.6	132	-2.0	-4.1	141	-1.0	-2.2	73		シーメンス	N-抗血清 C3c	
7011	129	-0.6	-1.5	134.6	-1.0	-2.3	141.2	-0.9	-2.0	73		ニットーホ゛ー	N-アッセイ TIA C3-SH(E)	
1002	128	-1.0	-2.3	135	-0.9	-2.0	142	-0.6	-1.5	65		LSIメテ゛ィエンス		福岡赤十字
7001	128	-1.0	-2.3	135	-0.9	-2.0	141	-1.0	-2.2	65		ニットーホ゛ー	N-アッセイ TIA C3-SH(E)	
1329	129	-0.6	-1.5	135.2	-0.8	-1.8	143.3	0.0	-0.6	73		ニットーホ゛ー	N-7yt/ TIA C3-SH	
1513	131	0.2	0.0	136	-0.5	-1.2	143	-0.2	-0.8	73	138	/	N-77t1 TIA C3-SH	聖マリア
9012	129	-0.6	-1.5	136	-0.5	-1.2	142	-0.6	-1.5	Maker	Maker	デンカ生研	C3-TIA NX 「生研」	デンカ生研
9023	129.6	-0.3	-1.1	136.6	-0.2	-0.8	141.2	-0.9	-2.0	Maker	Maker	和光純薬	オートワコー C3 ・ N	和光純薬
	127.9333	-1.0	-2.3	136.9667	-0.1	-0.5	141.2667	-0.9	-2.0	Maker	Maker	デンカ生研	C3-TIA NX 「生研」	₽シュ(A)
1004	130	-0.2	-0.8	137	-0.1	-0.5	143	-0.2	-0.8	73		ニットーホ゛ー	N-アッセイ TIA C3-SH(E)	福岡大学
1039	132	0.7	0.8	137	-0.1	-0.5	144	0.3	-0.1	73		ニットーホ゛ー	N-アッセイ TIA C3-SH	
1094	128	-1.0	-2.3	137	-0.1	-0.5	141	-1.0	-2.2	63	134	/	N-77t1 TIA C3-SH	
1301	131.5	0.5	0.4	137	-0.1	-0.5	144.1	0.3	0.0	85		11.70,1071	オートワコー C3 ・ N	
1315	130	-0.2	-0.8	137	-0.1	-0.5	144	0.3	-0.1	73		デンカ生研	C3-TIA NX 「生研」	飯塚病院
1341	131	0.2	0.0	137	-0.1	-0.5	143	-0.2	-0.8	73		ニットーホ゛ー	N-アッセイ TIA C3-SH	
1404	129	-0.6	-1.5	137	-0.1	-0.5	143	-0.2	-0.8	63		ニットーホ゛ー	N-アッセイ TIA C3-SH	
1902	131	0.2	0.0	137	-0.1	-0.5	142	-0.6	-1.5	80		ニットーホ゛ー	N-77t/ TIA C3-SH	
5005	131	0.2	0.0	137	-0.1	-0.5	143	-0.2	-0.8	73	138	71 7	N-アッセイ TIA C3-SH	
9009	131.84	0.6	0.6	137.08	0.0	-0.5	142.28	-0.5	-1.3	Maker	Maker	LSIメディエンス		LSIメディエン
5006	128.6	-0.8	-1.8	137.6	0.2	-0.1	141.4	-0.8	-1.9	73		デンカ生研	C3-TIA X1「生研」	大分大学
1411	131	0.2	0.0	138	0.3	0.2	144	0.3	-0.1	73		和光純薬	オートワコー C3 ・ N	
1901	132	0.7	0.8	138	0.3	0.2	144	0.3	-0.1	86		LSIメテ゛ィエンス		
2008	131	0.2	0.0	138	0.3	0.2	142	-0.6	-1.5	73		和光純薬	オートワコー C4 ・ N	佐賀大学
6008	132	0.7	0.8	138	0.3	0.2	144	0.3	-0.1	73		/	N-77t/ TIA C3-SH	宮崎大学
7002	132	0.7	0.8	138	0.3	0.2	146	1.1	1.3	73	138		N-7yt/ TIA C3-SH	鹿児島大学
7901	131	0.2	0.0	138	0.3	0.2	143	-0.2	-0.8	86	160	/	N-7yt/ TIA C3-SH	1 1.1.8
9014	130	-0.2	-0.8	138	0.3	0.2	143	-0.2	-0.8	Maker	Maker	ニットーホー	N-79t1 TIA C3-SH	ニット-ホ゛-
3048	131.7	0.5	0.5	138.3	0.4	0.4	143.5	0.0	-0.4	73		LSIメテ゛ィエンス		445 -L. 1 33
4002	132.7	1.0	1.3	138.5	0.5	0.6	145.8	1.0	1.2	73 73		ニットーホー	N-79t/ TIA C3-SH	熊本大学
1300	129.6	-0.3	-1.1	138.6	0.6	0.7	144.1	0.3	0.0			和光純薬	オートワコー C3 ・ N N-アッセイ TIA C3-SH	産業医大
1073	134	1.5	2.3	139		0.9	146	1.1	1.3	65	135	· · ·		琉球大学
1073	132.7	1.0	1.3	139.9	1.1	1.6	146.2	1.2	1.5			ニットーホ゛ー	N-79t/ TIA C3-SH	4 HIL.»
1006	134	1.5	0.0	140	1.1	1.7	148	1.9	2.7	73 73		ニットーボー	N-79t/ TIA C3-SH	九州大学
1368	131	0.2		140 140	1.1	1.7	146	1.1	1.3			和光純薬	オートワコー C3・ N	h dust to
1505	134	0.7	0.8 2.3	140	1.1	1.7	146	0.3	-0.1	73 73			オートワコー C3 ・ N N-アッセイ TIA C3-SH	久留米大学
3056														目标工业
3022	131.3	0.4	0.2	140.4	1.3	2.0	147.3	1.6	2.2	73			N-79t/ TIA C3-SH(E)	<b>反</b> 畸大与
1038	133	1.1	3.1	141.7	1.5	2.4	146 149.5	2.6	1.3 3.7	73 73		和光純薬 ニットーボー		淋口
3055	135	1.9	3.1	141.7	1.8	2.9		2.0	3./	/3	138	ーットール ー	N-アッセイ TIA C3-SH	諫早
AVG (mg/dL)	130.4			137.2 2.5			143.4							
S D (mg/dL) C V (%)	1.8			1.9			1.7							

 $B_A = 4.3\%$ 

目標 S-12 131.0 125 ~ 137 S-13 137.7 131 ~ 144 S-14 144.1 137 ~ 151

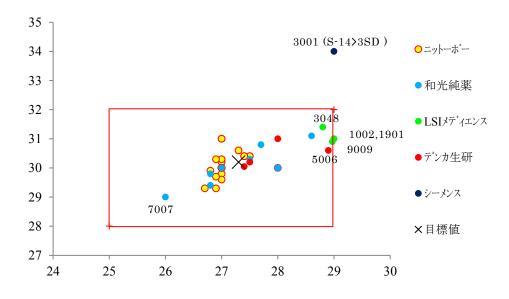
# C3 試薬別解析(実測値/予測値でソート)

ッセイ TIA C3-SH =ッ	ト-ホ゛-					3SD 除外			未達成		_
施設 コート [*]	No.12	全施設 BA	同一試薬 BA	No.13	全施設 BA	同一試薬 BA	No.14	全施設 BA	同一試薬 BA	$\frac{\text{S14-S12}}{(\text{S13-S12}) \times 2}$	:
1094	128	-2.3	-2.1	137	-0.5	-0.2	141	-2.2	-1.9	0.72	
9014	130	-0.8	-0.6	138	0.2	0.6	143	-0.8	-0.5	0.81	ニットーホ゛ー
3056	134	2.3	2.5	140	1.7	2.0	144	-0.1	0.2	0.83	
7901	131	0.0	0.2	138	0.2	0.6	143	-0.8	-0.5	0.86	
1404	129	-1.5	-1.4	137	-0.5	-0.2	143	-0.8	-0.5	0.88	
3022	131.3	0.2	0.4	140.4	2.0	2.3	147.3	2.2	2.5	0.88	長崎大学
1902	131	0.0	0.2	137	-0.5	-0.2	142	-1.5	-1.2	0.92	
1004	130	-0.8	-0.6	137	-0.5	-0.2	143	-0.8	-0.5	0.93	福岡大学
7001	128	-2.3	-2.1	135	-2.0	-1.6	141	-2.2	-1.9	0.93	
1073	132.7	1.3	1.5	139.9	1.6	2.0	146.2	1.5	1.7	0.94	
1341	131	0.0	0.2	137	-0.5	-0.2	143	-0.8	-0.5	1.00	
5005	131	0.0	0.2	137	-0.5	-0.2	143	-0.8	-0.5	1.00	Ī
6008	132	0.8	0.9	138	0.2	0.6	144	-0.1	0.2	1.00	宮崎大学
2002	124	-5.3	-5.2	131	-4.9	-4.5	138	-4.23	-4.0	1.00	1
3055	135	3.1	3.2	141.7	2.9	3.3	149.5	3.7	4.0	1.08	諫早
7011	129	-1.5	-1.4	134.6	-2.3	-1.9	141.2	-2.0	-1.8	1.09	1
4002	132.7	1.3	1.5	138.5	0.6	0.9	145.8	1.2	1.4	1.13	熊本大学
1329	129	-1.5	-1.4	135.2	-1.8	-1.5	143.3	-0.6	-0.3	1.15	,
1006	134	2.3	2.5	140	1.7	2.0	148	2.7	3.0	1.17	九州大学
7002	132	0.8	0.9	138	0.2	0.6	146	1.3	1.6	1.17	鹿児島
1039	132	0.8	0.9	137	-0.5	-0.2	144	-0.1	0.19	1.20	ルピノし西ノ
1513	131	0.0	0.9	136	-1.2	-0.2	143	-0.1	-0.5	1.20	聖マリア
8004	134	2.3	2.5	139	0.9	1.3	146	1.3	1.6	1.20	琉球大学
1302	127	-3.1	-2.9	130.8	-5.0	-4.7		-2.2	-1.9		- ルボハー
		-3.1	-2.9	137.2	-3.0	-4./	141	-2.2	-1.9	1.84	
AVG (mg/dL)	130.8									1.04	1
S D (mg/dL)	2.5			2.6			2.6				1
C V (%)	1.9			1.9			1.8				J
72-C3	121			120		0.4	1.10		1.0	0.70	],, +n ( )
2008	131	0.0	0.4	138	0.2	0.1	142	-1.5	-1.0	0.79	佐賀大学
1300	129.6	-1.1	-0.7	138.6	0.7	0.6	144.1	0.0	0.4	0.81	産業医
1038	133	1.5	1.9	141	2.4	2.3	146	1.3	1.8	0.81	1
9023	129.6	-1.1	-0.7	136.6	-0.8	-0.9	141.2	-2.0	-1.6	0.83	和光純
1368	131	0.0	0.4	140	1.7	1.6	146	1.3	1.8	0.83	1
1505	132	0.8	1.1	140	1.7	1.6	146	1.3	1.8	0.88	久留米ス
1411	131	0.0	0.4	138	0.2	0.1	144	-0.1	0.4	0.93	
1301	131.5	0.4	0.7	137	-0.5	-0.6	144.1	0.0	0.4	1.15	
7007	126	-3.8	-3.5	131	-4.9	-4.9	138	-4.23	-3.8	1.20	
AVG (mg/dL)	130.5			137.8			143.5			0.91	_
S D (mg/dL)	2.0			2.9			2.7				
C V (%)	1.5			2.1			1.9				
¹ C3		1	,		1			ı	1	1	7
3048	131.7	0.5	0.6	138.3	0.4	0.9	143.5	-0.4	0.4	0.89	1
9009	131.84	0.6	0.7	137.08	-0.5	0.0	142.28	-1.3	-0.5	1.00	LSIメディ
1002	128	-2.3	-2.2	135	-2.0	-1.5	142	-1.5	-0.7	1.00	福岡赤-
1901	132	0.8	0.9	138	0.2	0.7	144	-0.1	0.7	1.00	
AVG (mg/dL)	130.9	-		137.1			142.9			0.97	
S D (mg/dL)	1.9			1.5			1.0				1
C V (%)	1.5			1.1			0.7				1
「IA X1「生研」						l e e e e e e e e e e e e e e e e e e e				•	-
5006	128.6	-1.8	-0.2	137.6	-0.1	0.5	141.4	-1.9	-0.5	0.71	大分大
9043	128	-2.3	-0.7	137	-0.5	0.1	141	-2.0	-0.6	0.74	ロシュ (A)
9012	129	-1.5	0.1	136	-1.2	-0.7	142	-1.5	-0.1	0.93	デンカ生イ
1315	130	-0.8	0.9	137	-0.5	0.1	144	-0.1	1.3	1.00	飯塚病
AVG (mg/dL)	128.9	0.0	0.7	136.9	0.5	0.1	142.2	0.1	1.5	0.84	
S D (mg/dL)	0.9			0.7			1.3			0.04	1
C V (%)	0.9			0.7			0.9				1
LCV(%) L血清C3(NIA法)	0.7			0.5			0.7			l	J

45 C3 施設No.が低い順に並んでいます

施設	2011 et 200 200	-1. ( title.)	TAY 00	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料12	試料13	試料14
1002	免疫比濁法(汎	LSIメディエンス	目立LABOSPE	65.00	135.0			○ 128.0 ○	135.0 ℂ	142.0
1004	免疫比濁法(汎	ニットーボー	日本電子JCA-B	73.00	138.0	73.00	138.0	○ 130.0 ○	137.0 €	143.0
1006	免疫比濁法(汎	ニットーボー	目立LABOSPE	73.00	138.0			○ 134.0 ○	140.0 €	148.0
1038	免疫比濁法(汎	和光純薬	目立LABOSPE	73.00	138.0			○ 133.0 ○	141.0 ℂ	146.0
1039	免疫比濁法(汎	ニットーボー	日立7140-7170	73.00	138.0			○ 132.0 ○	137.0 €	144.0
1073	免疫比濁法(汎	ニットーボー	目立LABOSPE	60.00	125.0	60.00	125.0	○ 132.7 ○	139.9 ℂ	146.2
1094	免疫比濁法(汎	ニットーボー	日本電子JCA-B	63.00	134.0			○ 128.0 ○	137.0 €	141.0
1300	免疫比濁法(汎	和光純薬	日本電子JCA-B	73.00	138.0	73.00	138.0	○ 129.6 ○	138.6 €	144.1
1301	免疫比濁法(汎	和光純薬	日本電子JCA-B	85.00	160.0			○ 131.5 ○	137.0 €	144.1
1302	免疫比濁法(汎	ニットーボー	ヘックマン・コールター	73.00	138.0			○ 127.0	130.8 ℂ	141.0
1315	免疫比濁法(汎	デンカ生研	日本電子JCA-B	73.00	138.0	73.00	138.0	○ 130.0 ○	137.0 ○	144.0
1329	免疫比濁法(汎	ニットーボー	日本電子JCA-B	73.00	138.0	73.00	138.0	○ 129.0 ○	135.2 ℂ	143.3
1341	免疫比濁法(汎	ニットーボー	日本電子JCA-B	73.00	138.0	73.00	138.0	○ 131.0 ○	137.0 ○	143.0
1368	免疫比濁法(汎	和光純薬	東芝25FR_Accut	73.00	138.0			○ 131.0 ○	140.0 €	146.0
1404	免疫比濁法(汎	ニットーボー	東芝TBA-cシリー	63.00	134.0			○ 129.0 ○	137.0 ○	143.0
1411	免疫比濁法(汎	和光純薬	日本電子JCA-B	73.00	138.0	73.00	138.0	○ 131.0 ○	138.0 ○	144.0
1505	免疫比濁法(汎	和光純薬	目立LABOSPE	73.00	138.0			○ 132.0 ○	140.0 ○	146.0
1513	免疫比濁法(汎	ニットーボー	目立LABOSPE	73.00	138.0			○ 131.0 ○	136.0 €	143.0
1901	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	86.00	160.0	86.00	160.0	○ 132.0 ○	138.0 €	144.0
1902	免疫比濁法(汎	ニットーボー	日本電子JCA-B	80.00	140.0			○ 131.0 ○	137.0 ○	142.0
2002	免疫比濁法(汎	ニットーボー	日本電子JCA-B	73.00	138.0			124.0 ℂ	131.0 ○	138.0
2008	免疫比濁法(汎	ロシュ・ダイアグ	ロシュコハ [*] ス8000c7	73.00	138.0	73.00	138.0	○ 131.0 ○	138.0 ○	142.0
3001	免疫比ろう法	シーメンス	シーメンスHCDBN	73.00	138.0	73.00	138.0	○ 125.0 ○	132.0 ○	141.0
3022	免疫比濁法(汎	ニットーボー	日本電子JCA-B	73.00	138.0	73.00	138.0	○ 131.3 ○	140.4 🗆	147.3
3048	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	73.00	138.0	73.00	138.0	○ 131.7 ○	138.3 ○	143.5
3055	免疫比濁法(汎	ニットーボー	日本電子JCA-B	73.00	138.0			○ 135.0 ○	141.7 €	149.5
3056	免疫比濁法(汎	栄研化学	日本電子JCA-B	73.00	138.0	73.00	138.0	○ 134.0 ○	140.0 ○	144.0
4002	免疫比濁法(汎	ニットーボー	日本電子JCA-B	73.00	138.0			○ 132.7 ○	138.5 €	145.8
5005	免疫比濁法(汎	ニットーボー	日本電子JCA-B	73.00	138.0			○ 131.0 ○	137.0 €	143.0
5006	免疫比濁法(汎	デンカ生研	日本電子JCA-B	73.00	138.0	73.00	138.0	○ 128.6 ○	137.6 €	141.4
6008	免疫比濁法(汎	ニットーボー	東芝TBA-200F	73.00	138.0			○ 132.0 ○	138.0 ○	144.0
7001	免疫比濁法(汎	ニットーボー	日本電子JCA-B	65.00	135.0	65.00	135.0	○ 128.0 ○	135.0 ○	141.0
7002	免疫比濁法(汎	栄研化学	日本電子JCA-B	73.00	138.0			○ 132.0 ○	138.0 ○	146.0
7007	免疫比濁法(汎	和光純薬	日本電子JCA-B	76.00	148.0	76.00	148.0	○ 126.0 ○	131.0 ○	138.0
7011	免疫比濁法(汎	ニットーボー	東芝TBA-cシリー	73.00	138.0			○ 129.0 ○	134.6 🗆	141.2
7901	免疫比濁法(汎	ニットーボー	目立LABOSPE	86.00	160.0			○ 131.0 ○	138.0 ○	143.0
8004	免疫比濁法(汎	ニットーボー	日本電子JCA-B	65.00	135.0			○ 134.0 ○	139.0 ○	146.0
9009	免疫比濁法(汎	LSIメディエンス	目立7140-7170	65.00	135.0			○ 131.8 ○	137.1 €	142.3
9012	免疫比濁法(汎	デンカ生研		65.00	135.0	65.00	135.0	○ 129.0 ○	136.0 ○	142.0
9014	免疫比濁法(汎	ニットーボー	目立7140-7170					○ 130.0 ○	138.0 ○	143.0
9023	免疫比濁法(汎	和光純薬	目立7140-7170					○ 129.6 ○	136.6 ○	141.2
9043	免疫比濁法(汎	デンカ生研	ロシュコハ ス8000c5					○ 127.9 ○	137.0 ○	141.3

【参加状況】42 施設(前回39 施設、前々回40 施設)


【測定方法の状況】C3と同じ。

### 【測定値の状況】

SD 除去後の平均値、CV%と目標範囲(BA:目標値±5.0%)達成率

		試料1	2 (目标	票:Ba)			試料1	4(目标	票:Ba)		実測値/予測値
		目標範囲	25 ~	29mg	g/dL		目標範囲	28 ~	32mg	g/dL	天帆柜/1帆柜
		平均值	CV	未達	達成率		平均值	CV	未達	達成率	S14-S12
	n	(mg/dL)	(%)	成数	(%)	n	(mg/dL)	(%)	成数	(%)	(S13-S12)×2
目標値		27.3					30.2				1.04
ニットーホー	24	27.1	1.0	0	95	24	30.1	1.4	0	100	1.05
和光純薬	9	27.4	2.9	0	100	9	30.0	2.1	0	100	1.03
LSIメティエ	4	28.9	0.3	4	0	4	31.1	0.7	0	100	1.06
デンカ生研	4	28.0	2.5	0	100	4	30.5	1.4	0	100	1.35
シーメンス	1	29		1	0	0	34**		1	0	0.83
全施設	38	27.5	2.8	5	87	37	30.2	1.8	1	97	1.04

**3SD 除外データ



試料12(x)と試料14(y)の試薬別ツインプロット

#### 【基準範囲の状況】

JCCLS 共用基準範囲の  $11\sim31\,\text{mg/dL}$  に設定している施設は 23 施設 (67.6%) から 26 施設 (70.3%) に増加し、血漿蛋白基準範囲設定プロジェクトチームの  $17\sim45\,\text{mg/dL}$  に設定している施設は 2 施設のままであり、旧デイト、ベーリング、試薬説明書の  $13\sim35\,\text{mg/dL}$  に設定している施設は 2 施設から 3 施設になっていた。

#### 【まとめ】

ネフェロメトリー法の報告値は例年通り高値傾向が見られた。試薬別では試料 12 で LSI メ ディエンスが全施設 BA5%から高値側に外れているが、CV%は 0.3%と非常に収束している。試料 13 でも若干その傾向がみられることから濃度的に標準血清のポイントから外れているのかもしれない。

### C4 (No.13でソート)

						3SD 除外			未達成					
				討	: 料					基準	範囲			
施設コード	No.12	3SDカット SDI	Ва	No.13	3SDカット SDI	Ва	No.14	3SDカット SDI	Ва	下限	上限	メーカー	使用試薬名	
1513	26.9	-0.7	-1.5	27.9	-1.5	-2.8	29.3	-1.7	-3.0	11	31	ニットーホ゛ー	N-アッセイ TIA C4-SH	聖マリア
1004	27	-0.6	-1.1	28	-1.3	-2.4	30	-0.4	-0.7	11	31	ニットーホ゛ー	N-アッセイ TIA C4-SH(E)	福岡大学
1094	27	-0.6	-1.1	28	-1.3	-2.4	30	-0.4	-0.7	13	36	ニットーホ゛ー	N-アッセイ TIA C4-SH	
1505	27	-0.6	-1.1	28	-1.3	-2.4	30	-0.4	-0.7	11	31	和光純薬	オートワコー C4・ N	久留米大学
5005	27	-0.6	-1.1	28	-1.3	-2.4	30	-0.4	-0.7	11	31	ニットーホ゛ー	N-アッセイ TIA C4-SH	
7007	26	-1.9	-4.8	28	-1.3	-2.4	29	-2.2	-4.0	14	38	和光純薬	オートワコー C4・ N	
7011	26.7	-1.0	-2.2	28	-1.3	-2.4	29.3	-1.7	-3.0	11	31	ニットーホ゛ー	N-アッセイ TIA C4-SH(E)	
1300	26.8	-0.9	-1.8	28.1	-1.1	-2.1	29.8	-0.8	-1.3	11	31	和光純薬	オートワコー C4・ N	産業医フ
4002	27	-0.6	-1.1	28.1	-1.1	-2.1	29.6	-1.1	-2.0	11	31	ニットーホ゛ー	N-アッセイ TIA C4-SH	熊本大学
9023	26.8	-0.9	-1.8	28.1	-1.1	-2.1	29.4	-1.5	-2.6	Maker	Maker	和光純薬	オートワコー C4・ N	和光純
1302	27	-0.6	-1.1	28.3	-0.8	-1.4	30.2	0.0	0.0	11	31	ニットーホ゛ー	N-アッセイ TIA C4-SH	
1404	27	-0.6	-1.1	28.3	-0.8	-1.4	29.8	-0.8	-1.3	13	36	ニットーホ゛ー	N-アッセイ TIA C4-SH	
1902	26.8	-0.9	-1.8	28.3	-0.8	-1.4	29.9	-0.6	-1.0	11	34	ニットーホ゛ー	N-アッセイ TIA C4-SH	
2002	26.9	-0.7	-1.5	28.3	-0.8	-1.4	29.7	-1.0	-1.7	11	31	ニットーホ゛ー	N-アッセイ TIA C4-SH(E)	
1073	27	-0.6	-1.1	28.7	-0.1	0.0	30.3	0.1	0.3	16	51	ニットーホ゛ー	N-アッセイ TIA C4-SH	
9043	27.4	-0.1	0.4	28.73667	0.0	0.1	30.04667	-0.3	-0.5	Maker	Maker	デンカ生研	C4-TIANX 「生研」	₽シュ(A)
1341	27.5	0.1	0.7	28.8	0.1	0.3	30.4	0.3	0.7	11	31		N-アッセイ TIA C4-SH	. ,
3022	26.9	-0.7	-1.5	28.8	0.1	0.3	30.3	0.1	0.3	11	31	ニットーホ゛ー	N-アッセイ TIA C4-SH(E)	長崎大学
7002	27.3	-0.2	0.0	28.8	0.1	0.3	30.6	0.7	1.3	11	31		N-アッセイ TIA C4-SH	鹿児島大学
3055	27.5	0.1	0.7	28.9	0.2	0.7	30.4	0.3	0.7	11		ニットーホ゛ー	N-アッセイ TIA C4-SH	諫早
9012	27.5	0.1	0.7	28.9	0.2	0.7	30.2	0.0	0.0	Maker	Maker	デンカ生研	C4-TIA NX 「生研」	デンカ生石
1002	29	2.0	6.2	29	0.4	1.0	31	1.4	2.6	13		LSIメディエンス	17 h a C4	福岡赤十字
1006	27	-0.6	-1.1	29	0.4	1.0	30		-0.7	11			N-アッセイ TIA C4-SH	九州大学
1039	28	0.7	2.6	29	0.4	1.0	30		-0.7	11		ニットーホ゛ー	N-アッセイ TIA C4-SH	
1315	28	0.7	2.6	29	0.4	1.0	31	1.4	2.6	11		デンカ生研	C4-TIA NX 「生研」	飯塚病院
1329	27	-0.6	-1.1	29	0.4	1.0	30	-0.4	-0.7	11		ニットーホー	N-アッセイ TIA C4-SH	
1368	28	0.7	2.6	29	0.4	1.0	30		-0.7	11		和光純薬	オートワコー C4 ・ N	
2008	28	0.7	2.6	29	0.4	1.0	30		-0.7	11		和光純薬	オートワコー C5・ N	佐賀大学
3056	27	-0.6	-1.1	29	0.4	1.0	31	1.4	2.6	11		ニットーホ゛ー	N-アッセイ TIA C4-SH	1
6008	27	-0.6	-1.1	29	0.4	1.0	30	-0.4	-0.7	11		ニットーホ゛ー	N-アッセイ TIA C4-SH	宮崎大学
7001	27	-0.6	-1.1	29	0.4	1.0	31	1.4	2.6	13	35	ニットーホ゛ー	N-アッセイ TIA C4-SH(E)	
8004	27	-0.6	-1.1	29	0.4	1.0	30	-0.4	-0.7	13		ニットーホ゛ー	N-アッセイ TIA C4-SH	琉球大学
1038	27.7	0.3	1.5	29.1	0.6	1.4	30.8	1.05	2.0	11		和光純薬	オートワコー C4 ・ N	1
7901	27.4	-0.1	0.4	29.1	0.6	1.4	30.4	0.3	0.7	17		ニットーホー	N-アッセイ TIA C4-SH	
9014	27.4	-0.1	0.4	29.1	0.6	1.4	30.4	0.3	0.7	Maker	Maker	ニットーホ゛ー	N-アッセイ TIA C4-SH	_ ニット-ホ゛-
1301	27.5	0.1	0.7	29.2	0.8	1.7	30.3	0.1	0.3	16		和光純薬	オートワコー C4 ・ N	1
3048	28.8	1.8	5.5	29.9	1.9	4.2	31.4	2.2	4.0	11		LSIメディエンス		
9009	28.97	2.0	6.1	29.95		4.4	30.90		2.3	Maker		LSIメテ゛ィエンス		LSIメディエン
1411	28.6	1.5	4.8	30	2.1	4.5	31.1	1.6	3.0	11			オートワコー C4・ N	1
1901	29	2.0	6.2	30	2.1	4.5	31	1.4	2.6	17		LSIメテ゛ィエンス		
5006	28.9	1.9	5.9	30.8	3.5	7.3	30.6	0.7	1.3	11		デンカ生研	C4-TIA X1「生研」	大分大学
3001	29	2.0	6.2	32	5.5	11.5	34		12.6	11		シーメンス	N-抗血清 C4c	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
AVG (mg/dL)	27.5	2.0	0.2	28.8	3.3	11.3	30.2	0.9	12.0	- 11	J1	Y /Y/	1. //umr15 C+c	J
S D (mg/dL)	0.8			0.6			0.5			1				
C V (%)	2.8			2.0			1.8							
C V (70)	2.8			2.0			1.8			J				

 $B_{\text{A}}=5.0\%$ 

目標 S-12 27.3 25  $\sim$  29 S-13 28.7 27  $\sim$  31 S-14 30.2 28  $\sim$  32

# C4 試薬別解析(実測値/予測値でソート)

						3SD 除外			未達成		
ッセイ TIA C4-SH ニッ	ト-ホ゛-	T	•	T	•	,		T	•	T	a
施設	No.12	全施設	同一試薬	No.13	全施設	同一試薬	No.14	全施設	同一試薬	S14-S12	
コート・	110.12	BA	BA	110.15	BA	BA	110.11	BA	BA	$(S13-S12) \times 2$	
1006	27	-1.1	-0.4	29	1.0	1.4	30	-0.7	-0.4	0.75	九州大
1329	27	-1.1	-0.4	29	1.0	1.4	30	-0.7	-0.4	0.75	
6008	27	-1.1	-0.4	29	1.0	1.4	30	-0.7	-0.4	0.75	宮崎大
8004	27	-1.1	-0.4	29	1.0	1.4	30	-0.7	-0.4	0.75	琉球大
7901	27.4	0.4	1.1	29.1	1.4	1.7	30.4	0.7	1.0	0.88	
9014	27.4	0.4	1.1	29.1	1.4	1.7	30.4	0.7	1.0	0.88	ニットーホ゛
3022	26.9	-1.5	-0.7	28.8	0.3	0.7	30.3	0.3	0.6	0.89	長崎大
1073	27	-1.1	-0.4	28.7	0.0	0.3	30.3	0.3	0.6	0.97	
2002	26.9	-1.5	-0.7	28.3	-1.4	-1.0	29.7	-1.7	-1.4	1.00	
1039	28	2.6	3.3	29	1.0	1.4	30	-0.7	-0.4	1.00	
3056	27	-1.1	-0.4	29	1.0	1.4	31	2.6	3.0	1.00	
7001	27	-1.1	-0.4	29	1.0	1.4	31	2.6	3.0	1.00	
7011	26.7	-2.2	-1.5	28	-2.4	-2.1	29.3	-3.0	-2.7	1.00	
1902	26.8	-1.8	-1.1	28.3	-1.4	-1.0	29.9	-1.0	-0.7	1.03	
3055	27.5	0.7	1.5	28.9	0.7	1.0	30.4	0.7	1.0	1.04	諫早
1404	27.3	-1.1	-0.4	28.3	-1.4	-1.0	29.8	-1.3	-1.0	1.04	11水十
7002	27.3	0.0	0.8	28.8	0.3	0.7	30.6	1.3	1.6	1.10	鹿児島
1341	27.5	0.0	1.5	28.8	0.3	0.7	30.6	0.7	1.0	1.10	此儿员
4002	27.3		-0.4	28.8	-2.1		29.6	-2.0	-1.7	1.12	上 熊本大
		-1.1				-1.7					
1513	26.9	-1.5	-0.7	27.9	-2.8	-2.4	29.3	-3.0	-2.7	1.20	聖マリア
1302	27	-1.1	-0.4	28.3	-1.4	-1.0	30.2	0.0	0.3	1.23	4= 127 L
1004	27	-1.1	-0.4	28	-2.4	-2.1	30	-0.7	-0.4	1.50	福岡大
1094	27	-1.1	-0.4	28	-2.4	-2.1	30	-0.7	-0.4	1.50	1
5005	27	-1.1	-0.4	28	-2.4	-2.1	30	-0.7	-0.4	1.50	_
AVG (mg/dL)	27.1			28.6			30.1			1.05	_
S D (mg/dL)	0.3			0.4			0.4				
C V (%)	1.0			1.5			1.4				
ワ⊐− <b>C4</b>			_		•	,			•		,
7007	26	-4.8	-5.03	28	-2.4	-2.5	29	-4.0	-3.5	0.75	
1301	27.5	0.7	0.4	29.2	1.7	1.7	30.3	0.3	0.9	0.82	
1411	28.6	4.8	4.5	30	4.5	4.4	31.1	3.0	3.5	0.89	
9023	26.8	-1.8	-2.1	28.1	-2.1	-2.2	29.4	-2.6	-2.1	1.00	和光絲
1368	28	2.6	2.3	29	1.0	1.0	30	-0.7	-0.1	1.00	
2008	28	2.6	2.3	29	1.0	1.0	30	-0.7	-0.1	1.00	佐賀大
1038	27.7	1.5	1.2	29.1	1.4	1.3	30.8	2.0	2.5	1.11	
1300	26.8	-1.8	-2.1	28.1	-2.1	-2.2	29.8	-1.3	-0.8	1.15	産業医
1505	27	-1.1	-1.4	28	-2.4	-2.5	30	-0.7	-0.1	1.50	久留米
AVG (mg/dL)	27.4	•	•	28.7	•	•	30.0	•		1.03	
S D (mg/dL)				0.7			0.6	0.6			1
C V (%)	2.9			2.5			2.1				1
C4											_
9009	28.97	6.1	0.1	29.95	4.4	0.8	30.9	2.3	-0.6	0.98	LSIメデ
1901	29	6.2	0.1	30	4.5	1.0	31	2.6	-0.2	1.00	DOT/:/
3048	28.8	5.5	-0.5	29.9	4.2	0.6	31.4	4.0	1.0	1.18	
1002	29	6.2	0.2	29.9	1.0	-2.4	31.4	2.6	-0.2	1.10	福岡赤
AVG (mg/dL)	28.9	0.2	0.2	29.7	1.0	-4. <del>"1</del>	31.1	4.0	-0.2	1.06	田岡州
										1.00	1
S D (mg/dL)	0.1			0.5			0.2				1
CV(%) FIA X1「生研」	0.3			1.6			0.7				J
5006	28.9	5.9	3.4	30.8	7.3	6.7	30.6	1.3	0.5	0.45	大分大
9012	27.5	0.7	-1.6	28.9	0.7	0.1	30.2	0.0	-0.9	0.96	テ゛ンカク
9043	27	0.4	-2.0	29	0.1	-0.5	30	-0.5	-1.4	0.99	ρシュ(A)
1315	28	2.6	0.2	29	1.0	0.4	31	2.6	1.8	1.50	飯塚痘
-	28.0	3.0		28.9	1		30.5	3.0		1.35	200 - 200 / F
AV(†(mo/dl)				0.1			0.4			1.33	
AVG (mg/dL)	0.7			U.1			∪.→			ļ	4
S D (mg/dL)	2.5			0.5			1 /				
	2.5			0.5			1.4				]

46 C4 施設No.が低い順に並んでいます

施設	muta man		機器	男性基	男性基準範囲		準範囲			試料報告値
No	測定原理 No	試薬メーカー		下限	上限	下限	上限	試料12	試料13	試料14
1002	免疫比濁法(汎	LSIメディエンス	日立LABOSPE	13.00	35.00			○ 29.00 ○	29.00 🔾	31.00
1004	免疫比濁法(汎	ニットーボー	日本電子JCA-B	11.00	31.00	11.00	31.00	○ 27.00 ○	28.00 🔾	30.00
1006	免疫比濁法(汎	ニットーボー	目立LABOSPE	11.00	31.00			○ 27.00 ○	29.00 🔾	30.00
1038	免疫比濁法(汎	和光純薬	目立LABOSPE	11.00	31.00			○ 27.70 ○	29.10 〇	30.80
1039	免疫比濁法(汎	ニットーボー	目立7140-7170	11.00	31.00			○ 28.00 ○	29.00 🔾	30.00
1073	免疫比濁法(汎	ニットーボー	目立LABOSPE	16.00	51.00	16.00	51.00	○ 27.00 ○	28.70 🔾	30.30
1094	免疫比濁法(汎	ニットーボー	日本電子JCA-B	13.00	36.00			○ 27.00 ○	28.00 🔾	30.00
1300	免疫比濁法(汎	和光純薬	日本電子JCA-B	11.00	31.00	11.00	31.00	○ 26.80 ○	28.10 〇	29.80
1301	免疫比濁法(汎	和光純薬	日本電子JCA-B	16.00	45.00			○ 27.50 ○	29.20 🔾	30.30
1302	免疫比濁法(汎	ニットーボー	ヘ゛ックマン・コールター	11.00	31.00			○ 27.00 ○	28.30 🔾	30.20
1315	免疫比濁法(汎	デンカ生研	日本電子JCA-B	11.00	31.00	11.00	31.00	○ 28.00 ○	29.00 🔾	31.00
1329	免疫比濁法(汎	ニットーボー	日本電子JCA-B	11.00	31.00	11.00	31.00	○ 27.00 ○	29.00 🔾	30.00
1341	免疫比濁法(汎	ニットーボー	日本電子JCA-B	11.00	31.00	11.00	31.00	○ 27.50 ○	28.80 🔾	30.40
1368	免疫比濁法(汎	和光純薬	東芝25FR_Accut	11.00	31.00			○ 28.00 ○	29.00 🔾	30.00
1404	免疫比濁法(汎	ニットーボー	東芝TBA-cシリー	13.00	36.00			○ 27.00 ○	28.30 🔾	29.80
1411	免疫比濁法(汎	和光純薬	日本電子JCA-B	11.00	31.00	11.00	31.00	○ 28.60 ○	30.00 〇	31.10
1505	免疫比濁法(汎	和光純薬	目立LABOSPE	11.00	31.00			○ 27.00 ○	28.00 🔾	30.00
1513	免疫比濁法(汎	ニットーボー	目立LABOSPE	11.00	31.00			○ 26.90 ○	27.90 🔾	29.30
1901	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	17.00	45.00	17.00	45.00	○ 29.00 ○	30.00 〇	31.00
1902	免疫比濁法(汎	ニットーボー	日本電子JCA-B	11.00	34.00			○ 26.80 ○	28.30 🔾	29.90
2002	免疫比濁法(汎	ニットーボー	日本電子JCA-B	11.00	31.00			○ 26.90 ○	28.30 🔾	29.70
2008	免疫比濁法(汎	ロシュ・ダイアグ	ロシュコハ [*] ス8000c7	11.00	31.00	11.00	31.00	○ 28.00 ○	29.00 🔾	30.00
3001	免疫比ろう法	シーメンス	シーメンスHCDBN	11.00	31.00	11.00	31.00	○ 29.00	32.00	34.00
3022	免疫比濁法(汎	ニットーボー	日本電子JCA-B	11.00	31.00	11.00	31.00	○ 26.90 ○	28.80 🔾	30.30
3048	免疫比濁法(汎	LSIメディエンス	日本電子JCA-B	11.00	31.00	11.00	31.00	○ 28.80 ○	29.90 🔾	31.40
3055	免疫比濁法(汎	ニットーボー	日本電子JCA-B	11.00	31.00			○ 27.50 ○	28.90 🔾	30.40
3056	免疫比濁法(汎	栄研化学	日本電子JCA-B	11.00	31.00	11.00	31.00	○ 27.00 ○	29.00 🔾	31.00
4002	免疫比濁法(汎	ニットーボー	日本電子JCA-B	11.00	31.00			○ 27.00 ○	28.10 〇	29.60
5005	免疫比濁法(汎	ニットーボー	日本電子JCA-B	11.00	31.00			○ 27.00 ○	28.00 ○	30.00
5006	免疫比濁法(汎	デンカ生研	日本電子JCA-B	11.00	31.00	11.00	31.00	○ 28.90 ○	30.80 ○	30.60
6008	免疫比濁法(汎	ニットーボー	東芝TBA-200F	11.00	31.00			○ 27.00 ○	29.00 🔾	30.00
7001	免疫比濁法(汎	ニットーボー	日本電子JCA-B	13.00	35.00	13.00	35.00	○ 27.00 ○	29.00 🔾	31.00
	免疫比濁法(汎	栄研化学	日本電子JCA-B	11.00	31.00			○ 27.30 ○		
	免疫比濁法(汎	和光純薬	日本電子JCA-B	14.00		14.00	38.00	○ 26.00 ○		
	免疫比濁法(汎	ニットーボー	東芝TBA-cシリー	11.00	31.00			○ 26.70 ○		
	免疫比濁法(汎	ニットーボー	日立LABOSPE	17.00	45.00			O 27.40 O		
	免疫比濁法(汎	ニットーボー	日本電子JCA-B	13.00	35.00			○ 27.00 ○		
	免疫比濁法(汎	LSIメディエンス	目立7140-7170	13.00	35.00			O 28.97 O		
	免疫比濁法(汎	デンカ生研	- 1	13.00	35.00	13.00	35.00	O 27.50 O		
	免疫比濁法(汎	ニットーボー	日立7140-7170					○ 27.40 ○		
	免疫比濁法(汎	和光純薬	日立7140-7170					O 26.80 O		
9043	免疫比濁法(汎	デンカ生研	ロシュコハ [*] ス8000c5					○ 27.40 ○	28.74 ○	30.05

### 精度管理報告値による血漿蛋白高濃度域直線性の調査

独立行政法人 地域医療機能推進機構 諫早総合病院 検査部 今里和義

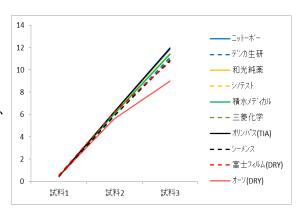
血漿蛋白(当精度管理研究会では免疫グロプリン、補体、CRP,RF)の測定には溶液内沈降反応を測定原理とする免疫比濁法(TIA法)と、その測定感度を上げることができるラテックス免疫比濁法(LA-TIA法)が広く用いられている。しかし、抗原抗体反応であるからには抗原あるいは抗体過剰域における地帯現象から逃れることはできない。測定試薬の改良が進みCRP・RFではラテックスを用いることにより高感度化がなされ、超低濃度域では満足のいく測定結果が得られるようになった。これは昨年までの精度管理報告を見れば明らかである。また、超高濃度域では測定系へのPEG(ポリエチレングリコール)の添加等により、極端なフック現象である測定値の低下はみられず、検量線の勾配がない俗に言う"頭打ち現象"がみられると言われているが、当精度管理研究会調査ではまだ確認されていない。

今回、血漿蛋白精度管理試料を1 ポイント追加する機会を得たので超高濃度域(プール血 清のため濃度域に限界はあるが)での反応動向をみることにした。

調査方法としては試料 12(低濃度)と試料 14(高濃度)の中間値を仮想値とし、試料 13 (試料 12と試料 14 をできるだけ正確に等量混合)の実測値の乖離をみて判断する方法もあるが、今回はより直感的に表現するため試料 12と試料 13 の差を 2 倍した値を予測値と仮定し、試料 12と試料 14 の差の値を実測値としてこれらの比(r:ratio)を求めることにした。

$$r = \frac{(試料 14-試料 12)}{(試料 13-試料 12) × 2} \cdots 実測値 1 < r: 予測値より高値、 $1 > r$ : 予測値より低値$$

試料 14 までの直線性があれば"r=1.00"となることになる。

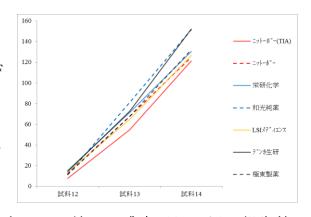

同一試薬での"r"の平均を求め、他の試薬と比較すると、その試薬の高濃度域での特性が比較できるし、各施設の"r"をみるとその施設での直線性を確認できる。しかし、一試料でも再現性が悪いと正確な判定は難しくなるので各測定値の再現性が重要である。また、すべての測定値が同じ比率でシフト(系統誤差)しても"r"は1に近づくので注意が必要である。

### 1)免疫グロブリン・補体

濃度差が小さいため評価できなかったが、極端に"r"と1の差が大きい施設は機器、試薬のチェックが必要かもしれない。

#### 2)CRP

"r"はドライケミストリー法を除いては試薬間で多少の違いはあるが(シーメンスと堀場では若干の頭打ち現象がみられる)、1との差がCV%の範囲に収まり、約12mg/dLまでは直線性が確認された。ドライケミストリー法では富士フィルムで測定値上限が7mg/dL、オ




ーソで 9 mg/dL のため、希釈なしでは頭打ち現象がみられている。しかし、富士フィルムの 12 施設中 8 施設では希釈検体での再測定が行われ、概ね良好な直線性が得られた。

#### 3)RF

CV%がなかなか小さくならない項目であるために厳密な判断はできないが、概ね良好な

結果が得られた。しかし、報告値を見てみると"r"が1を超える試薬が多くみられ"RFの測定"が"RFの影響"を受けている(?)かのような傾向がみられる。他の項目をみると試料の調整に問題は無いようなので原因は精査する必要があるかもしれな



い。また、試料 12 においてはラテックスを担体に用いない TIA 法では感度不足により、報告値の低値傾向がみられ、計算上の予測値が低くなり、"r"が 1 を大きく超えている。

#### 4)まとめ

CRP・RF の高濃度域での直線性を確認する目的で、今回は試料を 1 ポイント追加して参加施設に測定していただいたが、試薬性能が良いため、トライケミストリー法以外では"r"の試薬間の極端な差はみられなかった。逆に言うと今回の試料 14 の濃度までは各試薬の直線性が確認されたことになる。

### CRP

#### 3SD除外により集計未使用

1388   NA LA CRPS	施設	- h - tra	測定				試	料			S14-S12
1348   NALACRPS		試薬名		メーカー	No 12	SDI			No 14	SDI	
100   N.A. LA CRP-S		N-A I A CRP-S		- "							
1010				71 .					1 1		
1990   NA LA CRPS   LATIA											
1920   N.A. I.A. CRPS   I.A. TIA   29-24"   0.85   0.16   6.35   0.4   1172   0.07   0.08   0.01   6.31   6.31   31   112   0.07   0.08   1074   N.A. I.A. CRPS   I.A. TIA   29-24"   0.07   -1.0   6.16   -0.5   11.01   -1.3   0.08   1511   N.A. I.A. CRPS   I.A. TIA   29-24"   0.07   -1.0   6.16   -0.5   11.01   -1.3   0.08   1512   N.A. I.A. CRPS   I.A. TIA   29-24"   0.08   -0.1   6.2   -0.1   11.00   -0.0   0.08   1512   N.A. I.A. CRPS   I.A. TIA   29-24"   0.04   0.8   6.15   -0.6   11.6   -1.3   0.08   1512   N.A. I.A. CRPS   I.A. TIA   29-24"   0.48   -0.1   6.52   1.2   11.97   0.5   0.08   1932   N.A. I.A. CRPS   I.A. TIA   29-24"   0.48   -0.1   6.32   0.2   11.8   -0.3   0.08   1932   N.A. I.A. CRPS   I.A. TIA   29-24"   0.48   -0.1   6.32   0.2   11.8   -0.3   0.08   11.02   0.04   N.A. I.A. CRPS   I.A. TIA   29-24"   0.48   -0.1   6.24   0.3   11.82   -0.2   0.08   11.01   0.05   0.08   11.02   0.04   N.A. I.A. CRPS   I.A. TIA   29-24"   0.48   -0.1   6.24   0.3   11.82   -0.2   0.08   11.02   N.A. I.A. CRPS   I.A. TIA   29-24"   0.48   -0.1   6.24   0.3   11.82   -0.2   0.09   19.00   N.A. I.A. CRPS   I.A. TIA   29-24"   0.48   -0.1   6.25   0.4   11.84   -0.1   0.09   19.00   N.A. I.A. CRPS   I.A. TIA   29-24"   0.48   -0.1   6.25   0.4   11.84   -0.1   0.09   19.00   N.A. I.A. CRPS   I.A. TIA   29-24"   0.48   -0.1   6.62   0.4   11.84   -0.1   0.09   19.00   N.A. I.A. CRPS   I.A. TIA   29-24"   0.48   -0.1   6.62   0.4   11.80   -0.0   0.09   19.00   N.A. I.A. CRPS   I.A. TIA   29-24"   0.48   -0.1   6.62   0.4   11.80   -0.0   0.09   19.00   N.A. I.A. CRPS   I.A. TIA   29-24"   0.48   -0.1   6.61   6.62   0.4   11.80   0.1   0.09   19.00   N.A. I.A. CRPS   I.A. TIA   29-24"   0.49   0.8   6.22   0.0   11.81   0.0   0.09   19.00   N.A. I.A. CRPS   I.A. TIA   29-24"   0.49   0.8   6.25   0.4   11.80   0.0   0.09   19.00   N.A. I.A. CRPS   I.A. TIA   29-24"   0.49   0.8   6.1   6.66   -1.5   11.50   -1.7   0.09   19.00   N.A. I.A. CRPS   I.A. TIA   29-24"   0.49   0.8   6.1   6.66   -1.5   11.50											
6016   N.A. LA CRPS   LATIA   20 + 3"   0.48   -0.1   6.33   1.3   1.12   0.3   0.98											
1974   N.A. LA CRP-S   LATIA   29-3°   0.47   -1.0   6.16   -0.5   1.10   -1.3   0.98   9.014   N.A. LA CRP-S   LATIA   29-3°   0.58   -0.11   6.2   -0.11   11.69   -0.9   0.98   9.014   N.A. LA CRP-S   LATIA   29-3°   0.5   1.6   6.4   2.0   12.07   1.0   0.98   1.05   N.A. LA CRP-S   LATIA   29-3°   0.5   1.6   6.4   2.0   12.07   1.0   0.98   1.05   N.A. LA CRP-S   LATIA   29-3°   0.48   -0.1   6.52   1.2   11.97   0.5   0.98   1.05   N.A. LA CRP-S   LATIA   29-3°   0.48   -0.1   6.22   0.2   11.8   -0.3   0.98   1.002   N.A. LA CRP-S   LATIA   29-3°   0.48   -0.1   6.24   0.3   11.82   -0.2   0.98   11.27   N.A. LA CRP-S   LATIA   29-3°   0.48   -0.1   6.24   0.3   11.82   -0.2   0.98   11.27   N.A. LA CRP-S   LATIA   29-3°   0.48   -0.1   6.24   0.3   11.82   -0.2   0.99   11.27   N.A. LA CRP-S   LATIA   29-3°   0.48   -0.1   6.25   0.4   11.84   -0.1   0.98   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27   11.27								-			
1511   N.A. LA CRP-S								-			
9914   N.A. LA CRP-S											
1512   N.A. LA CRP-S											
1059   NA LA CRP-S   LATIA							-				
1932   NA LA CRP-S											
1024   N.A. LA CRP-S											
1021   NA LA CRP-S   LA-TIA   2p+-8' -   0.48   -0.1   6.25   0.4   11.84   -0.1   0.98     1021   NA LA CRP-S   LA-TIA   2p+-8' -   0.49   0.8   6.22   0.1   11.8   -0.3   0.99     1025   NA LA CRP-S   LA-TIA   2p+-8' -   0.48   -0.1   6.05   -1.6   11.48   -2.0   0.99     1035   NA LA CRP-S   LA-TIA   2p+-8' -   0.48   -0.1   6.02   0.4   11.89   0.1   0.99     1035   NA LA CRP-S   LA-TIA   2p+-8' -   0.47   -1.0   6.25   0.4   11.89   0.1   0.99     1035   NA LA CRP-S   LA-TIA   2p+-8' -   0.48   -0.1   6.18   -0.3   11.75   -0.6   0.99     1036   NA LA CRP-S   LA-TIA   2p+-8' -   0.48   -0.1   6.18   -0.3   11.75   -0.6   0.99     1037   NA LA CRP-S   LA-TIA   2p+-8' -   0.48   -0.1   6.04   -1.8   11.96   0.5   0.99     1038   NA LA CRP-S   LA-TIA   2p+-8' -   0.48   -0.1   6.04   -1.8   11.49   -1.9   0.99     1039   NA LA CRP-S   LA-TIA   2p+-8' -   0.48   -0.1   6.04   -1.8   11.49   -1.9   0.99     1030   NA LA CRP-S   LA-TIA   2p+-8' -   0.48   -0.1   6.06   -1.5   11.53   -1.7   0.99     1030   NA LA CRP-S   LA-TIA   2p+-8' -   0.48   -0.1   6.06   -1.5   11.53   -1.7   0.99     1030   NA LA CRP-S   LA-TIA   2p+-8' -   0.46   -1.9   6.18   -0.3   11.79   -0.4   0.99     4002   NA LA CRP-S   LA-TIA   2p+-8' -   0.49   0.8   6.21   0.0   11.83   -0.2   0.99     1034   NA LA CRP-S   LA-TIA   2p+-8' -   0.49   0.8   6.31   1.3   1.07   1.0   0.99     1034   NA LA CRP-S   LA-TIA   2p+-8' -   0.47   -1.0   6.6   -1.5   1.0   0.99     1034   NA LA CRP-S   LA-TIA   2p+-8' -   0.47   -1.0   6.6   -2.2   11.44   -2.2   0.99     1359   NA LA CRP-S   LA-TIA   2p+-8' -   0.47   -1.0   6.6   -2.2   1.44   -2.2   0.99     1350   NA LA CRP-S   LA-TIA   2p+-8' -   0.47   -1.0   6.6   -2.2   1.44   -2.2   0.99     1350   NA LA CRP-S   LA-TIA   2p+-8' -   0.47   -1.0   6.24   0.3   11.91   0.2   0.99     1350   NA LA CRP-S   LA-TIA   2p+-8' -   0.47   -1.0   6.24   0.3   11.91   0.2   0.99     1350   NA LA CRP-S   LA-TIA   2p+-8' -   0.48   -0.1   6.30   1.1   1.1   0.0											
1021   N-A LA CRP-S											
1925   NA LA CRP-S											
1935   N.A. LA CRP-S											
1917   N.A. LA CRP-S											
1305   N.A. LA CRP-S											
1404   N.A. LA CRP.S   LA.TIA   2-y-8'   0.49   0.8   6.29   0.8   11.96   0.5   0.99											
1033   N-A LA CRP-S   LA-TIA   2-1-4"   0.48   -0.1   6.04   -1.8   11.49   -1.9   0.99     1033   N-A LA CRP-S   LA-TIA   2-1-4"   0.48   -0.1   6.06   -1.5   11.53   -1.7   0.99     1506   N-A LA CRP-S   LA-TIA   2-1-4"   0.48   -0.1   6.06   -1.5   11.53   -1.7   0.99     1506   N-A LA CRP-S   LA-TIA   2-1-4"   0.46   -1.9   6.18   -0.3   11.79   -0.4   0.99     5010   N-A LA CRP-S   LA-TIA   2-1-4"   0.46   -1.9   6.18   -0.3   11.79   -0.4   0.99     1034   N-A LA CRP-S   LA-TIA   2-1-4"   0.49   0.8   6.21   0.0   11.83   -0.2   0.99     1034   N-A LA CRP-S   LA-TIA   2-1-4"   0.49   0.8   6.33   1.3   12.07   1.0   0.99     1034   N-A LA CRP-S   LA-TIA   2-1-4"   0.47   -1.0   6   -2.2   11.44   -2.2   0.99     1518   N-A LA CRP-S   LA-TIA   2-1-4"   0.46   -1.9   6.27   0.6   1.2   0.7   0.99     1539   N-A LA CRP-S   LA-TIA   2-1-4"   0.46   -1.9   6.27   0.6   1.2   0.7   0.99     1539   N-A LA CRP-S   LA-TIA   2-1-4"   0.46   -1.9   6.27   0.6   1.2   0.7   0.99     1530   N-A LA CRP-S   LA-TIA   2-1-4"   0.48   -0.1   6.39   1.9   12.22   1.8   0.99     1530   N-A LA CRP-S   LA-TIA   2-1-4"   0.49   0.8   6.24   0.3   11.91   0.2   0.99     1500   N-A LA CRP-S   LA-TIA   2-1-4"   0.49   0.8   6.24   0.3   11.91   0.3   0.99     1500   N-A LA CRP-S   LA-TIA   2-1-4"   0.47   -1.0   6.14   -0.7   11.76   -0.5   1.00     1530   N-A LA CRP-S   LA-TIA   2-1-4"   0.47   -1.0   6.14   -0.7   11.76   -0.5   1.00     1530   N-A LA CRP-S   LA-TIA   2-1-4"   0.48   -0.1   6.31   1.1   1.2   0.9   1.1   1.00     1530   N-A LA CRP-S   LA-TIA   2-1-4"   0.48   -0.1   6.3   0.3   11.95   0.4   1.00     1530   N-A LA CRP-S   LA-TIA   2-1-4"   0.49   0.8   6.24   0.3   11.95   0.4   1.00     1530   N-A LA CRP-S   LA-TIA   2-1-4"   0.49   0.8   6.24   0.3   11.95   0.4   1.00     1530   N-A LA CRP-S   LA-TIA   2-1-4"   0.49   0.8   6.24   0.3   11.95   0.4   1.00     1018   N-A LA CRP-S   LA-TIA   2-1-4"   0.49   0.8   6.24   0.3   11.95   0.4   1.00     1019   N-A LA CRP-S   LA-TIA   2-1-4"   0.49   0.8   6.24   0											
1033   N.A. LA CRP-S   LA-TIA   2-1-8'   0.48   -0.1   6.04   -1.8   11.49   -1.9   0.99     1325   N.A. LA CRP-S   LA-TIA   2-1-8'   0.48   -0.1   6.06   -1.5   11.53   -1.7   0.99     5010   N.A. LA CRP-S   LA-TIA   2-1-8'   0.40   0.8   6.11   0.0   11.83   -0.2   0.99     5010   N.A. LA CRP-S   LA-TIA   2-1-8'   0.49   0.8   6.21   0.0   11.83   -0.2   0.99     4902   NA. LA CRP-S   LA-TIA   2-1-8'   0.49   0.8   6.23   1.3   12.07   1.0   0.99     7001   N.A. LA CRP-S   LA-TIA   2-1-8'   0.49   0.8   6.33   1.3   12.07   1.0   0.99     7001   N.A. LA CRP-S   LA-TIA   2-1-8'   0.47   -1.0   6   -2.2   11.44   -2.2   0.99     1518   N.A. LA CRP-S   LA-TIA   2-1-8'   0.46   -1.9   6.27   0.6   12   0.7   0.99     1539   N.A. LA CRP-S   LA-TIA   2-1-8'   0.46   -1.9   6.27   0.6   12   0.7   0.99     1340   N.A. LA CRP-S   LA-TIA   2-1-8'   0.48   -0.1   6.39   1.9   12.22   1.8   0.99     1341   N.A. LA CRP-S   LA-TIA   2-1-8'   0.49   0.8   6.24   0.3   11.91   0.2   0.99     1502   N.A. LA CRP-S   LA-TIA   2-1-8'   0.49   0.8   6.24   0.3   11.91   0.2   0.99     1503   N.A. LA CRP-S   LA-TIA   2-1-8'   0.47   -1.0   6.14   -0.7   11.76   -0.5   1.00     1550   N.A. LA CRP-S   LA-TIA   2-1-8'   0.48   -0.1   6.31   1.1   12.09   1.1   1.00     1550   N.A. LA CRP-S   LA-TIA   2-1-8'   0.48   -0.1   6.31   1.1   12.09   1.1   1.00     1370   N.A. LA CRP-S   LA-TIA   2-1-8'   0.48   -0.1   6.31   1.1   12.09   1.1   1.00     1370   N.A. LA CRP-S   LA-TIA   2-1-8'   0.49   0.8   6.24   0.3   11.95   0.4   1.00     1015   N.A. LA CRP-S   LA-TIA   2-1-8'   0.49   0.8   6.24   0.3   11.95   0.4   1.00     1016   N.A. LA CRP-S   LA-TIA   2-1-8'   0.49   0.8   6.13   0.8   11.75   -0.5   1.00     1017   N.A. LA CRP-S   LA-TIA   2-1-8'   0.49   0.8   6.13   0.8   11.75   -0.5   1.00     1018   N.A. LA CRP-S   LA-TIA   2-1-8'   0.49   0.8   6.24   0.3   11.95   0.4   1.00     1019   N.A. LA CRP-S   LA-TIA   2-1-8'   0.49   0.8   6.24   0.3   11.97   0.0   1.00     1020   N.A. LA CRP-S   LA-TIA   2-1-8'   0.49   0.		N-A LA CRP-S	LA-TIA	ニットーホ゛ー	0.49			0.8			
1325   N-A LA CRP-S	2010	N-A LA CRP-T			0.45	-2.7	5.7	-5.3	10.82	-5.3	
1506   N-A LA CRP-S   LA-TIA   2y -\$  -   0.46   -1.9   6.18   -0.3   11.79   -0.4   0.99	1033	N-A LA CRP-S	LA-TIA	ニットーホ゛ー	0.48	-0.1	6.04	-1.8	11.49	-1.9	0.99
Solid N-A LA CRP-S	1325	N-A LA CRP-S	LA-TIA	ニットーホ゛ー	0.48	-0.1	6.06	-1.5	11.53	-1.7	0.99
4902   N-A LA CRP-S	1506	N-A LA CRP-S	LA-TIA	ニットーホ゛ー	0.46	-1.9	6.18	-0.3	11.79	-0.4	0.99
1034   N.A LA CRP-S	5010	N-A LA CRP-S	LA-TIA	ニットーホ゛ー	0.49	0.8	6.21	0.0	11.83	-0.2	0.99
7001   N-A LA CRP-S   LA-TIA   三月ー素'   0.47   -1.0   6   -2.2   11.44   -2.2   0.99     1518   N-A LA CRP-S   LA-TIA   三月ー素'   0.46   -1.9   6.27   0.6   12   0.7   0.99     1359   N-A LA CRP-S   LA-TIA   三月ー素'   0.48   -0.1   6.39   1.9   12.22   1.8   0.99     1346   N-A LA CRP-S   LA-TIA   三月ー素'   0.48   0.1   6.39   1.9   12.22   1.8   0.99     1350   N-A LA CRP-S   LA-TIA   三月ー素'   0.49   0.8   6.24   0.3   11.91   0.2   0.99     1350   N-A LA CRP-S   LA-TIA   三月ー素'   0.49   0.8   6.24   0.3   11.92   0.3   0.99     1502   N-A LA CRP-S   LA-TIA   三月ー素'   0.47   -1.0   6.14   -0.7   11.76   -0.5   1.00     1550   N-A LA CRP-S   LA-TIA   三月ー素'   0.48   -0.1   6.3   1.1   12.09   1.1   1.00     1356   N-A LA CRP-S   LA-TIA   三月ー素'   0.48   -0.1   6.2   -0.1   11.88   0.1   1.00     1370   N-A LA CRP-S   LA-TIA   三月ー素'   0.49   0.8   6.13   -0.8   11.75   -0.6   1.00     1015   N-A LA CRP-S   LA-TIA   三月ー素'   0.49   0.8   6.13   -0.8   11.77   -0.5   1.00     1016   N-A LA CRP-S   LA-TIA   三月ー素'   0.47   -1.0   6.13   -0.8   11.77   -0.5   1.00     1018   N-A LA CRP-S   LA-TIA   三月ー素'   0.47   -1.0   6.18   -0.3   11.87   0.0   1.00     1094   N-A LA CRP-S   LA-TIA   三月ー素'   0.47   -1.0   6.18   -0.3   11.87   0.0   1.00     1094   N-A LA CRP-S   LA-TIA   三月ー素'   0.47   -1.0   6.18   -0.3   11.87   0.0   1.00     1073   N-A LA CRP-S   LA-TIA   三月ー素'   0.49   0.8   6.15   -0.6   11.8   -0.3   1.00     1073   N-A LA CRP-S   LA-TIA   三月ー素'   0.49   0.8   6.27   0.6   12.04   0.9   1.00     1331   N-A LA CRP-S   LA-TIA   三月ー素'   0.49   0.8   6.27   0.6   12.04   0.9   1.00     1331   N-A LA CRP-S   LA-TIA   三月ー素'   0.49   0.8   6.27   0.6   12.04   0.9   1.00     1331   N-A LA CRP-S   LA-TIA   三月ー素'   0.49   0.8   6.27   0.6   12.04   0.9   1.00     1332   N-A LA CRP-S   LA-TIA   三月ー素'   0.49   0.8   6.27   0.6   12.04   0.9   1.00     1334   N-A LA CRP-S   LA-TIA   三月ー素'   0.49   0.8   6.27   0.6   1.20   0.9   1.00     1342   N-A LA CRP-S   LA-TIA   三月ー素'   0.49   0.8   0.2   1.2   1.2   1.0   1.00     1343	4902	N-A LA CRP-S	LA-TIA	ニットーホ゛ー	0.5	1.6	6.3	1.0	12	0.7	0.99
1518   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.46   -1.9   6.27   0.6   12   0.7   0.99     1359   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.48   -0.1   6.39   1.9   12.22   1.8   0.99     1360   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.49   0.8   6.24   0.3   11.91   0.2   0.99     1360   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.49   0.8   6.24   0.3   11.92   0.3   0.99     1502   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.49   0.8   6.24   0.3   11.92   0.3   0.99     1503   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.48   -0.1   6.14   -0.7   11.76   -0.5   1.00     1550   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.48   -0.1   6.2   -0.1   11.88   0.1   1.00     1370   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.49   0.8   6.24   0.3   11.95   0.4   1.00     1015   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.49   0.8   6.24   0.3   11.95   0.4   1.00     1015   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.49   0.8   6.13   -0.8   11.75   -0.6   1.00     1018   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.47   -1.0   6.18   -0.3   11.87   -0.5   1.00     1092   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.47   -1.0   6.18   -0.3   11.87   -0.5   1.00     1094   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.47   -1.0   6.18   -0.3   11.87   -0.5   1.00     1094   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.49   0.8   6.15   -0.6   11.8   -0.3   1.00     1093   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.49   0.8   6.15   -0.6   11.8   -0.3   1.00     1094   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.49   0.8   6.15   -0.6   11.8   -0.3   1.00     1093   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.49   0.8   6.15   -0.6   11.93   0.3   1.00     1094   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.48   -0.1   6.21   0.0   11.93   0.3   1.00     1095   N-A LA CRP-S   LA-TIA   =y -\frac{\psi}{-\psi} -   0.48   -0.1   6.21   0.0   11.93   0.3	1034	N-A LA CRP-S	LA-TIA	ニットーホ゛ー	0.49	0.8	6.33	1.3	12.07	1.0	0.99
1359   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.39   1.9   12.22   1.8   0.99   1346   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.5   1.6   6.24   0.3   11.91   0.2   0.99   1350   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.24   0.3   11.92   0.3   0.99   1502   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.24   0.3   11.92   0.3   0.99   1502   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.47   -1.0   6.14   -0.7   11.76   -0.5   1.00   1550   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.31   1.1   12.09   1.1   1.00   1370   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.2   -0.1   11.88   0.1   1.00   1370   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.24   0.3   11.95   0.4   1.00   1015   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.13   -0.8   11.75   -0.6   1.00   1018   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.47   -1.0   6.13   -0.8   11.77   -0.5   1.00   1094   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.47   -1.0   6.18   -0.3   11.87   0.0   1.00   1094   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.15   -0.6   11.8   -0.3   1.00   1094   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.27   0.6   12.04   0.9   1.00   1033   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.3   1.0   12.12   1.3   1.00   1334   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.3   1.0   12.12   1.3   1.00   1334   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.3   1.0   12.12   1.3   1.00   1342   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.59   4.0   12.73   4.4   1.00   1342   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.6	7001	N-A LA CRP-S	LA-TIA	ニットーホ゛ー	0.47	-1.0	6	-2.2	11.44	-2.2	0.99
1359   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.39   1.9   12.22   1.8   0.99   1346   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.5   1.6   6.24   0.3   11.91   0.2   0.99   1350   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.24   0.3   11.92   0.3   0.99   1502   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.24   0.3   11.92   0.3   0.99   1502   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.47   -1.0   6.14   -0.7   11.76   -0.5   1.00   1550   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.31   1.1   12.09   1.1   1.00   1370   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.2   -0.1   11.88   0.1   1.00   1370   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.24   0.3   11.95   0.4   1.00   1015   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.13   -0.8   11.75   -0.6   1.00   1018   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.47   -1.0   6.13   -0.8   11.77   -0.5   1.00   1094   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.47   -1.0   6.18   -0.3   11.87   0.0   1.00   1094   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.15   -0.6   11.8   -0.3   1.00   1094   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.27   0.6   12.04   0.9   1.00   1033   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.3   1.0   12.12   1.3   1.00   1334   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.3   1.0   12.12   1.3   1.00   1334   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.3   1.0   12.12   1.3   1.00   1342   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.59   4.0   12.73   4.4   1.00   1342   N-A LA CRP-S   LA-TIA   $= y   - \pi^+ -  $   0.48   -0.1   6.6	1518	N-A LA CRP-S	LA-TIA	ニットーホ゛ー	0.46	-1.9	6.27	0.6	12	0.7	0.99
1346   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.5   1.6   6.24   0.3   11.91   0.2   0.99   1350   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.49   0.8   6.24   0.3   11.92   0.3   0.99   1502   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.47   -1.0   6.14   -0.7   11.76   -0.5   1.00   1550   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.48   -0.1   6.31   1.1   12.09   1.1   1.00   1356   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.48   -0.1   6.2   -0.1   11.88   0.1   1.00   1370   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.49   0.8   6.24   0.3   11.95   0.4   1.00   1015   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.49   0.8   6.24   0.3   11.95   0.4   1.00   1015   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.49   0.8   6.13   -0.8   11.75   -0.6   1.00   1018   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.47   -1.0   6.18   -0.3   11.87   0.0   1.00   1092   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.47   -1.0   6.18   -0.3   11.87   0.0   1.00   1093   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.49   0.8   6.15   -0.6   11.8   -0.3   1.00   1073   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.49   0.8   6.27   0.6   11.8   -0.3   1.00   1073   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.48   -0.1   6.3   1.0   12.12   1.3   1.00   1334   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.48   -0.1   6.3   1.0   12.12   1.3   1.00   1334   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.48   -0.1   6.59   4.0   12.73   4.4   1.00   1344   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.48   -0.1   6.59   4.0   12.73   4.4   1.00   1342   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00   1342   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00   1342   N-A LA CRP-S   LA-TIA   $= \gamma   - \pi^+ -  $   0.48   -0.1   6	1359				0.48	-0.1	6.39	1.9	12.22	1.8	0.99
1350   N-A LA CRP-S   LA-TIA   $z_7 \vdash \pi^* \vdash 0.49   0.8   6.24   0.3   11.92   0.3   0.99   1502   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.47   -1.0   6.14   -0.7   11.76   -0.5   1.00   1550   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.48   -0.1   6.31   1.1   12.09   1.1   1.00   13356   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.48   -0.1   6.2   -0.1   11.88   0.1   1.00   1370   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.49   0.8   6.24   0.3   11.95   0.4   1.00   1015   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.49   0.8   6.13   -0.8   11.75   -0.6   1.00   1018   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.47   -1.0   6.13   -0.8   11.75   -0.5   1.00   1018   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.47   -1.0   6.13   -0.8   11.77   -0.5   1.00   1092   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.47   -1.0   6.18   -0.3   11.87   0.0   1.00   1073   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.49   0.8   6.15   -0.6   11.8   -0.3   1.00   1073   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.49   0.8   6.15   -0.6   11.8   -0.3   1.00   1073   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.49   0.8   6.32   1.2   12.17   1.6   1.00   1134   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.49   0.8   6.32   1.2   12.17   1.6   1.00   1134   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.49   0.8   6.32   1.2   12.17   1.6   1.00   1131   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.49   0.8   6.32   1.2   12.17   1.6   1.00   1131   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.49   0.8   6.32   1.2   12.17   1.6   1.00   1131   N-A LA CRP-S   LA-TIA   z_7 \vdash \pi^* \vdash 0.49   0.8   6.32   1.2   12.22   1.8   1.01   1.03   1.01   1.03   1.01   1.03   1.01   1.03   1.01   1.03   1.01   1.03   1.01   1.03   1.01   1.03   1.01   1.03   1.01   1.03   1.01   1.03   1.01   1.03   1.01   1.03   1.01   1.03   1.01   1.03   1.$	1346	N-A LA CRP-S			0.5	1.6	6.24	0.3	11.91	0.2	0.99
1502   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.47   -1.0   6.14   -0.7   11.76   -0.5   1.00     1550   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.48   -0.1   6.31   1.1   12.09   1.1   1.00     1356   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.48   -0.1   6.2   -0.1   11.88   0.1   1.00     1370   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.49   0.8   6.24   0.3   11.95   0.4   1.00     1015   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.49   0.8   6.13   -0.8   11.75   -0.6   1.00     1018   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.47   -1.0   6.13   -0.8   11.77   -0.5   1.00     1019   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.47   -1.0   6.18   -0.3   11.87   0.0   1.00     1090   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.49   0.8   6.15   -0.6   11.8   -0.3   1.00     1073   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.49   0.8   6.15   -0.6   11.8   -0.3   1.00     1073   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.49   0.8   6.27   0.0   11.93   0.3   1.00     1331   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.48   -0.1   6.3   1.0   12.12   1.3   1.00     1331   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.48   -0.1   6.3   1.0   12.12   1.3   1.00     1338   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.48   -0.1   6.59   4.0   12.73   4.4   1.00     1341   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00     1342   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00     1342   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00     1342   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00     1342   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00     1343   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00     1341   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.49   0.8   6.22   0.8   12.30   2.2   1.8   1.01     1350   N-A LA CRP-S   LA-TIA   $= y + \pi^* - $   0.49   0.8   6.02   -0	1350				0.49		6.24	0.3		0.3	
1550   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.48   -0.1   6.31   1.1   12.09   1.1   1.00   1356   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.48   -0.1   6.2   -0.1   11.88   0.1   1.00   1370   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.49   0.8   6.24   0.3   11.95   0.4   1.00   1015   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.49   0.8   6.13   -0.8   11.75   -0.6   1.00   1018   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.49   0.8   6.13   -0.8   11.75   -0.6   1.00   1018   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.47   -1.0   6.13   -0.8   11.77   -0.5   1.00   1094   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.47   -1.0   6.18   -0.3   11.87   0.0   1.00   1094   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.49   0.8   6.15   -0.6   11.8   -0.3   1.00   1073   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.49   0.8   6.15   -0.6   11.8   -0.3   1.00   1073   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.48   -0.1   6.3   1.0   12.12   1.3   1.00   1338   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.48   -0.1   6.3   1.0   12.12   1.3   1.00   1334   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.48   -0.1   6.59   4.0   12.73   4.4   1.00   1102   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.48   -0.1   6.59   4.0   12.73   4.4   1.00   1131   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00   1342   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00   1342   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.48   -0.1   6.64   -0.5   11.87   0.0   1.00   1342   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.48   -0.1   6.65   -1.6   11.73   -0.7   1.01   7002   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.48   -0.1   6.65   -1.6   11.73   -0.7   1.01   7002   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.48   -0.1   6.24   0.3   12.1   12.2   1.01   1316   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.45   -2.7   6.05   -1.6   11.73   -0.7   1.01   7002   N-A LA CRP-S   LA-TIA   $=y$  - $\pi$ '-   0.45   -2.7   6.05   -1.6   11.93											
1356   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.48   -0.1   6.2   -0.1   11.88   0.1   1.00   1370   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.49   0.8   6.24   0.3   11.95   0.4   1.00   1015   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.49   0.8   6.24   0.3   11.95   0.4   1.00   1018   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.49   0.8   6.13   -0.8   11.75   -0.6   1.00   1018   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.47   -1.0   6.18   -0.3   11.77   -0.5   1.00   1092   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.47   -1.0   6.18   -0.3   11.87   0.0   1.00   1094   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.49   0.8   6.15   -0.6   11.8   -0.3   1.00   1073   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.48   -0.1   6.21   0.0   11.93   0.3   1.00   1073   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.48   -0.1   6.3   1.0   12.12   1.3   1.00   1331   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.48   -0.1   6.59   4.0   12.73   4.4   1.00   1102   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.49   0.8   6.32   1.2   12.17   1.6   1.00   1102   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.49   0.8   6.32   1.2   12.17   1.6   1.00   1102   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.48   -0.1   6.18   -0.3   11.91   0.2   1.00   1134   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.48   -0.1   6.18   -0.3   11.91   0.2   1.00   1134   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00   1342   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00   1342   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00   1342   N-A LA CRP-S   LA-TIA   $=\gamma_1+\pi'-$   0.48   -0.1   6.22   0.3   12.1   1.2   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01	-										
1370   N-A LA CRP-S   LA-TIA   = y   - x   -   0.49   0.8   6.24   0.3   11.95   0.4   1.00	-										
1015   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.49   0.8   6.13   -0.8   11.75   -0.6   1.00   1018   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.47   -1.0   6.13   -0.8   11.77   -0.5   1.00   1902   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.47   -1.0   6.18   -0.3   11.87   0.0   1.00   1094   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.49   0.8   6.15   -0.6   11.8   -0.3   1.00   1073   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.49   0.8   6.15   -0.6   11.8   -0.3   1.00   1073   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.48   -0.1   6.3   1.0   12.12   1.3   1.00   1338   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.48   -0.1   6.59   4.0   12.73   4.4   1.00   1134   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.49   0.8   6.32   1.2   12.17   1.6   1.00   1102   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.48   -0.1   6.18   -0.3   11.91   0.2   1.00   1131   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.48   -0.1   6.18   -0.3   11.91   0.2   1.00   1131   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00   1342   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00   1342   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.48   -0.1   6.16   -0.5   11.87   0.0   1.00   1342   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.48   -0.1   6.24   0.3   12.1   1.2   1.01   1316   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.45   -2.7   6.05   -1.6   11.73   -0.7   1.01   10.0   1310   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.46   -1.9   6.15   -0.6   11.93   0.3   1.01   1390   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.46   -1.9   6.15   -0.6   11.93   0.3   1.01   1351   N-A LA CRP-S   LA-TIA   $= y \   - \pi^* -  $   0.46   -1.9   6.29   0.8   12.36   2.5   1.02   1.03   1.03   1.03   1.03   1.03   1.03   1.03   1.03   1.03   1.03   1.03   1.03   1.03   1.03   1.03   1.0											
1018   N-A LA CRP-S   LA-TIA   $= \gamma N - \pi^* - 0.47   -1.0   6.13   -0.8   11.77   -0.5   1.00   1902   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.47   -1.0   6.18   -0.3   11.87   0.0   1.00   1004   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.49   0.8   6.15   -0.6   11.8   -0.3   1.00   1073   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.49   0.8   6.15   -0.6   11.8   -0.3   1.00   1073   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.49   0.8   6.27   0.6   12.04   0.9   1.00   1331   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.48   -0.1   6.59   4.0   12.12   1.3   1.00   1338   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.48   -0.1   6.59   4.0   12.73   4.4   1.00   1134   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.48   -0.1   6.18   -0.3   11.91   0.2   1.00   1102   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.48   -0.1   6.18   -0.3   11.91   0.2   1.00   1131   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.48   -0.1   6.16   -0.5   11.87   0.0   1.00   1342   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.48   -0.1   6.16   -0.5   11.87   0.0   1.00   1342   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.48   -0.1   6.32   1.2   12.22   1.8   1.01   1316   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.48   -0.1   6.32   1.2   12.22   1.8   1.01   1316   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.45   -2.7   6.05   -1.6   11.73   -0.7   1.01   1316   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.45   -2.7   6.05   -1.6   11.73   -0.7   1.01   1316   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.45   -2.7   6.05   -1.6   11.93   0.3   1.01   1351   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.45   -2.7   6.05   -1.6   11.93   0.3   1.01   1351   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.5   1.6   6.17   -0.4   11.93   0.3   1.01   1351   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.5   1.6   6.07   -0.4   11.93   0.3   1.01   1351   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.5   1.6   6.07   -0.4   11.93   0.3   1.01   1351   N-A LA CRP-S   LA-TIA   = \gamma N - \pi^* - 0.5   1.6   6.0$	-										
1902   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.47  $   -1.0   6.18   -0.3   11.87   0.0   1.00     1094   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.49  $   0.8   6.15   -0.6   11.8   -0.3   1.00     1073   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.48  $   -0.1   6.21   0.0   11.93   0.3   1.00     7901   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.49  $   0.8   6.27   0.6   12.04   0.9   1.00     1331   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.48  $   -0.1   6.3   1.0   12.12   1.3   1.00     1538   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.48  $   -0.1   6.59   4.0   12.73   4.4   1.00     1134   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.48  $   -0.1   6.18   -0.3   11.91   0.2   1.00     1102   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.48  $   -0.1   6.18   -0.3   11.91   0.2   1.00     1131   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.48  $   -0.1   6.16   -0.5   11.87   0.0   1.00     1342   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.48  $   -0.1   6.16   -0.5   11.87   0.0   1.00     1342   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.48  $   -0.1   6.32   1.2   12.22   1.8   1.01     5005   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.48  $   -0.1   6.32   1.2   12.22   1.8   1.01     7002   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.48  $   -0.1   6.24   0.3   12.1   1.2   1.01     1316   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.45  $   -2.7   6.05   -1.6   11.73   -0.7   1.01     1390   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.46  $   -1.9   6.15   -0.6   11.93   0.3   1.01     1391   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.46  $   -1.9   6.15   -0.6   11.93   0.3   1.01     1351   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.46  $   -1.9   6.15   -0.6   11.93   0.3   1.01     1351   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.46  $   -1.9   6.29   0.8   12.36   2.5   1.02     5003   N-A LA CRP-S   LA-TIA   $=y \vdash -\pi^* -   0.49  $   0.8   6.02   -2.0   11.89   0.1   1.03     1534   N-A LA CRP-T   LA-TIA   $=y \vdash -\pi^* -   0.49  $   0.8   6.21   11.87   0.99     S D (mg/dL)   0.01   0.01   0.00											
1094   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.49$   0.8   6.15   -0.6   11.8   -0.3   1.00     1073   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.48$   -0.1   6.21   0.0   11.93   0.3   1.00     7901   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.49$   0.8   6.27   0.6   12.04   0.9   1.00     1331   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.48$   -0.1   6.3   1.0   12.12   1.3   1.00     1538   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.48$   -0.1   6.59   4.0   12.73   4.4   1.00     1134   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.49$   0.8   6.32   1.2   12.17   1.6   1.00     1102   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.48$   -0.1   6.18   -0.3   11.91   0.2   1.00     1131   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.48$   -0.1   6.16   -0.5   11.87   0.0   1.00     1342   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.48$   -0.1   6.32   1.2   12.22   1.8   1.01     5005   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.48$   -0.1   6.32   1.2   12.22   1.8   1.01     7002   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.48$   -0.1   6.24   0.3   12.1   1.2   1.01     1316   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.45$   -1.0   6.24   0.3   12.1   1.2   1.01     1319   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.46$   -1.9   6.15   -0.6   11.93   0.3   1.01     1331   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.46$   -1.9   6.15   -0.6   11.93   0.3   1.01     1331   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.5$   1.6   6.03   -1.9   11.68   -0.9   1.01     1341   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.5$   1.6   6.03   -1.9   11.68   -0.9   1.01     1341   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.46$   -1.9   6.29   0.8   12.36   2.5   1.02     5003   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.46$   -1.9   6.29   0.8   12.36   2.5   1.02     5003   N-A LA CRP-S   LA-TIA   $= \gamma F + \pi^* - 0.48$   -0.1   6.05   -1.6   12.1   1.2   1.04     AVG (mg/dL)   0.48   6.21   11.87   0.99											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-						-				
7901         N-A LA CRP-S         LA-TIA $= y - h^{+} -$ 0.49         0.8         6.27         0.6         12.04         0.9         1.00           1331         N-A LA CRP-S         LA-TIA $= y - h^{+} -$ 0.48         -0.1         6.3         1.0         12.12         1.3         1.00           1538         N-A LA CRP-S         LA-TIA $= y - h^{+} -$ 0.48         -0.1         6.59         4.0         12.73         4.4         1.00           1134         N-A LA CRP-S         LA-TIA $= y - h^{+} -$ 0.49         0.8         6.32         1.2         12.17         1.6         1.00           1102         N-A LA CRP-S         LA-TIA $= y - h^{+} -$ 0.48         -0.1         6.18         -0.3         11.91         0.2         1.00           1131         N-A LA CRP-S         LA-TIA $= y - h^{+} -$ 0.48         -0.1         6.16         -0.5         11.87         0.0         1.00           1342         N-A LA CRP-S         LA-TIA $= y - h^{+} -$ 0.48         -0.1         6.32         1.2         12.22         1.8         1.01           5005         N-A LA CRP-S         LA-T	-										
1331         N-A LA CRP-S         LA-TIA $= y \vdash - \pi^* =$ 0.48         -0.1         6.3         1.0         12.12         1.3         1.00           1538         N-A LA CRP-T         LA-TIA $= y \vdash - \pi^* =$ 0.48         -0.1         6.59         4.0         12.73         4.4         1.00           1134         N-A LA CRP-S         LA-TIA $= y \vdash - \pi^* =$ 0.49         0.8         6.32         1.2         12.17         1.6         1.00           1102         N-A LA CRP-S         LA-TIA $= y \vdash - \pi^* =$ 0.48         -0.1         6.18         -0.3         11.91         0.2         1.00           1131         N-A LA CRP-S         LA-TIA $= y \vdash - \pi^* =$ 0.48         -0.1         6.16         -0.5         11.87         0.0         1.00           1342         N-A LA CRP-S         LA-TIA $= y \vdash - \pi^* =$ 0.48         -0.1         6.16         -0.5         11.87         0.0         1.00           1342         N-A LA CRP-S         LA-TIA $= y \vdash - \pi^* =$ 0.48         -0.1         6.32         1.2         12.22         1.8         1.01           1340         N-A LA CRP-S         LA									-		
1538         N-A LA CRP-T         LA-TIA $=y \vdash = x^* -$ 0.48         -0.1         6.59         4.0         12.73         4.4         1.00           1134         N-A LA CRP-S         LA-TIA $=y \vdash = x^* -$ 0.49         0.8         6.32         1.2         12.17         1.6         1.00           1102         N-A LA CRP-S         LA-TIA $=y \vdash = x^* -$ 0.48         -0.1         6.18         -0.3         11.91         0.2         1.00           1131         N-A LA CRP-S         LA-TIA $=y \vdash = x^* -$ 0.48         -0.1         6.16         -0.5         11.87         0.0         1.00           1342         N-A LA CRP-S         LA-TIA $=y \vdash = x^* -$ 0.48         -0.1         6.32         1.2         12.22         1.8         1.01           5005         N-A LA CRP-S         LA-TIA $=y \vdash = x^* -$ 0.45         -2.7         6.05         -1.6         11.73         -0.7         1.01           7002         N-A LA CRP-S         LA-TIA $=y \vdash = x^* -$ 0.47         -1.0         6.24         0.3         12.1         1.2         1.01           1316         N-A LA CRP-T         LA-TIA </td <td></td>											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-				_		
1102         N-A LA CRP-S         LA-TIA $=y   -\pi^* -$ 0.48         -0.1         6.18         -0.3         11.91         0.2         1.00           1131         N-A LA CRP-S         LA-TIA $=y   -\pi^* -$ 0.48         -0.1         6.16         -0.5         11.87         0.0         1.00           1342         N-A LA CRP-S         LA-TIA $=y   -\pi^* -$ 0.48         -0.1         6.32         1.2         12.22         1.8         1.01           5005         N-A LA CRP-T         LA-TIA $=y   -\pi^* -$ 0.45         -2.7         6.05         -1.6         11.73         -0.7         1.01           7002         N-A LA CRP-S         LA-TIA $=y   -\pi^* -$ 0.47         -1.0         6.24         0.3         12.1         1.2         1.01           1316         N-A LA CRP-S         LA-TIA $=y   -\pi^* -$ 0.46         -1.9         6.15         -0.6         11.93         0.3         1.01           1390         N-A LA CRP-S         LA-TIA $=y   -\pi^* -$ 0.5         1.6         6.17         -0.4         11.93         0.3         1.01           1351         N-A LA CRP-S         LA-TIA											
1131         N-A LA CRP-S         LA-TIA $=y \vdash -\pi^* -$ 0.48         -0.1         6.16         -0.5         11.87         0.0         1.00           1342         N-A LA CRP-S         LA-TIA $=y \vdash -\pi^* -$ 0.48         -0.1         6.32         1.2         12.22         1.8         1.01           5005         N-A LA CRP-T         LA-TIA $=y \vdash -\pi^* -$ 0.45         -2.7         6.05         -1.6         11.73         -0.7         1.01           7002         N-A LA CRP-S         LA-TIA $=y \vdash -\pi^* -$ 0.47         -1.0         6.24         0.3         12.1         1.2         1.01           1316         N-A LA CRP-S         LA-TIA $=y \vdash -\pi^* -$ 0.46         -1.9         6.15         -0.6         11.93         0.3         1.01           1390         N-A LA CRP-S         LA-TIA $=y \vdash -\pi^* -$ 0.5         1.6         6.17         -0.4         11.93         0.3         1.01           1351         N-A LA CRP-S         LA-TIA $=y \vdash -\pi^* -$ 0.5         1.6         6.07         -0.4         11.93         0.3         1.01           1341         N-A LA CRP-S         LA-TIA											
1342         N-A LA CRP-S         LA-TIA $=y_1 \vdash = \pi^* \vdash$ 0.48         -0.1         6.32         1.2         12.22         1.8         1.01           5005         N-A LA CRP-T         LA-TIA $=y_1 \vdash = \pi^* \vdash$ 0.45         -2.7         6.05         -1.6         11.73         -0.7         1.01           7002         N-A LA CRP-S         LA-TIA $=y_1 \vdash = \pi^* \vdash$ 0.47         -1.0         6.24         0.3         12.1         1.2         1.01           1316         N-A LA CRP-S         LA-TIA $=y_1 \vdash = \pi^* \vdash$ 0.46         -1.9         6.15         -0.6         11.93         0.3         1.01           1390         N-A LA CRP-S         LA-TIA $=y_1 \vdash = \pi^* \vdash$ 0.5         1.6         6.17         -0.4         11.93         0.3         1.01           1351         N-A LA CRP-S         LA-TIA $=y_1 \vdash = \pi^* \vdash$ 0.5         1.6         6.07         -0.4         11.93         0.3         1.01           1341         N-A LA CRP-S         LA-TIA $=y_1 \vdash = \pi^* \vdash$ 0.46         -1.9         6.29         0.8         12.36         2.5         1.02           5003         N-A LA CRP-S											
5005         N-A LA CRP-T         LA-TIA $=y \mid -\pi^* =$ 0.45         -2.7         6.05         -1.6         11.73         -0.7         1.01           7002         N-A LA CRP-S         LA-TIA $=y \mid -\pi^* =$ 0.47         -1.0         6.24         0.3         12.1         1.2         1.01           1316         N-A LA CRP-S         LA-TIA $=y \mid -\pi^* =$ 0.46         -1.9         6.15         -0.6         11.93         0.3         1.01           1390         N-A LA CRP-S         LA-TIA $=y \mid -\pi^* =$ 0.5         1.6         6.17         -0.4         11.93         0.3         1.01           1351         N-A LA CRP-S         LA-TIA $=y \mid -\pi^* =$ 0.5         1.6         6.07         -0.4         11.93         0.3         1.01           1341         N-A LA CRP-S         LA-TIA $=y \mid -\pi^* =$ 0.46         -1.9         6.29         0.8         12.36         2.5         1.02           5003         N-A LA CRP-S         LA-TIA $=y \mid -\pi^* =$ 0.49         0.8         6.02         -2.0         11.89         0.1         1.03           1534         N-A LA CRP-T         LA-TIA											
7002         N-A LA CRP-S         LA-TIA $=y_1 \vdash = \pi^*$ 0.47         -1.0         6.24         0.3         12.1         1.2         1.01           1316         N-A LA CRP-T         LA-TIA $=y_1 \vdash = \pi^*$ 0.46         -1.9         6.15         -0.6         11.93         0.3         1.01           1390         N-A LA CRP-S         LA-TIA $=y_1 \vdash = \pi^*$ 0.5         1.6         6.17         -0.4         11.93         0.3         1.01           1351         N-A LA CRP-S         LA-TIA $=y_1 \vdash = \pi^*$ 0.5         1.6         6.03         -1.9         11.68         -0.9         1.01           1341         N-A LA CRP-T         LA-TIA $=y_1 \vdash = \pi^*$ 0.46         -1.9         6.29         0.8         12.36         2.5         1.02           5003         N-A LA CRP-S         LA-TIA $=y_1 \vdash = \pi^*$ 0.49         0.8         6.02         -2.0         11.89         0.1         1.03           1534         N-A LA CRP-T         LA-TIA $=y_1 \vdash = \pi^*$ 0.48         -0.1         6.05         -1.6         12.1         1.2         1.04           AVG (mg/dL)         0.48								-			
1316         N-A LA CRP-T         LA-TIA $=y \models -\pi^* \vdash$ 0.46         -1.9         6.15         -0.6         11.93         0.3         1.01           1390         N-A LA CRP-S         LA-TIA $=y \models -\pi^* \vdash$ 0.5         1.6         6.17         -0.4         11.93         0.3         1.01           1351         N-A LA CRP-S         LA-TIA $=y \models -\pi^* \vdash$ 0.5         1.6         6.03         -1.9         11.68         -0.9         1.01           1341         N-A LA CRP-T         LA-TIA $=y \models -\pi^* \vdash$ 0.46         -1.9         6.29         0.8         12.36         2.5         1.02           5003         N-A LA CRP-S         LA-TIA $=y \models -\pi^* \vdash$ 0.49         0.8         6.02         -2.0         11.89         0.1         1.03           1534         N-A LA CRP-T         LA-TIA $=y \models -\pi^* \vdash$ 0.48         -0.1         6.05         -1.6         12.1         1.2         1.04           AVG (mg/dL)         0.48         6.21         11.87         0.99           S D (mg/dL)         0.01         0.10         0.20											
1390       N-A LA CRP-S       LA-TIA $=y \models -\pi^* -$ 0.5       1.6       6.17       -0.4       11.93       0.3       1.01         1351       N-A LA CRP-S       LA-TIA $=y \models -\pi^* -$ 0.5       1.6       6.03       -1.9       11.68       -0.9       1.01         1341       N-A LA CRP-T       LA-TIA $=y \models -\pi^* -$ 0.46       -1.9       6.29       0.8       12.36       2.5       1.02         5003       N-A LA CRP-S       LA-TIA $=y \models -\pi^* -$ 0.49       0.8       6.02       -2.0       11.89       0.1       1.03         1534       N-A LA CRP-T       LA-TIA $=y \models -\pi^* -$ 0.48       -0.1       6.05       -1.6       12.1       1.2       1.04         AVG (mg/dL)       0.48       6.21       11.87       0.99         S D (mg/dL)       0.01       0.10       0.20											
1351       N-A LA CRP-S       LA-TIA $=y \vdash - \pi^* -$ 0.5       1.6       6.03       -1.9       11.68       -0.9       1.01         1341       N-A LA CRP-T       LA-TIA $=y \vdash - \pi^* -$ 0.46       -1.9       6.29       0.8       12.36       2.5       1.02         5003       N-A LA CRP-S       LA-TIA $=y \vdash - \pi^* -$ 0.49       0.8       6.02       -2.0       11.89       0.1       1.03         1534       N-A LA CRP-T       LA-TIA $=y \vdash -\pi^* -$ 0.48       -0.1       6.05       -1.6       12.1       1.2       1.04         AVG (mg/dL)       0.48       6.21       11.87       0.99         S D (mg/dL)       0.01       0.10       0.20											
1341       N-A LA CRP-T       LA-TIA $=y \vdash - \pi^* -$ 0.46       -1.9       6.29       0.8       12.36       2.5       1.02         5003       N-A LA CRP-S       LA-TIA $=y \vdash - \pi^* -$ 0.49       0.8       6.02       -2.0       11.89       0.1       1.03         1534       N-A LA CRP-T       LA-TIA $=y \vdash - \pi^* -$ 0.48       -0.1       6.05       -1.6       12.1       1.2       1.04         AVG (mg/dL)       0.48       6.21       11.87       0.99         S D (mg/dL)       0.01       0.10       0.20											
N-A LA CRP-S   LA-TIA   ニットーボー   0.49   0.8   6.02   -2.0   11.89   0.1   1.03   1534   N-A LA CRP-T   LA-TIA   ニットーボー   0.48   -0.1   6.05   -1.6   12.1   1.2   1.04   AVG (mg/dL)   0.48   6.21   11.87   0.99   S D (mg/dL)   0.01   0.10   0.20											
N-A LA CRP-T   LA-TIA   ニットーボー   0.48   -0.1   6.05   -1.6   12.1   1.2   1.04   1.04   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1						-1.9		0.8		2.5	
AVG (mg/dL) 0.48 6.21 11.87 0.99 S D (mg/dL) 0.01 0.10 0.20											
S D (mg/dL) 0.01 0.10 0.20	1534	N-A LA CRP-T	LA-TIA	ニットーホ゛ー	0.48	-0.1		-1.6	12.1	1.2	1.04
		AVG (mg/dL)			0.48		6.21		11.87		0.99
C V (%) 2.4 1.5 1.7		( )					0.10		0.20		
		C V (%)			2.4		1.5		1.7		

1349	CRP-ラテックスX2「生研」	LA-TIA   デンカ生研	0.47	1.4	6.2	1.9	11.50	1.2	0.96
1089	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.45	-0.4	6.00	0.8	11.15	0.0	0.96
1035	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.46	0.5	6.28	2.4	11.71	1.9	0.97
1358	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.456	0.1	6.034	1.0	11.25	0.4	0.97
1362	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.47	1.4	6.01	0.9	11.22	0.3	0.97
2002	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.45	-0.4	6.1	1.4	11.50	1.2	0.98
1038	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.45	-0.4	5.79	-0.4	10.90	-0.8	0.98
7007	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.46	0.5	6.06	1.2	11.45	1.0	0.98
1051	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.44	-1.3	5.81	-0.3	10.98	-0.6	0.98
1315	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.44	-1.3	5.74	-0.7	10.85	-1.0	0.98
3022	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.44	-1.3	5.85	0.0	11.07	-0.2	0.98
2006	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.44	-1.3	5.85	0.0	11.08	-0.2	0.98
1006	CRP-X2 NX	LA-TIA デンカ生研	0.43	-2.2	5.65	-1.2	10.7	-1.5	0.98
4002	CRP-ラテックスX2「生研」	LA-TIA デンカ生研			5.75			-0.9	0.98
-			0.45	-0.4		-0.6	10.88		
1901	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.45	-0.4	5.82	-0.2	11.02	-0.4	0.98
1911	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.47	1.4	5.98	0.7	11.32	0.6	0.98
2011	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.46	0.5	5.71	-0.8	10.81	-1.1	0.99
9012	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.44	-1.3	5.85	0.0	11.12	-0.1	0.99
3048	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.451	-0.3	6.079	1.3	11.57	1.4	0.99
1004	CRP-X2 NX	LA-TIA デンカ生研	0.44	-1.3	5.5	-2.0	10.44	-2.4	0.99
8004	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.46	0.5	5.92	0.4	11.26	0.4	0.99
1347	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.40	4.1	5.98	0.7	11.36	0.7	0.99
1121	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.46	0.5	5.82	-0.2	11.08	-0.2	0.99
1010	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.46	0.5	5.86	0.0	11.16	0.1	0.99
5006	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.45	-0.4	5.98	0.7	11.43	1.0	0.99
1329	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.46	0.5	5.85	0.0	11.18	0.1	0.99
1391	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.45	-0.4	5.97	0.6	11.43	1.0	0.99
1090	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.45	-0.4	5.87	0.1	11.25	0.4	1.00
1934	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.47	1.4	5.75	-0.6	11.00	-0.5	1.00
1562	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.48	2.3	5.77	-0.5	11.04	-0.3	1.00
-									
1931	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.46	0.5	5.85	0.0	11.22	0.3	1.00
9043	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.452	-0.2	5.85	0.0	11.25	0.4	1.00
3001	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.448	-0.6	5.752	-0.6	11.06	-0.3	1.00
1355	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.47	1.4	5.81	-0.3	11.16	0.1	1.00
1049	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.46	0.5	5.54	-1.8	10.65	-1.7	1.00
1026	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.472	1.6	6.047	1.1	11.69	1.8	1.01
1402	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.45	-0.4	5.78	-0.4	11.18	0.1	1.01
7011	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.46	0.5	5.75	-0.4	11.12	-0.1	1.01
2009	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.449	-0.5	5.593	-1.5	10.82	-1.1	1.01
6008	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.46	0.5	5.45	-2.3	10.59	-1.9	1.02
1050	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.439	-1.4	5.938	0.5	11.61	1.6	1.02
1926	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.47	1.4	5.94	0.5	11.60	1.6	1.02
1930	CRP-ラテックスX2「生研」	LA-TIA デンカ生研	0.46	0.5	5.48	-2.1	10.87	-0.9	1.04
	AVG (mg/dL)		0.45		5.86		11.14		0.99
	S D (mg/dL)		0.01		0.18		0.29		****
	C V (%)		2.5		3.0		2.6		
L	C V (/0)		4.3		3.0		2.0		
1011	rmb lm. one	y , may , los , t, , t, mar. I	۱		,		44	1	0.01
1916	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47	0.3	6.16		11.18	-1.3	0.94
1120	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.46	-0.5	6.26	1.1	11.42	-0.3	0.94
1357	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.68	15.6	5.98	-1.3	10.73	-3.2	0.95
1308	LTオートワコー CRP-HS II						11.44	-0.2	0.95
1505		LA-TIA 和光純薬	0.49	1.7	6.23	0.9	11.44		
	LTオートワコー CRP-HS II								0.96
	LTオートワコー CRP-HS II LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47	0.3	6.1	-0.2	11.25	-1.0	0.96
9044	LTオートワコー CRP-HS II	LA-TIA 和光純薬 LA-TIA 和光純薬	0.47 0.4715	0.3 0.4	6.1 5.975	-0.2 -1.3	11.25 11.06	-1.0 -1.8	0.96
9044 1361	LTオートワコー CRP-HS II LTオートワコー CRP-HS II	LA-TIA 和光純薬 LA-TIA 和光純薬 LA-TIA 和光純薬	0.47 0.4715 0.48	0.3 0.4 1.0	6.1 5.975 6.37	-0.2 -1.3 2.1	11.25 11.06 11.85	-1.0 -1.8 1.5	0.96 0.97
9044 1361 9023	LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II	LA-TIA 和光純薬 LA-TIA 和光純薬 LA-TIA 和光純薬 LA-TIA 和光純薬	0.47 0.4715 0.48 0.46	0.3 0.4 1.0 -0.5	6.1 5.975 6.37 6.05	-0.2 -1.3 2.1 -0.7	11.25 11.06 11.85 11.26	-1.0 -1.8 1.5 -1.0	0.96 0.97 0.97
9044 1361 9023 1081	LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II	LA-TIA 和光純薬 LA-TIA 和光純薬 LA-TIA 和光純薬 LA-TIA 和光純薬 LA-TIA 和光純薬	0.47 0.4715 0.48 0.46 0.47	0.3 0.4 1.0 -0.5 0.3	6.1 5.975 6.37 6.05 6.17	-0.2 -1.3 2.1 -0.7 0.4	11.25 11.06 11.85 11.26 11.49	-1.0 -1.8 1.5 -1.0 0.0	0.96 0.97 0.97 0.97
9044 1361 9023 1081 1368	LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47 0.4715 0.48 0.46	0.3 0.4 1.0 -0.5 0.3 1.0	6.1 5.975 6.37 6.05 6.17 6.33	-0.2 -1.3 2.1 -0.7	11.25 11.06 11.85 11.26 11.49 11.79	-1.0 -1.8 1.5 -1.0 0.0 1.3	0.96 0.97 0.97
9044 1361 9023 1081	LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47 0.4715 0.48 0.46 0.47	0.3 0.4 1.0 -0.5 0.3	6.1 5.975 6.37 6.05 6.17	-0.2 -1.3 2.1 -0.7 0.4	11.25 11.06 11.85 11.26 11.49	-1.0 -1.8 1.5 -1.0 0.0	0.96 0.97 0.97 0.97
9044 1361 9023 1081 1368	LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47 0.4715 0.48 0.46 0.47 0.48	0.3 0.4 1.0 -0.5 0.3 1.0	6.1 5.975 6.37 6.05 6.17 6.33	-0.2 -1.3 2.1 -0.7 0.4 1.7	11.25 11.06 11.85 11.26 11.49 11.79	-1.0 -1.8 1.5 -1.0 0.0 1.3	0.96 0.97 0.97 0.97 0.97
9044 1361 9023 1081 1368 1530	LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47 0.4715 0.48 0.46 0.47 0.48 0.47	0.3 0.4 1.0 -0.5 0.3 1.0 0.3	6.1 5.975 6.37 6.05 6.17 6.33 6.25	-0.2 -1.3 2.1 -0.7 0.4 1.7 1.0	11.25 11.06 11.85 11.26 11.49 11.79 11.65	-1.0 -1.8 1.5 -1.0 0.0 1.3 0.7	0.96 0.97 0.97 0.97 0.97 0.97
9044 1361 9023 1081 1368 1530 1365 1337	LTオートワコー CRP-HS II LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47 0.4715 0.48 0.46 0.47 0.48 0.47 0.44	0.3 0.4 1.0 -0.5 0.3 1.0 0.3 -1.9 -1.2	6.1 5.975 6.37 6.05 6.17 6.33 6.25 5.93 6.07	-0.2 -1.3 2.1 -0.7 0.4 1.7 1.0 -1.7 -0.5	11.25 11.06 11.85 11.26 11.49 11.79 11.65 11.06 11.33	-1.0 -1.8 1.5 -1.0 0.0 1.3 0.7 -1.8 -0.7	0.96 0.97 0.97 0.97 0.97 0.97 0.97
9044 1361 9023 1081 1368 1530 1365 1337 1088	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47 0.4715 0.48 0.46 0.47 0.48 0.47 0.44 0.45	0.3 0.4 1.0 -0.5 0.3 1.0 0.3 -1.9 -1.2 -0.5	6.1 5.975 6.37 6.05 6.17 6.33 6.25 5.93 6.07 6.11	-0.2 -1.3 2.1 -0.7 0.4 1.7 1.0 -1.7 -0.5 -0.2	11.25 11.06 11.85 11.26 11.49 11.79 11.65 11.06 11.33	-1.0 -1.8 1.5 -1.0 0.0 1.3 0.7 -1.8 -0.7 -0.4	0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
9044 1361 9023 1081 1368 1530 1365 1337 1088 1327	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47 0.4715 0.48 0.46 0.47 0.48 0.47 0.44 0.45 0.46 0.47	0.3 0.4 1.0 -0.5 0.3 1.0 0.3 -1.9 -1.2 -0.5 0.3	6.1 5.975 6.37 6.05 6.17 6.33 6.25 5.93 6.07 6.11	-0.2 -1.3 2.1 -0.7 0.4 1.7 1.0 -1.7 -0.5 -0.2 0.6	11.25 11.06 11.85 11.26 11.49 11.79 11.65 11.06 11.33 11.40	-1.0 -1.8 1.5 -1.0 0.0 1.3 0.7 -1.8 -0.7 -0.4 0.6	0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
9044 1361 9023 1081 1368 1530 1365 1337 1088 1327 1513	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47 0.4715 0.48 0.46 0.47 0.48 0.47 0.44 0.45 0.46 0.47	0.3 0.4 1.0 -0.5 0.3 1.0 0.3 -1.9 -1.2 -0.5 0.3 -0.5	6.1 5.975 6.37 6.05 6.17 6.33 6.25 5.93 6.07 6.11 6.2 6.01	-0.2 -1.3 2.1 -0.7 0.4 1.7 1.0 -1.7 -0.5 -0.2 0.6 -1.0	11.25 11.06 11.85 11.26 11.49 11.79 11.65 11.06 11.33 11.40 11.62	-1.0 -1.8 1.5 -1.0 0.0 1.3 0.7 -1.8 -0.7 -0.4 0.6 -1.0	0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
9044 1361 9023 1081 1368 1530 1365 1337 1088 1327 1513	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47 0.4715 0.48 0.46 0.47 0.48 0.47 0.44 0.45 0.46 0.47 0.46	0.3 0.4 1.0 -0.5 0.3 1.0 0.3 -1.9 -1.2 -0.5 0.3 -0.5	6.1 5.975 6.37 6.05 6.17 6.33 6.25 5.93 6.07 6.11 6.2 6.01 6.02	-0.2 -1.3 2.1 -0.7 0.4 1.7 1.0 -1.7 -0.5 -0.2 0.6 -1.0 -0.9	11.25 11.06 11.85 11.26 11.49 11.79 11.65 11.06 11.33 11.40 11.62 11.26 11.30	-1.0 -1.8 1.5 -1.0 0.0 1.3 0.7 -1.8 -0.7 -0.4 0.6 -1.0 -0.8	0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
9044 1361 9023 1081 1368 1530 1365 1337 1088 1327 1513 1529 1514	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47 0.4715 0.48 0.46 0.47 0.48 0.47 0.44 0.45 0.46 0.47 0.46 0.45	0.3 0.4 1.0 -0.5 0.3 1.0 0.3 -1.9 -1.2 -0.5 0.3 -0.5	6.1 5.975 6.37 6.05 6.17 6.33 6.25 5.93 6.07 6.11 6.2 6.01 6.02 6.13	-0.2 -1.3 2.1 -0.7 0.4 1.7 1.0 -1.7 -0.5 -0.2 0.6 -1.0	11.25 11.06 11.85 11.26 11.49 11.79 11.65 11.06 11.33 11.40 11.62 11.26 11.30 11.52	-1.0 -1.8 1.5 -1.0 0.0 1.3 0.7 -1.8 -0.7 -0.4 0.6 -1.0	0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
9044 1361 9023 1081 1368 1530 1365 1337 1088 1327 1513	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47 0.4715 0.48 0.46 0.47 0.48 0.47 0.44 0.45 0.46 0.47 0.46	0.3 0.4 1.0 -0.5 0.3 1.0 0.3 -1.9 -1.2 -0.5 0.3 -0.5	6.1 5.975 6.37 6.05 6.17 6.33 6.25 5.93 6.07 6.11 6.2 6.01 6.02	-0.2 -1.3 2.1 -0.7 0.4 1.7 1.0 -1.7 -0.5 -0.2 0.6 -1.0 -0.9	11.25 11.06 11.85 11.26 11.49 11.79 11.65 11.06 11.33 11.40 11.62 11.26 11.30	-1.0 -1.8 1.5 -1.0 0.0 1.3 0.7 -1.8 -0.7 -0.4 0.6 -1.0 -0.8	0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
9044 1361 9023 1081 1368 1530 1365 1337 1088 1327 1513 1529 1514	LTオートワコー CRP-HS II	LA-TIA 和光純薬   LA-TIA 和光純菜   LA-TIA 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和	0.47 0.4715 0.48 0.46 0.47 0.48 0.47 0.44 0.45 0.46 0.47 0.46 0.45	0.3 0.4 1.0 -0.5 0.3 1.0 0.3 -1.9 -1.2 -0.5 0.3 -0.5 -1.2 -0.5	6.1 5.975 6.37 6.05 6.17 6.33 6.25 5.93 6.07 6.11 6.2 6.01 6.02 6.13	-0.2 -1.3 2.1 -0.7 0.4 1.7 1.0 -1.7 -0.5 -0.2 0.6 -1.0 -0.9 0.0	11.25 11.06 11.85 11.26 11.49 11.79 11.65 11.06 11.33 11.40 11.62 11.26 11.30 11.52	-1.0 -1.8 1.5 -1.0 0.0 1.3 0.7 -1.8 -0.7 -0.4 0.6 -1.0 -0.8 0.1	0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
9044 1361 9023 1081 1368 1530 1365 1337 1088 1327 1513 1529 1514 1002 1011	LTオートワコー CRP-HS II     LTオートワコー CRP-HS II	LA-TIA 和光純薬   LA-TIA 和光純菜   LA-TIA 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和	0.47 0.4715 0.48 0.46 0.47 0.48 0.47 0.44 0.45 0.46 0.47 0.46 0.45 0.46	0.3 0.4 1.0 -0.5 0.3 1.0 0.3 -1.9 -1.2 -0.5 0.3 -0.5 -1.2 -0.5	6.1 5.975 6.37 6.05 6.17 6.33 6.25 5.93 6.07 6.11 6.2 6.01 6.02 6.13 6.07 6.12	-0.2 -1.3 2.1 -0.7 0.4 1.7 1.0 -1.7 -0.5 -0.2 0.6 -1.0 -0.9 0.0 -0.5 -0.1	11.25 11.06 11.85 11.26 11.49 11.79 11.65 11.06 11.33 11.40 11.62 11.26 11.30 11.52 11.41	-1.0 -1.8 1.5 -1.0 0.0 1.3 0.7 -1.8 -0.7 -0.4 0.6 -1.0 -0.8 0.1 -0.3	0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
9044 1361 9023 1081 1368 1530 1365 1337 1088 1327 1513 1529 1514 1002	LTオートワコー CRP-HS II	LA-TIA 和光純薬   LA-TIA 和光純菜   LA-TIA 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和	0.47 0.4715 0.48 0.46 0.47 0.48 0.47 0.44 0.45 0.46 0.47 0.46 0.45	0.3 0.4 1.0 -0.5 0.3 1.0 0.3 -1.9 -1.2 -0.5 0.3 -0.5 -1.2 -0.5 0.3	6.1 5.975 6.37 6.05 6.17 6.33 6.25 5.93 6.07 6.11 6.2 6.01 6.02 6.13	-0.2 -1.3 2.1 -0.7 0.4 1.7 1.0 -1.7 -0.5 -0.2 0.6 -1.0 -0.9 0.0 -0.5 -0.1	11.25 11.06 11.85 11.26 11.49 11.79 11.65 11.06 11.33 11.40 11.62 11.26 11.30 11.52 11.41	-1.0 -1.8 1.5 -1.0 0.0 1.3 0.7 -1.8 -0.7 -0.4 0.6 -1.0 -0.8 0.1	0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

LA-TIA デンカ生研

0.47

1.4

6.2

1.9 11.50

1.2 0.96

1349

CRP-ラテックスX2「生研」

1013	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.45	-1.2	6.06	-0.6	11.45	-0.2	0.98
1301	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47	0.3	6.19	0.5	11.69	0.8	0.98
1528	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.45	-1.2	5.97	-1.4	11.29	-0.8	0.98
1382	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.5	2.5	6.3	1.5	11.90	1.7	0.98
1330	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47	0.3	6.12	-0.1	11.59	0.4	0.98
1313	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.46	-0.5	6.02	-0.9	11.43	-0.2	0.99
1532	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.45	-1.2	6.28	1.3	11.96	2.0	0.99
1310	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.46	-0.5	6.01	-1.0	11.45	-0.2	0.99
1084	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.40	2.5	6.1	-0.2	11.43	0.5	0.99
1300	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.3	-0.2	6.035	-0.2	11.53	0.3	0.99
1411	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.404	0.3	6.12	-0.8	11.72	1.0	1.00
1352	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.47	0.3	6.26	1.1	12.01	2.2	1.00
1519	LTオートワコー CRP-HS II		0.47	1.0	6.20	1.1	11.56	0.3	1.05
1319	LTオートワコー CRP-HS II	LA-TIA 和光純薬	0.48	4.7	6.25	1.0	13.5	8.5	1.13
1383	AVG (mg/dL)	LA-TIA 和光純薬	0.33	4./	6.13	1.0	11.49	8.3	0.97
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				0.13		0.24		0.97
	S D (mg/dL)		2.9		1.9		2.1		
	C V (%)		2.9		1.9		2.1		
1271	7k Talk I CDD H	T A (T) A (1)	0.5	1.6	0.26	(7.1	11.70	0.6	22.20
1371	アキュラスオート CRP II	LA-TIA シノテスト	0.5	1.6	0.26	-67.1	11.72	0.6	-23.38
1541	アキュラスオート CRP II	LA-TIA シノテスト	0.46	-0.9	5.92	-2.1	10.4	-2.6	0.91
1549	アキュラスオート CRP II	LA-TIA シノテスト	0.48	0.4	6.17	0.8	10.87	-1.4	0.91
4039	アキュラスオート CRP II	LA-TIA シノテスト	0.47	-0.3	5.55	-6.3	10.09	-3.3	0.95
1344	アキュラスオート CRP II	LA-TIA シノテスト	0.5	1.6	6.23	1.5	11.41	-0.1	0.95
1023	アキュラスオート CRP II	LA-TIA シノテスト	0.48	0.4	6.16	0.7	11.39	-0.2	0.96
9008	アキュラスオート CRP II	LA-TIA シノテスト	0.47	-0.3	6.05	-0.6	11.23	-0.5	0.96
1072	クオリシ゛ェント CRP	LA-TIA シノテスト	0.5	1.6	6.05	-0.6	11.21	-0.6	0.96
1057	アキュラスオート CRP Ⅱ	LA-TIA シノテスト	0.48	0.4	6.19	1.0	11.52	0.2	0.97
1112	アキュラスオート CRP Ⅱ	LA-TIA シノテスト	0.47	-0.3	6.23	1.5	11.61	0.4	0.97
1936	アキュラスオート CRP II	LA-TIA シノテスト	0.47	-0.3	6.1	0.0	11.4	-0.1	0.97
1136	アキュラスオート CRP II	LA-TIA シノテスト	0.46	-0.9	6.12	0.2	11.51	0.1	0.98
1028	アキュラスオート CRP II	LA-TIA シノテスト	0.48	0.4	6.15	0.6	11.56	0.3	0.98
3907	アキュラスオート CRP Ⅱ	LA-TIA シノテスト	0.47	-0.3	6.08	-0.2	11.47	0.0	0.98
1400	アキュラスオート CRP Ⅱ	LA-TIA シノテスト	0.48	0.4	5.99	-1.3	11.29	-0.4	0.98
1554	アキュラスオート CRP II	LA-TIA シノテスト	0.48	0.4	6.17	0.8	11.65	0.5	0.98
1126	ラテシエ CRP	LA-TIA シノテスト	0.39	-5.3	6.1	0.0	11.8	0.8	1.00
1937	アキュラスオート CRP II	LA-TIA シノテスト	0.46	-0.9	6.08	-0.2	11.72	0.6	1.00
1124	アキュラスオート CRP II	LA-TIA シノテスト	0.5	1.6	6	-1.2	11.6	0.4	1.01
1108	クイックターホ゛ CRP-NV	LA-TIA シノテスト	0.46	-0.9	6.12	0.2	11.9	1.1	1.01
1335	クイックターホ゛ CRP-NV	LA-TIA シノテスト	0.6	7.9	6.6	5.7	13.4	4.7	1.07
1525	クイックターホ [*] CRP-NV	LA-TIA シノテスト	0.44	-2.2	6	-1.2	12.41	2.3	1.08
	AVG (mg/dL)		0.47		6.10		11.45		0.98
	S D (mg/dL)		0.02		0.09		0.41		
	C V (%)		3.3		1.4		3.6		
		, ,		1		1			
1928	ナノヒ°ア CRP	LA-TIA 積水メディカル	0.49	0.5	6.13	0.7	11.13	-1.3	0.94
9033	ナノヒ°ア CRP	LA-TIA 積水メディカル	0.48	-0.6	6.11	0.5	11.38	-0.1	0.97
1558	ナノヒ°ア CRP	LA-TIA 積水メディカル	0.48	-0.6	6.16	0.9	11.49	0.4	0.97
1923	ナノヒ [°] ア CRP	LA-TIA 積水メディカル	0.49	0.5	5.95	-1.0	11.08	-1.5	0.97
1116	ナノヒ°ア CRP	LA-TIA 積水灯 / カル	0.47	-1.7	6.17	1.0	11.57	0.8	0.97
1031	ナノヒ°ア CRP	LA-TIA 積水メディカル	0.49	0.5	6.22	1.5	11.66	1.2	0.97
1046	ナノヒ°ア CRP	LA-TIA 積水メディカル	0.48	-0.6	6.05	-0.1	11.36	-0.2	0.98
1128	ナノヒ°ア CRP	LA-TIA 積水メディカル	0.49	0.5	6.08	0.2	11.41	0.0	0.98
1093	ナノヒ°ア CRP	LA-TIA 積水メディカル	0.48	-0.6	5.96	-0.9	11.2	-1.0	0.98
1542	ナノヒ°ア CRP	LA-TIA 積水メディカル	0.49	0.5	6.13	0.7	11.53	0.6	0.98
1501	ナノヒ [°] ア CRP	LA-TIA 積水メディカル	0.49	0.5	6.186	1.2	11.66	1.2	0.98
1394	ナノヒ [°] ア CRP	LA-TIA 積水メディカル	0.47	-1.7	5.93	-1.2	11.2	-1.0	0.98
1903	ナノヒ [°] ア CRP	LA-TIA 積水メディカル	0.48	-0.6	5.96	-0.9	11.29	-0.6	0.99
3027	ナノヒ [°] ア CRP	LA-TIA 積水メディカル	0.47	-1.7	5.97	-0.8	11.34	-0.3	0.99
1039	ナノヒ [°] ア CRP	LA-TIA 積水メディカル	0.5	1.6	6.12	0.6	11.62	1.0	0.99
1922	ナノヒ°ア CRP	LA-TIA 積水メディカル	0.49	0.5	5.92	-1.3	11.24	-0.8	0.99
1001	ナノヒ°ア CRP	LA-TIA 積水メディカル	0.49	0.5	6.04	-0.2	11.48	0.3	0.99
9049	ナノヒ°ア CRP	LA-TIA 積水メディカル	0.5	1.6	5.9	-1.5	11.2	-1.0	0.99
9035	ナノヒ°ア CRP	LA-TIA 積水メディカル	0.49	0.5	5.98	-0.7	11.39	-0.1	0.99
1054	ナノピア CRP	LA-TIA 積水メディカル	0.49	0.5	6.22	1.5	11.92	2.4	1.00
1543	SSタイプ ピュアオートS CRP ラテックス	LA-TIA 積水メディカル	0.48	-0.6	5.28	-7.3	10.86	-2.6	1.08
	AVG (mg/dL)		0.49		6.06		11.41		0.98
	S D (mg/dL)		0.01		0.11		0.21		
	CT (0/)				1.0				

1.8

1.8

1.9

C V (%)

1220										
1339	イアトロ CRP-EX	LA-TIA	三菱化学	0.46	1.3	5.94	1.0	10.78	-0.7	0.94
1060	イアトロ CRP-EX	LA-TIA	三菱化学	0.45	0.2	5.9	0.6	10.84	-0.5	0.95
9009	17ト□ CRP-EX	LA-TIA	三菱化学	0.433	-1.6	5.793	-0.4	10.716	-0.9	0.96
1062	イアトロ CRP-EX	LA-TIA	三菱化学	0.45	0.2	5.84	0.1	10.81	-0.6	0.96
1064	イアトロ CRP-EX	LA-TIA		0.45	0.2	5.68	-1.4	10.51	-1.6	0.96
1130	イアトロ CRP-EX	LA-TIA		0.44	-0.8	5.75	-0.8	10.77	-0.7	0.97
1540	イアトロ CRP-EX	LA-TIA	三菱化学	0.45	0.2	6.02	1.7	11.29	1.1	0.97
1343	イプトロ CRP-EX	LA-TIA	三菱化学	0.45	0.2	5.93	0.9	11.28	1.1	0.99
1058	イアトロ CRP-EX	LA-TIA	三菱化学	0.45	1.3	5.83	0.0	11.28	0.4	0.99
1403	17 hr CRP-EX				-1.9	5.75	-0.8	11.19	0.4	1.00
		LA-TIA	三菱化学	0.43						
1040	イプトロ CRP-EX	LA-TIA		0.45	0.2	5.66	-1.6	11	0.1	1.01
1029	イプトロ CRP-EX	LA-TIA	三菱化学	0.45	0.2	5.9	0.6	11.5	1.8	1.01
	AVG (mg/dL)			0.45		5.83		10.97		0.98
	S D (mg/dL)			0.01		0.11		0.29		
	C V (%)			2.1		1.9		2.6		
	<del>_</del>									
1328	AUリエーシ゛ェント CRP	TIA	オリンハ゜ス	0.47	-0.7	6.34	0.7	11.94	-0.2	0.98
1105	AUリエーシ゛ェント CRP	TIA	オリンハ゜ス	0.49	1.0	6.49	1.7	12.22	1.0	0.98
1122	AUリエーシ゛ェント CRP	TIA	オリンハ゜ス	0.48	0.2	6.16	-0.6	11.69	-1.2	0.99
3018	AUリエーシ゛ェント CRP	TIA	オリンハ゜ス	0.47	-0.7	6.2	-0.3	11.8	-0.7	0.99
1135	AUリエーシ゛ェント CRP	TIA	オリンハ゜ス	0.46	-1.5	6.1	-1.1	11.72	-1.1	1.00
4040	AUリエーシ゛ェント CRP	TIA	オリンハ゜ス	0.49	1.0	6.25	0.0	12.02	0.2	1.00
1129	AUリエーシェント CRP	TIA	オリンハ゜ス	0.46	-1.5	6.41	1.2	12.38	1.7	1.00
1419	AUリエーシェント CRP	TIA	オリンハ゜ス	0.49	1.0	6.31	0.4	12.17	0.8	1.00
9047	AUリエーシェント CRP	TIA	オリンハ゜ス	0.49	0.2	6.06	-1.4	11.73	-1.0	1.00
	AUリエーシェント CRP	TIA		0.48	1.0	6.16	-0.6	12.09	0.5	1.02
1302		HA	オリンハ゜ス	•	1.0		-0.0		0.3	
	AVG (mg/dL)			0.48		6.25		11.98		1.00
	S D (mg/dL)			0.01		0.14		0.24		
	C V (%)			2.6		2.2		2.0		
		1	1							
1055	C-反応性蛋白 RCRP	LA-TIA		0.47	-0.8	6.04	2.3	10.9	0.7	0.94
1533	C-反応性蛋白 RCRP	LA-TIA		0.55	2.6	5.92	-0.3	10.69	-1.9	0.94
9050	C-反応性蛋白 RCRP	LA-TIA	シーメンス	0.48375	-0.2	5.94	0.1	10.8575	0.2	0.95
1401	C-反応性蛋白 RCRP	LA-TIA	シーメンス	0.48	-0.4	5.95	0.4	10.9	0.7	0.95
1123	C-反応性蛋白 RCRP	LA-TIA	シーメンス	0.49	0.0	5.9	-0.7	10.8	-0.5	0.95
1032	C-反応性蛋白 RCRP	LA-TIA	シーメンス	0.48	-0.4	5.93	-0.1	10.87	0.4	0.95
1077	C-反応性蛋白 RCRP	LA-TIA		0.48	-0.4	5.9	-0.7	10.82	0.2	0.95
1396	C-反応性蛋白 RCRP		シーメンス	0.49					-0.3	
		LA-IIA		0.47	0.0	5.88	-1.2	10.78		0.95
1 1231					-0.4	5.88 5.94	-1.2 0.1	10.78 10.96	-0.8	0.95 0.96
1531	C-反応性蛋白 RCRP	LA-TIA		0.48	-0.4	5.94	-1.2 0.1	10.96	-0.8	0.96
1551	C-反応性蛋白 RCRP AVG (mg/dL)			0.48		5.94 5.93		10.96 10.84	-0.8	
1551	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL)			0.48 0.49 0.02		5.94 5.93 0.05		10.96 10.84 0.08	-0.8	0.96
1551	C-反応性蛋白 RCRP AVG (mg/dL)			0.48		5.94 5.93		10.96 10.84	-0.8	0.96
	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)	LA-TIA	シーメンス	0.48 0.49 0.02 4.8	-0.4	5.94 5.93 0.05 0.8	0.1	10.96 10.84 0.08 0.7	-0.8 1.5	0.96 0.95
1559	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)	LA-TIA	シーメンス	0.48 0.49 0.02 4.8	2.3	5.94 5.93 0.05 0.8	1.4	10.96 10.84 0.08 0.7	-0.8 1.5	0.96 0.95 0.90
1559 1413	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%) CRPユニット50 CRPユニット50	LA-TIA  LA-TIA  LA-TIA	ジーメンス 堀場 堀場	0.48 0.49 0.02 4.8 0.6 0.5	2.3 -0.4	5.94 5.93 0.05 0.8 6.4 5.9	1.4 -0.1	10.96 10.84 0.08 0.7	-0.8 1.5	0.96 0.95 0.90 0.90 0.91
1559 1413 1137	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%) CRPユニット50 CRPユニット50 CRPユニット50	LA-TIA  LA-TIA  LA-TIA  LA-TIA	ジー/ンス 堀場 堀場	0.48 0.49 0.02 4.8 0.6 0.5 0.5	2.3 -0.4 -0.4	5.94 5.93 0.05 0.8 6.4 5.9 5.6	1.4 -0.1 -1.0	10.96 10.84 0.08 0.7 11 10.3 9.8	-0.8 1.5	0.96 0.95 0.90 0.91 0.91
1559 1413 1137 2012	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%) CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50	LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA	- パンス	0.48 0.49 0.02 4.8 0.6 0.5 0.5 0.5	2.3 -0.4 -0.4 -0.4	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6	1.4 -0.1 -1.0 0.2	10.96 10.84 0.08 0.7 11 10.3 9.8 10.8	-0.8 1.5	0.96 0.95 0.90 0.91 0.91 0.94
1559 1413 1137 2012 1546	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50	LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA	ジー/ンス 堀場 堀場場 堀場場 堀場	0.48 0.49 0.02 4.8 0.6 0.5 0.5 0.5 0.5	2.3 -0.4 -0.4 -0.4 -0.4	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6	1.4 -0.1 -1.0 0.2 -0.7	10.96 10.84 0.08 0.7 11 10.3 9.8 10.8	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4	0.96 0.95 0.90 0.91 0.91 0.94 0.95
1559 1413 1137 2012	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 フ*ロイムキットCRP	LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA	ジー/ンス 堀場 堀場場 堀場場 堀場場	0.48 0.49 0.02 4.8 0.6 0.5 0.5 0.5 0.5	2.3 -0.4 -0.4 -0.4	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6 5.7 5.6	1.4 -0.1 -1.0 0.2 -0.7 -1.0	10.96 10.84 0.08 0.7 11 10.3 9.8 10.8 10.4 10.5	-0.8 1.5	0.96 0.95 0.90 0.91 0.91 0.94
1559 1413 1137 2012 1546	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50	LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA	ジー/ンス 堀場 堀場場 堀場場 堀場場	0.48 0.49 0.02 4.8 0.6 0.5 0.5 0.5 0.5	2.3 -0.4 -0.4 -0.4 -0.4	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6	1.4 -0.1 -1.0 0.2 -0.7	10.96 10.84 0.08 0.7 11 10.3 9.8 10.8	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4	0.96 0.95 0.90 0.91 0.91 0.94 0.95
1559 1413 1137 2012 1546 1415	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 フ*ロイムキットCRP	LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA	ジー/ンス 堀場 堀場場 堀場場 堀場場	0.48 0.49 0.02 4.8 0.6 0.5 0.5 0.5 0.5	2.3 -0.4 -0.4 -0.4 -0.4 -0.4	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6 5.7 5.6	1.4 -0.1 -1.0 0.2 -0.7 -1.0	10.96 10.84 0.08 0.7 11 10.3 9.8 10.8 10.4 10.5	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4 -0.3	0.96 0.95 0.90 0.91 0.91 0.94 0.95 0.98
1559 1413 1137 2012 1546 1415	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 アドロイムキットCRP	LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA	ジー/ンス 堀場 堀場場 堀場場 堀場場	0.48 0.49 0.02 4.8 0.6 0.5 0.5 0.5 0.5 0.5	2.3 -0.4 -0.4 -0.4 -0.4 -0.4	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6 5.7 5.6 6.3	1.4 -0.1 -1.0 0.2 -0.7 -1.0	10.96 10.84 0.08 0.7 11 10.3 9.8 10.8 10.4 10.5	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4 -0.3	0.96 0.95 0.90 0.91 0.91 0.94 0.95 0.98 1.03
1559 1413 1137 2012 1546 1415	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 AVG (mg/dL) S D (mg/dL)	LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA	ジー/ンス 堀場 堀場場 堀場場 堀場場	0.48 0.49 0.02 4.8 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5	2.3 -0.4 -0.4 -0.4 -0.4 -0.4	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6 5.7 5.6 6.3 5.93 0.33	1.4 -0.1 -1.0 0.2 -0.7 -1.0	10.96 10.84 0.08 0.7 11 10.3 9.8 10.8 10.4 10.5 12.4 10.74 0.82	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4 -0.3	0.96 0.95 0.90 0.91 0.91 0.94 0.95 0.98 1.03
1559 1413 1137 2012 1546 1415	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 AVG (mg/dL)	LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA	ジー/ンス 堀場 堀場場 堀場場 堀場場	0.48 0.49 0.02 4.8 0.6 0.5 0.5 0.5 0.5 0.5 0.5	2.3 -0.4 -0.4 -0.4 -0.4 -0.4	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6 5.7 5.6 6.3	1.4 -0.1 -1.0 0.2 -0.7 -1.0	10.96 10.84 0.08 0.7 11 10.3 9.8 10.8 10.4 10.5 12.4	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4 -0.3	0.96 0.95 0.90 0.91 0.91 0.94 0.95 0.98 1.03
1559 1413 1137 2012 1546 1415 1408	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 プ・ロイムキットCRP CRPユニット50 AVG (mg/dL) S D (mg/dL) C V (%)	LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA	シー/ンス 堀 堀 堀 堀 堀 堀 堀 堀 堀 堀 堀 堀 堀 堀 堀 堀 堀 堀 堀	0.48 0.49 0.02 4.8 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5	-0.4 2.3 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6 5.7 5.6 6.3 5.93 0.33 5.5	0.1 1.4 -0.1 -1.0 0.2 -0.7 -1.0 1.1	10.96 10.84 0.08 0.7 11 10.3 9.8 10.8 10.4 10.5 12.4 10.74 0.82 7.7	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4 -0.3 2.0	0.96 0.95 0.90 0.91 0.91 0.94 0.95 0.98 1.03 0.94
1559 1413 1137 2012 1546 1415 1408	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 AVG (mg/dL) S D (mg/dL) C V (%)	LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA	シーシス 堀場 堀堀場 堀場場 堀場場 堀場場 堀場場 堀場 堀場 堀場 堀場 堀場 堀	0.48 0.49 0.02 4.8 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6 5.7 5.6 6.3 5.93 0.33 5.5	0.1 1.4 -0.1 -1.0 0.2 -0.7 -1.0 1.1	10.96 10.84 0.08 0.7 11 10.3 9.8 10.8 10.4 10.5 12.4 10.74 0.82 7.7	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4 -0.3 2.0	0.96 0.95 0.90 0.91 0.91 0.94 0.95 0.98 1.03 0.94
1559 1413 1137 2012 1546 1415 1408	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 T ロイムキットCRP CRPユニット50 AVG (mg/dL) S D (mg/dL) C V (%)	LA-TIA	リードンス 堀場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場	0.48 0.49 0.02 4.8 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.6	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6 5.7 5.6 6.3 5.93 0.33 5.5	0.1 1.4 -0.1 -1.0 0.2 -0.7 -1.0 1.1	10.96 10.84 0.08 0.7 11 10.3 9.8 10.8 10.4 10.5 12.4 10.74 0.82 7.7	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4 -0.3 2.0	0.96 0.95 0.90 0.91 0.91 0.94 0.95 0.98 1.03 0.94
1559 1413 1137 2012 1546 1415 1408	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 ア・ロイムキットCRP CRPユニット50 AVG (mg/dL) S D (mg/dL) C V (%)	LA-TIA	リードンス 堀場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場	0.48 0.49 0.02 4.8 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.6 1.3	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6 5.7 5.6 6.3 5.93 0.33 5.5 6.2 6.25 6.1	0.1 1.4 -0.1 -1.0 0.2 -0.7 -1.0 1.1 0.8 0.9 0.5	10.96 10.84 0.08 0.7 11 10.3 9.8 10.8 10.4 10.5 12.4 10.74 0.82 7.7	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4 -0.3 2.0 -0.1 0.8 0.6	0.96 0.95 0.90 0.91 0.91 0.94 0.95 0.98 1.03 0.94 0.93 0.95 0.97
1559 1413 1137 2012 1546 1415 1408 1410 1133 1393 6006	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 プ・ロイムキットCRP CRPユニット50 AVG (mg/dL) S D (mg/dL) C V (%)  セルタックケミCRP セルタックケミCRP セルタックケミCRP	LA-TIA	リードンス 堀場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場	0.48 0.49 0.02 4.8 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.6 1.3 -0.9	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6.3 5.7 5.6 6.3 5.93 0.33 5.5 6.2 6.25 6.1 5.58	0.1 1.4 -0.1 -1.0 0.2 -0.7 -1.0 1.1 0.8 0.9 0.5 -1.0	10.96 10.84 0.08 0.7 11 10.3 9.8 10.4 10.5 12.4 10.74 0.82 7.7 11.1 11.5 11.4 10.7	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4 -0.3 2.0 -0.1 0.8 0.6 -1.0	0.96 0.95 0.90 0.91 0.91 0.94 0.95 0.98 1.03 0.94
1559 1413 1137 2012 1546 1415 1408 1410 1133 1393 6006 1407	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 AVG (mg/dL) S D (mg/dL) S D (mg/dL) C V (%)  セルタックケミCRP セルタックケミCRP セルタックケミCRP セルタックケミCRP	LA-TIA	リードンス 堀場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場	0.48 0.49 0.02 4.8 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	-0.4  2.3  -0.4  -0.4  -0.4  -0.4  -0.4  -0.4  -0.6  1.3  -0.9  -0.3	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6 5.7 5.6 6.3 5.93 0.33 5.5 6.2 6.25 6.1 5.58	0.1 1.4 -0.1 -1.0 0.2 -0.7 -1.0 1.1 0.8 0.9 0.5 -1.0 0.2	10.96 10.84 0.08 0.7 11 10.3 9.8 10.4 10.5 12.4 10.74 0.82 7.7 11.1 11.5 11.4 10.7 11.6	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4 -0.3 2.0 -0.1 0.8 0.6 -1.0 1.0	0.96 0.95 0.90 0.91 0.91 0.94 0.95 0.98 1.03 0.94 0.93 0.95 0.97 0.99 1.00
1559 1413 1137 2012 1546 1415 1408 1410 1133 1393 6006	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 プ・ロイムキットCRP CRPユニット50 AVG (mg/dL) S D (mg/dL) C V (%)  セルタックケミCRP セルタックケミCRP セルタックケミCRP セルタックケミCRP セルタックケミCRP セルタックケミCRP	LA-TIA	リードンス 堀場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場	0.48 0.49 0.02 4.8  0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.51 0.04 7.3	-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.6 1.3 -0.9	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6.3 5.7 5.6 6.3 5.93 0.33 5.5 6.2 6.25 6.1 5.58 6	0.1 1.4 -0.1 -1.0 0.2 -0.7 -1.0 1.1 0.8 0.9 0.5 -1.0	10.96 10.84 0.08 0.7 11 10.3 9.8 10.8 10.4 10.5 12.4 10.74 0.82 7.7 11.1 11.5 11.4 10.7 11.6 10.5	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4 -0.3 2.0 -0.1 0.8 0.6 -1.0	0.96 0.95 0.90 0.91 0.91 0.94 0.95 0.98 1.03 0.94 0.95 0.99 1.00 1.01
1559 1413 1137 2012 1546 1415 1408 1410 1133 1393 6006 1407	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 プ・ロイムキットCRP CRPユニット50 AVG (mg/dL) S D (mg/dL) C V (%)  セルタックケミCRP	LA-TIA	リードンス 堀場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場	0.48 0.49 0.02 4.8  0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.51 0.04 7.3  0.5 0.37 0.41 0.38 0.43	-0.4  2.3  -0.4  -0.4  -0.4  -0.4  -0.4  -0.4  -0.6  1.3  -0.9  -0.3	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6 5.7 5.6 6.3 5.93 0.33 5.5 6.2 6.25 6.1 5.58 6 5.4	0.1 1.4 -0.1 -1.0 0.2 -0.7 -1.0 1.1 0.8 0.9 0.5 -1.0 0.2	10.96 10.84 0.08 0.7  11 10.3 9.8 10.8 10.4 10.5 12.4 10.74 0.82 7.7  11.1 11.5 11.4 10.7 11.6 10.5 11.13	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4 -0.3 2.0 -0.1 0.8 0.6 -1.0 1.0	0.96 0.95 0.90 0.91 0.91 0.94 0.95 0.98 1.03 0.94 0.93 0.95 0.97 0.99 1.00
1559 1413 1137 2012 1546 1415 1408 1410 1133 1393 6006 1407	C-反応性蛋白 RCRP AVG (mg/dL) S D (mg/dL) C V (%)  CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 CRPユニット50 プ・ロイムキットCRP CRPユニット50 AVG (mg/dL) S D (mg/dL) C V (%)  セルタックケミCRP セルタックケミCRP セルタックケミCRP セルタックケミCRP セルタックケミCRP セルタックケミCRP	LA-TIA	リードンス 堀場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場場	0.48 0.49 0.02 4.8  0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.51 0.04 7.3	-0.4  2.3  -0.4  -0.4  -0.4  -0.4  -0.4  -0.4  -0.6  1.3  -0.9  -0.3	5.94 5.93 0.05 0.8 6.4 5.9 5.6 6.3 5.7 5.6 6.3 5.93 0.33 5.5 6.2 6.25 6.1 5.58 6	0.1 1.4 -0.1 -1.0 0.2 -0.7 -1.0 1.1 0.8 0.9 0.5 -1.0 0.2	10.96 10.84 0.08 0.7 11 10.3 9.8 10.8 10.4 10.5 12.4 10.74 0.82 7.7 11.1 11.5 11.4 10.7 11.6 10.5	-0.8 1.5 0.3 -0.5 -1.1 0.1 -0.4 -0.3 2.0 -0.1 0.8 0.6 -1.0 1.0	0.96 0.95 0.90 0.91 0.91 0.94 0.95 0.98 1.03 0.94 0.95 0.99 1.00 1.01

1.025   LZアド大学研でRP										
3055   LZテル字部でCRP	7025	LZテスト`栄研'CRP	LA-TIA 栄研化学	0.49	0.7	6.03	0.3	11.35	-0.4	0.98
3056   LZテルド電所でRP	9046	LZテスト`栄研'CRP	LA-TIA 栄研化学	0.496	1.0	6.181	1.3	11.863	1.4	1.00
AVG (mg/dL)	3055			0.46	-0.9		-0.9	11.23	-0.9	1.00
S D (mg/dL)	3056	LZテスト`栄研'CRP	LA-TIA 栄研化学	0.46	-0.9	5.89	-0.6	11.43	-0.1	1.01
The color of t		AVG (mg/dL)		0.48		5.99		11.47		1.00
1405		S D (mg/dL)		0.02		0.15		0.28		
1373   サイアス V CRP		C V (%)		4.0		2.6		2.4		
1373   サイアス V CRP										
9024    サイアス V CRP							0.0			0.97
1012   サイアス V CRP	1373			0.47			0.7	11.18	0.5	0.97
AVG (mg/dL)	9024	サイアス V CRP	LA-TIA 関東化学	0.48	0.5	5.97	0.7		1.2	0.98
S D (mg/dL)	1012		LA-TIA 関東化学	0.48	0.5		-1.4		-0.9	
To   To   To   To   To   To   To   To				0.48		5.91				0.98
1555   スポットケムTM i-Pack										
COLD   CATECLE CRP試薬		C V (%)		1.0		1.5		1.5		
COLD   CATECLE CRP試薬		<u>.</u>								
9022   オートA「ミズホ」CRP	1555	スポットケムTM i-Pack	LA-TIA アークレイ	0.5		5.6		10.8		1.01
9022   オートA「ミズホ」CRP										
9038   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.7   1.6   6.5   1.1   7   -1.3   0.54     1336   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6.2   -0.1   7   -1.3   0.57     1097   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.57     1097   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1557   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1375   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1375   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   11.5   0.3   1.01     1548   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.6   1.6   13   0.8   1.02     1076   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.6   1.6   13   0.8   1.02     1076   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1374   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1044   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1523   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6.4   0.7   13.5   1.0   1.11     AVG(mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.07   0.23   2.80     C V (%)   11.3   3.8   26.1     8011   比゙トロススライド CRP II 90   DRY   ½-У   0.5   0.0   5.64   0.2   9   0.0   0.83     9040   比゙トロススライド CRP II 90   DRY   ½-У   0.5   0.0   5.5   -1.1   9   0.0   0.83     AVG(mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.00   0.11   0.00	6015	LATECLE CRP試薬	LA-TIA カイノス	0.49		6.17		11.88		1.00
9038   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.7   1.6   6.5   1.1   7   -1.3   0.54     1336   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6.2   -0.1   7   -1.3   0.57     1097   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.57     1097   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1557   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1375   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1375   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   11.5   0.3   1.01     1548   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.6   1.6   13   0.8   1.02     1076   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.6   1.6   13   0.8   1.02     1076   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1374   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1044   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1523   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6.4   0.7   13.5   1.0   1.11     AVG(mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.59   5.64   0.2   9   0.0   0.81     9040   ビト¤ススライド CRP II 90   DRY   ½-У   0.5   0.0   5.64   0.2   9   0.0   0.83     AVG(mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.00   0.11   0.00										
1336   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6.2   -0.1   7   -1.3   0.57     1097   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1557   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1375   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1375   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   11.5   0.5   0.97     1561   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   11.5   0.3   1.01     1548   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.6   1.6   13   0.8   1.02     1076   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.6   6.3   0.3   12.5   0.6   1.05     1374   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1044   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1044   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6.4   0.7   13.5   1.0   1.11     1523   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   5.9   -1.4   12.4   0.6   1.11     AVG (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.07   0.23   2.80     C V (%)   11.3   3.8   26.1     8011   ビトッススライド CRP II 90   DRY   オーソ   0.5   0.0   5.64   0.2   9   0.0   0.83     1075   ビトッススライド CRP II 90   DRY   オーソ   0.5   0.0   5.64   0.2   9   0.0   0.83     1075   ビトッススライド CRP II 90   DRY   オーソ   0.5   0.0   5.62   9.00   0.83     S D (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.00   0.11   0.00   0.11   0.00	9022	オートA「ミス゛ホ」 CRP	TIA ミス゛ホメテ゛ィ	0.54		6.34		12.34		1.02
1336   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6.2   -0.1   7   -1.3   0.57     1097   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1557   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1375   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1375   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   11.5   0.5   0.97     1561   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   11.5   0.3   1.01     1548   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.6   1.6   13   0.8   1.02     1076   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.6   6.3   0.3   12.5   0.6   1.05     1374   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1044   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1044   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6.4   0.7   13.5   1.0   1.11     1523   富士ドライクムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   5.9   -1.4   12.4   0.6   1.11     AVG (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.07   0.23   2.80     C V (%)   11.3   3.8   26.1     8011   ビトッススライド CRP II 90   DRY   オーソ   0.5   0.0   5.64   0.2   9   0.0   0.83     1075   ビトッススライド CRP II 90   DRY   オーソ   0.5   0.0   5.64   0.2   9   0.0   0.83     1075   ビトッススライド CRP II 90   DRY   オーソ   0.5   0.0   5.62   9.00   0.83     S D (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.00   0.11   0.00   0.11   0.00										
1097   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1557   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1375   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6.5   1.1   12.1   0.5   0.97     1561   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   11.5   0.3   1.01     1548   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.6   1.6   13   0.8   1.02     1076   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.7   1.6   6.3   0.3   12.5   0.6   1.05     1374   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1044   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1044   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1523   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6.4   0.7   13.5   1.0   1.11     AVG (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.07   0.23   2.80     C V (%)   11.3   3.8   26.1     8011   世゙ト¤ススライド CRP II 90   DRY   オーケ   0.5   0.0   5.72   0.9   9   0.0   0.83     1075   世゙ト¤ススライド CRP II 90   DRY   オーケ   0.5   0.0   5.64   0.2   9   0.0   0.83     1075   世゙ト¤ススライド CRP II 90   DRY   オーケ   0.5   0.0   5.62   9.00   0.83     S D (mg/dL)   0.50   0.00   0.11   0.00										
1557   富士ト*ライケムスライト* CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   7   -1.3   0.59     1375   富士ト*ライケムスライト* CRP-S3   DRY   富士フィルム   0.6   0.1   6.5   1.1   12.1   0.5   0.97     1561   富士ト*ライケムスライト* CRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   11.5   0.3   1.01     1548   富士ト*ライケムスライト* CRP-S3   DRY   富士フィルム   0.5   -1.4   6.6   1.6   13   0.8   1.02     1076   富士ト*ライケムスライト* CRP-S3   DRY   富士フィルム   0.7   1.6   6.3   0.3   12.5   0.6   1.05     1374   富士ト*ライケムスライト* CRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1044   富士ト*ライケムスライト* CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ト*ライケムスライト* CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1523   富士ト*ライケムスライト* CRP-S3   DRY   富士フィルム   0.6   0.1   6.4   0.7   13.5   1.0   1.11     1523   富士ト*ライケムスライト* CRP-S3   DRY   富士フィルム   0.6   0.1   5.9   -1.4   12.4   0.6   1.11     AVG (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.07   0.23   2.80     C V (%)   11.3   3.8   26.1     8011   L*トロススライト* CRP II 90   DRY   オーケ   0.5   0.0   5.64   0.2   9   0.0   0.83     1075   L*トロススライト* CRP II 90   DRY   オーケ   0.5   0.0   5.64   0.2   9   0.0   0.85     AVG (mg/dL)   0.50   5.62   9.00   0.85     AVG (mg/dL)   0.50   5.62   9.00   0.85     AVG (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.00   0.11   0.00										
1375   富士ドライケムスライドCRP-S3   DRY   富士イルム   0.6   0.1   6.5   1.1   12.1   0.5   0.97     1561   富士ドライケムスライドCRP-S3   DRY   富士イルム   0.6   0.1   6   -1.0   11.5   0.3   1.01     1548   富士ドライケムスライドCRP-S3   DRY   富士イルム   0.5   -1.4   6.6   1.6   13   0.8   1.02     1076   富士ドライケムスライドCRP-S3   DRY   富士7ィルム   0.7   1.6   6.3   0.3   12.5   0.6   1.05     1374   富士ドライケムスライドCRP-S3   DRY   富士7ィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1044   富士ドライケムスライドCRP-S3   DRY   富士7ィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ドライケムスライドCRP-S3   DRY   富士7ィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ドライケムスライドCRP-S3   DRY   富士7ィルム   0.6   0.1   6.4   0.7   13.5   1.0   1.11     1523   富士ドライケムスライドCRP-S3   DRY   富士7ィルム   0.6   0.1   5.9   -1.4   12.4   0.6   1.11		1								
1561   富士ドライクムススライドCRP-S3   DRY   富士フィルム   0.6   0.1   6   -1.0   11.5   0.3   1.01     1548   富士ドライクムススライドCRP-S3   DRY   富士フィルム   0.5   -1.4   6.6   1.6   13   0.8   1.02     1076   富士ドライクムススライドCRP-S3   DRY   富士フィルム   0.7   1.6   6.3   0.3   12.5   0.6   1.05     1374   富士ドライクムススライドCRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1044   富士ドライクムススライドCRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ドライクムススライドCRP-S3   DRY   富士フィルム   0.6   0.1   6.4   0.7   13.5   1.0   1.11     1523   富士ドライクムススライドCRP-S3   DRY   富士フィルム   0.6   0.1   5.9   -1.4   12.4   0.6   1.11     AVG (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.07   0.23   2.80     C V (%)   11.3   3.8   26.1     8011   比゙ト¤ススライドCRP II 90   DRY   オーツ   0.5   0.0   5.72   0.9   9   0.0   0.81     9040   比゙ト¤ススライドCRP II 90   DRY   オーツ   0.5   0.0   5.64   0.2   9   0.0   0.83     1075   比゙ト¤ススライドCRP II 90   DRY   オーツ   0.5   0.0   5.64   0.2   9   0.0   0.85     AVG (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.50   0.01   0.11   0.00										
1548   富士ドライケムスライト CRP-S3   DRY   富士イルム   0.5   -1.4   6.6   1.6   1.3   0.8   1.02     1076   富士ドライケムスライト CRP-S3   DRY   富士イルム   0.7   1.6   6.3   0.3   12.5   0.6   1.05     1374   富士ドライケムスライト CRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1044   富士ドライケムスライト CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ドライケムスライト CRP-S3   DRY   富士フィルム   0.6   0.1   6.4   0.7   13.5   1.0   1.11     1523   富士ドライケムスライト CRP-S3   DRY   富士フィルム   0.6   0.1   5.9   -1.4   12.4   0.6   1.11     AVG (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.07   0.23   2.80     C V (%)   11.3   3.8   26.1     8011   比ドロススライト CRP II 90   DRY   オーソ   0.5   0.0   5.72   0.9   9   0.0   0.81     9040   比ドロススライト CRP II 90   DRY   オーソ   0.5   0.0   5.64   0.2   9   0.0   0.83     1075   比ドロススライト CRP II 90   DRY   オーソ   0.5   0.0   5.64   0.2   9   0.0   0.85     AVG (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.00   0.11   0.00										
1076   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.7   1.6   6.3   0.3   12.5   0.6   1.05     1374   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1044   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6.4   0.7   13.5   1.0   1.11     1523   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   5.9   -1.4   12.4   0.6   1.11     AVG (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.07   0.23   2.80     C V (%)   11.3   3.8   26.1     8011   上゙トロススライド CRP II 90   DRY   オーツ   0.5   0.0   5.72   0.9   9   0.0   0.81     9040   上゙トロススライド CRP II 90   DRY   オーツ   0.5   0.0   5.64   0.2   9   0.0   0.83     1075   上゙トロススライド CRP II 90   DRY   オーツ   0.5   0.0   5.64   0.2   9   0.0   0.85     AVG (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.00   0.11   0.00							-			
1374   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.1   -0.6   12.3   0.6   1.05     1044   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6.4   0.7   13.5   1.0   1.11     1523   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   5.9   -1.4   12.4   0.6   1.11     AVG (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.07   0.23   2.80     C V (%)   11.3   3.8   26.1     8011   上゙トロススライド CRP II 90   DRY   オーツ   0.5   0.0   5.72   0.9   9   0.0   0.81     9040   上゙トロススライド CRP II 90   DRY   オーツ   0.5   0.0   5.64   0.2   9   0.0   0.83     1075   上゙トロススライド CRP II 90   DRY   オーツ   0.5   0.0   5.64   0.2   9   0.0   0.85     AVG (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.00   0.11   0.00										
1044   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.5   -1.4   6.3   0.3   13.3   0.9   1.10     1367   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6.4   0.7   13.5   1.0   1.11     1523   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   5.9   -1.4   12.4   0.6   1.11     AVG (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.07   0.23   2.80     C V (%)   11.3   3.8   26.1     8011   ビトロススライド CRP II 90   DRY   オーツ   0.5   0.0   5.72   0.9   9   0.0   0.81     9040   ビトロススライド CRP II 90   DRY   オーツ   0.5   0.0   5.64   0.2   9   0.0   0.83     1075   ビトロススライド CRP II 90   DRY   オーツ   0.5   0.0   5.64   0.2   9   0.0   0.85     AVG (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.50   0.01   0.00			DRY 富士フィルム							
Table 1367   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   6.4   0.7   13.5   1.0   1.11     Table 1523   富士ドライケムスライド CRP-S3   DRY   富士フィルム   0.6   0.1   5.9   -1.4   12.4   0.6   1.11     AVG (mg/dL)   0.59   6.23   10.72   0.90     S D (mg/dL)   0.07   0.23   2.80     C V (%)   11.3   3.8   26.1     S011   ビトロススライド CRP II 90   DRY   オーツ   0.5   0.0   5.72   0.9   9   0.0   0.81     9040   ビトロススライド CRP II 90   DRY   オーツ   0.5   0.0   5.64   0.2   9   0.0   0.83     1075   ビトロススライド CRP II 90   DRY   オーツ   0.5   0.0   5.5   -1.1   9   0.0   0.85     AVG (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.00   0.11   0.00										
Total   日本										
AVG (mg/dL)										
S D (mg/dL)	1523		DRY 富士フィルム		0.1		-1.4		0.6	
C V (%)   11.3   3.8   26.1										0.90
8011   比*トロススライト* CRP II 90   DRY オーソ   0.5   0.0   5.72   0.9   9   0.0   0.81     9040   比*トロススライト* CRP II 90   DRY オーソ   0.5   0.0   5.64   0.2   9   0.0   0.83     1075   比*トロススライト* CRP II 90   DRY オーソ   0.5   0.0   5.5   -1.1   9   0.0   0.85     AVG (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.00   0.11   0.00										
9040   ピト¤ススライドCRP II 90   DRY オーソ   0.5   0.0   5.64   0.2   9   0.0   0.83   1075   ピト¤ススライドCRP II 90   DRY オーソ   0.5   0.0   5.5   -1.1   9   0.0   0.85		C V (%)		11.3		3.8		26.1		
9040   ピト¤ススライドCRP II 90   DRY オーソ   0.5   0.0   5.64   0.2   9   0.0   0.83   1075   ピト¤ススライドCRP II 90   DRY オーソ   0.5   0.0   5.5   -1.1   9   0.0   0.85	0011	121 112 GDD W 00	DDV .	اء ،		1	1			0.01
1075   比・トロススライト・CRP II 90   DRY オーソ   0.5   0.0   5.5   -1.1   9   0.0   0.85     AVG (mg/dL)   0.50   5.62   9.00   0.83     S D (mg/dL)   0.00   0.11   0.00										
AVG (mg/dL) 0.50 5.62 9.00 0.83 S D (mg/dL) 0.00 0.11 0.00	,									
S D (mg/dL) 0.00 0.11 0.00	1075		DRY オーソ		0.0		-1.1		0.0	
										0.83
C V (%) 0.0 2.0 0.0										
		C V (%)		0.0		2.0		0.0		

RF

#### 3SD除外により集計未使用(除外施設なし)

施設	試薬名	測定	メーカー			試	料			S14-S12
コード	<b></b>	原理	7 2	No.12	SDI	No.13	SDI	No.14	SDI	(S13-S12)×2
1542	N-A TIA RF	TIA	ニットーホ゛ー	8	0.2	58	1.1	123	0.3	1.15
1903	N-A TIA RF	TIA	ニットーホ゛ー	7	-0.4	57	0.8	125	0.8	1.18
3027	N-A TIA RF	TIA	ニットーホ゛ー	7	-0.4	57	0.8	127	1.2	1.20
6008	N-A TIA RF	TIA	ニットーホ゛ー	5	-1.5	53	-0.5	122	0.1	1.22
1501	N-A TIA RF	TIA	ニットーホ゛ー	9.3	1.0	55.2	0.2	122.2	0.2	1.23
1502	N-A TIA RF	TIA	ニットーホ゛ー	6.8	-0.5	49.8	-1.6	114.8	-1.5	1.26
1917	N-A TIA RF	TIA	ニットーホ゛ー	10.3	1.5	52.2	-0.8	116.3	-1.2	1.26
	AVG (mg/dL)			7.6		54.6		121.5		1.21
	S D (mg/dL)	•		1.8	•	3.0		4.4		·
	C V (%)	•		23.0	•	5.5		3.6		

1018	N-A LA RF-K	LA-TIA	ニットーホ゛ー	13	0.5	76	2.6	131	1.8	0.94
1031	N-A LA RF-K	LA-TIA	ニットーホ゛ー	11	-1.1	66.9	-0.2	120.9	-1.2	0.98
1404	N-A LA RF-K	LA-TIA	ニットーホ゛ー	12.7	0.2	68.4	0.3	122.9	-0.6	0.99
1325	N-A LA RF-K	LA-TIA	ニットーホ゛ー	12.7	0.2	67.5	0.0	121.5	-1.0	0.99
2002	N-A LA RF-K	LA-TIA	ニットーホ゛ー	9.6	-2.1	67.8	0.1	125.3	0.1	0.99
3048	N-A LA RF-K	LA-TIA	ニットーホ゛ー	13.1	0.5	68.8	0.4	125.1	0.0	1.01
1012	N-A LA RF-K	LA-TIA	ニットーホ゛ー	12.7	0.2	69.6	0.6	128.1	0.9	1.01
1316	N-A LA RF-K	LA-TIA	ニットーホ゛ー	14.3	1.5	70.2	0.8	127.7	0.8	1.01
5006	N-A LA RF-K	LA-TIA	ニットーホ゛ー	12	-0.3	68	0.2	126	0.3	1.02
1901	N-A LA RF-K	LA-TIA	ニットーホ゛ー	13	0.5	69	0.5	127	0.6	1.02
5005	N-A LA RF-K	LA-TIA	ニットーホ゛ー	12.3	-0.1	66.1	-0.4	122.5	-0.7	1.02
7002	N-A LA RF-K	LA-TIA	ニットーホ゛ー	13.6	0.9	69.7	0.7	128.6	1.1	1.02
9014	N-A LA RF-K	LA-TIA	ニットーホ゛ー	13.2	0.6	68.4	0.3	126.7	0.5	1.03
1302	N-A LA RF-K	LA-TIA	ニットーホ゛ー	11.6	-0.6	64	-1.1	119.4	-1.7	1.03
1002	N-A LA RF-K	LA-TIA	ニットーホ゛ー	13	0.5	69	0.5	129	1.2	1.04
1305	N-A LA RF-K	LA-TIA	ニットーホ゛ー	13	0.5	64	-1.1	120	-1.5	1.05
1040	N-A LA RF-K	LA-TIA	ニットーホ゛ー	12.6	0.2	63.2	-1.3	121.1	-1.1	1.07
1001	N-A LA RF-K	LA-TIA	ニットーホ゛ー	13	0.5	65	-0.8	126	0.3	1.09
7001	N-A LA RF-K	LA-TIA	ニットーホ゛ー	9	-2.6	61	-2.0	125	0.0	1.12
	AVG (mg/dL)		-	12.4		67.5		124.9		1.02
	S D (mg/dL)			1.3		3.3		3.4		
	C V (%)			10.5		4.8		2.7		

6015	LZテスト'栄研' RF	LA-TIA	栄研化学	16	0.7	89.1	2.6	149.8	2.2	0.92
3056	LZテスト'栄研' RF	LA-TIA	栄研化学	15.6	0.3	84.5	1.9	142.6	1.4	0.92
1513	LZテスト'栄研' RF	LA-TIA	栄研化学	17.3	2.0	80.6	1.3	135.6	0.6	0.93
6016	LZテスト'栄研' RF	LA-TIA	栄研化学	15.3	0.0	72.4	0.1	128.9	-0.2	0.99
3022	LZテスト'栄研' RF	LA-TIA	栄研化学	16.3	1.0	75.8	0.6	135.9	0.6	1.01
4002	LZテスト'栄研' RF	LA-TIA	栄研化学	14.3	-1.0	66.3	-0.8	119.3	-1.3	1.01
1094	LZテスト'栄研' RF	LA-TIA	栄研化学	14	-1.3	68	-0.5	125	-0.6	1.03
3055	LZテスト'栄研' RF	LA-TIA	栄研化学	15	-0.3	69	-0.4	126	-0.5	1.03
1909	LZテスト'栄研' RF	LA-TIA	栄研化学	17	1.7	73	0.2	133	0.3	1.04
1337	LZテスト'栄研' RF	LA-TIA	栄研化学	15	-0.3	71.4	0.0	132.3	0.2	1.04
1315	LZテスト'栄研' RF	LA-TIA	栄研化学	15	-0.3	70	-0.2	130	0.0	1.05
7025	LZテスト'栄研' RF	LA-TIA	栄研化学	14.2	-1.1	67.1	-0.6	125.1	-0.6	1.05
7901	LZテスト'栄研' RF	LA-TIA	栄研化学	15	-0.3	65	-1.0	121	-1.1	1.06
1062	LZテスト'栄研' RF	LA-TIA	栄研化学	13.1	-2.2	63.9	-1.1	121.1	-1.1	1.06
2006	LZテスト'栄研' RF	LA-TIA	栄研化学	15.3	0.0	64.7	-1.0	120.6	-1.1	1.07
9046	LZテスト'栄研' RF	LA-TIA	栄研化学	14.94	-0.4	64.76	-1.0	121.16	-1.0	1.07
8004	LZテスト'栄研' RF	LA-TIA	栄研化学	15	-0.3	67	-0.7	126	-0.5	1.07
1004	LZテスト'栄研' RF	LA-TIA	栄研化学	16	0.7	71	-0.1	134	0.4	1.07
1411	LZテスト'栄研' RF	LA-TIA	栄研化学	16	0.7	76.6	0.7	146.6	1.9	1.08
1300	LZテスト'栄研' RF	LA-TIA	栄研化学	16	0.7	69.98	-0.2	132.34	0.2	1.08
	AVG (mg/dL)	•		15.3		71.5		130.3	•	1.03
	S D (mg/dL)			1.0		6.8		8.7		
	C V (%)			6.6		9.6		6.7		

1529	LT オートワコーRF	LA-TIA	和光純薬	10.1	-0.7	81.3	0.1	150.5	-0.2	0.99
1341	LT オートワコーRF	LA-TIA	和光純薬	12	0.6	79.6	-0.7	145.5	-1.5	0.99
1514	LT オートワコーRF	LA-TIA	和光純薬	9	-1.5	79	-1.0	148	-0.9	0.99
1310	LT オートワコーRF	LA-TIA	和光純薬	10.5	-0.4	81.2	0.1	151.1	-0.1	0.99
1327	LT オートワコーRF	LA-TIA	和光純薬	11.1	0.0	83.2	1.1	155.1	0.9	1.00
1368	LT オートワコーRF	LA-TIA	和光純薬	11.6	0.3	84.3	1.7	156.8	1.4	1.00
1301	LT オートワコーRF	LA-TIA	和光純薬	10.7	-0.3	78.7	-1.2	146.7	-1.2	1.00
1329	LT オートワコーRF	LA-TIA	和光純薬	10	-0.8	79	-1.0	148	-0.9	1.00
1081	LT オートワコーRF	LA-TIA	和光純薬	12	0.6	83	1.0	154.9	0.9	1.01
9023	LT オートワコーRF	LA-TIA	和光純薬	11	-0.1	81	0.0	152	0.1	1.01
1505	LT オートワコーRF	LA-TIA	和光純薬	11	-0.1	79	-1.0	152	0.1	1.04
1382	LT オートワコーRF	LA-TIA	和光純薬	15	2.6	83	1.0	157	1.4	1.04
	AVG (mg/dL)	1 1	11178/18/18	11.2		81.0		151.5		1.03
	S D (mg/dL)			1.5		2.0		3.9		1.05
	C V (%)			13.3		2.4		2.6		
	C + (70)			13.3		2.1		2.0		
1102	イアトロ <b>RFI</b> I	LA-TIA	LSIメテ゛ィエンス	14	0.2	67	0.8	127	0.1	1.07
7011	イアトロ <b>RFII</b>		LSIXF (IIVX	13	-1.0	63		127	-0.7	
9009			LSIXF (IIVX	12.7	-1.0 -1.4	62.7	-0.5	121.7	-0.7	1.09
1357	イアトロRF II イアトロRF II	LA-TIA LA-TIA	LSIメティエンス	12. /	0.2	62.7	-0.6 0.8	121.7	0.6	1.10
1006	イアトロRFII		LSIメディエンス	15	1.4	67	0.8	130	0.6	1.10
	17 FPRF II		LSIメディエンス		0.2	62				
1313			LSIメテ、イエンス	14	0.2	62	-0.8	121 121	-0.8	1.11
7007	イアトロRFII			14			-0.8		-0.8	1.11
1911	イアトロRFII		LSIメテ、イエンス	15	1.4	70	1.7	142	2.2	1.15
1403	イアトロRFII	LA-TIA	LSIメテ゛ィエンス	13	-1.0	61	-1.2	124	-0.4	1.16
	AVG (mg/dL)			13.9		64.6		126.6		1.05
1										
	S D (mg/dL)			0.8		3.1		6.9		
	S D (mg/dL) C V (%)			6.0		3.1 4.9		6.9 5.5		
	C V (%)	T- · · T		6.0		4.9		5.5	1	
9043	C V (%) RF-ラテックスX1「生研」	LA-TIA	デンカ生研	16.3	0.9	73.6	0.2	5.5	-0.9	1.03
1026	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」	LA-TIA	デンカ生研	6.0 16.3 9.7	-2.0	73.6 61.3	-1.9	5.5 134.6 118.7	-1.6	1.06
1026 9012	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」	LA-TIA LA-TIA	デンカ生研 デンカ生研	6.0 16.3 9.7 14.7	-2.0 0.2	73.6 61.3 77.7	-1.9 0.9	5.5 134.6 118.7 161.1	-1.6 0.4	1.06 1.16
1026 9012 1010	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」	LA-TIA LA-TIA LA-TIA	デンカ生研 デ [*] ンカ生研 デ [*] ンカ生研	6.0 16.3 9.7 14.7 14.6	-2.0 0.2 0.2	73.6 61.3 77.7 76.2	-1.9 0.9 0.6	5.5 134.6 118.7 161.1 163.8	-1.6 0.4 0.6	1.06 1.16 1.21
1026 9012 1010 2008	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」	LA-TIA LA-TIA LA-TIA LA-TIA	<ul><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li></ul>	6.0 16.3 9.7 14.7 14.6 15	-2.0 0.2 0.2 0.3	73.6 61.3 77.7 76.2 73	-1.9 0.9 0.6 0.1	5.5 134.6 118.7 161.1 163.8 164	-1.6 0.4 0.6 0.6	1.06 1.16 1.21 1.28
1026 9012 1010	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」	LA-TIA LA-TIA LA-TIA	デンカ生研 デ [*] ンカ生研 デ [*] ンカ生研	6.0 16.3 9.7 14.7 14.6 15 15	-2.0 0.2 0.2	73.6 61.3 77.7 76.2 73	-1.9 0.9 0.6	5.5 134.6 118.7 161.1 163.8 164 171	-1.6 0.4 0.6	1.06 1.16 1.21 1.28 1.34
1026 9012 1010 2008	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 AVG (mg/dL)	LA-TIA LA-TIA LA-TIA LA-TIA	<ul><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li></ul>	6.0 16.3 9.7 14.7 14.6 15 15 14.2	-2.0 0.2 0.2 0.3	73.6 61.3 77.7 76.2 73 73 72.5	-1.9 0.9 0.6 0.1	5.5 134.6 118.7 161.1 163.8 164 171 152.2	-1.6 0.4 0.6 0.6	1.06 1.16 1.21 1.28
1026 9012 1010 2008	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 AVG (mg/dL) S D (mg/dL)	LA-TIA LA-TIA LA-TIA LA-TIA	<ul><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li></ul>	6.0  16.3  9.7  14.7  14.6  15  15  14.2  2.3	-2.0 0.2 0.2 0.3	73.6 61.3 77.7 76.2 73 73 72.5 5.8	-1.9 0.9 0.6 0.1	5.5 134.6 118.7 161.1 163.8 164 171 152.2 20.7	-1.6 0.4 0.6 0.6	1.06 1.16 1.21 1.28 1.34
1026 9012 1010 2008	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 AVG (mg/dL)	LA-TIA LA-TIA LA-TIA LA-TIA	<ul><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li></ul>	6.0 16.3 9.7 14.7 14.6 15 15 14.2	-2.0 0.2 0.2 0.3	73.6 61.3 77.7 76.2 73 73 72.5	-1.9 0.9 0.6 0.1	5.5 134.6 118.7 161.1 163.8 164 171 152.2	-1.6 0.4 0.6 0.6	1.06 1.16 1.21 1.28 1.34
1026 9012 1010 2008	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 AVG (mg/dL) S D (mg/dL)	LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA	デンカ生研 デンカ生研 デンカ生研 デンカ生研 デンカ生研	6.0  16.3  9.7  14.7  14.6  15  15  14.2  2.3	-2.0 0.2 0.2 0.3	73.6 61.3 77.7 76.2 73 73 72.5 5.8	-1.9 0.9 0.6 0.1	5.5 134.6 118.7 161.1 163.8 164 171 152.2 20.7	-1.6 0.4 0.6 0.6	1.06 1.16 1.21 1.28 1.34
1026 9012 1010 2008	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 AVG (mg/dL) S D (mg/dL)	LA-TIA LA-TIA LA-TIA LA-TIA	<ul><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li></ul>	6.0  16.3  9.7  14.7  14.6  15  15  14.2  2.3  16.1	-2.0 0.2 0.2 0.3	73.6 61.3 77.7 76.2 73 73 72.5 5.8	-1.9 0.9 0.6 0.1	5.5 134.6 118.7 161.1 163.8 164 171 152.2 20.7	-1.6 0.4 0.6 0.6	1.06 1.16 1.21 1.28 1.34
1026 9012 1010 2008 1343	CV(%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 AVG (mg/dL) S D (mg/dL) C V (%)	LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA	デンカ生研 デンカ生研 デンカ生研 デンカ生研 デンカ生研	6.0  16.3  9.7  14.7  14.6  15  15  14.2  2.3  16.1	-2.0 0.2 0.2 0.3 0.3 0.7 -0.2	73.6 61.3 77.7 76.2 73 73 72.5 5.8 8.0	-1.9 0.9 0.6 0.1 0.1	5.5 134.6 118.7 161.1 163.8 164 171 152.2 20.7 13.6	-1.6 0.4 0.6 0.6 0.9	1.06 1.16 1.21 1.28 1.34 1.11
1026 9012 1010 2008 1343	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 AVG (mg/dL) S D (mg/dL) C V (%)	LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA	デンカ生研 デンカ生研 デンカ生研 デンカ生研 デンカ生研 デンカ生研	6.0  16.3  9.7  14.7  14.6  15  15  14.2  2.3  16.1	-2.0 0.2 0.2 0.3 0.3	73.6 61.3 77.7 76.2 73 73 72.5 5.8 8.0	-1.9 0.9 0.6 0.1 0.1	5.5 134.6 118.7 161.1 163.8 164 171 152.2 20.7 13.6	-1.6 0.4 0.6 0.6 0.9	1.06 1.16 1.21 1.28 1.34 1.11
1026 9012 1010 2008 1343	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 AVG (mg/dL) S D (mg/dL) C V (%)  ランピアラテックス RFIII ランピアラテックス RFIII	LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA LA-TIA	<ul><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>を東製薬</li><li>極東製薬</li></ul>	6.0  16.3  9.7  14.7  14.6  15  15  14.2  2.3  16.1	-2.0 0.2 0.2 0.3 0.3 0.7 -0.2	73.6 61.3 77.7 76.2 73 73 72.5 5.8 8.0	-1.9 0.9 0.6 0.1 0.1	5.5  134.6 118.7 161.1 163.8 164 171 152.2 20.7 13.6	-1.6 0.4 0.6 0.6 0.9 -1.0 -0.8	1.06 1.16 1.21 1.28 1.34 1.11 0.99
1026 9012 1010 2008 1343 1101 1558 1936	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 AVG (mg/dL) S D (mg/dL) C V (%)  ランピアラテックス RFIII ランピアラテックス RFIII	LA-TIA	<ul><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>を東製薬</li><li>極東製薬</li><li>極東製薬</li></ul>	6.0  16.3  9.7  14.7  14.6  15  15  14.2  2.3  16.1  12.4  11  11	-2.0 0.2 0.2 0.3 0.3 0.3	73.6 61.3 77.7 76.2 73 73 72.5 5.8 8.0 68.9 65 68	-1.9 0.9 0.6 0.1 0.1 -1.5 0.2	5.5  134.6 118.7 161.1 163.8 164 171 152.2 20.7 13.6  123.9 125 133	-1.6 0.4 0.6 0.6 0.9 -1.0 -0.8 0.1	1.06 1.16 1.21 1.28 1.34 1.11 0.99 1.06 1.07
1026 9012 1010 2008 1343 1101 1558 1936 9033	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 AVG (mg/dL) S D (mg/dL) C V (%)  ランピアラテックス RFIII ランピアラテックス RFIII ランピアラテックス RFIII	LA-TIA	<ul><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>がンカ生研</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li></ul>	6.0  16.3  9.7  14.7  14.6  15  15  14.2  2.3  16.1  12.4  11  13	-2.0 0.2 0.3 0.3 0.3 0.7 -0.2 -0.2 1.1	73.6 61.3 77.7 76.2 73 73 72.5 5.8 8.0 68.9 65 68 69.4	-1.9 0.9 0.6 0.1 0.1 -1.5 0.2	5.5  134.6 118.7 161.1 163.8 164 171 152.2 20.7 13.6  123.9 125 133 134	-1.6 0.4 0.6 0.6 0.9 -1.0 -0.8 0.1 0.2	1.06 1.16 1.21 1.28 1.34 1.11 0.99 1.06 1.07
1026 9012 1010 2008 1343 1101 1558 1936 9033	RF-ラテックスX1「生研」	LA-TIA	<ul><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>がンカ生研</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li></ul>	6.0  16.3  9.7  14.7  14.6  15  15  14.2  2.3  16.1  12.4  11  13  9	-2.0 0.2 0.3 0.3 0.3 0.7 -0.2 -0.2 1.1	73.6 61.3 77.7 76.2 73 73 72.5 5.8 8.0 68.9 65 68 69.4 67	-1.9 0.9 0.6 0.1 0.1 -1.5 0.2	5.5  134.6 118.7 161.1 163.8 164 171 152.2 20.7 13.6  123.9 125 133 134 145	-1.6 0.4 0.6 0.6 0.9 -1.0 -0.8 0.1 0.2	1.06 1.16 1.21 1.28 1.34 1.11 0.99 1.06 1.07 1.07
1026 9012 1010 2008 1343 1101 1558 1936 9033	C V (%)  RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 AVG (mg/dL) S D (mg/dL) C V (%)  ランピア ラテックス RFIII フンピア ラテックス RFIII	LA-TIA	<ul><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>がンカ生研</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li></ul>	6.0  16.3  9.7  14.7  14.6  15  15  14.2  2.3  16.1  12.4  11  13  9  11.3	-2.0 0.2 0.3 0.3 0.3 0.7 -0.2 -0.2 1.1	73.6 61.3 77.7 76.2 73 73 72.5 5.8 8.0 68.9 65 68 69.4 67	-1.9 0.9 0.6 0.1 0.1 -1.5 0.2	5.5 134.6 118.7 161.1 163.8 164 171 152.2 20.7 13.6 123.9 125 133 134 145 132.2	-1.6 0.4 0.6 0.6 0.9 -1.0 -0.8 0.1 0.2	1.06 1.16 1.21 1.28 1.34 1.11 0.99 1.06 1.07 1.07
1026 9012 1010 2008 1343 1101 1558 1936 9033	RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 AVG (mg/dL) S D (mg/dL) C V (%)  ランピア ラテックス RFIII スVG (mg/dL) S D (mg/dL)	LA-TIA	<ul><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>がンカ生研</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li></ul>	6.0  16.3  9.7  14.7  14.6  15  15  14.2  2.3  16.1  12.4  11  13  9  11.3  1.5	-2.0 0.2 0.3 0.3 0.3 0.7 -0.2 -0.2 1.1	4.9  73.6 61.3 77.7 76.2 73 73 72.5 5.8 8.0  68.9 65 68 69.4 67 67.7	-1.9 0.9 0.6 0.1 0.1 -1.5 0.2	5.5  134.6 118.7 161.1 163.8 164 171 152.2 20.7 13.6  123.9 125 133 134 145 132.2 8.5	-1.6 0.4 0.6 0.6 0.9 -1.0 -0.8 0.1 0.2	1.06 1.16 1.21 1.28 1.34 1.11 0.99 1.06 1.07 1.07
1026 9012 1010 2008 1343 1101 1558 1936 9033	RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 AVG (mg/dL) S D (mg/dL) C V (%)  ランピア ラテックス RFIII スVG (mg/dL) S D (mg/dL)	LA-TIA	<ul><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生研</li><li>がンカ生研</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li><li>を収集</li></ul>	6.0  16.3  9.7  14.7  14.6  15  15  14.2  2.3  16.1  12.4  11  13  9  11.3  1.5	-2.0 0.2 0.3 0.3 0.3 0.7 -0.2 -0.2 1.1	4.9  73.6 61.3 77.7 76.2 73 73 72.5 5.8 8.0  68.9 65 68 69.4 67 67.7	-1.9 0.9 0.6 0.1 0.1 -1.5 0.2	5.5  134.6 118.7 161.1 163.8 164 171 152.2 20.7 13.6  123.9 125 133 134 145 132.2 8.5	-1.6 0.4 0.6 0.6 0.9 -1.0 -0.8 0.1 0.2	1.06 1.16 1.21 1.28 1.34 1.11 0.99 1.06 1.07 1.07
1026 9012 1010 2008 1343 1101 1558 1936 9033 3907	RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 RF-ラテックスX1「生研」 AVG (mg/dL) C V (%)  ランと。アラテックス RFIII フンと。アラテックス RFIIII フンと。アラテックス RFIII アンと。アラテックス RFIIII アンと。アラテックス RFIII アントの、アラテックス RFIIII アントの、アラテックス RFIII アラテックス RFIII アラテックス RFIII アラテックス RFIII アラテックス RFIII アラテックス RFIIII	LA-TIA	<ul><li>デンカ生研</li><li>デンカ生研</li><li>デンカ生生研</li><li>デンカ生生研</li><li>デンカ生生研</li><li>東東東東製製薬</li><li>極極東東製製薬</li><li>極東東製薬</li><li>極東東製薬</li></ul>	6.0  16.3  9.7  14.7  14.6  15  15  14.2  2.3  16.1  12.4  11  13  9  11.3  1.5  13.7	-2.0 0.2 0.3 0.3 0.3 0.7 -0.2 -0.2 1.1	4.9  73.6 61.3 77.7 76.2 73 73 72.5 5.8 8.0  68.9 65 68 69.4 67 67.7 1.7 2.6	-1.9 0.9 0.6 0.1 0.1 -1.5 0.2	5.5  134.6 118.7 161.1 163.8 164 171 152.2 20.7 13.6  123.9 125 133 134 145 132.2 8.5 6.4	-1.6 0.4 0.6 0.6 0.9 -1.0 -0.8 0.1 0.2	1.06 1.16 1.21 1.28 1.34 1.11 0.99 1.06 1.07 1.07 1.17 1.12

### リウマトイド因子 (RF)

産業医科大学病院 臨床検査・輸血部 比嘉 幸枝 早原 千恵

#### 【参加状况】

参加施設 79 施設(前回 74 施設)

#### 【測定法の状況】

- 1. 免疫比濁法 7 施設(8.9 %)、ラテックス免疫比濁法 71 施設(90.0 %)、ラテックス比ろう法 1 施設(1.3 %)であった。
- 2. 免疫比濁法 7 施設、ラテックス免疫比濁法 71 施設はすべて汎用分析機を使用していた。
- 3. 検量方法は、WHO 由来のキャリブレータを使用している施設が 74 施設(93.7%)、その他を使用している施設が 5 施設(6.3 %)であった。

#### 【測定値の状況】

1. 試料 12、13、14 の測定原理別 CV%を表 1 に示した。試料 12、13、14 の CV%は、免疫比濁 法で 23.0%、5.5 %、3.6%、ラテックス免疫比濁法で 13.3%、9.6%、10.0%であった。ラテックス免疫比 濁法では試薬間差がばらつきの原因と思われた。

测学计	n	平	均値(U/m	L)	CV%				
測定法	n	試料 12	試料 13	試料 14	試料 12	試料 13	試料 14		
全体	79	12.7	69.4	132.7	20.5	11.8	10.0		
免疫比濁法	7	7.6	54.6	121.5	23.0	5.5	3.6		
ラテックス免疫比濁法	71	13.3	71.0	133.9	13.3	9.6	10.0		
ラテックス比ろう法	1	10	55	122					

表 1. 測定原理別 CV%

2. 試料 12、13、14 の試薬別測定値の分布を図 1 に示した。試料 13、14 に試薬間差を認めた。特に、ラテックス免疫比濁法を原理とする試薬において、LZ テスト栄研とラテックス X1 生研はばらつきが大きい。メーカーには精確度の向上を望むとともに、各施設においても使用状況などの確認をしていただきたい。

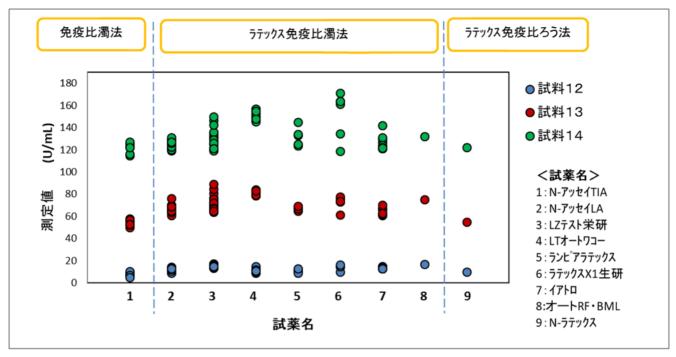



図1. 試薬別測定値の分布

### 【基準範囲(カットオフ値)の状況】

- 1. 基準範囲上限値の使用頻度は、 $\leq 10$  が 4 施設(5.1%)、10 < 上限 $\leq 15$  が 57 施設(72.2 %)、15 < 上限 $\leq 20$  が 9 施設(11.4 %)、20 < が 2 施設(2.5 %)であった。

63 RF 施設No.が低い順に並んでいます

施設	110.77			男性基準	生節用	女性基	進節用			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料12	試料13	試料14
-	ラテックス免疫比	ニットーボー	目立LABOSPE		15.00			13.00	65.00	126.0
	ラテックス免疫比		日立LABOSPE 日立LABOSPE		15.00			13.00	69.00	120.0
	ラテックス免疫比	ークト ホ 栄研化学	日本電子JCA-B		15.00		15.00	16.00	71.00	134.0
	ラテックス免疫比	大切に子 LSIメディエンス	目立LABOSPE		15.00		15.00	15.00	67.00	130.0
	ラテックス免疫比	デンカ生研	東芝TBA-cシリー		10.00		10.00	14.60	76.20	163.8
	ラテックス免疫比	ニットーボー	日本電子JCA-B		15.00		15.00	12.70	69.60	128.1
	ラテックス免疫比	ニットーボー	日本電子JCA B		14.00		14.00	13.00	76.00	131.0
	ラテックス免疫比	デンカ生研	東芝25FR_Accut		18.00		14.00	9.700	61.30	118.7
	ラテックス免疫比	ニットーボー	東芝TBA-cシリー		15.00			11.00	66.90	120.9
	ラテックス免疫比	ニットーボー	目立LABOSPE		15.00		15.00	12.60	63.20	121.1
	ラテックス免疫比	栄研化学	日立LABOSPE 日立LABOSPE		15.00		15.00	13.10	63.90	121.1
	ラテックス免疫比	和光純薬	東芝TBA-cシリー		15.00		15.00	12.00	83.00	154.9
	ラテックス免疫比	<b>栄研化学</b>	日本電子JCA-B		10.00		10.00	14.00	68.00	125.0
	ラテックス免疫比	極東製薬	東芝TBA-cシリー		14.90		14.90	12.40	68.90	123.9
	ラテックス免疫比		東芝TBA-cシリー		15.00		11.00	14.00	67.00	127.0
	ラテックス免疫比	栄研化学	日本電子JCA-B		15.00		15.00	16.00	69.98	132.3
	ラテックス免疫比	和光純薬	日本電子JCA B		20.00		10.00	10.70	78.70	146.7
	ラテックス免疫比	ニットーボー	ヘ、ックマン・コールター		15.00			11.60	64.00	119.4
	ラテックス免疫比	ニットーボー	日本電子JCA-B		15.00			13.00	64.00	120.0
	ラテックス免疫比	和光純薬	東芝TBA-200F		30.00		30.00	10.50	81.20	151.1
	ラテックス免疫比	LSIメディエンス	日本電子JCA-B		15.00		50.00	14.00	62.00	121.0
	ラテックス免疫比	<b>栄研化学</b>	日本電子JCA-B		25.00		25.00	15.00	70.00	130.0
	ラテックス免疫比	ニットーボー	日本電子JCA-B		15.00		20.00	14.30	70.20	127.7
	ラテックス免疫比	ニットーボー	日本電子JCA-B		15.00		15.00	12.70	67.50	121.5
	ラテックス免疫比	和光純薬	日本電子JCA-B		20.00		20.00	11.10	83.20	155.1
	ラテックス免疫比	和光純薬	日本電子JCA-B		15.00		15.00	10.00	79.00	148.0
	ラテックス免疫比	<b>栄研化学</b>	日本電子JCA-B		15.00		10.00	15.00	71.40	132.3
	ラテックス免疫比	和光純薬	日本電子JCA-B		15.00		15.00	12.00	79.60	145.5
	ラテックス免疫比	デンカ生研	ロシュコハ ス8000c5		18.00		10.00	15.00	73.00	171.0
			目立7140-7170		15.00		15.00	14.00	67.00	131.0
	ラテックス免疫比	和光純薬	東芝25FR_Accut		18.00		10.00	11.60	84.30	156.8
	ラテックス免疫比	和光純薬	目立LABOSPE		18.00			15.00	83.00	157.0
	ラテックス免疫比	LSIメディエンス	日本電子JCA-B		20.00		20.00	13.00	61.00	124.0
	ラテックス免疫比	ニットーボー	東芝TBA-cシリー		14.00		20.00	12.70	68.40	122.9
	ラテックス免疫比	ークト ホ 栄研化学	日本電子JCA-B		15.00		15.00	16.00	76.60	146.6
	免疫比濁法(汎	ニットーボー	日立LABOSPE		15.00		15.00	9.300	55.20	122.2
	免疫比濁法(汎	ニットーボー	日本電子JCA-B		14.00		14.00	6.800	49.80	114.8
	ラテックス免疫比	和光純薬	目立LABOSPE		15.00		11.00	11.00	79.00	152.0
	ラテックス免疫比	##### ###############################	日立LABOSPE		15.00			17.30	80.60	135.6
	ラテックス免疫比	和光純薬	日立LABOSPE		15.00		15.00	9.000	79.00	148.0
	ラテックス免疫比	和光純薬	日立LABOSPE		15.00		15.00	10.10	81.30	150.5
	免疫比濁法(汎	ニットーボー	日立7140-7170		15.00			8.000	58.00	123.0
	ラテックス免疫比	極東製薬	日本電子JCA-B		15.00		15.00	11.00	65.00	125.0
	ラテックス免疫比	ニットーボー	日本電子JCA-B		15.00		15.00	13.00	69.00	127.0
	ラテックス免疫比	2 · · · · ·	日本電子JCA-B		15.00			17.00	75.00	132.0
	免疫比濁法(汎	ニットーボー	日本電子JCA-B		15.00			7.000	57.00	125.0
	ラテックス免疫比	<b>栄研化学</b>	目立LABOSPE		15.00			17.00	73.00	133.0
	ラテックス免疫比	LSIメディエンス	日本電子JCA-B		15.00			15.00	70.00	142.0
	免疫比濁法(汎	ニットーボー	日立LABOSPE		15.00		15.00	10.30	52.20	116.3
	ラテックス免疫比	極東製薬	日本電子JCA-B		15.00		15.00	11.00	68.00	133.0
	ラテックス免疫比	ニットーボー	日本電子JCA-B		15.00		00	9.600	67.80	125.3
	ラテックス免疫比	ーク へい 栄研化学	日立LABOSPE		15.00			15.30	64.70	120.6
	ラテックス免疫比	デンカ生研	ロシュコハ*ス8000c7		15.00		15.00	15.00	73.00	164.0
	ラテックス免疫比		シーメンスHCDBN		15.00		15.00	10.00	55.00	122.0
	ラテックス免疫比	マー/マハ 栄研化学	日本電子JCA-B		15.00		15.00	16.30	75.80	135.9
	免疫比濁法(汎	ニットーボー	日本電子JCA B		15.00		10.00	7.000	57.00	127.0
	ラテックス免疫比		日本電子JCA B		15.00		15.00	13.10	68.80	125.1
5010	· / / / · · / L / X V L	>1 .4.	Harring 1 John D		10.00		13.00	10.10	55.50	123.1

63 RF 施設No.が低い順に並んでいます

施設	测点压用	d ( 147.4-6	1446 11.11	男性基準鋒	範囲	女性基	準範囲			試料報告値	
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料12	試料13	試料14	
3055	ラテックス免疫比	栄研化学	日本電子JCA-B	15	5.00			15.00	69.00	126.0	
3056	ラテックス免疫比	栄研化学	日本電子JCA-B	10	0.00		10.00	15.60	84.50	142.6	
3907	ラテックス免疫比	極東製薬	日本電子JCA-B	15	5.00		15.00	9.000	67.00	145.0	
4002	ラテックス免疫比	栄研化学	日本電子JCA-B	15	5.00			14.30	66.30	119.3	
5005	ラテックス免疫比	ニットーボー	日本電子JCA-B	15	5.00			12.30	66.10	122.5	
5006	ラテックス免疫比	ニットーボー	日本電子JCA-B	15	5.00		15.00	12.00	68.00	126.0	
6008 1	免疫比濁法(汎	ニットーボー	東芝TBA-200F	10	0.00			5.000	53.00	122.0	
6015	ラテックス免疫比	栄研化学	目立LABOSPE	15	5.00			16.00	89.10	149.8	
6016	ラテックス免疫比	栄研化学	東芝TBA-200F	19	9.00		19.00	15.30	72.40	128.9	
7001	ラテックス免疫比	ニットーボー	日本電子JCA-B	15	5.00		15.00	9.000	61.00	125.0	
7002	ラテックス免疫比	ニットーボー	日本電子JCA-B	15	5.00			13.60	69.70	128.6	
7007	ラテックス免疫比	LSIメディエンス	日本電子JCA-B	5.	.000		5.000	14.00	62.00	121.0	
7011	ラテックス免疫比	LSIメディエンス	東芝TBA-cシリー	15	5.00			13.00	63.00	122.0	
7025	ラテックス免疫比	栄研化学	日本電子JCA-B	20	0.00			14.20	67.10	125.1	
7901	ラテックス免疫比	栄研化学	目立LABOSPE	15	5.00			15.00	65.00	121.0	
8004	ラテックス免疫比	栄研化学	日本電子JCA-B	14	4.00			15.00	67.00	126.0	
9009	ラテックス免疫比	LSIメディエンス	目立7140-7170	15	5.00			12.70	62.70	121.7	
9012	ラテックス免疫比	デンカ生研	東芝TBA-cシリー	15	5.00		15.00	14.70	77.70	161.1	
9014	ラテックス免疫比	ニットーボー	日立7140-7170					13.20	68.40	126.7	
9023	ラテックス免疫比	和光純薬	日立7140-7170					11.00	81.00	152.0	
9033	ラテックス免疫比	極東製薬	日本電子JCA-B	15	5.00			13.00	69.40	134.0	
9043	ラテックス免疫比	デンカ生研	ロシュコハ ス8000c5					16.30	73.63	134.6	
9046	ラテックス免疫比	栄研化学	目立7140-7170	15	5.00		15.00	14.94	64.76	121.2	

### HbA1c

宮崎大学医学部附属病院 緒方 良一

#### 【参加状况】

表1 参加状況の推移

年 度	2012年	2013年	2014年	2015年	2016年	2017年
参加施設数	185	182	185	186	187	203

表1に6年間の参加状況を示した。今年は前年に比べ約8%増加していた。

### 【試料内容】

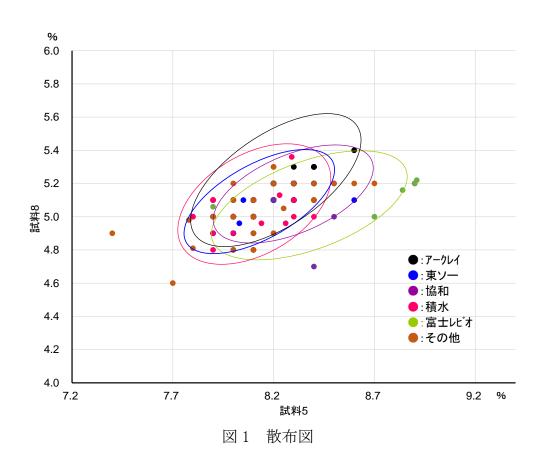
試料 5:Rh陽性照射赤血球液・LR「日赤」

試料 8: ボランティア血(EDTA-2K)

#### 【測定方法の状況】

表 2 採用方法別の推移(%)

年 度	2012年	2013年	2014年	2015年	2016年	2017年
HPLC 法	64. 9	65. 9	64.3	62.4	62.0	58. 1
免疫学的方法	35. 1	34. 1	35. 7	37.6	38.0	41. 9


表 2 に 6 年間の測定方法別推移を示す、HPLC 法が 58.1 %を占めるが、年々、免疫学的方法を採用する施設の増加傾向が見られる。

#### 【測定値の状況】

表3 試料別平均と変動係数

			HPLC 法		免疫学的方法					
		全体	アークレイ	東ソー	協和	積水	富士レビオ	その他		
		(N=203)	(N=56)	(N=63)	(N=15)	(N=19)	(N=11)	(N=39)		
No.5	Mean (%)	8. 15	8. 19	8. 10	8. 27	8. 11	8. 33	8. 12		
10.5	CV (%)	2. 45	1.61	1.45	2. 78	2.45	4. 68	2.95		
No.8	Mean (%)	5. 06	5. 13	5. 03	5. 06	5. 04	5. 02	5. 03		
10.0	CV (%)	2. 31	1. 54	1.63	2. 37	2.44	2. 63	3.07		

表 3 に原理別の測定値平均(%)と変動係数(%)を試料毎に示した、免疫学的法は参加施設が 10 施設以上をメーカー名で表示し 10 施設未満はその他にまとめて表示した。富士レビオの CV(%)が 4.68%とやや高値傾向を示し、他は前年同様 2 試料とも、全測定法において CV(%)が 1.45%  $\sim$  3.07%と良好な結果であった。図 1 に原理別の散布図を示した。



#### 【目標値と許容幅】

表 4 目標値と許容幅・達成率

試料	日無荷(0/)	<b>新</b> 索帽(0/)	達成率(%)				
武化	目標値(%)	許容幅(%)	全体	HPLC 法	免疫学的方法		
試料 5	8. 09	7.8~8.3	86. 7	93. 3	77. 4		
試料 8	5. 00	4.8~5.2	94. 1	95. 0	92. 9		

各試料の目標値と許容幅・達成率を表 4 に示した。目標値は目標値設定施設の平均を用い、許容幅は±0.2%で算出した。2 試料共が許容幅を超えた施設は全体で 6 施設 (3.0%)でアールイ、協和、積水、その他で、許容幅達成率は昨年とほぼ同等であった。またどちらか一方が許容幅を超えた施設はアールイ (7 施設 12.5%)、東ソー(2 施設 3.2%)、協和 (4 施設 26.7%)、積水 (3 施設 15.8%)、富士ルビオ (4 施設 36.3%)、その他 (11 施設 28.2%)で HPLC 法に比べ免疫学的方法がどちらか一方も含め許容幅を超えた施設数が多かった。目標値が HPLC 法のみで設定され免疫学的方法の平均値が若干高値傾向のためと考えられる。

#### 【基準範囲の設定状況】

HbA1c(国際標準値)の基準範囲  $(4.6\sim6.2\%)$  に設定している施設は 97 施設 (47.8%)で、JCCCLS 共用基準範囲  $(4.9\sim6.0\%)$  に設定されている施設は 74 施設 (36.5%)で JCCCLS 共用基準範囲採用施設の増加 (16 施設)が見られた。

49 HBA1C 施設No.が低い順に並んでいます

施設	110.77  21 /12103	E/0 (		里性其	淮絎田	女性基	淮絎田			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料05	試料08	15-14-14 TO 11E
	7 0 14		1.4.5.7.10.4. P							
	その他		日本電子JCA-B	4.900	6.000			0 8.300 0		
	東ソー東ソー		東ソーHLC-723G	4.600	6.200			0 8.100 0		
			東ソーHLC-723G	4.900	6.000	4.900		0 8.000 0		
	東ソー		東ソーHLC-723G	4.900	6.000	4.900		0 8.200 0		
	アークレイ		アークレイアダンスA1	4.600	6.200	4.600		0 8.100 0		
	協和メデックス(アークレイ		日本電子JCA-B アークレイアタ・ムスA1	4 600	5.900	4 600		○ 8.100 ○ 8.100 ○		
	東ソー		東ソーHLC-723G	4.600 4.900	6.200 6.000			0 8.000 0		
	積水メディカル		日本電子JCA-B	4.900	6.000			0 8.300 0		
	積水メディカル		日本電子JCA-B	4.900	6.000			O 7.900 C		
	協和メデックス(		日本電子JCA-B	4.600	6.200			0 8.300 0		
	東ソー		東ソーHLC-723G	4.900	6.000			0 8.100 0		
	積水メディカル		目立LABOSPE	4.600	6.200		6.200	8.400 (		
	東ソー		東ソーHLC-723G	4.900	6.000			O 8.100		
	積水メディカル		日立LABOSPE	4.600	6.200			○ 8.000 ○	5.000	
	積水メディカル		日立7140-7170	4.600		4.600		○ 7.900 ○		
	東ソー		東ソーHLC-723G	4.600	6.200		6.200	○ 8.000 ○	4.900	
1032	シーメンス(ディ		シーメンスHCDDim	4.600	6.200	4.600	6.200	○ 8.100 ○	5.100	
1033	東ソー		東ソーHLC-723G	4.600	6.200	4.600	6.200	○ 8.100 ○	5.100	
1034	東ソー		東ソーHLC-723G	4.600	6.200	4.600	6.200	○ 8.200 ○	5.100	
1035	東ソー		東ソーHLC-723G	4.600	6.200	4.600	6.200	○ 8.300 ○	5.100	
1038	東ソー		東ソーHLC-723G	4.900	6.000	4.900	6.000	○ 8.030 ○	4.960	
1039	東ソー		東ソーHLC-723G	4.900	6.000	4.900	6.000	○ 8.100 ○	5.000	
1040	東ソー		東ソーHLC-723G	4.900	6.000	4.900	6.000	○ 8.000 ○	4.800	
1044	アークレイ		アタ゛ムスハイフ゛リット゛	4.600	6.200	4.600	6.200	○ 8.300 ○	5.200	
1046	東ソー		東ソーHLC-723G	4.600	6.200	4.600	6.200	○ 8.100 ○	5.000	
1050	その他		日本電子JCA-B	4.300	5.800	4.300	5.800	○ 7.800 ○	4.810	
1051	東ソー		東ソーHLC-723G	4.600	6.200	4.600	6.200	○ 8.100 ○	5.000	
1054	アークレイ		アークレイアタ・ムスA1	4.400	6.400	4.400	6.400	○ 8.100 ○	5.100	
	シーメンス(ディ		シーメンスHCDDim	4.300		4.300	6.000	○ 8.000 ○	5.200	
	積水メディカル		日立7140-7170	4.600	6.200			○ 7.800 ○		
	東ソー		東ソーHLC-723G	4.600		4.600		○ 8.100 ○		
	その他		日本電子JCA-B	4.700	6.200			○ 7.900 ○		
	アークレイ		アダンスハイブリット	4.600	6.200			○ 8.300 ○		
	その他		日本電子JCA-B	4.600		4.600		0 8.100 0		
	協和メデックス(		目立LABOSPE	4.900		4.900		0 8.000 0		
	アークレイ		アークレイアダムスA1	4.500		4.500		0 8.100 0		
	アークレイ		アークレイアダームスA1	4.600	6.200			0 8.200 0		
	東ソー		東ソーHLC-723G 東ソーHLC-723C	4.300	6.200	4.300		○ 8.100 ○ 8.000 ○		
	アークレイ		東ソーHLC-723G アークレイアタ・ムスA1	4.600 4.600	6.200			0 8.200 0		
	その他		三和化学AlcGE	4.600	6.200			0 8.200 0		
	アークレイ		アークレイアダ・ムスA1	4.600	6.200			0 8.200 0		
	アークレイ		アークレイアダ・ムスA1	4.900	6.000			O 7.900 C		
	アークレイ		アークレイアダンムスA1	4.600	6.200			○ 8.200 ○		
	東ソー		東ソーHLC-723G	4.900	6.000			0 8.050 0		
	アークレイ		アークレイアタ・ムスA1	4.900	6.000			0 8.100 0		
	その他		スポットケムハ・ナリスト	4.600	6.200		6.200	8.400 (		
	富士レビオ		日本電子JCA-B		5.500			○ 8.100 ○		
	ロシュダイアグリスティ		ロシュコハ ス8000c5	4.600	6.200	4.600		○ 8.100 ○		
1097	東ソー		東ソーHLC-723G	4.600	6.200		6.200	8.400 (		
1099	アークレイ		アークレイアダ・ムスA1	4.600	6.200	4.600	6.200	○ 8.100 ○	5.100	
1101	アークレイ		アークレイアダ・ムスA1	4.600	6.200	4.600	6.200	○ 8.100 ○	5.100	
1102	アークレイ		アークレイアタ・ムスA1	4.900	6.000	4.900	6.000	○ 8.100 ○	5.100	
1105	富士レビオ		ヘックマン・コールター	4.600	6.200	4.600	6.200	○ 8.100 ○	4.800	
1112	東ソー		東ソーHLC-723G	4.600	6.200	4.600	6.200	○ 8.100 ○	5.000	
1116	積水メディカル		日本電子JCA-B	4.500	6.200	4.500	6.200	○ 8.300 ○	5.200	

49 HBA1C 施設No.が低い順に並んでいます

測定原理 試薬メーカー No 1120 東ソー 1122 富士レビオ 1123 シーメンス(ディ 1124 積水メディカル 1126 東ソー 1127 東ソー 1128 アークレイ 1129 富士レビオ 1130 東ソー 1131 協和メデックス( 1134 積水メディカル 1135 富士レビオ 1136 その他 1300 東ソー 1301 東ソー	東ソーHLC-723G ヘ'ックマン・コールター シーメンスHCDDim 日立7020-7080 東ソーHLC-723G 東ソーHLC-723G アークレイアダ'ムスA1 ヘ'ックマン・コールター 東ソーHLC-723G 他のHbA1c測定 日立7140-7170 ヘ'ックマン・コールター 日本電子JCA-B 東ソーHLC-723G 東ソーHLC-723G	4.600 6.200 4.600 6.200 4.600 6.200 4.600 6.200 4.600 6.200 4.900 6.000 4.600 6.200 4.600 6.200 4.600 6.200 4.600 6.200 4.600 6.200 4.600 6.200 4.600 6.200	下限 4.900 4.600 4.600 4.600 4.600 4.900 4.600 4.600 4.600 4.600	上限 試料05 試料08  6.000 ○ 8.300 ○ 5.200  6.200 ○ 8.910 ○ 5.220  6.200 ○ 8.250 ○ 5.050  6.200 ○ 7.900 ○ 5.000  6.200 ○ 8.100 ○ 5.100  6.200 ○ 8.300 ○ 5.100  6.200 ○ 8.000 ○ 4.800  6.200 ○ 8.000 ○ 5.000  6.200 ○ 8.000 ○ 5.200  6.200 ○ 8.500 ○ 5.200  6.200 ○ 8.200  6.200 ○ 8.700 ○ 5.000	
1122 富士レビオ 1123 シーメンス(ディ 1124 積水メディカル 1126 東ソー 1127 東ソー 1128 アークレイ 1129 富士レビオ 1130 東ソー 1133 協和メデックス( 1134 積水メディカル 1135 富士レビオ 1136 その他 1300 東ソー 1301 東ソー	ヘ・ックマン・コールター シーメンスHCDDim 日立7020-7080 東ソーHLC-723G 東ソーHLC-723G アークレイアダ・ムスA1 ヘ・ックマン・コールター 東ソーHLC-723G 他のHbA1c測定 日立7140-7170 ヘ・ックマン・コールター 日本電子JCA-B 東ソーHLC-723G	4.600 6.200 4.600 6.200 4.600 6.200 4.600 6.200 4.600 6.200 4.900 6.000 4.600 6.200 4.600 6.200 4.600 6.200 4.600 6.200 4.600 6.200 4.600 6.200 4.600 6.200	4.600 4.600 4.600 4.600 4.600 4.900 4.600 4.600 4.600 4.600	6.200       8.910       5.220         6.200       8.250       5.050         6.200       8.400       5.000         6.200       7.900       5.000         6.200       8.100       5.100         6.000       8.300       5.100         6.200       8.000       4.800         6.000       8.000       5.000         6.200       8.500       5.200         6.200       8.500       5.200	
1123 シーメンス(ディ 1124 積水メディカル 1126 東ソー 1127 東ソー 1128 アークレイ 1129 富士レビオ 1130 東ソー 1133 協和メデックス( 1134 積水メディカル 1135 富士レビオ 1136 その他 1300 東ソー 1301 東ソー	シーメンスHCDDim 日立7020-7080 東ソーHLC-723G 東ソーHLC-723G アークレイアダンスA1 ペックマン・コールター 東ソーHLC-723G 他のHbA1c測定 日立7140-7170 ペックマン・コールター 日本電子JCA-B 東ソーHLC-723G	4.600       6.200         4.600       6.200         4.600       6.200         4.600       6.200         4.900       6.000         4.600       6.200         4.600       6.200         4.600       6.200         4.600       6.200         4.900       6.000         6.000       6.200         6.000       6.200	4.600 4.600 4.600 4.600 4.900 4.600 4.600 4.600 4.600	6.200	
1124 積水メディカル 1126 東ソー 1127 東ソー 1128 アークレイ 1129 富士レビオ 1130 東ソー 1133 協和メデックス( 1134 積水メディカル 1135 富士レビオ 1136 その他 1300 東ソー 1301 東ソー	日立7020-7080 東ソーHLC-723G 東ソーHLC-723G アークレイアダムスA1 ヘックマン・コールター 東ソーHLC-723G 他のHbA1c測定 日立7140-7170 ヘックマン・コールター 日本電子JCA-B 東ソーHLC-723G	4.600       6.200         4.600       6.200         4.600       6.200         4.900       6.000         4.600       6.200         4.600       6.200         4.600       6.200         4.600       6.200         4.900       6.000	4.600 4.600 4.900 4.600 4.900 4.600 4.600 4.600	6.200 8.400 5.000 6.200 7.900 5.000 6.200 8.100 5.100 6.000 8.300 5.100 6.200 8.000 4.800 6.000 8.000 5.000 6.200 8.500 5.200 6.200 8.200 8.200	
1126 東ソー 1127 東ソー 1128 アークレイ 1129 富士レビオ 1130 東ソー 1133 協和メデックス( 1134 積水メディカル 1135 富士レビオ 1136 その他 1300 東ソー 1301 東ソー	東ソーHLC-723G 東ソーHLC-723G アークレイアダ・ムスA1 ヘ・ックマン・コールター 東ソーHLC-723G 他のHbA1c測定 日立7140-7170 ヘ・ックマン・コールター 日本電子JCA-B 東ソーHLC-723G	4.600 6.200 4.600 6.200 4.900 6.000 4.600 6.200 4.900 6.000 4.600 6.200 4.600 6.200 4.600 6.200 4.600 6.200	4.600 4.600 4.900 4.600 4.600 4.600 4.600	6.200	
1127 東ソー 1128 アークレイ 1129 富士レビオ 1130 東ソー 1133 協和メデックス( 1134 積水メディカル 1135 富士レビオ 1136 その他 1300 東ソー 1301 東ソー	東ソーHLC-723G アークレイアダ・ムスA1 ヘ・ックマン・コールター 東ソーHLC-723G 他のHbA1c測定 日立7140-7170 ヘ・ックマン・コールター 日本電子JCA-B 東ソーHLC-723G	4.600 6.200 4.900 6.000 4.600 6.200 4.900 6.000 4.600 6.200 4.600 6.200 4.600 6.200 4.900 6.000	4.600 4.900 4.600 4.900 4.600 4.600	6.200	
1128 アークレイ 1129 富士レビオ 1130 東ソー 1133 協和メデックス( 1134 積水メディカル 1135 富士レビオ 1136 その他 1300 東ソー 1301 東ソー	アークレイアダ・ムスA1 ヘ・ックマン・コールター 東ソーHLC-723G 他のHbA1c測定 日立7140-7170 ヘ・ックマン・コールター 日本電子JCA-B 東ソーHLC-723G	4.9006.0004.6006.2004.9006.0004.6006.2004.6006.2004.6006.2004.9006.000	4.900 4.600 4.900 4.600 4.600	6.000	
1129 富士レビオ 1130 東ソー 1133 協和メデックス( 1134 積水メディカル 1135 富士レビオ 1136 その他 1300 東ソー 1301 東ソー	<ul><li>ヘ'ックマン・コールター 東ソーHLC-723G</li><li>他のHbA1c測定 日立7140-7170</li><li>ヘ'ックマン・コールター 日本電子JCA-B 東ソーHLC-723G</li></ul>	4.600 6.200 4.900 6.000 4.600 6.200 4.600 6.200 4.600 6.200 4.900 6.000	4.600 4.900 4.600 4.600 4.600	6.200	
1130 東ソー 1133 協和メデックス( 1134 積水メディカル 1135 富士レビオ 1136 その他 1300 東ソー 1301 東ソー	東ソーHLC-723G 他のHbA1c測定 日立7140-7170 ペックマン・コールター 日本電子JCA-B 東ソーHLC-723G	4.900     6.000       4.600     6.200       4.600     6.200       4.600     6.200       4.900     6.000	4.900 4.600 4.600 4.600	6.000	
1133 協和メデックス( 1134 積水メディカル 1135 富士レビオ 1136 その他 1300 東ソー 1301 東ソー	他のHbA1c測定 日立7140-7170 ペックマン・コールター 日本電子JCA-B 東ソーHLC-723G	4.600 6.200 4.600 6.200 4.600 6.200 4.900 6.000	4.600 4.600 4.600	6.200 8.500 5.200 6.200 8.200	
1134 積水メディカル 1135 富士レビオ 1136 その他 1300 東ソー 1301 東ソー	日立7140-7170 ヘックマン・コールター 日本電子JCA-B 東ソーHLC-723G	4.6006.2004.6006.2004.9006.000	4.600 4.600	6.200 🔘 8.200	
1135 富士レビオ 1136 その他 1300 東ソー 1301 東ソー	ヘ'ックマン・コールター 日本電子JCA-B 東ソーHLC-723G	4.600 6.200 4.900 6.000	4.600		
1136 その他 1300 東ソー 1301 東ソー	日本電子JCA-B 東ソーHLC-723G	4.900 6.000		6.200 8.700 ○ 5.000	
1300 東ソー 1301 東ソー	東ソーHLC-723G		4.000		
1301 東ソー		4.900 6.000	4.900	6.000 ○ 8.100 ○ 5.000	
	東ソーHLC-723G		4.900	6.000 ○ 7.900 ○ 4.900	
		4.600 6.200	4.600	6.200 ○ 8.100 ○ 5.000	
1302 富士レビオ	ヘックマン・コールター	4.900 6.000	4.900	6.000 🔾 7.900 🔾 5.060	
1305 アークレイ	アークレイアタ・ムスA1	4.900 6.000	4.900	6.000 ○ 8.300 ○ 5.100	
1308 東ソー	東ソーHLC-723G	4.900 6.000	4.900	6.000 ○ 8.100 ○ 4.900	
1310 アークレイ	アークレイアタ・ムスA1	4.600 6.200	4.600	6.200 ○ 8.200 ○ 5.100	
1313 協和メデックス(	協和DM-JACK	4.600 6.200	4.600	6.200 🔾 8.000 🔾 5.100	
1315 東ソー	東ソーHLC-723G	4.700 6.200	4.700	6.200 🔾 8.100 🔾 5.000	
1316 東ソー	東ソーHLC-723G	4.600 6.200	4.600	6.200 ○ 8.200 ○ 5.100	
1317 その他	三和化学A1cGE	4.600 6.200	4.600	6.200 8.400 🔾 5.100	
1325 アークレイ	アークレイアタ・ムスA1	4.900 6.000	4.900	6.000 $\bigcirc$ 8.300 $\bigcirc$ 5.200	
1327 アークレイ	アークレイアタ・ムスA1	4.900 6.000	4.900	6.000 8.400 5.300	
1329 アークレイ	アークレイアタ・ムスA1	4.900 6.000	4.900	6.000 ○ 8.200 ○ 5.100	
1330 東ソー	東ソーHLC-723G	4.600 6.200	4.600	6.200 ○ 8.300 ○ 5.200	
1331 アークレイ	アークレイアタ・ムスA1	4.600 6.200	4.600	6.200 ○ 8.200 ○ 5.200	
1336 東ソー	東ソーHLC-723G	4.600 6.200	4.600	6.200 ○ 8.300 ○ 5.200	
1337 東ソー	東ソーHLC-723G	4.900 6.000	4.900	6.000 ○ 8.000 ○ 5.000	
1341 東ソー	東ソーHLC-723G	4.300 5.800	4.300	5.800 $\bigcirc$ 8.000 $\bigcirc$ 4.900	
1342 東ソー	東ソーHLC-723G	4.600 6.200	4.600	6.200 8.600 🔾 5.100	
1343 東ソー	東ソーHLC-723G	4.600 6.200	4.600	6.200 ○ 8.100 ○ 5.000	
1344 アークレイ	アークレイアタ・ムスA1	4.900 6.000	4.900	6.000 8.400 🔾 5.100	
1346 東ソー	東ソーHLC-723G	4.600 6.200	4.600	6.200 ○ 8.100 ○ 5.000	
1347 ロシュタ・イアク・ノスティ	ロシュコハ ス8000c5	4.900 6.000	4.900	6.000 ○ 8.100 ○ 4.800	
1348 アークレイ	アークレイアタ・ムスA1	4.600 6.200	4.600	6.200 ○ 8.300 ○ 5.200	
1349 ロシュタ・イアク・ノスティ	ロシュコハ ス8000c5	4.900 6.000	4.900	6.000 ○ 8.100 ○ 5.100	
1350 積水メディカル	日本電子JCA-B	4.600 6.200	4.600	6.200 ○ 8.100 ○ 5.100	
1351 アークレイ	アークレイアタ・ムスA1	4.900 6.000	4.900	6.000 ○ 8.300 ○ 5.200	
1352 その他	日本電子JCA-B	4.600 6.200	4.600	6.200 8.400 \( \times 5.100 \)	
1355 東ソー	東ソーHLC-723G	4.900 6.000	4.900	6.000 ○ 8.100 ○ 5.000	
1356 積水メディカル	日本電子JCA-B	4.900 6.000	4.900	6.000 ○ 8.300 ○ 5.100	
1357 アークレイ	アークレイアタ・ムスA1	4.700 6.200	4.700	6.200 ○ 8.100 ○ 5.100	
1358 協和メデックス(	協和DM-JACK	4.900 6.000	4.900	6.000 $\bigcirc$ 8.100 $\bigcirc$ 5.100	
1359 東ソー	東ソーHLC-723G	4.900 6.000	4.900	6.000 ○ 8.100 ○ 5.000	
1360 東ソー	東ソーHLC-723G	4.600 6.200	4.600	6.200 ○ 8.100 ○ 5.000	
1362 その他	日本電子JCA-B		4.600	6.200 $\bigcirc$ 8.200 $\bigcirc$ 5.200	
1365 積水メディカル	日立7140-7170		4.900	6.000 $\bigcirc$ 8.260 $\bigcirc$ 4.960	
1368 東ソー	東ソーHLC-723G		4.600	6.200	
1370 その他	目立LABOSPE	4.900 6.000	4.900	6.000 ○ 8.000 ○ 5.100	
1371 協和メデックス(	東京貿易ビオリス5	4.900 6.000	4.900	6.000 8.900 🔾 5.200	
1382 協和メデックス(	目立LABOSPE	4.900 6.000	4.900	6.000 $\bigcirc$ 8.100 $\bigcirc$ 4.900	
1385 積水メディカル	東芝25FR_Accut	4.900 6.000	4.900	6.000 $\bigcirc$ 8.000 $\bigcirc$ 4.900	
1390 アークレイ	アークレイアタ・ムスA1	4.600 6.200	4.600	6.200 🔘 8.100 🔘 5.100	
1391 東ソー	東ソーHLC-723G	4.600 6.200	4.600	6.200 🔾 8.100 🔾 5.100	
1394 協和メデックス(	東京貿易ビオナリス5	4.900 6.000	4.900	6.000 ○ 8.000 ○ 5.100	

49 HBA1C 施設No.が低い順に並んでいます

施設	110.73-1237 沙凤(C			男性基準	節用	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器		上限	下限	上限	試料05	試料08	, , , ,
1396	シーメンス(ディ		シーメンスHCDDim	4.900	5.000	4.900	6.000	O 8.200	5.300	
	アークレイ		アークレイアタ・ムスA1		5.000			○ 8.300 C		
	アークレイ		アークレイアタ・ムスA1		6.000		6.000	8.400 €		
1403	アークレイ		アークレイアタ・ムスA1		5.200	4.600		○ 8.100 ○		
1404	アークレイ		アークレイアタ・ムスA1			4.600	6.200	8.400	5.300	
1411	東ソー		東ソーHLC-723G	4.900	6.000	4.900	6.000	○ 8.000 ○	5.000	
1415	その他		日本光電CHM-	4.600 6	5.200	4.600	6.200	8.600 €	5.200	
1418	その他		日本光電CHM-	4.600	5.200	4.600	6.200	8.400 €	5.200	
1419	富士レビオ		ベックマン・コールター	4.300	5.800	4.300	5.800	8.900 ℂ	5.200	
1501	東ソー		東ソーHLC-723G	4.600	5.200	4.600	6.200	○ 8.000 ○	5.000	
1502	アークレイ		アークレイアタ・ムスA1	4.600 6	5.200	4.600	6.200	○ 8.200 ○	5.100	
1505	アークレイ			4.900 6	6.000	4.900	6.000	○ 8.200 ○	5.100	
1506	アークレイ		アークレイアタ・ムスA1	4.600 6	5.200	4.600	6.200	○ 8.100 ○	5.000	
1511	アークレイ		アークレイアタ・ムスA1	4.900 6	6.000	4.900	6.000	○ 8.300 ○	5.100	
1512	東ソー		東ソーHLC-723G	4.900	6.000	4.900	6.000	○ 8.200 ○	5.100	
1513	アークレイ		アークレイアタ・ムスA1	4.900	6.000	4.900	6.000	○ 8.100 ○	5.100	
1514	東ソー		東ソーHLC-723G	4.900 6	5.000	4.900	6.000	○ 8.000 ○	5.000	
1519	アークレイ		アークレイアタ・ムスA1	4.900 6	5.000	4.900	6.000	○ 8.300 ○	5.200	
	その他		三和化学A1cGE	4.600 6	5.000	4.600	6.000	8.500 ℂ	5.200	
	東ソー		東ソーHLC-723G		5.000			○ 8.100 ○		
	東ソー		東ソーHLC-723G			4.600		○ 8.200 ○		
	東ソー		東ソーHLC-723G			4.900		○ 8.200 ○		
	アークレイ		アークレイアタ・ムスA1			4.600		O 8.100 C		
	アークレイ		アークレイアダンスA1		5.000			O 8.100 C		
	積水メディカル		東京貿易ピオリス2			4.900		O 7.900 C		
	アークレイ		アークレイアタ・ムスA1			4.900		O 8.100 C		
	東ソー		東ソーHLC-723G			4.600		O 8.200 C		
	アークレイ 東ソー		アークレイアタ・ムスA1 東ソーHLC-723G		5.200 5.200			○ 8.000 ○ 8.000 ○		
	アークレイ		アークレイアタ・ムスA1		5.300			0 8.100 0		
	積水メディカル		東京貿易ビオリス2		5.200			○ 7.800 C		
	HPLC法不安定		アークレイアタ・ムスA1		5.200			0 8.000 0		
1552	111 20 12 1 2 /2		シーメンスHCDDC		5.200			O 7.900 C		
	東ソー		東ソーHLC-723G		5.200			○ 8.200 ○		
1557			シーメンスHCDDC					7.400 ℂ		
1558	その他		日本電子JCA-B	4.900	5.000	4.900	6.000	8.700 ℂ	5.200	
1562	積水メディカル		日本電子JCA-B	4.900	6.000	4.900	6.000	○ 8.290	5.360	
1901	協和メデックス(		日本電子JCA-B	4.600	5.200	4.600	6.200	○ 8.100 ○	5.100	
1902	協和メデックス(		日本電子JCA-B	4.600	5.200	4.600	6.200	○ 8.300 ○	5.100	
1903	富士レビオ		日本電子JCA-B	4.600	5.200	4.600	6.200	○ 8.100 ○	5.000	
1909	協和メデックス(		協和DM-JACK	4.600 6	5.200	4.600	6.200	○ 8.200 ○	5.100	
1911	その他		日本電子JCA-B	4.600 6	5.200	4.600	6.200	○ 8.200	5.300	
1916	協和メデックス(		日本電子JCA-B	4.600 6	5.200	4.600	6.200	○ 8.100 ○	5.100	
1917	協和メデックス(		協和DM-JACK	4.600	5.200	4.600	6.200	○ 8.100 ○	5.000	
1926	東ソー		東ソーHLC-723G	4.600 6	5.200	4.600	6.200	○ 8.100 ○	5.000	
	アークレイ		アークレイアタ・ムスA1	4.500	5.900	4.500	5.900	○ 8.100 ○	5.100	
	協和メデックス(				5.200			○ 8.200 ○		
	協和メデックス(		日本電子JCA-B		5.200			○ 8.000 ○		
	東ソー		東ソーHLC-723G		5.000			O 8.100 C		
	アークレイ		アークレイアタ・ムスA1		5.200			O 8.100 C		
	ロシュダイアグノスティ		ロシュコハ、ス8000c5		5.000			O 8.100 C		
	アークレイ		アークレイアタ ムスA1		5.200			O 7.900 C		
	積水メディカル		日立7140-7170		5.000			○ 8.230 C		
	アークレイ		他のHbA1c測定		3.200			○ 8.200 C		
	アークレイ		アークレイアダムスA1		3.000		6.000	8.600	5.400	
	富士レビオ		ヘックマン・コールター アーカレイアカ・トフ A 1		5.200			0 8.000 0		
3022	アークレイ		アークレイアタ・ムスA1	4.900 6	5.000	4.900	0.000	○ 8.100 ○	0.100	

49 HBA1C 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	#4% P.P.	男性	<b>基準範囲</b>	女性基	準範囲			試料報告値
No	例足原理	武楽 ノー ハー	機器	下限	上限	下限	上限	試料05	試料08	
3027	富士レビオ		日本電子JCA-B	3027	6.200	3027	6.200	O 8.100 (	5.000	·
3048	東ソー		東ソーHLC-723G	4.900	6.000	4.900	6.000	○ 8.100 ○	5.000	
3055	協和メデックス(		協和DM-JACK	4.900	6.000	4.900	6.000	○ 8.300 ○	5.100	
3056	アークレイ		アークレイアタ・ムスA1	4.300	5.800	4.300	5.800	○ 8.000 €	5.000	
3907	協和メデックス(		日本電子JCA-B	4.900	6.000	4.900	6.000	○ 8.000 €	5.000	
4002	東ソー		東ソーHLC-723G	4.900	6.000	4.900	6.000	○ 8.000 €	5.000	
4040	東ソー		東ソーHLC-723G	4.600	6.200	4.600	6.200	○ 8.100 ○	5.100	
4902	協和メデックス(		日立7140-7170	4.600	6.200	4.600	6.200	8.400	4.700	
5003	東ソー		東ソーHLC-723G	4.600	6.200	4.600	6.200	○ 8.100 ○	5.000	
5005	アークレイ		アークレイアタ・ムスA1	4.900	6.000	4.900	6.000	○ 8.200 ○	5.200	
5006	アークレイ		アークレイアタ・ムスA1	4.900	6.000	4.900	6.000	○ 8.200 ○	5.100	
5010	アークレイ		アークレイアタ・ムスA1	4.900	6.000	4.900	6.000	○ 8.100 ○	5.100	
6008	東ソー		東ソーHLC-723G	4.900	6.000	4.900	6.000	○ 7.900 ○	4.900	
6015	協和メデックス(		目立LABOSPE	4.600	6.200	4.600	6.200	○ 8.200 ○	4.900	
6016	アークレイ		アークレイアタ・ムスA1	4.700	6.200	4.700	6.200	○ 8.300	5.300	
7001	その他		日本電子JCA-B	4.600	5.200	4.600	5.200	○ 8.000 €	5.000	
7002	東ソー		東ソーHLC-723G	4.900	6.000	4.900	6.000	○ 8.200 ○	5.100	
7007	東ソー		東ソーHLC-723G	4.600	6.200	4.600	6.200	○ 8.000 €	4.900	
7011	協和メデックス(		東芝TBA-cシリー	4.900	6.000	4.900	6.000	8.500 (	5.000	
7025	アークレイ		アークレイアタ・ムスA1	4.600	6.200	4.600	6.200	8.400	5.300	
7901	協和メデックス(		協和DM-JACK	4.600	6.200	4.600	6.200	○ 8.000 €	5.000	
8004	東ソー		東ソーHLC-723G	4.900	6.000	4.900	6.000	○ 8.100 ○	5.000	
9004	協和メデックス(		日本電子JCA-B					○ 8.100 ○	3.900	
9023	その他		日立7140-7170					7.700	4.600	
9029	東ソー		東ソーHLC-723G					○ 8.100 ○	5.000	
9035	積水メディカル		積水EV800					○ 8.140 ○	4.960	
9040	その他							7.780	4.980	
9041	アークレイ		アークレイアタ・ムスA1					○ 8.200 ○	5.100	
9043	ロシュタ・イアク・ノスティ		ロシュコハ [*] ス8000c5					○ 8.000 €	3.800	
9047	富士レビオ		ヘ゛ックマン・コールター					8.840 (	5.160	
9050	シーメンス(ディ		シーメンスHCDDim					○ 8.100 (	5.100	

### PT, APTT, Fib

九州大学病院 検査部 渡邉 久美子

### 【参加状況】

PT 155 施設(前年度 151 施設) APTT 140 施設(前年度 138 施設)

Fib 110 施設(前年度 110 施設)

### 【試料内容】

試料 31: コアグトロール N(正常域、凍結乾燥品)

試料 32: デイドサイトロールレベル 2(異常域、凍結乾燥品)

### 【測定値の状況】

① 測定原理および分析手技

表 1、2、3 に各々PT、APTT、Fib の測定原理別、分析手技別の施設数を示す。

### 表 1 PT 原理別·手技別施設数

測定原理	施設数	分析手技	施設数
		散乱光検知方式	15
ウサキ゛脳	39	透過光検知方式	3
		粘度変化検知方式	21
		散乱光検知方式	70
け胎盤	109	透過光検知方式	38
		粘度変化検知方式	1
		散乱光検知方式	1
遺伝子組み替え	7	透過光検知方式	5
ヒト組織因子		粘度変化検知方式	1

#### 表 2 APTT 原理別·手技別施設数

測定原理	施設数	分析手技	施設数
		散乱光検知方式	84
エラシ゛ン酸	122	透過光検知方式	38
無水珪酸	7	透過光変化検知方式	7
		透過光変化検知方式	1
セライト	11	粘度変化検知方式	10

#### 表 3 Fib 原理別·手技別施設数

測定原理	施設数	分析手技	施設数
		散乱光検知方式	63
トロンビン時間法	108	透過光検知方式	42
		粘度変化検知方式	3
その他	2	透過光検知方式	2

#### ② 測定試薬および分析機器

各統括表に各試薬について示している。分析機器は12種類であった。 何れも前年度と比較し大差なかった。

#### 【測定値の状況】

PT (秒、%、INR 表示)、APTT、Fib の測定値について 3SD を外れた値を除去後、統計解析を行った。

#### [PT]

試料 31、32 の CV%は、秒数表示で各々5.9%、22.1%、活性%表示では各々5.6%、35.4%、INR 表示では各々4.4%、12.7%であった。概ね前年度と比較し大差なかったが、活性%表示の試料 32 の CV%が 35.4%と大きくなっていた。

試薬別に分けて解析すると CV%はほぼ 10%以内に収束するが、活性%表示では他の表示方法と 比較し CV%が大きかった。キャリブレーターの選択や、キャリブレーション頻度などを見直すことで改善され ると考えられた。

#### [APTT]

試料 31、32 の CV%は秒数で各々5.5%、17.0%であった。試薬別に分けて集計すると概ね CV% は 5%以下となり良好な結果が得られた。

#### [Fib]

試料 31、32 の全体の平均値は、各々293mg/dL、233mg/dLで、CV%は各々7.1%、8.0%であった。 試薬別に分けて集計しても大きな収束は見られず、試薬間差の小さな項目である。 試料 31 を共通の標準物質とした場合について解析すると、CV%は 2.9%とさらに収束すること

が確認された。

#### 【基準範囲の状況】

#### [PT]

基準範囲は延べにすると、107 施設(69%)が秒表示、134 施設(86%)が%表示(下限もしくは上限のみ設定を含む)、90 施設(58%)が INR 表示を設定していた。

### [APTT]

135 施設(98%)が秒数の基準範囲を設定(下限もしくは上限のみ設定を含む)し、下限値 20~30 秒、上限値 30~45 秒であった。

#### [Fib]

109 施設(99%)が基準範囲を設定し、下限値 140~276mg/dL、上限値 300~498mg/dL であった。

#### 【その他のコメント】

#### [PT]

ISI が 1.2 以下の試薬が 80%という現状である。

またローカル SI 設定施設は、9%と非常に少ない。

施設間差を是正するには ISI が 1.0 に近い試薬であることが必要不可欠であり、INR 表示することにより標準化が可能であるはずが、同一機器、同一試薬を使用しているグループ内でも、メーカー ISI とローカル SI に乖離がみられ、標準化の妨げとなっている状況が確認されている。

試薬添付文書に記載されている機器毎の ISI 値は、全ての機器において実際に測定して求められた値ではない、その為ローカル SI との乖離が生まれているものと考えられる。メーカーには実際に測定して ISI 値を添付して頂き乖離を是正できるよう協力をお願いしたい。

#### [APTT]

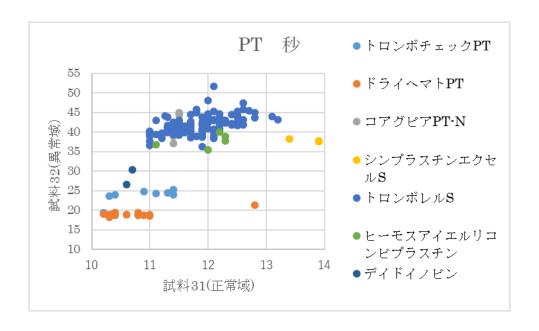
例年通り、活性化剤の違いにより測定値に差がある。現状では、各施設内での内部精度管理の 徹底を望む。

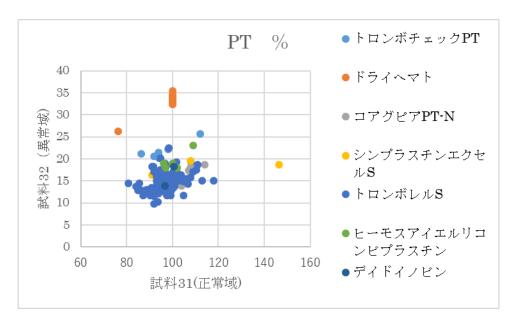
#### [Fib]

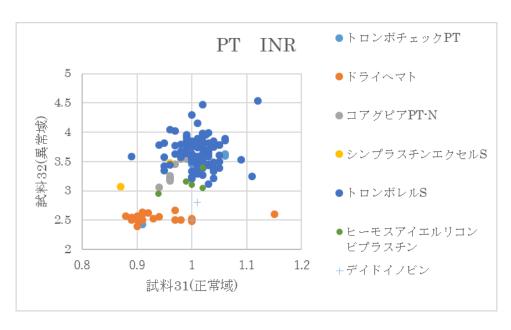
共通の標準物質を使用することによる CV%の収束が確認されたことから、公的認証機関による標準物質を使用することで、標準化が可能であると思われる。

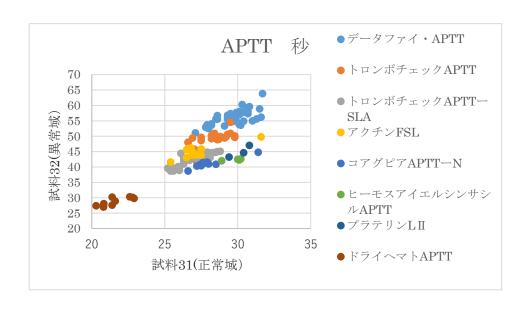
同一機器、同一試薬を使用しているグループ内でも、極端にデーターに乖離がみられる施設が見受けられる。自施設の値とグループ平均値を確認して、対応をお願いしたい。

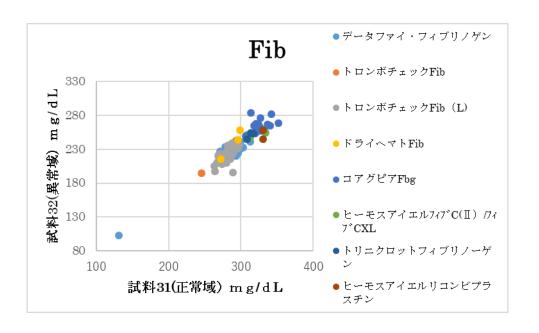
# 【PT 総括表】


	方法	参加施設数	平均值	SD	CV%
<試料 31・秒>	3SD 除去データ	152	11.7	0.69	5.9
	トロンホ、チェック PT	8	10.9	0.51	4.7
	ドライヘマト <b>P</b> T	17	10.5	0.27	2.5
	コアク゛ピア PT-N	8	11.4	0.11	1.0
	トロンホ、レル S	109	11.9	0.49	4.2
	ヒーモスアイエルリコンヒ゛フ。ラスチン	5	12.0	0.51	4.2
<試料 32・秒>	3SD 除去データ	155	37.8	8.34	22.1
	トロンホ [*] チェック PT	8	23.7	1.81	7.6
	ドライヘマト <b>P</b> T	17	18.9	0.29	1.5
	コアク゛ピア PT-N	8	40.5	2.74	6.8
	トロンホ、レル S	108	41.8	2.20	5.3
	ヒーモスアイエルリコンヒ゛フ。ラスチン	5	37.7	1.77	4.7
	方法	参加施設数	平均値	SD	CV%
<試料 31・%>	3SD 除去データ	108 41.8 2.20 5 37.7 1.77 参加施設数 平均値 SD 150 98.4 5.54 8 97.4 8.55 17 100< 8 16.8 3.45 108 97.3 5.51	5.6		
	トロンホ゛チェック PT	8	97.4	8.55	8.8
	ドライヘマト PT	17	100<		
	コアク゛ピア PT-N	8	16.8	3.45	3.2
	トロンホ`レル S	108	97.3	5.51	5.7
	ヒーモスアイエルリコンヒ゛フ。ラスチン	5	100.8	5.17	5.1
<試料 32・%>	3SD 除去データ	155	17.7	0.51 0.27 0.11 0.49 0.51 8.34 1.81 0.29 2.74 2.20 1.77 SD 5.54 8.55 3.45 5.51 5.17 6.26 1.93 0.80	35.4
	トロンホ、チェック PT	8	21.4	1.93	9.0
	ドライヘマト <b>P</b> T	17	33.7	0.80	2.4
	コアク゛ピア PT-N	8	16.4	1.60	9.8
	トロンホ`レル S	108	14.8	2.02	13.7
	ヒーモスアイエルリコンヒ゛フ。ラスチン	5	19.4	2.07	10.7
	方法	参加施設数	平均值	SD	CV%
<試料 31・INR>	3SD 除去データ	154	1.00	0.04	4.4
	トロンホ゛チェック PT	8	1.00	0.06	5.5
	ドライヘマト PT	17	0.93	0.04	4.3
	コアク゛ピア PT-N	8	0.97	0.02	2.0
	トロンホ、レル S	106	1.01	0.03	2.6
	ヒーモスアイエルリコンヒ゛フ。ラスチン	5	0.99	0.03	3.3
<試料 32・INR>	3SD 除去データ	155	3.44	0.44	12.7
	トロンホ、チェック PT	8	3.30	0.39	11.7
	ドライヘマト PT	18	2.55	0.07	2.6
	コアク゛ピア PT-N	8	3.34	0.19	5.6
	トロンオ・レル S	106	3.62	0.21	5.8
	ヒーモスアイエルリコンヒ、フ。ラスチン	5	3.13	0.17	5.3
				-	-


# 【APTT 総括表】


	方法	参加施設数	平均値	SD	CV%
<試料 31・秒>	3SD 除去データ	130	28.4	1.57	5.5
	テ゛ータファイ APTT	41	29.8	1.10	3.7
	トロンホ、チェック APTT	22	28.3	1.03	3.6
	トロンホ、チェック APTT-SLA	36	27.2	1.00	3.7
	アクチン FSL	12	26.8	0.55	2.1
	コアク゛ピア APTT-N	11	27.9	1.25	4.5
	ヒーモスアイエルシンサシル APTT	4	29.8	0.61	2.0
	プ゜ラテリン L <b>Ⅱ</b>	3	30.2	0.72	2.4
	ドライヘマト <b>APT</b> T	10	21.5	0.93	4.3
<試料 32・秒>	3SD 除去データ	140	46.9	7.97	17.0
	デ゛ータファイ APTT	40	56.2	2.11	3.8
	トロンホ [*] チェック <b>APTT</b>	19	49.6	0.87	1.8
	トロンホ [*] チェック APTT-SLA	36	42.8	1.97	4.6
	アクチン FSL	13	44.8	1.98	4.4
	コアク゛ヒ゜ア APTT-N	11	41.1	1.46	3.6
	ヒーモスアイエルシンサシル APTT	4	42.4	0.27	0.6
	プ [°] ラテリン LS II	3	44.9	1.92	4.3
	ドライヘマト <b>APT</b> T	10	28.7	1.32	4.6


# 【Fib総括表】


	方法	参加施設数	平均值	SD	CV%
<試料31・mg/dL>	3SD除去データ	109	293	20.7	7.1
	データファイFib	17	288	11.6	4.0
	トロンホ、チェックFib	5	276	18.6	6.8
	トロンホ゛チェックFib(L)	58	282	9.3	3.3
	ドライヘマトFib	3	289	14.8	5.1
	コアク゛ヒ゜アFbg	19	325	11.6	3.6
	ヒーモスアイエルPT・フィフ [*] C(Ⅱ)	2	324	14.9	4.6
	トリニクロットフィフ゛リノーケ゛ン	3	313	4.6	1.5
	ヒーモスアイエルリコンヒ゛フ。ラスチン	2	331	0.1	0.0
共通法(試料32/試料	31 * 296)	108	236	6.9	2.9
<試料32・mg/dL>	3SD除去データ	109	233	18.7	8.0
	テ゛ータファイFib	17	227	7.0	3.1
	トロンホ、チェックFib	5	222	17.7	8.0
	トロンホ゛チェックFib(L)	58	224	10.6	4.8
	ドライヘマトFib	3	239	21.4	8.9
	コアク゛ヒ゜アFbg	19	263	9.9	3.8
	ヒーモスアイエルPT・フィフ˙C(Ⅱ)	2	252	5.0	2.0
	トリニクロットフィフ゛リノーケ゛ン	3	251	5.2	2.1
	ヒーモスアイエルリコンヒブプラスチン	2	252	8.9	3.5











50 PT(秒) 施設No.が低い順に並んでいます

包設	测亭店理	計事っニャ	<b>拉</b> 松 <b>旦</b> 旦	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料31	試料32	
001	ヒト胎盤	シスメックス	シスメックスCSシリー	9.000	13.00	9.000	13.00	12.50	41.60	
002	ヒト胎盤	シスメックス	シスメックスCSシリー					11.90	36.20	
004	ヒト胎盤	積水メディカル	積?コアプレスタ200					12.10	38.40	
006	ヒト胎盤	シスメックス	シスメックスCSシリー	10.00	13.50	10.00	13.50	12.50	45.30	
010	ヒト胎盤	シスメックス	シスメックスCSシリー					12.30	42.90	
012	ウサギ脳・肺	協和メデックス	協和COAGTRO					14.10	37.70	
013	ヒト胎盤	シスメックス	シスメックスCA-500	8.000	12.00	8.000	12.00	11.50	40.30	
015	遺伝子組み換え		LSIメディエンスSTA	9.400	12.50	9.400	12.50	12.00	35.40	
018	ヒト胎盤	シスメックス	シスメックスCA-500	11.00	14.50	11.00	14.50	11.00	37.70	
021	ヒト胎盤	シスメックス	シスメックスCA-150	10.00	13.00	10.00	13.00	11.70	40.20	
023	ヒト胎盤	シスメックス	シスメックスCA-500	9.100	13.00	9.100	13.00	11.70	42.30	
024	ヒト胎盤	シスメックス	シスメックスCA-500	10.00	13.00	10.00	13.00	11.50	42.30	
029	ウサギ脳・肺	協和メデックス	協和COAGTRO	11.00	14.00	11.00	14.00	13.90	37.60	
031	ウサギ脳・肺	積水メディカル	積?コアプレスタ200	10.00	14.00	10.00	14.00	11.20	38.80	
034	ヒト胎盤	シスメックス	シスメックスCA-150	10.00	13.00	10.00	13.00	11.50	39.60	
035	ウサギ脳・肺	積水メディカル	積?コアプレスタ200					11.50	44.90	
038	ヒト胎盤	積水メディカル	積?コアプレスタ200					12.10	39.80	
039	ヒト胎盤	積水メディカル	積?コアプレスタ200	10.00	15.00	10.00	15.00	12.70	45.40	
040	遺伝子組み換え	シスメックス	シスメックスCSシリー	10.00	13.00	10.00	13.00	10.70	30.30	
044	ウサギ脳・肺	エイアンドティー	A&Tドライへマトシス	10.00	13.00	10.00	13.00	10.30	18.70	
046	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	9.000	13.00	9.000	13.00	10.20	19.00	
049	ヒト胎盤	シスメックス	シスメックスCA-500	10.50	13.50	10.50	13.50	11.50	40.70	
050	ウサギ脳・肺		エーティアトロンホトラ					13.90	37.70	
054	遺伝子組み換え		LSIメディエンスFut	10.10	11.80	10.10	11.80	11.10	36.80	
055	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス					10.90	18.70	
058	ヒト胎盤	シスメックス	シスメックスCA-150	9.500	12.00	9.500	12.00	12.60	45.80	
)59	ヒト胎盤	シスメックス	シスメックスCA-500	10.00	13.00	10.00	13.00	11.30	39.90	
062	ウサギ脳・肺	積水メディカル	積?コアプレスタ200					11.40	38.90	
072	ウサギ脳・肺	積水メディカル	積?コアプレスタ200					11.50	40.30	
	ヒト胎盤	シスメックス	シスメックスCA-500	9.500	12.00		12.00	11.00	39.10	
)75	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	9.000	13.00	9.000	13.00	11.00	18.80	
	ウサギ脳・肺	エイアンドティー	A&TドライヘマトCG	10.50	13.50		13.50	10.80	19.40	
	ヒト胎盤	シスメックス	シスメックスCSシリー	9.500	12.50	9.500	12.50	12.00	42.60	
	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス					10.60	18.80	
	ウサギ脳・肺	シスメックス	シスメックスCA-50	8.000	13.00	8.000	13.00	10.20	19.40	
	ヒト胎盤	シスメックス	シスメックスCSシリー					12.10	45.30	
	ヒト胎盤	シスメックス	シスメックスCA-150					12.20	43.90	
	ヒト胎盤	シスメックス	シスメックスCA-150					12.10	43.00	
	ヒト胎盤	シスメックス	シスメックスCA-150	10.50	13.50		13.50	11.30	41.20	
	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	9.000	13.00		13.00	10.40	19.30	
	ヒト胎盤	シスメックス	シスメックスCA-150	9.800	12.10		12.10	13.10	43.90	
	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	10.00		10.00	13.00	10.30	18.30	
	ヒト胎盤	シスメックス	シスメックスCA-500	10.80		10.80	13.50	11.50	41.90	
	ヒト胎盤	3.00	エル・エム・エスKCX	9.800	12.10		12.10	11.90	39.30	
	ヒト胎盤	シスメックス	シスメックスCA-500	10.00		10.00	13.00	11.30	41.40	
	ヒト胎盤	積水メディカル	積?コアプレスタ200	11.00		11.00	13.40	12.50	44.10	
	ヒト胎盤	シスメックス	シスメックスCSシリー	10.30	12.00	10.30	12.00	12.50	42.40	
	ヒト胎盤	シスメックス	シスメックスCSシリー					12.20	40.20	
	といいと	シスメックス	シスメックスCA-500					11.90	43.80	
	ヒト胎盤	シスメックス	シスメックスCA-500					12.00	43.80	
	ヒト胎盤	シスメックス	シスメックスCSシリー		40	40	40	11.20	38.40	
	ヒト胎盤	シスメックス	シスメックスCSシリー	10.00	13.50	10.00	13.50	12.40	44.50	
	遺伝子組み換え		LSIメディエンスSTA					12.30	37.70	
	ヒト胎盤	シスメックス	シスメックスCSシリー					12.10	43.20	
	ヒト胎盤	シスメックス	シスメックスCSシリー	11.00	13.00		13.00	12.80	44.90	
	ヒト胎盤	シスメックス	シスメックスCSシリー	8.000	13.00		13.00	12.80	43.60	
	ヒト胎盤	積水メディカル	積?コアプレスタ200	11.00	15.00	11.00	15.00	11.70	41.70	

50 PT(秒) 施設No.が低い順に並んでいます

施設	INO.N EN MARC	- <del>-</del>		男性基	準範囲	女性基	進節囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料31	試料32	P VITTA LI ILE
-	ヒト胎盤	シスメックス	シスメックスCSシリー					11.90	42.50	
	とト胎盤	シスメックス	シスメックスCA-150	8.000	13.00	8 000	13.00	11.00	36.60	
	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	10.00	14.00		14.00	12.80	21.40	
	ヒト胎盤	シスメックス	シスメックスCSシリー	11.00	13.00		13.00	11.50	40.40	
	ヒト胎盤		LSIメディエンスSTA	11.00	15.00		15.00	13.20	43.20	
	ヒト胎盤	シスメックス	シスメックスCSシリー	10.50	13.00		13.00	12.50	42.20	
1343	ヒト胎盤	シスメックス	シスメックスCSシリー	11.10	14.50	11.10	14.50	12.20	41.90	
1344	ウサギ脳・肺	シスメックス	シスメックスCA-500	11.00	13.00	11.00	13.00	11.10	24.30	
1346	ヒト胎盤	シスメックス	シスメックスCA-500	10.00	13.00	10.00	13.00	11.30	43.80	
1348	ヒト胎盤	シスメックス	シスメックスCA-150	9.800	11.80	9.800	11.80	11.70	42.70	
1350	ヒト胎盤	シスメックス	シスメックスCA-500	9.800	12.10	9.800	12.10	11.70	40.20	
1352	ヒト胎盤	シスメックス	シスメックスCA-500	10.00	14.00	10.00	14.00	11.30	41.60	
	ヒト胎盤	シスメックス	シスメックスCA-500					11.60	39.90	
	ヒト胎盤	シスメックス	シスメックスCA-500	9.800	12.00	9.800	12.00	12.60	47.40	
	ヒト胎盤	ジョンソン エンド						11.70	41.00	
	とト胎盤	シスメックス	シスメックスCA-500	12.00	14.00		14.00	11.80	45.70	
	ヒト胎盤	シスメックス	シスメックスCA-500	9.800	12.10		12.10	11.30	41.00	
	ウサギ脳・肺 ヒト胎盤	エイアンドティー 積水メディカル	A&TドライへマトCG 積?コアプレスタ200	9.000	13.00	9.000	13.00	10.80 12.00	18.70 43.80	
	ウサギ脳・肺	性がアノイルルエイアンドティー	A&Tドライヘマトシス	11.00	15.00	11.00	15.00	10.40	19.10	
	ヒト胎盤	シスメックス	シスメックスCA-101	9.800	12.10		12.10	12.50	42.20	
	ヒト胎盤	シスメックス	シスメックスCA-500	9.000	13.00		13.00	12.10	51.60	
	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス					10.40	19.30	
	ヒト胎盤	シスメックス	シスメックスCA-150	10.60	13.60	10.60	13.60	11.00	39.90	
1391	ヒト胎盤	積水メディカル	積?コアプレスタ200	9.700	11.70	9.700	11.70	11.50	39.30	
1393	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	9.000	13.00	9.000	13.00	11.00	18.60	
1396	ウサギ脳・肺		エル・エム・エスKCX	10.00	13.00	10.00	13.00	11.40	23.90	
1401	ヒト胎盤	シスメックス	シスメックスCA-500	11.00	15.00	11.00	15.00	11.80	45.00	
1402	ヒト胎盤	シスメックス	シスメックスCSシリー	10.00	11.50	10.00	11.50	12.20	40.80	
	ウサギ脳・肺	シスメックス	シスメックスCA-500	10.00	13.00		13.00	10.90	24.70	
	ヒト胎盤	シスメックス	シスメックスCSシリー	11.50	14.50		14.50	12.30	42.30	
	ヒト胎盤		LSIメディエンスSTA	11.00	13.40		13.40	12.40	41.90	
	とト胎盤	シスメックス	シスメックスCSシリー	10.50	13.50		13.50	11.40	40.20	
	とト胎盤	シスメックス	シスメックスCA-150	8.000	12.00	8.000	12.00	11.70	44.40	
	ウサギ脳・肺 ヒト胎盤	積水メディカル シスメックス	積?コアブレスタ200 シスメックスCA-150					11.50 11.70	44.30 38.50	
	とト胎盤	シスメックス	シスメックスCA 150 シスメックスCA-500	10.00	13.00	10.00	13.00	11.40	39.40	
	ヒト胎盤	シスメックス	シスメックスCA-150	10.00	15.00	10.00	15.00	11.70	41.10	
	ヒト胎盤	シスメックス	シスメックスCSシリー	10.00	13.60	10.00	13.60	12.20	42.70	
	ヒト胎盤	シスメックス	シスメックスCSシリー					12.00	42.40	
1518	ウサギ脳・肺	シスメックス	シスメックスCA-50	9.500	14.00	9.500	14.00	10.30	23.70	
1519	ヒト胎盤	シスメックス	シスメックスCA-500					12.00	44.60	
1523	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	9.000	13.00	9.000	13.00	10.60	18.90	
1528	ヒト胎盤	シスメックス	シスメックスCA-500	10.50	13.50	10.50	13.50	11.40	42.10	
1529	ヒト胎盤	シスメックス	シスメックスCSシリー	9.800	12.50	9.800	12.50	12.10	38.80	
	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス					10.30	18.90	
	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	9.500	14.00		14.00	10.30	18.70	
	ヒト胎盤	シスメックス	シスメックスCA-150	11.00	13.00		13.00	11.10	43.00	
	とト胎盤	シスメックス	シスメックスCA-101	10.00	12.50		12.50	11.60	41.50	
	ウサギ脳・肺	シスメックス	シスメックスCA-500	9.500	13.00		13.00	10.40	23.90	
	とト胎盤	シスメックス	シスメックスCSシリー	10.50	13.50		13.50	11.60	40.10	
	ウサギ脳・肺 ヒト胎盤	エイアンドティーシスメックス	A&TドライへマトCG シスメックスCA-500	9.000	13.00 13.00		13.00 13.00	10.40	18.70	
	とト胎盤	シスメックス	シスメックスCA=500 シスメックスCA=50	10.00 9.000	13.00		13.00	11.40 11.40	40.60 41.50	
	ヒト胎盤	シスメックス	シスメックスCA=500 シスメックスCA=500	3.000	15.00	3.000	10.00	12.20	44.60	
	ヒト胎盤	シスメックス	シスメックスCSシリー	10.50	13.50	10.50	13.50	12.10	40.60	
	ヒト胎盤	シスメックス	シスメックスCA-700	10.50	13.50		13.50	11.20	39.70	
	unddda		,		50					

50 PT(秒) 施設No.が低い順に並んでいます

施設	测学医理	学を2. も.	14K R.P.	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料31	試料32	
1909	ヒト胎盤	シスメックス	シスメックスCA-150	9.500	14.00	9.500	14.00	12.00	42.40	
1911	ヒト胎盤	シスメックス	シスメックスCA-150	10.40	13.60	10.40	13.60	12.00	40.80	
1916	ヒト胎盤	シスメックス	シスメックスCA-50	11.00	13.00	11.00	13.00	11.50	39.20	
1917	ヒト胎盤	シスメックス	シスメックスCA-500					11.00	40.20	
1923	ヒト胎盤	シスメックス	シスメックスCA-500	10.50	13.50	10.50	13.50	11.80	38.80	
1925	遺伝子組み換え	シスメックス	シスメックスCA-50	9.400	12.20	9.400	12.20	10.60	26.50	
1928	ヒト胎盤	シスメックス	シスメックスCA-150	10.50	13.50	10.50	13.50	11.10	39.40	
1930	ヒト胎盤	シスメックス	シスメックスCA-500	10.50	13.50	10.50	13.50	12.00	42.40	
1932	ヒト胎盤	シスメックス	シスメックスCA-500	10.00	13.00	10.00	13.00	11.90	40.00	
1935	ヒト胎盤	シスメックス	シスメックスCA-500	10.00	13.00	10.00	13.00	11.30	40.60	
1936	ヒト胎盤	シスメックス	シスメックスCA-500					11.80	45.60	
2002	ヒト胎盤	積水メディカル	積?コアプレスタ200					11.70	39.90	
2006	ヒト胎盤	シスメックス	シスメックスCSシリー	10.50	13.50	10.50	13.50	12.50	43.80	
2008	ヒト胎盤	積水メディカル	積?コアプレスタ200	10.00	13.00	10.00	13.00	11.90	40.60	
2009	ヒト胎盤	シスメックス	シスメックスCA-500	9.000	13.00	9.000	13.00	11.40	41.60	
2011	ヒト胎盤	シスメックス	シスメックスCA-500	10.50	13.50	10.50	13.50	11.50	42.90	
3001	ヒト胎盤	シスメックス	シスメックスCSシリー					11.90	41.90	
3022	ヒト胎盤	シスメックス	シスメックスCSシリー					11.20	39.60	
3048	ヒト胎盤	積水メディカル	積?コアプレスタ200	11.00	13.00	11.00	13.00	11.90	40.70	
3055	ヒト胎盤	積水メディカル	積?コアプレスタ200					12.40	42.20	
3056	ヒト胎盤	シスメックス	シスメックスCSシリー	9.800	12.10	9.800	12.10	12.00	48.00	
3907	ヒト胎盤	シスメックス	シスメックスCSシリー					12.20	40.40	
4002	ウサギ脳・肺	積水メディカル	積?コアプレスタ200					11.40	37.00	
4040	ヒト胎盤	シスメックス	シスメックスCA-500	10.50	13.50	10.50	13.50	11.40	42.50	
5005	ヒト胎盤	シスメックス	シスメックスCSシリー					12.60	43.10	
5006	ヒト胎盤	積水メディカル	積?コアプレスタ200					11.60	40.20	
5010	ヒト胎盤	ジョンソン エンド						11.26	44.15	
6008	ウサギ脳・肺	積水メディカル	積?コアプレスタ200	10.50	12.50	10.50	12.50	11.30	24.40	
6015	ウサギ脳・肺	シスメックス	シスメックスCA-500	11.00	14.00	11.00	14.00	11.40	25.30	
6016	ウサギ脳・肺	積水メディカル	積?コアプレスタ200	10.00	13.70	10.00	13.70	11.50	39.50	
7001	ヒト胎盤	シスメックス	シスメックスCA-700					12.40	41.90	
7002	遺伝子組み換え		LSIメディエンスSTA	9.400	12.50	9.400	12.50	12.30	38.80	
7007	ウサギ脳・肺	積水メディカル	積?コアプレスタ200	11.00	13.50	11.00	13.50	11.30	40.10	
7011	遺伝子組み換え		LSIメディエンスSTA					12.20	40.00	
7901	ヒト胎盤	シスメックス	シスメックスCA-700					12.00	43.20	
8004	ヒト胎盤	シスメックス	シスメックスCSシリー	10.00	15.00	10.00	15.00	12.60	41.90	
9004	ウサギ脳・肺	協和メデックス	協和COAGTRO					13.40	38.20	
9023	ウサギ脳・肺	エイアンドティー	A&TドライヘマトCG	9.000	13.00	9.000	13.00	10.37	19.03	
9037	ウサギ脳・肺	ロシュ・ダイアグ	ロシュSTAシリース [*]					13.30	37.80	
9049	ヒト胎盤	シスメックス	シスメックスCSシリー	9.800	12.10	9.800	12.10	12.50	44.20	

51 PT(%) 施設No.が低い順に並んでいます

施設	INO. W EN MATE			男性基	準節囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料31	試料32	I THE
1001		シスメックス	シスメックスCSシリー					99.80	14.30	
	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00		70.00		94.80	20.10	
1004	ヒト胎盤	積水メディカル	積?コアプレスタ200	70.00		70.00		96.60	15.50	
1006	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0	70.00	130.0	101.8	19.30	
1010	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0	70.00	130.0	94.10	12.70	
1012	ウサギ脳・肺	協和メデックス	協和COAGTRO	70.00		70.00		120.3	17.50	
1013	ヒト胎盤	シスメックス	シスメックスCA-500	80.00	100.0	80.00	100.0	100.4	18.70	
	遺伝子組み換え		LSIメディエンスSTA	80.00	120.0	80.00	120.0	96.00	19.00	
1018		シスメックス	シスメックスCA-500	70.00	130.0	70.00	130.0	95.20	16.60	
	とト胎盤	シスメックス	シスメックスCA-150	80.00	120.0	80.00	120.0	104.8	14.90	
	い出盤	シスメックス	シスメックスCA-500	00.00	190.0	00.00	190.0	96.60	15.80	
	ヒト胎盤 ウサギ脳・肺	シスメックス 協和メデックス	シスメックスCA-500 協和COAGTRO	80.00 70.00	120.0 130.0		120.0 130.0	101.4 108.0	16.50 19.60	
	ウサギ脳・肺	積水メディカル	積?コアプレスタ200	70.00	130.0		130.0	114.0	18.60	
	ヒト胎盤	シスメックス	シスメックスCA-150	10.00	100.0	10.00	100.0	96.80	15.60	
	ウサギ脳・肺	積水メディカル	積?コアプレスタ200	70.00	120.0	70.00	120.0	104.0	13.90	
1038	ヒト胎盤	積水メディカル	積?コアプレスタ200	80.00	100.0	80.00	100.0	96.60	15.50	
1039	ヒト胎盤	積水メディカル	積?コアプレスタ200	70.00	130.0	70.00	130.0	89.00	13.00	
1040	遺伝子組み換え	シスメックス	シスメックスCSシリー					96.80	13.90	
1044	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	80.00	120.0	80.00	120.0	100.0	34.20	
1046	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	66.70	100.0	66.70	100.0	100.0	33.40	
	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	130.0	70.00	130.0	92.00	17.00	
	ウサギ脳・肺		エーディアトロンボトラ					91.00	16.40	
	遺伝子組み換え	- /2\ /\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LSIメディエンスFut	70.00	130.0	70.00	130.0	109.0	23.00	
	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	70.00	100.0	70.00	100.0	100.0	34.20	
	ヒト胎盤 ヒト胎盤	シスメックス シスメックス	シスメックスCA-150 シスメックスCA-500	70.00 80.00	100.0 120.0		100.0 120.0	90.70 95.30	13.40 15.10	
	ウサギ脳・肺	積水メディカル	積?コアプレスタ200	80.00	120.0		120.0	107.9	16.90	
	ウサギ脳・肺	積水メディカル	積?コアプレスタ200	80.00		80.00	120.0	103.3	15.40	
1073	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	120.0	70.00	120.0	101.8	17.80	
1075	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス					100.0	33.90	
1077	ウサギ脳・肺	エイアンドティー	A&TドライヘマトCG					100.0	32.30	
1081	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	100.0	70.00	100.0	99.10	13.40	
1088	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	70.00		70.00		100.0	33.90	
	ウサギ脳・肺	シスメックス	シスメックスCA-50	80.00	120.0	80.00	120.0	132.3	27.70	
	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0	70.00	130.0	92.80	12.90	
	ヒト胎盤	シスメックス	シスメックスCA-150	70.00	1.40.0	70.00	1.40.0	96.90	13.00	
	ヒト胎盤 ヒト胎盤	シスメックス	シスメックスCA-150	70.00	140.0		140.0	97.30	13.80	
	ウサギ脳・肺	シスメックス エイアンドティー	シスメックスCA-150 A&Tドライへマトシス	70.00 70.00	130.0 130.0		130.0 130.0	96.60 100.0	13.60 32.50	
	ヒト胎盤	シスメックス	シスメックスCA-150	70.00	130.0		130.0	85.60	13.10	
	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	80.00	120.0		120.0	100.0	35.40	
1130								110.9	18.70	
1131	ヒト胎盤		エル・エム・エスKCX	70.00	130.0	70.00	130.0	80.80	14.50	
1134	ヒト胎盤	シスメックス	シスメックスCA-500	80.00	120.0	80.00	120.0	110.3	17.50	
1300	ヒト胎盤	ジョンソン エンド						95.90	14.40	
1301	とト 胎盤	シスメックス	シスメックスCSシリー	70.00	140.0	70.00	140.0	95.40	13.90	
	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0		130.0	104.8	14.90	
	ヒト胎盤	ジョンソン エンド	No. 1 August 500	70.00	130.0	70.00	130.0	100.5	16.90	
	ヒト胎盤	シスメックス	シスメックスCA-500	00.00	100.0	00.00	100.0	101.0	17.10	
	とい胎盤	シスメックス	シスメックスCSシリー	80.00	120.0		120.0	104.1	15.00	
	ヒト胎盤 遺伝子組み換え	シスメックス	シスメックスCSシリー LSIメディエンスSTA	70.00 86.70	130.0 130.8		130.0 130.8	100.6 100.0	13.90 19.00	
	旦仏丁組み換え ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0		130.0	100.0	11.70	
	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0		130.0	97.40	11.70	
	ヒト胎盤	栄研化学		70.00	130.0		130.0	90.60	12.00	
	ヒト胎盤	積水メディカル	積?コアプレスタ200	70.00	140.0		140.0	98.70	13.40	

51 PT(%) 施設No.が低い順に並んでいます

施設	測空區理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	武楽メーガー	機奋	下限	上限	下限	上限	試料31	試料32	
1330	ヒト胎盤	シスメックス	シスメックスCSシリー	80.00	120.0	80.00	120.0	96.50	14.80	
1331	ヒト胎盤	シスメックス	シスメックスCA-150	80.00	100.0	80.00	100.0	106.8	14.30	
1336	ウサギ脳・肺	ジョンソン エンド		70.00	130.0	70.00	130.0	76.20	26.20	
1337	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00		70.00		99.30	11.70	
1339	ヒト胎盤		LSIメディエンスSTA	70.00	130.0	70.00	130.0	87.30	11.70	
1341	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00		70.00		92.00	9.800	
1343	ヒト胎盤	シスメックス	シスメックスCSシリー	74.00	112.0	74.00	112.0	97.00	14.00	
1344	ウサギ脳・肺	シスメックス	シスメックスCA-500					98.10	22.20	
1346	ヒト胎盤	シスメックス	シスメックスCA-500	80.00	120.0	80.00	120.0	95.90	16.60	
1348	ヒト胎盤	シスメックス	シスメックスCA-150	70.00	130.0	70.00	130.0	91.00	13.00	
1350		シスメックス	シスメックスCA-500					85.40	14.50	
1352	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	130.0	70.00	130.0	100.5	14.20	
1355	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	130.0	70.00	130.0	95.90	16.30	
1356	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	140.0	70.00	140.0	84.10	13.70	
1357	ヒト胎盤	ジョンソン エンド		70.00	120.0	70.00	120.0	107.8	15.70	
1358	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	130.0	70.00	130.0	99.00	14.00	
1359	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	130.0	70.00	130.0	101.1	16.70	
1365	ウサギ脳・肺	エイアンドティー	A&TドライヘマトCG	70.00		70.00		100.0	34.20	
1368	ヒト胎盤	積水メディカル	積?コアプレスタ200	70.00	100.0	70.00	100.0	97.00	15.00	
1370	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	70.00	130.0	70.00	130.0	100.0	33.10	
1378	ヒト胎盤	シスメックス	シスメックスCA-101	70.00	130.0	70.00	130.0	85.10	12.90	
1382	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	130.0	70.00	130.0	93.70	10.20	
1385	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス					100.0	32.50	
1390	ヒト胎盤	シスメックス	シスメックスCA-150	75.00	113.0	75.00	113.0	113.0	15.00	
1391	ヒト胎盤	積水メディカル	積?コアプレスタ200	84.60	105.0	84.60	105.0	106.2	15.40	
1393	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	100.0	66.70	100.0	66.70	100.0	34.50	
1396	ウサギ脳・肺		エル・エム・エスKCX	80.00	100.0	80.00	100.0	86.40	21.20	
1401	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	130.0	70.00	130.0	98.50	15.70	
1402	ヒト胎盤	シスメックス	シスメックスCSシリー	75.00	125.0	75.00	125.0	92.00	11.60	
1403	ウサギ脳・肺	シスメックス	シスメックスCA-500	80.00	100.0	80.00	100.0	92.00	20.60	
1404	ヒト胎盤	シスメックス	シスメックスCSシリー	80.00	150.0	80.00	150.0	99.30	13.50	
1411	ヒト胎盤		LSIメティエンスSTA	74.00		74.00		118.0	15.00	
1501	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0	70.00	130.0	97.30	14.30	
1502	ヒト胎盤	シスメックス	シスメックスCA-150	80.00	120.0	80.00	120.0	100.4	13.50	
1505	ウサギ脳・肺	積水メディカル	積?コアプレスタ200	80.00	120.0	80.00	120.0	106.0	15.00	
1506	ヒト胎盤	シスメックス	シスメックスCA-150	70.00		70.00	130.0	96.20	13.70	
1511	ヒト胎盤	シスメックス	シスメックスCA-500	80.00	120.0	80.00	120.0	94.50	17.30	
1512	ヒト胎盤	シスメックス	シスメックスCA-150	70.00	120.0	70.00	120.0	98.60	14.30	
1513	ヒト胎盤	シスメックス	シスメックスCSシリー	75.00	130.0	75.00	130.0	90.30	11.70	
	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0		130.0	93.00	14.00	
	ウサギ脳・肺	シスメックス	シスメックスCA-50	70.00		70.00	130.0	108.1	19.10	
	ヒト胎盤	シスメックス	シスメックスCA-500	70.00		70.00	130.0	96.60	17.20	
	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	79.00		79.00	130.0	100.0	33.50	
	ヒト胎盤	シスメックス	シスメックスCA-500	70.00		70.00	130.0	95.60	15.30	
1529	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0		130.0	100.9	14.50	
	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	70.00		70.00	130.0	100.0	33.60	
	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	70.00		70.00	130.0	100.0	34.20	
	ヒト胎盤	シスメックス	シスメックスCA-150	70.00	130.0		130.0	98.70	13.90	
	ヒト胎盤	シスメックス	シスメックスCA-101	80.00	130.0		130.0	97.60	13.90	
	ウサギ脳・肺	シスメックス	シスメックスCA-500	70.00		70.00	130.0	94.00	21.40	
	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0	70.00	130.0	97.70	13.00	
	ウサギ脳・肺	エイアンドティー	A&TドライヘマトCG					100.0	34.20	
	ヒト胎盤	シスメックス	シスメックスCA-500	80.00	120.0	80.00	120.0	101.6	14.90	
	ヒト胎盤	シスメックス	シスメックスCA-50					98.90	13.50	
1562	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	140.0	70.00	140.0	98.40	22.40	
	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0	70.00	130.0	94.10	13.30	
	ヒト胎盤	シスメックス	シスメックスCA-700	70.00	130.0	70.00	130.0	100.0	16.00	

51 PT(%) 施設No.が低い順に並んでいます

施設	测点压用	-L ( 3074-E	1446 11.12	男性基	準範囲	女性基	準範囲			試料報告值
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料31	試料32	
1909	ヒト胎盤	シスメックス	シスメックスCA-150	70.00	130.0	70.00	130.0	88.00	12.80	
1911	ヒト胎盤	シスメックス	シスメックスCA-150	80.00	130.0	80.00	130.0	94.70	17.50	
1916	ヒト胎盤	シスメックス	シスメックスCA-50					101.8	17.20	
1917	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	130.0	70.00	130.0	109.0	17.00	
1923	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	130.0	70.00	130.0	97.30	18.40	
1925	遺伝子組み換え	シスメックス	シスメックスCA-50	66.00	127.6	66.00	127.6	100.5	18.20	
1928	ヒト胎盤	シスメックス	シスメックスCA-150	70.00	130.0	70.00	130.0	101.6	15.40	
1930	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	130.0	70.00	130.0	95.00	16.00	
1932	ヒト胎盤	シスメックス	シスメックスCA-500	80.00	120.0	80.00	120.0	91.00	18.20	
1935	ヒト胎盤	シスメックス	シスメックスCA-500	80.00	120.0	80.00	120.0	100.2	17.10	
1936	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	130.0	70.00	130.0	93.00	16.00	
2002	ヒト胎盤	積水メディカル	積?コアプレスタ200	80.00	120.0	80.00	120.0	98.60	14.80	
2006	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0	70.00	130.0	95.40	13.10	
2008	ヒト胎盤	積水メディカル	積?コアプレスタ200	70.00	130.0	70.00	130.0	98.00	12.70	
2009	ヒト胎盤	シスメックス	シスメックスCA-500	70.00		70.00		98.90	16.40	
2011	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	130.0	70.00	130.0	94.40	15.00	
3001	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0	70.00	130.0	96.80	19.00	
3022	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0	70.00	130.0	100.8	13.70	
3048	ヒト胎盤	積水メディカル	積?コアプレスタ200	70.00	120.0	70.00	120.0	96.40	12.60	
3055	ヒト胎盤	積水メディカル	積?コアプレスタ200	70.00	130.0	70.00	130.0	94.00	12.10	
3056	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0	70.00	130.0	98.90	13.00	
3907	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0	70.00	130.0	99.00	13.60	
4002	ウサギ脳・肺	ジョンソン エンド		80.00	120.0	80.00	120.0	108.0	18.00	
4040	ヒト胎盤	シスメックス	シスメックスCA-500	70.00	130.0	70.00	130.0	103.1	16.40	
5005	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00		70.00		99.50	12.90	
5006	ヒト胎盤	積水メディカル	積?コアプレスタ200	88.00	123.0	88.00	123.0	103.7	16.40	
5010	ヒト胎盤	ジョンソン エンド		70.00	120.0	70.00	120.0	96.28	17.20	
6008	ウサギ脳・肺	積水メディカル	積?コアプレスタ200	80.00	100.0	80.00	100.0	94.00	20.80	
6015	ウサギ脳・肺	シスメックス	シスメックスCA-500	70.00	140.0	70.00	140.0	94.30	20.20	
6016	ウサギ脳・肺	積水メディカル	積?コアプレスタ200	80.00	140.0	80.00	140.0	104.0	16.00	
7001	ヒト胎盤	シスメックス	シスメックスCA-700	80.00	125.0	80.00	125.0	98.80	14.50	
7002	遺伝子組み換え		LSIメディエンスSTA	70.00	100.0	70.00	100.0	102.0	18.00	
7007	ウサギ脳・肺	積水メディカル	積?コアプレスタ200					107.0	17.40	
7011	遺伝子組み換え		LSIメテ・ィエンスSTA	85.00	120.0	85.00	120.0	97.00	18.00	
7901	ヒト胎盤	シスメックス	シスメックスCA-700	70.00		70.00		95.50	13.70	
8004	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0	70.00	130.0	91.70	18.20	
9004	ウサギ脳・肺	協和メデックス	協和COAGTRO					146.3	18.70	
9023	ウサギ脳・肺	エイアンドティー	A&TドライヘマトCG	70.00		70.00		100.0	33.33	
9037	ウサギ脳・肺	ロシュ・ダイアグ	ロシュSTAシリース゛					98.00	20.00	
9049	ヒト胎盤	シスメックス	シスメックスCSシリー	70.00	130.0	70.00	130.0	93.70	13.40	

52 PT(INR) 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足原理	武衆 ノーガー	1发石	下限	上限	下限	上限	試料31	試料32	
1001		シスメックス	シスメックスCSシリー					1.000	3.530	
002	ヒト胎盤	シスメックス	シスメックスCSシリー					1.020	3.430	
004	ヒト胎盤	積水メディカル	積?コアプレスタ200	0.850	1.150	0.850	1.150	1.010	3.220	
006	ヒト胎盤	シスメックス	シスメックスCSシリー	0.900	1.100	0.900	1.100	0.990	3.590	
010	ヒト胎盤	シスメックス	シスメックスCSシリー					1.030	3.380	
012	ウサギ脳・肺	協和メデックス	協和COAGTRO					0.930	3.050	
013	ヒト胎盤	シスメックス	シスメックスCA-500					1.000	3.590	
015	遺伝子組み換え		LSIメディエンスSTA	0.900	1.100	0.900	1.100	1.020	3.040	
018		シスメックス	シスメックスCA-500	0.900	1.100	0.900	1.100	0.950	3.330	
021	ヒト胎盤	シスメックス	シスメックスCA-150	0.900	1.130	0.900	1.130	0.970	3.390	
023	ヒト胎盤	シスメックス	シスメックスCA-500					1.020	3.780	
024	ヒト胎盤	シスメックス	シスメックスCA-500	0.900	1.130	0.900	1.130	0.990	3.750	
029	ウサギ脳・肺	協和メデックス	協和COAGTRO					0.960	3.480	
031	ウサギ脳・肺	積水メディカル	積?コアプレスタ200					0.940	3.060	
034	ヒト胎盤	シスメックス	シスメックスCA-150					1.020	3.590	
035	ウサギ脳・肺	積水メディカル	積?コアプレスタ200					0.980	3.540	
038	ヒト胎盤	積水メディカル	積?コアプレスタ200					0.980	3.210	
039	ヒト胎盤	積水メディカル	積?コアプレスタ200	0.800	1.230	0.800	1.230	1.060	3.820	
040	遺伝子組み換え	シスメックス	シスメックスCSシリー					1.010	2.800	
044	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	0.900	1.130	0.900	1.130	0.890	2.500	
046	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	0.710	1.340	0.710	1.340	0.880	2.570	
049	ヒト胎盤	シスメックス	シスメックスCA-500	0.850	1.150	0.850	1.150	1.040	3.770	
050	ウサギ脳・肺		エーティアトロンホトラ					1.050	3.500	
054	遺伝子組み換え		LSIメディエンスFut	0.900	1.100	0.900	1.100	0.940	2.950	
055	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス					0.980	2.500	
058	ヒト胎盤	シスメックス	シスメックスCA-150	0.850	1.150	0.850	1.150	1.050	3.920	
059	ヒト胎盤	シスメックス	シスメックスCA-500	0.900	1.130	0.900	1.130	1.030	3.870	
062	ウサギ脳・肺	積水メディカル	積?コアプレスタ200					0.960	3.450	
072	ウサギ脳・肺	積水メディカル	積?コアプレスタ200					0.990	3.540	
073	ヒト胎盤	シスメックス	シスメックスCA-500	1.000	1.300	1.000	1.300	0.990	3.520	
075	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス					1.000	2.530	
077	ウサギ脳・肺	エイアンドティー	A&TドライへマトCG					0.970	2.670	
081	ヒト胎盤	シスメックス	シスメックスCSシリー					1.010	3.670	
088	ウサギ脳・肺	エイアンドティー	A&Tドライへマトシス	0.900	1.100	0.900	1.100	0.930	2.530	
090	ウサギ脳・肺	シスメックス	シスメックスCA-50	0.900	1.130	0.900	1.130	0.910	2.430	
094	ヒト胎盤	シスメックス	シスメックスCSシリー					1.030	3.890	
101	ヒト胎盤	シスメックス	シスメックスCA-150					1.020	3.340	
102	ヒト胎盤	シスメックス	シスメックスCA-150		1.090		1.090	0.990	3.610	
120	ヒト胎盤	シスメックス	シスメックスCA-150	0.850	1.150	0.850	1.150	1.010	3.680	
122	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス					0.910	2.640	
	ヒト胎盤	シスメックス	シスメックスCA-150	0.850	1.150	0.850	1.150	1.110	3.770	
129	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	0.900	1.130	0.900	1.130	0.900	2.400	
130				0.900	1.100	0.900	1.100	0.940	3.520	
131	ヒト胎盤		エル・エム・エスKCX	0.870	1.250	0.870	1.250	1.040	3.990	
134	ヒト胎盤	シスメックス	シスメックスCA-500					0.950	3.570	
300	ヒト胎盤	ジョンソン エンド		0.940	1.150	0.940	1.150	1.020	3.650	
301	ヒト胎盤	シスメックス	シスメックスCSシリー	0.900	1.100	0.900	1.100	1.020	3.480	
	ヒト胎盤	シスメックス	シスメックスCSシリー	0.900	1.100	0.900	1.100	0.980	3.250	
	ヒト胎盤	ジョンソン エンド						1.000	3.780	
	ヒト胎盤	シスメックス	シスメックスCA-500					1.000	3.750	
310	ヒト胎盤	シスメックス	シスメックスCSシリー	0.800	1.000	0.800	1.000	0.970	3.350	
313	ヒト胎盤	シスメックス	シスメックスCSシリー	0.850	1.150	0.850	1.150	1.000	3.630	
315	遺伝子組み換え		LSIメディエンスSTA	0.850	1.110	0.850	1.110	1.000	3.100	
316	ヒト胎盤	シスメックス	シスメックスCSシリー					0.980	3.270	
325	ヒト胎盤	シスメックス	シスメックスCSシリー					1.020	3.610	
327	ヒト胎盤	栄研化学						1.050	3.580	
		積水メディカル	積?コアプレスタ200					1.010	3.580	

52 PT(INR) 施設No.が低い順に並んでいます

包設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足原理	武衆 ノー ハー	(笈石)	下限	上限	下限	上限	試料31	試料32	
1330	ヒト胎盤	シスメックス	シスメックスCSシリー					1.020	3.630	
331	ヒト胎盤	シスメックス	シスメックスCA-150	0.800	1.200	0.800	1.200	0.950	3.240	
336	ウサギ脳・肺	ジョンソン エンド		1.000	1.200	1.000	1.200	1.150	2.600	
337	ヒト胎盤	シスメックス	シスメックスCSシリー					1.020	3.580	
339	ヒト胎盤		LSIメディエンスSTA	0.800	1.200	0.800	1.200	1.050	3.720	
341	ヒト胎盤	シスメックス	シスメックスCSシリー	0.850	1.150	0.850	1.150	1.030	3.500	
343	ヒト胎盤	シスメックス	シスメックスCSシリー					1.020	3.580	
344	ウサギ脳・肺	シスメックス	シスメックスCA-500					1.000	3.450	
346	ヒト胎盤	シスメックス	シスメックスCA-500	0.900	1.130	0.900	1.130	1.030	3.980	
348	ヒト胎盤	シスメックス	シスメックスCA-150					0.970	3.570	
350		シスメックス	シスメックスCA-500					1.030	3.610	
352	ヒト胎盤	シスメックス	シスメックスCA-500	0.900	1.100	0.900	1.100	1.000	3.780	
355	ヒト胎盤	シスメックス	シスメックスCA-500					1.030	3.620	
356	ヒト胎盤	シスメックス	シスメックスCA-500	0.870	1.090	0.870	1.090	1.120	4.470	
357	ヒト胎盤	ジョンソン エンド						0.960	3.450	
358	ヒト胎盤	シスメックス	シスメックスCA-500	0.850	1.150	0.850	1.150	1.010	4.020	
359	ヒト胎盤	シスメックス	シスメックスCA-500					0.990	3.690	
365	ウサギ脳・肺	エイアンドティー	A&TドライヘマトCG	0.700	1.330	0.700	1.330	0.970	2.500	
368	ヒト胎盤	積水メディカル	積?コアプレスタ200					1.010	3.750	
370	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	0.900	1.100	0.900	1.100	0.910	2.600	
378	ヒト胎盤	シスメックス	シスメックスCA-101	0.900	1.130	0.900	1.130	1.090	3.820	
382	ヒト胎盤	シスメックス	シスメックスCA-500					1.030	4.540	
385	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス					0.920	2.630	
390	ヒト胎盤	シスメックス	シスメックスCA-150	0.860	1.100	0.860	1.100	0.890	3.440	
391	ヒト胎盤	積水メディカル	積?コアプレスタ200					0.980	3.290	
393	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	0.710	1.340	0.710	1.340	1.000	2.480	
396	ウサギ脳・肺		エル・エム・エスKCX	0.850	1.150	0.850	1.150	0.960	3.230	
401	ヒト胎盤	シスメックス	シスメックスCA-500		1.000		1.000	1.010	3.960	
402	ヒト胎盤	シスメックス	シスメックスCSシリー					1.030	3.330	
403	ウサギ脳・肺	シスメックス	シスメックスCA-500	0.850	1.150	0.850	1.150	1.060	3.630	
404	ヒト胎盤	シスメックス	シスメックスCSシリー	0.850	1.150	0.850	1.150	1.000	3.530	
411	ヒト胎盤		LSIメディエンスSTA	0.940	1.150	0.940	1.150	0.950	3.120	
501	ヒト胎盤	シスメックス	シスメックスCSシリー	0.850	1.150	0.850	1.150	1.020	3.590	
502	ヒト胎盤	シスメックス	シスメックスCA-150	0.840	1.140	0.840	1.140	1.000	3.790	
505	ウサギ脳・肺	積水メディカル	積?コアプレスタ200	0.850	1.150	0.850	1.150	0.970	3.460	
506	ヒト胎盤	シスメックス	シスメックスCA-150					1.020	3.390	
511	ヒト胎盤	シスメックス	シスメックスCA-500	0.910	1.130	0.910	1.130	1.040	3.680	
512	ヒト胎盤	シスメックス	シスメックスCA-150					1.010	3.630	
513	ヒト胎盤	シスメックス	シスメックスCSシリー	0.740	1.260	0.740	1.260	1.040	3.420	
514	ヒト胎盤	シスメックス	シスメックスCSシリー	0.850	1.150	0.850	1.150	1.040	3.740	
518	ウサギ脳・肺	シスメックス	シスメックスCA-50	0.850	1.150	0.850	1.150	0.960	3.190	
519	ヒト胎盤	シスメックス	シスメックスCA-500	0.900	1.100	0.900	1.100	1.010	3.850	
523	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス					0.940	2.560	
528	ヒト胎盤	シスメックス	シスメックスCA-500					1.030	3.840	
529	ヒト胎盤	シスメックス	シスメックスCSシリー	0.800	1.200	0.800	1.200	0.990	3.210	
530	ウサギ脳・肺	エイアンドティー	A&Tドライヘマトシス	0.900	1.100	0.900	1.100	0.890	2.550	
531	ウサギ脳・肺	エイアンドティー	A&Tドライへマトシス					0.900	2.500	
532	ヒト胎盤	シスメックス	シスメックスCA-150	0.900	1.100	0.900	1.100	0.990	3.890	
540	ヒト胎盤	シスメックス	シスメックスCA-101	0.900	1.120	0.900	1.120	1.010	3.750	
541	ウサギ脳・肺	シスメックス	シスメックスCA-500	0.850	1.150	0.850	1.150	1.040	3.460	
542	ヒト胎盤	シスメックス	シスメックスCSシリー	0.850	1.150	0.850	1.150	1.010	3.490	
548	ウサギ脳・肺	エイアンドティー	A&TドライヘマトCG					0.910	2.500	
550	ヒト胎盤	シスメックス	シスメックスCA-500	0.900	1.130	0.900	1.130	0.990	3.610	
558	ヒト胎盤	シスメックス	シスメックスCA-50					1.010	3.920	
	ヒト胎盤	シスメックス	シスメックスCA-500	0.300	1.100	0.300	1.100	1.010	37.90	
							1.150			
901	ヒト胎盤	シスメックス	シスメックスCSシリー	0.850	1.150	0.850	1.100	1.030	3.480	

52 PT(INR) 施設No.が低い順に並んでいます

施設	201 d = 100 mm	-L-187 ) . L-	146 00	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料31	試料32	
1909	ヒト胎盤	シスメックス	シスメックスCA-150	0.850	1.150	0.850	1.150	1.060	3.850	
1911	ヒト胎盤	シスメックス	シスメックスCA-150	0.900	1.100	0.900	1.100	1.030	3.820	
1916	ヒト胎盤	シスメックス	シスメックスCA-50	0.800	1.150	0.800	1.150	0.990	3.590	
1917	ヒト胎盤	シスメックス	シスメックスCA-500					0.960	3.590	
1923	ヒト胎盤	シスメックス	シスメックスCA-500					1.050	3.680	
1925	遺伝子組み換え	シスメックス	シスメックスCA-50	0.880	1.170	0.880	1.170	1.000	2.500	
1928	ヒト胎盤	シスメックス	シスメックスCA-150					0.990	3.610	
1930	ヒト胎盤	シスメックス	シスメックスCA-500	0.850	1.150	0.850	1.150	1.030	3.860	
1932	ヒト胎盤	シスメックス	シスメックスCA-500	0.900	1.130	0.900	1.130	1.050	3.630	
1935	ヒト胎盤	シスメックス	シスメックスCA-500	0.900	1.130	0.900	1.130	1.000	3.640	
1936	ヒト胎盤	シスメックス	シスメックスCA-500	0.850	1.150	0.850	1.150	1.020	4.040	
2002	ヒト胎盤	積水メディカル	積?コアプレスタ200	0.800	1.200	0.800	1.200	1.010	3.390	
2006	ヒト胎盤	シスメックス	シスメックスCSシリー					1.020	3.640	
2008	ヒト胎盤	積水メディカル	積?コアプレスタ200	0.900	1.100	0.900	1.100	1.010	3.440	
2009	ヒト胎盤	シスメックス	シスメックスCA-500	0.700	1.330	0.700	1.330	1.010	3.780	
2011	ヒト胎盤	シスメックス	シスメックスCA-500	0.850	1.150	0.850	1.150	1.040	4.300	
3001	ヒト胎盤	シスメックス	シスメックスCSシリー					1.020	3.620	
3022	ヒト胎盤	シスメックス	シスメックスCSシリー	1.220	0.850	1.220	0.850	1.000	3.540	
3048	ヒト胎盤	積水メディカル	積?コアプレスタ200	0.900	1.100	0.900	1.100	1.010	3.420	
3055	ヒト胎盤	積水メディカル	積?コアプレスタ200					1.025	3.570	
3056	ヒト胎盤	シスメックス	シスメックスCSシリー	0.800	1.200	0.800	1.200	1.010	4.150	
3907	ヒト胎盤	シスメックス	シスメックスCSシリー	0.850	1.150	0.850	1.150	1.010	3.380	
4002	ウサギ脳・肺	ジョンソン エンド						0.960	3.170	
4040	ヒト胎盤	シスメックス	シスメックスCA-500	0.850	1.150	0.850	1.150	1.000	3.980	
5005	ヒト胎盤	シスメックス	シスメックスCSシリー	0.900	1.100	0.900	1.100	1.000	3.500	
5006	ヒト胎盤	積水メディカル	積?コアプレスタ200	0.900	1.100	0.900	1.100	0.980	3.370	
5010	ヒト胎盤	ジョンソン エンド						1.030	3.960	
6008	ウサギ脳・肺	積水メディカル	積?コアプレスタ200	0.830	1.040	0.830	1.040	1.060	3.600	
6015	ウサギ脳・肺	シスメックス	シスメックスCA-500	0.900	1.100	0.900	1.100	1.030	3.430	
6016	ウサギ脳・肺	積水メディカル	積?コアプレスタ200	0.800	1.100	0.800	1.100	1.000	3.200	
7001	ヒト胎盤	シスメックス	シスメックスCA-700					1.010	3.450	
7002	遺伝子組み換え		LSIメディエンスSTA					0.990	3.160	
7007	ウサギ脳・肺	積水メディカル	積?コアプレスタ200					0.960	3.260	
7011	遺伝子組み換え		LSIメディエンスSTA	0.880	1.080	0.880	1.080	1.020	3.390	
7901	ヒト胎盤	シスメックス	シスメックスCA-700					1.030	3.740	
8004	ヒト胎盤	シスメックス	シスメックスCSシリー	0.850	1.300	0.850	1.300	1.050	3.630	
9004	ウサギ脳・肺	協和メデックス	協和COAGTRO					0.870	3.070	
9023	ウサギ脳・肺	エイアンドティー	A&TドライへマトCG	0.700	1.330	0.700	1.330	0.900	2.570	
9037	ウサギ脳・肺	ロシュ・ダイアグ	ロシュSTAシリース [*]					1.020	3.950	
9049	ヒト胎盤	シスメックス	シスメックスCSシリー	0.850	1.150	0.850	1.150	1.040	3.540	

53 APTT(秒)

施設No.が低い順に並んでいます

施設	INO. W EN MATE			男性基準	進範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料31	試料32	
1001	エラジン酸	シスメックス	シスメックスCSシリー	23.50	43.00	23.50	43.00	29.20	49.80	-
	エラジン酸	シスメックス	シスメックスCSシリー	20.00		20.00	40.00	29.60	56.90	
1004	エラジン酸	積水メディカル	積?コアプレスタ200	24.00	38.00	24.00	38.00	27.50	49.60	
1006	エラジン酸	シスメックス	シスメックスCSシリー	26.00	41.00	26.00	41.00	27.30	42.00	
1010	エラジン酸	シスメックス	シスメックスCSシリー	25.00	40.00	25.00	40.00	28.80	45.10	
1012	無水硅酸、セラ	協和メデックス	協和COAGTRO	28.00	45.00	28.00	45.00	30.80	47.00	
1013	エラジン酸	シスメックス	シスメックスCA-500	26.00	38.00	26.00	38.00	28.00	52.50	
	無水硅酸、セラ		LSIメディエンスSTA	25.10	36.50	25.10	36.50	30.10	42.30	
	エラジン酸	シスメックス	シスメックスCA-500	23.00	44.00	23.00	44.00	29.50	57.30	
	エラジン酸	シスメックス	シスメックスCA-150	26.00	38.00	26.00	38.00	27.50	48.60	
	エラジン酸	シスメックス	シスメックスCA-500	25.00	38.00	25.00	38.00	29.30	55.50	
	エラジン酸	シスメックス	シスメックスCA-500	26.00	38.00	26.00 25.00	38.00	29.90	57.50	
	無水硅酸、セラ エラジン酸	協和メデックス 積水メディカル	協和COAGTRO 積?コアプレスタ200	25.00 24.00	40.00 39.00	24.00	40.00 39.00	30.40 27.40	44.60 40.70	
	エラジン酸	シスメックス	シスメックスCA-150	26.00	38.00		38.00	27.80	52.90	
	エラジン酸	積水メディカル	積?コアプレスタ200	24.00	36.00		36.00	25.60	38.70	
	エラジン酸	積水メディカル	積?コアプレスタ200	24.00	39.00		39.00	26.60	38.70	
	エラジン酸	積水メディカル	積?コアプレスタ200	24.00	39.00		39.00	26.00	38.90	
1040	エラジン酸	シスメックス	シスメックスCSシリー	29.60	40.80	29.60	40.80	27.90	44.20	
1046	アルミニウム	エイアンドティー	A&Tドライへマトシス	24.00	40.00	24.00	40.00	20.80	27.00	
1049	エラジン酸	シスメックス	シスメックスCA-500	25.00	38.00	25.00	38.00	28.60	55.50	
1054	無水硅酸、セラ		LSIメディエンスFut	25.00	35.00	25.00	35.00	28.90	42.00	
1058	エラジン酸	シスメックス	シスメックスCA-150	27.00	38.00	27.00	38.00	26.30	41.70	
1062	エラジン酸	積水メディカル	積?コアプレスタ200	24.00	39.00	24.00	39.00	27.60	41.40	
	エラジン酸	積水メディカル	積?コアプレスタ200	24.00	39.00		39.00	27.50	40.80	
	エラジン酸	シスメックス	シスメックスCA-500	28.00	45.00	28.00	45.00	27.20	41.60	
	アルミニウム	エイアンドティー	A&Tドライヘマトシス	23.50	43.00	23.50	43.00	20.80	27.50	
	アルミニウム	エイアンドティー	A&TドライヘマトCG	26.00	38.00		38.00	22.90	29.80	
	エラジン酸 アルミニウム	シスメックス エイアンドティー	シスメックスCSシリー A&Tドライヘマトシス	27.00 24.00	35.00 30.00	27.00 24.00	35.00 30.00	28.00 21.40	44.60 27.60	
	エラジン酸	シスメックス	シスメックスCA-50	26.00	38.00	26.00	38.00	29.80	49.60	
	エラジン酸	シスメックス	シスメックスCSシリー	26.50	39.50	26.50	39.50	27.80	43.10	
	エラジン酸	シスメックス	シスメックスCA-150	26.00	38.00	26.00	38.00	26.50	45.60	
	エラジン酸	シスメックス	シスメックスCA-150	26.00	35.00	26.00	35.00	30.50	57.80	
1120	エラジン酸	シスメックス	シスメックスCA-150	24.30	36.00	24.30	36.00	26.70	42.20	
1128	エラジン酸	シスメックス	シスメックスCA-150	24.00	40.00	24.00	40.00	30.30	60.30	
1130	エラジン酸	シスメックス	シスメックスCA-500	24.60	33.50	24.60	33.50	30.80	59.60	
1134	エラジン酸	シスメックス	シスメックスCA-500	26.00	38.00	26.00	38.00	26.90	43.90	
1300	エラジン酸	ジョンソン エンド		24.00	39.00		39.00	27.60	41.00	
	エラジン酸	シスメックス	シスメックスCSシリー	29.30	40.80		40.80	28.10	43.00	
	エラジン酸	シスメックス	シスメックスCSシリー	26.00	40.00		40.00	27.90	44.80	
	エラジン酸	ジョンソン エンド	2/74	25.00	38.00		38.00	31.60	56.20	
	エラジン酸 エラジン酸	シスメックス シスメックス	シスメックスCA-500 シスメックスCSシリー	23.00	35.00 45.00	23.00	35.00	28.50	44.80	
	エラジン酸	シスメックス	シスメックスCSシリー	25.00	36.00	25.00	45.00 36.00	29.50 30.30	50.90 57.70	
	エラジン酸	•	LSIメディエンスSTA	24.80	36.70		36.70	26.30	41.00	
	エラジン酸	シスメックス	シスメックスCSシリー	28.20	41.00		41.00	29.80	50.10	
	エラジン酸	シスメックス	シスメックスCSシリー	20.00	35.00	20.00	35.00	30.70	58.10	
1327	エラジン酸	栄研化学		25.00	38.00	25.00	38.00	28.30	44.70	
1329	アルミニウム	積水メディカル	積?コアプレスタ200		38.00		38.00	25.40	38.70	
1330	エラジン酸	シスメックス	シスメックスCSシリー	22.00	38.00	22.00	38.00	27.60	42.40	
1331	エラジン酸	シスメックス	シスメックスCA-150	26.00	38.00	26.00	38.00	30.60	58.80	
1336	エラジン酸	ジョンソン エンド			45.00		45.00	21.40	30.20	
	エラジン酸	シスメックス	シスメックスCSシリー	24.00	37.00		37.00	29.30	50.60	
	エラジン酸		LSIメディエンスSTA	24.80	35.00		35.00	26.10	44.40	
	エラジン酸	シスメックス	シスメックスCSシリー	25.00	38.00		38.00	28.40	50.90	
1343	エラジン酸	シスメックス	シスメックスCSシリー	24.80	38.10	24.80	38.10	27.90	43.00	

53 APTT(秒)

施設No.が低い順に並んでいます

施設	INO.N EN MARC	-11.70 (1 5.7		男性基準	進範囲	女性基	進範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料31	試料32	FOR TALL IIE
-	エラジン酸	シスメックス	シスメックスCA-500	25.00		25.00	36.00	28.30	50.50	
	エラジン酸	シスメックス	シスメックスCA-500	26.00		26.00	38.00	27.00	43.10	
	エラジン酸	シスメックス	シスメックスCA-150	25.30		25.30	37.60	27.10	51.10	
1350	エラジン酸	シスメックス	シスメックスCA-500	24.00	33.00	24.00	33.00	27.20	43.90	
1352	エラジン酸	シスメックス	シスメックスCA-500	25.00	40.00	25.00	40.00	30.10	57.00	
1355	エラジン酸	シスメックス	シスメックスCA-500					28.60	48.90	
1356	エラジン酸	シスメックス	シスメックスCA-500	25.00	35.00	25.00	35.00	30.20	53.60	
1357	エラジン酸	ジョンソン エンド		25.00	39.00	25.00	39.00	26.80	46.20	
	エラジン酸	シスメックス	シスメックスCA-500	25.00	35.00		35.00	28.20	49.20	
	エラジン酸	シスメックス	シスメックスCA-500	23.50		23.50	35.50	29.30	56.80	
	アルミニウム	エイアンドティー	A&TドライヘマトCG	24.00		24.00	40.40	21.60	28.90	
	エラジン酸 アルミニウム	積水メディカル エイアンドティー	積?コアプレスタ200 A&Tドライヘマトシス	25.00	38.00 40.00	25.00	38.00	25.50	39.80 27.40	
	その他	シスメックス	シスメックスCA-101	24.00	33.00		40.00 33.00	20.30 31.60	49.80	
	エラジン酸	シスメックス	シスメックスCA-500	25.00	36.00		36.00	28.80	49.90	
	エラジン酸	シスメックス	シスメックスCA-150	28.10	35.70		35.70	29.70	56.70	
	エラジン酸	積水メディカル	積?コアプレスタ200	25.20	37.50		37.50	25.90	40.10	
1393	無水硅酸、セラ	エイアンドティー	A&Tドライヘマトシス	24.00	40.00	24.00	40.00	22.60	30.30	
1401	エラジン酸	シスメックス	シスメックスCA-500	26.00	40.00	26.00	40.00	28.20	53.60	
1402	エラジン酸	シスメックス	シスメックスCSシリー	25.00	39.00	25.00	39.00	28.20	44.50	
1403	エラジン酸	シスメックス	シスメックスCA-500	25.00	40.00	25.00	40.00	28.20	50.20	
	エラジン酸	シスメックス	シスメックスCSシリー	28.00	42.00	28.00	42.00	28.10	44.10	
	エラジン酸		LSIメディエンスSTA	23.20	35.30	23.20	35.30	30.10	53.80	
	エラジン酸	シスメックス	シスメックスCSシリー	27.00	43.00		43.00	28.20	54.00	
	エラジン酸 エラジン酸	シスメックス 積水メディカル	シスメックスCA-150 積?コアプレスタ200	25.00	45.00 39.00		45.00 39.00	31.50 27.50	58.90	
	エラジン酸	(根外/) イル// シスメックス	対象 : コノフレ	24.00 24.30	36.00		36.00	26.30	40.40 42.80	
	エラジン酸	シスメックス	シスメックスCA-500	25.00	40.00		40.00	29.90	55.00	
	エラジン酸	シスメックス	シスメックスCA-150	26.00	38.00	26.00	38.00	26.00	40.00	
1513	エラジン酸	シスメックス	シスメックスCSシリー	25.00	39.00	25.00	39.00	27.40	42.30	
1514	エラジン酸	シスメックス	シスメックスCSシリー	25.00	38.00	25.00	38.00	27.90	53.70	
1519	エラジン酸	シスメックス	シスメックスCA-500	25.00	43.00	25.00	43.00	29.90	57.70	
1523	その他	エイアンドティー	A&Tドライヘマトシス	24.00	40.00	24.00	40.00	22.80	30.10	
	エラジン酸	シスメックス	シスメックスCA-500	23.00		23.00	36.00	30.60	59.20	
	エラジン酸	シスメックス	シスメックスCSシリー	25.00	38.60	25.00	38.60	27.70	44.00	
	エラジン酸	シスメックス	シスメックスCA-150	23.00		23.00	44.00	30.70	57.30	
	エラジン酸 エラジン酸	シスメックス シスメックス	シスメックスCA-500 シスメックスCSシリー	24.00 24.30	38.00		38.00 36.00	27.30 26.60	43.30 46.00	
	その他	シスメックス	シスメックスCA-500	26.00	36.00 38.00	26.00	38.00	29.10	49.40	
	エラジン酸	シスメックス	シスメックスCA-50	25.00	38.00		38.00	29.50	54.50	
	エラジン酸	シスメックス	シスメックスCA-500	27.00	40.00		40.00	30.10	57.50	
1901	エラジン酸	シスメックス	シスメックスCSシリー	25.00	38.00	25.00	38.00	30.10	58.00	
1903	エラジン酸	シスメックス	シスメックスCA-700	24.30	36.00	24.30	36.00	26.90	44.00	
1909	エラジン酸	シスメックス	シスメックスCA-150	25.00	38.00	25.00	38.00	27.50	45.80	
1911	エラジン酸	シスメックス	シスメックスCA-150	25.00	38.50	25.00	38.50	27.30	44.60	
	エラジン酸	シスメックス	シスメックスCA-50	28.00		28.00	40.00	31.00	55.00	
	エラジン酸	シスメックス	シスメックスCA-500	25.00		25.00	38.00	29.90	57.20	
	エラジン酸	シスメックス	シスメックスCA-500	24.30			36.00	25.40	41.60	
	エラジン酸 エラジン酸	シスメックス シスメックス	シスメックスCA-50 シスメックスCA-150	25.10 24.30	39.80 36.00		39.80 36.00	31.30 26.90	55.60 44.30	
	エラジン酸	シスメックス	シスメックスCA=150 シスメックスCA=500	25.00	38.00		38.00	30.20	57.50	
	エラジン酸	シスメックス	シスメックスCA-500	26.00	38.00		38.00	26.60	48.00	
	エラジン酸	シスメックス	シスメックスCA-500	26.00	38.00		38.00	28.70	49.00	
	エラジン酸	シスメックス	シスメックスCA-500	23.50	43.50		43.50	29.10	53.30	
2002	エラジン酸	積水メディカル	積?コアプレスタ200	25.00		25.00	40.00	25.20	39.60	
2006	エラジン酸	シスメックス	シスメックスCSシリー	28.00	38.00	28.00	38.00	28.50	55.60	
2008	エラジン酸	積水メディカル	積?コアプレスタ200	25.00	40.00	25.00	40.00	27.90	41.60	

53 APTT(秒)

施設No.が低い順に並んでいます

施設	测点压用	ط ( ت <del>اتا 4 د</del>	146 111	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料31	試料32	
2009	エラジン酸	シスメックス	シスメックスCA-500	24.00	40.00	24.00	40.00	29.30	56.00	
2011	エラジン酸	シスメックス	シスメックスCA-500	25.00	38.00	25.00	38.00	28.60	56.70	
3001	エラジン酸	シスメックス	シスメックスCSシリー	25.00	37.00	25.00	37.00	27.70	43.90	
3022	エラジン酸	シスメックス	シスメックスCSシリー	25.00	38.00	25.00	38.00	31.70	63.80	
3048	エラジン酸	積水メディカル	積?コアプレスタ200	25.00	40.00	25.00	40.00	26.90	49.40	
3055	エラジン酸	積水メディカル	積?コアプレスタ200	27.00	37.20	27.00	37.20	27.05	45.75	
3056	アルミニウム	シスメックス	シスメックスCSシリー	25.00	38.00	25.00	38.00	26.90	44.90	
3907	エラジン酸	シスメックス	シスメックスCSシリー	25.00	36.00	25.00	36.00	27.60	43.70	
4002	エラジン酸	ジョンソン エンド		24.00	39.00	24.00	39.00	31.40	44.80	
4040	エラジン酸	シスメックス	シスメックスCA-500	24.30	36.00	24.30	36.00	27.30	43.90	
5005	エラジン酸	シスメックス	シスメックスCSシリー	24.00	38.00	24.00	38.00	28.60	45.00	
5006	エラジン酸	積水メディカル	積?コアプレスタ200	24.00	39.00	24.00	39.00	28.50	40.90	
5010	エラジン酸	ジョンソン エンド		26.00	38.00	26.00	38.00	28.58	48.98	
6008	エラジン酸	積水メディカル	積?コアプレスタ200	25.00	35.00	25.00	35.00	26.60	48.00	
6015	エラジン酸	シスメックス	シスメックスCA-500	25.00	40.00	25.00	40.00	27.30	42.60	
6016	エラジン酸	積水メディカル	積?コアプレスタ200	25.00	40.00	25.00	40.00	28.00	41.00	
7001	エラジン酸	シスメックス	シスメックスCA-700	25.50	40.50	25.50	40.50	30.40	54.90	
7002	無水硅酸、セラ		LSIメディエンスSTA	25.10	36.50	25.10	36.50	30.20	42.60	
7007	エラジン酸	積水メディカル	積?コアプレスタ200	25.00	37.00	25.00	37.00	27.20	40.30	
7011	無水硅酸、セラ		LSIメディエンスSTA	25.10	36.50	25.10	36.50	30.00	42.50	
7901	エラジン酸	シスメックス	シスメックスCA-700	25.00	45.00	25.00	45.00	29.70	54.80	
8004	エラジン酸	シスメックス	シスメックスCSシリー	23.50	35.00	23.50	35.00	27.50	43.90	
9004	無水硅酸、セラ	協和メデックス	協和COAGTRO					29.40	43.20	
9023	アルミニウム	エイアンドティー	A&TドライヘマトCG	24.00	40.00	24.00	40.00	20.83	28.07	
9049	エラジン酸	シスメックス	シスメックスCSシリー	24.00	32.00	24.00	32.00	28.00	44.70	

54 FIB(MG/DL) 施設No.が低い順に並んでいます

施設	.10.14  21. //21	CIL/0 (		里性其	準範囲	女性基	淮鉛田			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料31	試料32	
	Language at the	3,771, 477	Nat pacovil							
	トロンビン時間	シスメックス	シスメックスCSシリー シスメックスCSシリー	150.0		150.0	400.0	274.0	221.0	
	トロンビン時間 トロンビン時間	シスメックス 積水メディカル	積?コアプレスタ200	150.0	400.0	150.0 200.0	350.0 400.0	276.0 308.0	214.8 248.0	
	トロンビン時間	付 小 ク ノ イ カ ル シスメックス	シスメックスCSシリー	200.0	400.0	200.0	400.0	296.0	235.8	
	トロンビン時間	シスメックス	シスメックスCSシリー		400.0	200.0	400.0		215.9	
	トロンビン時間	協和メデックス	協和COAGTRO	200.0 150.0		150.0	350.0	285.5 314.0	254.0	
	トロンビン時間	別和アノファハ	LSIメディエンスSTA	238.0	498.0	238.0	498.0	313.0	248.0	
	トロンビン時間	シスメックス	シスメックスCA-500	146.0		146.0	380.0	295.0	224.0	
	トロンビン時間	シスメックス	シスメックスCA-150	170.0		170.0	410.0	286.0	234.0	
	トロンビン時間	シスメックス	シスメックスCA-500	200.0	400.0	200.0	400.0	293.6	220.0	
	トロンビン時間	協和メデックス	協和COAGTRO	200.0	400.0		400.0	317.0	254.0	
	トロンビン時間	積水メディカル	積?コアプレスタ200	149.0		149.0	341.0	326.0	263.0	
	トロンビン時間	シスメックス	シスメックスCA-150	170.0	410.0		410.0	279.1	218.5	
1035	トロンビン時間	積水メディカル	積?コアプレスタ200	200.0	400.0	200.0	400.0	324.0	257.0	
1038	トロンビン時間	積水メディカル	積?コアプレスタ200	200.0	400.0	200.0	400.0	332.0	258.0	
1039	トロンビン時間	積水メディカル	積?コアプレスタ200	200.0	400.0	200.0	400.0	296.0	232.0	
1040	トロンビン時間	シスメックス	シスメックスCSシリー	160.0	380.0	160.0	380.0	269.0	213.4	
1049	トロンビン時間	シスメックス	シスメックスCA-500	149.0	341.0	149.0	341.0	288.0	229.0	
1054	その他		LSIメディエンスFut	157.0	350.0	157.0	350.0	331.0	258.0	
1058	トロンビン時間	シスメックス	シスメックスCA-150	155.0	415.0	155.0	415.0	283.7	227.7	
1062	トロンビン時間	積水メディカル	積?コアプレスタ200	200.0	400.0	200.0	400.0	318.0	265.0	
1072	トロンビン時間	積水メディカル	積?コアプレスタ200	200.0	400.0	200.0	400.0	337.0	267.0	
1073	トロンビン時間	シスメックス	シスメックスCA-500	200.0	400.0	200.0	400.0	263.5	205.1	
1081	トロンビン時間	シスメックス	シスメックスCSシリー	276.0	471.0	276.0	471.0	273.7	207.7	
1088	トロンビン時間	エイアンドティー	A&Tドライヘマトシス	150.0	350.0	150.0	350.0	296.0	244.0	
1094	トロンビン時間	シスメックス	シスメックスCSシリー	160.0	400.0	160.0	400.0	268.2	220.6	
	トロンビン時間	シスメックス	シスメックスCA-150	200.0	400.0	200.0	400.0	299.8	240.9	
	トロンビン時間	シスメックス	シスメックスCA-150	200.0		200.0	400.0	288.7	196.0	
	トロンビン時間	シスメックス	シスメックスCA-150	150.0		150.0	400.0	290.0	229.0	
	トロンビン時間	シスメックス	シスメックスCA-150	200.0	400.0	200.0	400.0	280.2	223.9	
	トロンビン時間	ジョンソン エンド	Nat pacovil	200.0	400.0	200.0	400.0	313.7	254.3	
	トロンビン時間 トロンビン時間	シスメックス シスメックス	シスメックスCSシリー シスメックスCSシリー	164.0		164.0 180.0	355.0 350.0	284.4	226.0 221.8	
	トロンビン時間	ジョンソン エンド	7 / / / / CS7 / -	180.0 170.0		170.0	410.0	283.8 272.9	223.0	
	トロンビン時間	シスメックス	シスメックスCA-500	160.0		160.0	400.0	275.7	217.2	
	トロンビン時間	シスメックス	シスメックスCSシリー	200.0			400.0	280.2	224.2	
	その他	•,	LSIメディエンスSTA	168.0		168.0	327.0	330.8	245.4	
	トロンビン時間	シスメックス	シスメックスCSシリー	150.0		150.0	400.0	288.0	239.0	
	トロンビン時間	シスメックス	シスメックスCSシリー	170.0	410.0		410.0	282.0	236.0	
	トロンビン時間	栄研化学		200.0		200.0	400.0	279.0	220.4	
1329		積水メディカル	積?コアプレスタ200	150.0	400.0	150.0	400.0	321.0	268.0	
1330	トロンビン時間	シスメックス	シスメックスCSシリー	200.0	400.0	200.0	400.0	275.1	220.9	
1331	トロンビン時間	シスメックス	シスメックスCA-150	170.0	410.0	170.0	410.0	264.1	197.9	
1337	トロンビン時間	シスメックス	シスメックスCSシリー	150.0	350.0	150.0	350.0	278.0	220.0	
1339	トロンビン時間		LSIメティエンスSTA	200.0	400.0	200.0	400.0	290.3	226.8	
1341	トロンビン時間	シスメックス	シスメックスCSシリー	200.0	400.0	200.0	400.0	282.0	223.0	
1343	トロンビン時間	シスメックス	シスメックスCSシリー	150.0	380.0	150.0	380.0	291.0	234.0	
	トロンビン時間	シスメックス	シスメックスCA-500	170.0		170.0	410.0	269.0	222.4	
	トロンビン時間	シスメックス	シスメックスCA-150	200.0			400.0	264.0	198.0	
	トロンビン時間	シスメックス	シスメックスCA-500	200.0		200.0	400.0	296.0	224.0	
	トロンビン時間	シスメックス	シスメックスCA-500	200.0		200.0	400.0	287.1	226.3	
	トロンビン時間	シスメックス	シスメックスCA-500	150.0		150.0	400.0	291.7	230.7	
	トロンビン時間	ジョンソン エンド	1.71 h7CA F00	200.0	400.0		400.0	275.0	219.8	
	トロンビン時間	シスメックス	シスメックスCA-500	200.0		200.0	400.0	308.2	251.6	
	トロンビン時間	積水メディカル	積?コアプレスタ200	170.0		170.0	410.0	340.0	265.0	
	トロンビン時間 トロンビン時間	エイアンドティー シスメックス	A&Tドライヘマトシス シスメックスCA=500	200.0	400.0		400.0	299.0	258.0	
1582	ニロヘ こへ 441月	マハブツック	シスメックスCA-500	150.0	400.0	150.0	400.0	245.0	195.0	

54 FIB(MG/DL) 施設No.が低い順に並んでいます

包設	測定原理	試薬メーカー	機器	男性基準	<b>声範囲</b>	女性基	準範囲			試料報告値
No	树龙水土	1-13-27	1)×111	下限	上限	下限	上限	試料31	試料32	
390	トロンビン時問	シスメックス	シスメックスCA-150	202.0	304.0	202.0	304.0	280.0	210.0	
391	トロンビン時問	積水メディカル	積?コアプレスタ200	200.0	400.0	200.0	400.0	320.0	254.0	
401	トロンビン時問	シスメックス	シスメックスCA-500	150.0	400.0	150.0	400.0	281.7	228.8	
402	トロンビン時間	シスメックス	シスメックスCSシリー	150.0	400.0	150.0	400.0	271.1	271.1	
403	トロンビン時間	シスメックス	シスメックスCA-500	200.0	400.0	200.0	400.0	267.0	209.6	
404	トロンビン時間	シスメックス	シスメックスCSシリー	170.0	410.0	170.0	410.0	277.8	223.6	
411	トロンビン時間		LSIメテ・ィエンスSTA	193.0	364.0	193.0	364.0	291.0	236.0	
501	トロンビン時間	シスメックス	シスメックスCSシリー	150.0	400.0	150.0	400.0	271.1	227.5	
502	トロンビン時間	シスメックス	シスメックスCA-150	200.0	300.0	200.0	300.0	285.2	223.9	
505	トロンビン時間	積水メディカル	積?コアプレスタ200	200.0	400.0	200.0	400.0	321.0	263.0	
	トロンビン時間	シスメックス	シスメックスCA-150	150.0	400.0		400.0	288.2	226.0	
511	トロンビン時間	シスメックス	シスメックスCA-500	200.0	400.0	200.0	400.0	277.0	227.5	
	トロンビン時間	シスメックス	シスメックスCA-150		410.0		410.0	289.1	225.7	
	トロンビン時間	シスメックス	シスメックスCSシリー		400.0		400.0	287.5	235.8	
	トロンビン時間	シスメックス	シスメックスCSシリー		400.0		400.0	289.0	223.0	
	トロンビン時間	シスメックス	シスメックスCSシリー		360.0		360.0	284.7	220.0	
	トロンビン時間	シスメックス	シスメックスCA-150		400.0	200.0	400.0	299.3	231.3	
	トロンビン時間	シスメックス	シスメックスCSシリー		400.0		400.0	274.0	217.0	
	トロンビン時間	シスメックス	シスメックスCA-500		350.0		350.0	131.3	103.2	
	トロンビン時間	シスメックス	シスメックスCSシリー		341.0		341.0	287.0	229.0	
	トロンビン時間	シスメックス	シスメックスCA-700		400.0		400.0	273.0	220.0	
	トロンビン時間	シスメックス	シスメックスCA-150		400.0	200.0	400.0	280.0	226.0	
	トロンビン時間	シスメックス	シスメックスCA-150		400.0		400.0	285.9	230.5	
	トロンビン時間	シスメックス	シスメックスCA-50		400.0		400.0	275.0	225.0	
	トロンビン時間	シスメックス	シスメックスCA 30			150.0	400.0	270.0	223.0	
	トロンビン時間	シスメックス	シスメックスCA 150			170.0	410.0	284.0	230.0	
	トロンビン時間	シスメックス	シスメックスCA 500		410.0		410.0	284.2	236.8	
	トロンビン時間	積水メディカル	積?コアプレスタ200		400.0		400.0	327.0	276.0	
	トロンビン時間	シスメックス	シスメックスCSシリー		350.0		350.0	287.6	228.0	
	トロンビン時間	積水メディカル	積?コアプレスタ200		400.0		400.0	328.5	257.0	
	トロンビン時間				400.0	200.0				
	トロンビン時間	シスメックス シスメックス	シスメックスCSシリー シスメックスCSシリー				400.0	284.0	234.0	
	トロンビン時間				400.0		400.0	283.9	223.7	
		積水メディカル 積水メディカル	積?コアプレスタ200 積?コアプレスタ200		400.0 300.0		400.0	342.0	282.0	
056	トロンビン時間						300.0	321.5	256.5	
	トロンビン時間	シスメックス シスメックス	シスメックスCSシリー シスメックスCSシリー		350.0		350.0 400.0	281.3 278.0	218.2 234.0	
		ジョンソン エンド	2 ^ / 9 / ^ C 3 2 y -		400.0					
	トロンビン時間		2/7/ #7/CA E00			200.0	400.0	307.0	250.0	
	トロンビン時間	シスメックス	シスメックスCA-500			150.0	400.0	313.2	241.5	
	トロンビン時間 トロンビン時間	シスメックス	シスメックスCSシリー キョっマプレスタ200			150.0	400.0	278.0	222.2	
		積水メディカル ジョンソン エンド	積?コアプレスタ200			200.0	400.0	314.0	284.0	
	トロンビン時間		手事のコマコペルスカののの			153.0	389.0	296.2	239.2	
	トロンビン時間 トロンビン時間	積水メディカル	積?コアプレスタ200		400.0		400.0	293.0	243.0	
		シスメックス	シスメックスCA-500			200.0	400.0	272.0	217.0	
	トロンビン時間	積水メディカル	積?コアプレスタ200		400.0		400.0	352.0	269.0	
	トロンビン時間	シスメックス	シスメックスCA-700		450.0		450.0	303.0	233.0	
	トロンビン時間	きょくご ハカッ	LSIメディエンスSTA キョフアプレスタ200		498.0		498.0	334.0	255.0	
	トロンビン時間	積水メディカル	積?コアプレスタ200		450.0		450.0	324.0	267.0	
	トロンビン時間	3,493, 244	LSIメディエンスSTA		400.0		400.0	280.0	220.0	
	トロンビン時間	シスメックス	シスメックスCA-700		410.0		410.0	289.0	220.0	
	トロンビン時間	シスメックス	シスメックスCSシリー	180.0	350.0	180.0	350.0	280.9	222.2	
	トロンビン時間	協和メデックス	協和COAGTRO		100 -	000 -	400 -	308.0	245.0	
	トロンビン時間	エイアンドティー	A&TドライヘマトCG			200.0	400.0	272.0	216.0	
1049	トロンビン時間	シスメックス	シスメックスCSシリー	200.0	400.0	200.0	400.0	297.6	236.3	

### 尿検査

九州大学病院 検査部 川満 紀子

### 1. 尿定性検査の参加施設数と測定法の推移

参加施設数は236施設で昨年より増加した。参加施設の推移を表1示す。

### 表1 年度別参加施設数と測定方法の変遷

	第42回	第43回	第44回	第45回	第46回
	2013年	2014年	2015年	2016年	2017年
参加施設数	218	216	219	226	236
目視法	66	68	69	69	67
機械使用	152	148	150	157	169
目視法の割合 (%)	30	31	31	30	28
機械使用の割合(%)	70	69	69	70	72

#### 2. 精度管理調査試料について

試料は、ヒトプール尿に、防腐剤と下記の添加物を加えて作成した。試料調整後速やかに凍結保存して、参加施設に配布した。

表 2 尿試料組成

基本液: プール尿 防腐剤: ProClin 0.2%

<u> </u>											
	添加	添加物と添加量 mg/dL									
試験紙項目	蛋白	糖	潜血								
添加物	ヒトアルブミン	グルコース	tト溶血ヘモグロビン								
試料 9	35	100	0.2								
試料 10	105	500	0.5								

### 3. 標準化への対応状況

尿定性項目の臨床への報告が定性値・半定量値・併記かの回答を表3に示した。ここ数年、ほ とんど変化はみられず、標準化指針で推奨している尿蛋白、尿糖の報告を定量値加えている施設 は増加していなかった。また、潜血は定性値が推奨されているが、半定量値のみの施設が3施設 認められた。

表 3 尿試験紙 標準化の対応状況

却件十分	半定量値	のみ		·記	定性値	のみ	未記入		
報告方法	施設数	%	施設数	%	施設数	%	施設数	%	
尿蛋白·尿糖	6	2.6	48	20. 4	176	74. 9	4	1. 7	
尿潜血	3	1. 3	24	10. 2	203	86. 4	4	1. 7	

#### 4. 尿定性検査 正解率

蛋白・糖については、添加量に一致した報告値を正解とし、潜血に関しては試料凍結に際してペルオキシダーゼ活性の低下がみられる影響か添加量より低値傾向がみられるため、正解を2濃度とした。正解と試験紙3項目の項目別正解率を表4、5に示す。蛋白、糖の標準化の目標値に近い試料9の正解率は74.6%~94.7%と良好な結果であった。しかし、目視法が機械法に比べて、明らかに正解率が低かった。

表4 尿定性検査 正解

			正解(定性)							
試験紙項目	J	<b>录蛋白</b>		尿糖	尿潜血					
試料 9	1+	30 mg/dL	1+	100 mg/dL	1+、2+					
試料 10	2+	100 mg/dL	3+	2+、3+						

表5 尿定性検査 正解率

			試料 9		試料 10					
項目	測定法	目視法	機械法	合計	目視法	機械法	合計			
蛋白	定性値	74.6	94. 7	89.0	70. 1	95. 9	88.6			
() () ()	半定量値	76. 4	92. 7	88.6	70. 9	94. 5	88.6			
糖	定性値	79. 1	90.6	87. 3	77.6	90.6	86. 9			
が音	半定量値	79. 6	93. 3	90.0	81.5	92. 1	89. 5			
潜血	定性値	98. 5	99. 4	99. 2	98. 5	100.0	99. 6			

#### 3. 尿蛋白

尿試験紙のメーカー別集計結果、定性値を表 6,7 に、半定量値の結果を表 8,9 に示す。良好な結果ではあるが、目視法は機械法に比べ高値傾向であった。機械法では、シーメンスにおいてや や高値傾向であった。

### 表 6 蛋白試験紙の集計結果(試料 9)

理論値

添加物: ヒトアルブミン 35mg/dL

		E	視法	N=67			機	械法 N	I=169	
表示記号	I	+1	1+	2+	3+	_	+1	1+	2+	3+
メーカー		施	設	数			施	設	数	
シーメンス			10					45	9	
ロシュ・タ゛イアク゛ノステックス			1							
栄研化学			21	10				58		
協和メディクス アークレイ			9	5						
アークレイ								47		
和光純薬		1	9					3		
シスメックス								5		
三和化学				1				1		
テクノメディカ							·	1		
施設数	0	1	50	16	0	0	0	160	9	0
(%)	0.0	1.4	74.6	23.9	0.0	0.0	0.0	94. 7	5. 3	0.0

### 表 7 蛋白試験紙の集計結果(試料 10)

理論値

添加物: ヒトアルブミン 105mg/dL

		- 632月149 : 		105mg/dl N=67	-		機械法 N=169  ± 1+ 2+ 3+ 4+  施 設 数  48 6  58  46 1						
表示記号	土	1+	2+	3+	4+	±	1+	2+	3+	4+			
メーカー		施	設	数			施	設	数				
シーメンス			7	3				48	6				
ロシュ・タ゛イアク゛ノステックス			1										
栄研化学			25	6				58					
協和メディクス			6	8									
アークレイ								46	1				
和光純薬		1	8	1				3					
シスメックス								5					
三和化学				1				1					
テクノメディカ								1		·			
施設数	0	1	47	19	0	0	0	162	7	0			
(%)	0.0	1.5	70. 1	28.4	0.0	0.0	0.0	95. 9	4. 1	0.0			

#### 表 8 蛋白試験紙の集計結果 (試料 9)

理論値

添加物: ヒトアルブミン 35mg/dL

			ヒトアルブ・ミン	35mg/dL		ı				
			視法	N=55			機	械法 N	=164	
表示記号	0	15	30	100	300	0	15	30	100	300
メーカー		施	設	数			施	設	数	
シーメンス			5					41	9	
ロシュ・タ゛イアク゛ノステックス			1							
栄研化学			19	8				58		
協和メディクス			9	4						
アークレイ								44	3	
和光純薬		1	8					3		
シスメックス								5		
三和化学										
テクノメディカ							·	1		·
施設数	0	1	42	12	0	0	0	152	12	0
(%)	0.0	1.8	76.4	21.8	0.0	0.0	0.0	92. 7	7. 3	0.0

理論値

添加物: ヒトアルブミン 105mg/dL

		E		N=55			機	械法N	[=164	
表示記号	30	100	300	500	1000	30	100	300	500	1000
メーカー		施	設	数	•		施	設	数	
シーメンス		4	1				44	6		
ロシュ・タ゛イアク゛ノステックス		1								
栄研化学		21	4	2			58			
協和メディクス		6	7							
アークレイ							44	3		
和光純薬	1	7	1				3			
シスメックス							5			
三和化学										
テクノメディカ			·				1	·		
施設数	1	39	13	2	0	0	155	9	0	0
(%)	1.8	70. 9	23.6	3.6	0.0	0.0	94. 5	5.5	0.0	0.0

#### 4. 尿糖

尿試験紙のメーカー別集計結果、定性値を表 10,11 に、半定量値の結果を表 12,13 に示す。良 好な結果ではあるが、蛋白と同様に目視法は機械法に比べ高値傾向であった。試料10において は目視法で2ランク以上の差のある施設があり、糖の高値では反応が進みやすく判定までの時間 などの影響も考えられる。半定量値はメーカーによって設定値が異なり、差が大きくなっていた。 2 ランク以上の乖離を認めた施設を表 14 に示す。

表 10 糖試験紙の集計結果 (試料 9 ) グルコース:100mg/dL

理論値

		E	視法	N=67		機械法 N=169				
表示記号	1	±	1+	2+	3+	_	±	1+	2+	3+
メーカー		施	設	数			施	設	数	
シーメンス			9	1				49	5	
ロシュ・ダ゛イアク゛ノステックス			1							
栄研化学			20	11			1	54	3	
協和メディクス			12	2						
アークレイ								41	6	
和光純薬			10					3		
シスメックス								5		
三和化学			1				1			
テクノメディカ								1		
施設数	0	0	53	14	0	0	2	153	14	0
(%)	0.0	0.0	79. 1	20. 9	0.0	0.0	1.2	90.5	8.3	0.0

表 11 糖試験紙の集計結果 (試料 10) グルコース:500mg/dL

理論値

		E	視法	N=67			機材	或法 N=	169	
表示記号	1+	2+	3+	4+	5+	1+	2+	3+	4+	5+
メーカー		施	設	数			施	設	数	
シーメンス		1	6	1	2		4	48	2	
ロシュ・ダ゛イアク゛ノステックス			1							
栄研化学		5	26				5	53		
協和メディクス		1	14							
アークレイ								44	3	
和光純薬			4	5			1	2		
シスメックス								5		
三和化学			1				1			
テクノメディカ								1		
施設数	0	7	52	6	2	0	11	153	5	0
(%)	0.0	10.4	77.6	9.0	3.0	0.0	6.5	90.5	3.0	0.0

表 12 糖試験紙の集計結果-半定量値(試料 9 ) グルコース:100mg/dL 理論値

		E	視法	N=54		機械法 N=164					
表示濃度(mg/dL)	感度以下	50	100	250	500	0	50	100	250	500	
メーカー		施	設	数			施	設	数		
シーメンス			4	1				45	5		
ロシュ・タ゛イアク゛ノステックス			1								
栄研化学			18	9			1	54	3		
協和メディクス			12	1							
アークレイ							1	45	1		
和光純薬			8					3			
シスメックス								5			
三和化学											
テクノメディカ								1			
施設数	0	0	43	11	0	0	2	153	9	0	
(%)	0.0	0.0	79. 6	20. 4	0.0	0.0	1. 2	93. 3	5.5	0.0	

表 13 糖試験紙の集計結果-半定量値(試料 9) グルコース:500mg/dL 理論値

		E	視法	N=54		機械法 N=164					
表示濃度(mg/dL)	100	250	500	1000	2000	100	250	500	1000	2000	
メーカー		施	設	数			施	設	数		
シーメンス			3		2		2	47	1		
ロシュ・ダ゛イアク゛ノステックス			1								
栄研化学		4	23				5	53			
協和メディクス			13								
アークレイ								44	3		
和光純薬		1	4		3		1	2			
シスメックス								4	1		
三和化学											
テクノメディカ								1			
施設数	0	5	44	0	5	0	8	151	5	0	
(%)	0.0	9.3	81.5	0.0	9.3	0.0	4.9	92. 1	3.0	0.0	

表 14 尿糖 理論値より2段階以上乖離の施設

施設 No	メーカー	方 法		糖氮	定性		尿糖定量
			試料	斗 9	試彩	∤ 10	
1099	シーメンス	目視法	(2+)	250	(5+)	2000	不参加
1350	和光純薬	目視法	(1+)	100	(4+)	2000	不参加
1367	和光純薬	目視法	(1+)	100	(4+)	2000	不参加
1393	シーメンス	目視法	(1+)	100	(5+)	2000	不参加
1546	和光純薬	目視法	(1+)	100	(4+)	2000	不参加

### 5. 潜血反応

尿試験紙のメーカー別集計結果を表 15,16 に示す。試料の凍結の影響により添加量より低値傾向があるため、2 濃度を正解とした。メーカーによって定性値と半定量値の設定が異なるため、メーカーごとに傾向が異なるものとなった。2 ランク以上の乖離を認めた施設を表 17 に示す。

表 15 潜血試験紙の集計結果 (試料 9) へモグ ロ ン: 0.2 mg/dL

理論値

		E	視法	N=67			機板	成法 N=	=169	
表示記号	_	±	1+	2+	3+	_	±	1+	2+	3+
メーカー		施	設	数			施	設	数	
シーメンス				10				4	50	
ロシュ・タ゛イアク゛ノステックス				1						
栄研化学			29	2		1		45	12	
協和メディクス			9	5						
アークレイ								26	21	
和光純薬	1		1	8					3	
シスメックス								3	2	
三和化学			1					1		
テクノメディカ								1		
施設数	1	0	40	26	0	1	0	80	88	0
(%)	1. 5	0.0	58.8	39. 4	0.0	0.6	0.0	47. 3	52. 1	0.0

表 16 潜血試験紙の集計結果 (試料 10) へそが pt ン: 0.5 mg/dL

理論値

		E	視法	N=67			機材	或法 N=	=169	
表示記号	±	1+	2+	3+	4+	±	1+	2+	3+	4+
メーカー		施	設	数			施	設	数	
シーメンス			1	9				27	27	
ロシュ・ダ゛イアク゛ノステックス				1						
栄研化学			27	4				57	1	
協和メディクス			4	10						
アークレイ								41	6	
和光純薬		1	1	8				1	2	
シスメックス								4	1	
三和化学				1				1		
テクノメディカ								1		
施設数	0	1	33	33	0	0	0	132	37	0
(%)	0.0	1.5	49.3	49. 3	0.0	0.0	0.0	78. 1	21. 9	0.0

表 17 理論値より 2 段階以上乖離の施設

施設 No	メーカー	方 法	潜血定性					
			試料 9 試料 10					
1937	和光純薬	目視法	(-)	(1+)				
8011	栄研化学	機械法	(-) (2+) 0.					

### 6. 蛋白定量

定量方法別の集計結果を表 18 に示す。参加施設は 117 施設で、3SD を越えた 1 施設 (表 19) は除外した。方法的にも PR 法に集約されてきており、全体の平均値は、添加量とほぼ一致した結果であった。

表 18 尿蛋白定量の測定方法別集計

				試料	<b></b>			試彩	· 10	
定量方法	標準物質の	)種類	N	Mean	SD	CV	N	Mean	SD	CV
	全体		117	39.8	3.2	8.0	117	109.0	4. 4	4. 1
全	全体(3SD除外後)			39. 6	2.4	6.0	116	108.8	3. 9	3. 6
						,		,		
CBB法	人アルブミン	В	1	39.0	-	_	1	109.0	_	_
PB法	人アルブミン	В	8	37. 4	2.0	5. 3	8	101.7	2.4	2.4
	全体		104	39. 7	2.3	5.8	105	109.5	3. 4	3. 1
PR法	人血清	A	8	40.0	3. 1	7.6	8	110. 4	1. 9	1. 7
	人アルブミン	В	96	39. 7	2.2	5.6	97	109.4	3. 5	3. 2
	人血清	A	1	43.0	-	_	1	106.0	-	-
BC法	牛アルブミン	С	1	43.0	-	-	1	105.0	_	-
	その他	D	1	41.1	-	_	1	102.1	_	-

表 19 尿蛋白定量の3SD除外施設

±3SD値

-	施設No	定量方法	STD	試料 9	試料 10	測定方法	試料 9		試彩	ł 10
				(mg/dL)	(mg/dL)		定性値	半定量値	定性値	半定量値
	1018	PR法	人アルブミン	63	132	機械法	(1+)	30	(2+)	100

### 7. 尿糖定量

集計結果を表 20 に示す。参加施設は 143 施設で、3SD 除去を 5 施設(表 21)を除外した。これらの施設を除いた結果は良好であり、測定方法別に差はほとんど認めなかった。

表 20 尿糖定量の定量方法別の統計値

		試料	斗 9			試料	· 10	
	N	Mean	SD	CV	N	Mean	SD	CV
全体	144	105. 9	3. 4	3. 2	144	490. 2	13. 2	2. 7
全体(3SD除外後)	141	106.0	2.6	2. 5	140	490.4	9.0	1.8
GOD-POD法	3	106. 7	2. 5	2.4	3	494. 7	13. 5	2. 7
ヘキソキナーセ゛法	92	105.8	2.6	2.5	91	490.0	9.4	1.9
グルコース脱水素酵素法	9	106. 1	2. 1	2.0	9	494. 3	10.4	2. 1
GOD電極法	33	106.8	2.6	2. 4	33	491.3	6.6	1.3
グルコキナーゼ法	5	103.8	1.6	1.6	5	482. 9	4. 5	0.9

表 21 尿糖定量の3SD 除去施設

±3SD値

施設No	定量方法	測定方法	試料 9	試料 10	試料	<b></b>	試彩	₩ 10
他叔NO	上里 <i>万伝</i>	側足刀伝	(mg/dL)	(mg/dL)	定性値	半定量値	定性値	半定量値
1015	ヘキソキナーセ゛法	自動化	114	533	(1+)	100	(3+)	500
1038	ヘキソキナーゼ法	自動化	120	551	(1+)	100	(3+)	500
1088	ヘキソキナーセ゛法	自動化	95	497	(1+)	100	(2+)	250
1511	ヘキソキナーセ゛法	自動化	106	430	(1+)	100	(3+)	500
1523	GOD-POD法	用手法	86	422	(1+)	100	(3+)	500

### 8. 尿沈渣フォトサーベイ

今年度尿沈渣のフォトサーベイを新たに行った。参加施設は、185 施設であり、4 題の正解と解答正解率を表 22 に示す。解答正解率は 82.7%~98.9%であり良好であったが、赤血球の形態(糸球体型、非糸球体型)での正解率が低かった。

表22 尿沈渣フォトサーベイ 解答正解率

	設問	選択肢	解/	<u> </u>
			施設数	%
1	正解	2:扁平上皮細胞	179	97.3
		1: 白血球	1	0.5
		3:尿路上皮細胞	4	2.2
		4: 異型細胞(扁平上皮癌疑い)	1	0.5
2	正解	3: A;非糸球体型赤血球、B;糸球体型赤血球	153	82. 7
		1: A;糸球体型赤血球、B;糸球体型赤血球	18	9.7
		2: A;糸球体型赤血球、B;非糸球体型赤血球	13	7.0
		4: A;非糸球体型赤血球、B;非糸球体型赤血球	1	0.5
3	正解	5:ヒトポリオーマウイルス感染疑う細胞	183	98. 9
		1:尿細管上皮細胞	1	0.5
		2:尿路上皮細胞	1	0.5
4	正解	1:尿細管上皮細胞	170	91. 9
		2:尿路上皮細胞	8	4.3
		3:円柱上皮細胞	5	2.7
		5: 異型細胞(尿路上皮癌疑い)	2	1. 1

### 9. まとめ

試料に関して、例年通りにプール尿に防腐剤を添加して作成し、直後に凍結保存して各施設に配布した。尿定性検査は、尿蛋白、尿糖、尿潜血とも正解率は良好な結果であった。尿蛋白、尿糖の目視法は、高めに判定をしている傾向を認めた。目視の判定基準や判定時間による影響が考えられるため、目視判定の条件について確認する必要があると思われる。尿蛋白の機械法では比較的測定結果は収束していたが、尿糖、尿潜血では、試験紙のメーカーによって表示値が異なるため、高濃度域ではばらつきがみられ、今後メーカーも含めた検討が必要だと思われる。

報告方法に関しては、尿蛋白、尿糖では半定量値での報告、尿潜血では定性値の報告が推奨されているが、推奨報告と違う施設は、臨床と相談し、システムの更新などの際に推奨報告方法に変更を行う事が望ましいと思われる。

定量値では、蛋白、糖定量どちらも方法間差もほとんどなく、良好な結果であった。

今回、初めて尿沈渣のフォトサーベイを行ったが、解答正解率は良好な結果であった。しかし、 赤血球形態は他の外部精度管理と同じく正解率が低かった。また他の問題において正常上皮細胞 を異型細胞との選択施設もあり、誤解答の施設は今回のフォトサーベイの結果を教育ツールとし て尿沈渣の鑑別の確認や目合わせとして、再度よく確認していただきたい。

今回、2 段階以上離れた施設は、乖離の原因を検討し、早急に改善する必要がある。 また、方法や数値の記載ミスも多数認められたため、報告に際しては自施設で使用している機器 や試薬の内容を確認して記載し、記載を再確認して回答していただきたい。

### 血球数算定

福岡大学病院 臨床検査部 山下 孝明・生田 幹博

### 1)参加施設

237 施設から血算の回答を得た。

### 2) 試料作成と配布

- 1. 採血用輸血パックに EDTA-2K 水溶液 (75mg/mL) を加えた。
- 2. 検査部職員ボランティア2名からおのおの400mLの血液を採取した。
- 3. 試料-8 は、採取した血液に MAP 液 (日赤) 70mL を添加して作成した。
- 4. 試料-34 は、採取した血液に MAP 液 (日赤) 70mL を添加して作成し、 生食 50mL を加え調整した。
- 5. 各試料は1 mL 分注して冷蔵保存し、翌日他の試料と梱包して発送した。

#### 3)血算項目

### 1. 統計值

試料配布から、測定日未記入、5日以上経過して測定した施設は除外した。また、全体の統計値 3SD 越える項目が1項目でもある施設も除外した。

表-1 血算項目の 3SD 除去後の統計値 試料-8

	WBC	RBC	Hb	Ht	MCV	PLT
n	220	224	233	229	227	218
Mean	5195.8	375.7	12.29	34.66	92.11	226.8
MIN	2700	354	11.4	28.6	82.5	165
MAX	6300	403	13.0	40.8	101.0	293
SD	714.6	6.7	0.19	1.25	2.77	15.4
CV	13.8	1.8	1.5	3.6	3.0	6.8

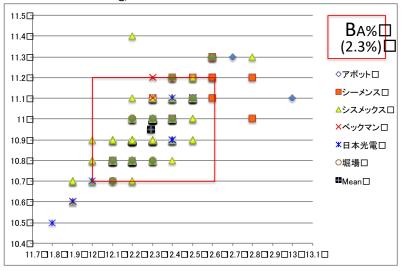
試料-34

	WBC	RBC	Hb	Ht	MCV	PLT
n	220	226	230	232	229	223
Mean	2981.6	351.5	10.95	32.2	91.73	124.9
MIN	2000	320	10.5	26.0	82.2	101
MAX	3400	376	11.4	36.8	100.9	159
SD	197.2	6.8	0.15	1.32	2.5	9.4
CV	6.6	1.9	1.4	4.1	2.7	7.5

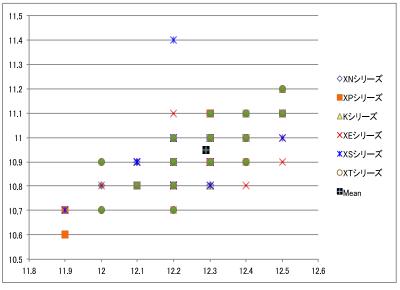
# 2.試料保存状態確認データ (表-2) 表-2

測定日	検体No		WBC	RBC	Hb	Ht	MCV	MCH	МСНС	PLT	Neu	Ly	Mo	Ео	Ba	Ret
9月4日	No8	1本目	5780	374	12	34	90.9	32. 1	35. 3	236	66. 1	27. 2	4. 5	1. 9	0.3	14. 2
		101本目	5760	374	12. 2	34	91.2	32. 7	35. 9	234	67. 4	25	5. 4	1. 9	0.3	14. 9
		201本目	5710	374	12	34. 1	91.2	32. 1	35. 2	237	66. 5	26. 3	5. 1	1. 9	0.2	15
9月5日			5770	377	12.3	34. 4	91.2	32.6	35. 8	241	66. 9	26	5. 2	1. 4	0.5	15
9月7日			5840	376	12.5	34. 5	91.8	33. 2	36. 2	237	66. 3	26. 7	4.8	1. 9	0.3	14. 9
9月9日			5770	377	12.3	34. 1	90.5	32.6	36. 1	223	67. 5	24. 4	5.9	1. 7	0.5	13.8
9月11日			5380	377	12.3	34.8	92.3	32.6	35. 3	231	64. 4	27. 1	5.6	2	0.9	14. 2
		n	7	7	7	7	7	7	7	7	7	7	7	7	7	7
		平均	5715.7	375.6	12. 23	34. 27	91. 30	32. 56	35. 69	234. 1	66. 44	26. 1	5. 21	1.81	0.43	14. 57
		SD	152. 8	1.5	0.18	0.30	0. 59	0.38	0.41	5.8	1.05	1.06	0.47	0. 20	0.24	0.49
		CV=SD/x	2. 7	0.4	1.5	0.9	0.6	1.2	1.2	2.5	1.6	4. 1	9. 1	11.2	55. 1	3.4
9月4日	No34	1本目	3220	350	10.9	32. 1	91.7	31.1	34	127	48. 4	33. 9	8. 1	8. 4	1.2	10.6
		101本目	3220	349	10.8	31. 9	91.4	30. 9	33. 9	126	48. 1	33. 9	7.8	9. 3	0.9	10.7
		201本目	3250	348	10.8	31.8	91.4	31	34	128	46.8	36. 3	7.4	8. 3	1.2	10.6
9月5日			3170	347	10.7	31.7	91.4	30.8	33. 8	126	47.3	34. 1	8.5	8.8	1.3	11. 1
9月7日			3230	353	11.1	32. 5	92. 1	31.4	34. 2	125	47.7	35. 3	7.7	8. 7	0.6	10.8
9月9日			3260	352	10.9	32	90.9	31	34. 1	130	50. 9	30.7	8.6	9. 2	0.6	9. 7
9月11日			3120	354	10.9	32.6	92. 1	30.8	33. 4	125	48. 3	33	7.4	10.3	1	9. 5
		n	7	7	7	7	7	7	7	7	7	7	7	7	7	7
		平均	3210.0	350.4	10.87	32. 09	91. 57	31.00	33. 91	126.7	48. 21	33. 89	7. 93	9.00	0.97	10.43
		SD	49. 0	2.6	0.13	0.34	0.43	0. 21	0.26	1.8	1. 31	1.77	0.49	0.68	0. 29	0.59
		CV=SD/x	1. 5	0.8	1.2	1.1	0.5	0.7	0.8	1.4	2.7	5. 2	6.2	7. 6	29.5	5.7

上記結果より、試料測定有効日を作製日から5日間(9月9日)と設定した。


#### 3.達成率 (表-3)

結果値の評価は  $B_A$ %を用いて、その範囲内にあるデータの施設を達成していると判定した。その結果、RBC,Hb 80.5%~95.2%の施設が  $B_A$ %の範囲内に入っていた。Ht は 61.1%~68.1%で、メーカーによる測定方法の違いがあると推測された。WBC、PLT は、まとめに記載している要因が考えられたので、評価対象外とした。


表-3 達成率 (%)

	WBC	RBC	Hb	Ht	PLT
BA%	5.9	2	2.3	2.1	5.2
試料-8	評価外	82.6	93.1	61.1	評価外
試料-34	評価外	80.5	95.2	68.1	評価外

#### Hb2(3SDI除去後)壓/dL口



### シスメックス社 シリーズ別 Hb@3SD除去後) g/dL口



#### 4) まとめ

今回も同様に、ボランティアから採取した新鮮な血液を用いて試料を作製した。試料作製および保存状態確認のため、作製後8日間測定を行った結果、試料作製5日後の9月9日までの測定施設の結果を集計した。3SD除去において、白血球数および血小板数で多数のハズレ値が認められたため、今回は評価外とすることとした。原因は現在調査中ではあるが、輸送時の問題と思われる。(容器に対してのサンプル量等)

また、赤血球数・Hbは、CV1.4~1.9で収束しており、輸送時の影響は小さかったと考えられたが、一部試料溶血の報告もあったため評価は Hb のみを行うこととした。Hbは CV1.4~1.5 でありデータの統一化は図られていると考えられた。

64 WBC 施設No.が低い順に並んでいます

施設	10111  211 /00	に並んていより		男性基	準範囲	女性甚	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	K OLL IN EL EX
1001		シスメックス	シスメックスXNシリー	33.00	86.00	33.00	86.00	4700	3100	
1002		シスメックス	シスメックスXEシリー	35.00	75.00	35.00	75.00	5400	3000	
1004		シスメックス	シスメックスXNシリー	3300	8600	3300	8600	5790	3040	
1006		シーメンス	シーメンスHCD120	3.300	8.600	3.300	8.600	5310	2600	
1010		シスメックス	シスメックスXEシリー	3000	8700	3000	8700	3240	2510	
1011		シスメックス	シスメックスXEシリー	3200	8599	3200	8599	2860	3070	
1012		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	4560	2900	
1013		シスメックス	シスメックスXTシリー	3.300	8.600			5030	3050	
1015		シスメックス	シスメックスXEシリー	3500	8500	3500	8500	3260	2980	
1018		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	4850	2950	
1021		シスメックス	シスメックスXTシリー	3500	9700	3500	9700	4420	2910	
1023				3300	8600			5300	620.0	
1024		シスメックス	シスメックスXNシリー	3500	9700			5780	3300	
1026		シスメックス	シスメックスXTシリー	3.300	8.600			3480	1510	
1028		シスメックス	シスメックスK-4500	4000	8000			5600	3000	
1029		シスメックス	シスメックスK-4500	33.00	86.00	33.00	86.00	5100	3000	
1031		シスメックス	シスメックスXEシリー	33.00	86.00			5330	2980	
1032		シスメックス	シスメックスXSシリー	3900	9800	3500	9100	5500	3000	
1033		シスメックス	シスメックスXSシリー	3500	9700	3500	9700	5590	2670	
1034		シスメックス	シスメックスXTシリー	3500	9700	3500	9700	5600	3090	
1035		シスメックス	シスメックスXEシリー	40.00	80.00	40.00	80.00	5300	3000	
1038		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	5200	3000	
1039		シスメックス	シスメックスXTシリー	3.300	8.600	3.300	8.600	3100	2550	
1040		シスメックス	シスメックスXEシリー	33.00	86.00	33.00	86.00	5200	2000	
1044		シスメックス	シスメックスXSシリー	35.00	97.00			5510	3010	
1046		シスメックス	シスメックスXSシリー	35.00	84.00	35.00	84.00	5500	3000	
1049		シスメックス	シスメックスXTシリー	3.500	9.800	3.500	9.800	2700	3000	
1050		シスメックス	シスメックスXNシリー	40.00	90.00		90.00	5560	3040	
1051		シスメックス	シスメックスXTシリー	39.00	98.00	35.00	91.00	4400	3000	
1054		ベックマン・コー	ヘックマン・コールター	40.00	90.00	40.00	90.00	5200	2900	
1055		シーメンス	シーメンスHCD120	33.00	86.00			4910	1610	
1056		シスメックス	シスメックスXTシリー	3900	9800	3500	9100	5400	3100	
1057		シスメックス	シスメックスXSシリー	3500	9700			5520	3050	
1058		シーメンス	シーメンスHCD120	3300	9000	3300	9000	4500	2800	
1059		シスメックス	シスメックスXTシリー	3500	9700	3500	9700	3040	2990	
1060		シスメックス	シスメックスXSシリー	3500	9700			2100	3030	
1062		ベックマン・コー	ヘックマン・コールター	3.300		3.300	8.600	5500	3000	
1064		シスメックス	シスメックスXTシリー	3200	9000	3200	9000	2040	3090	
1069		ri / Luii I	74' 12' ° CD	35.00	99.00	35.00	99.00	5300	2600	
1072		ダイナボット	アボットシャハプンCD	4.000	9.000	4.000	9.000	4590	3080	
1073		シーメンス	シーメンスHCD120	4000	8000	4000	8000	4830	2740	
1074		シスメックス	シスメックスXSシリー	35.00	97.00	35.00	97.00	5540	3060	
1075		ホリバ(堀場製作	堀場PENTRA60	3300	8600	3300	8600	5200	3100	
1076		シスメックス	シスメックスKX-21_	35.00	98.00	25.00	01.00	4100	2900	
1077				39.00	97.00	35.00	91.00	3000	1500 2900	
1079				25.00	00 00	35.00	00 00	4700		
1080 1081		ダイナボット	アボットシ゛ャハ゜ンCD	35.00 3.300	8.600		98.00 8.600	3100 5700	1800 3000	
1084		シスメックス	シスメックスXTシリー	3300	8600	3300	8600	5400	3110	
1084		シスメックス	シスメックスXTシリー	50.00	85.00	50.00	85.00	4680	2980	
1089		シスメックス	シスメックスXTシリー	3.300	8.600	3.300	8.600	5600	3000	
1009		シスメックス	シスメックスXTシリー	3.300		3.300	8.600	4670	1830	
1090		マハバソンへ	V ///// // / / / / / / / / / / / / / /	3.800	9.200		8.900	5250	2930	
1091		シスメックス	シスメックスXTシリー	4000	9000	4000	9000	5000	3000	
1093		シスメックス	シスメックスXNシリー	3.500		3.500	8.500	4760	2930	
1094		日本光電	光電MEK-6400	35.00		35.00	97.00	2200	2800	
1097		ホリバ(堀場製作	堀場LC-660_66	35.00		35.00	98.00	4200	2800	
1099		MU/ N畑物製作	/四/勿しし-000_00	ან.00	50.00	55.00	90.00	4200	<b>4000</b>	

64 WBC 施設No.が低い順に並んでいます

施設	341 de res res	4. C 1874.E	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	
1101		シスメックス	シスメックスXEシリー	4.000	9.000	4.000	9.000	3400	3000	
1102				3.300	8.600	3.300	8.600	5090	3060	
1104		シスメックス	シスメックスKX-21_	35.00	97.00			5600	3100	
105		シスメックス	シスメックスXP-100	3500	9700			4300	2900	
1108		シスメックス	シスメックスXSシリー	3.800	9.200	3.600	8.900	5600	3100	
1120		シスメックス	シスメックスXEシリー	3300	8600	3300	8600	4673	2818	
1121		シスメックス	シスメックスXSシリー	3500	9700	3500	9700	2802	2322	
1122		ベックマン・コー	ヘックマン・コールター	3900	9800	3500	9100	4925	2964	
1123		シスメックス	シスメックスXP-100	3500	9700	3500	9700	2700	2900	
1124		日本光電	光電MEK-6400	33.00	86.00			2800	2700	
1125		シスメックス	シスメックスKX-21_					2300	2200	
1126		シスメックス	シスメックスXSシリー	35.00	98.00	35.00	98.00	5720	3230	
1127		シスメックス	シスメックスXTシリー	35.00		35.00	97.00	4990	2980	
1128		シスメックス	シスメックスXNシリー	3.300		3.300	8.600	5260	3130	
1129		シスメックス	シスメックスXSシリー	35.00	97.00			5150	2940	
1130		シスメックス	シスメックスXNシリー	3.300	8.600	3.300	8.600	3410	3020	
1133		シスメックス	シスメックスXSシリー	3900	9800	3500	9100	4510	2980	
134		シスメックス	シスメックスXSシリー	35.00	97.00	35.00	97.00	1940	3140	
1135		シスメックス	シスメックスpocH-1	35.00	98.00			5600	2100	
1136		シスメックス	シスメックスKX-21_	3.300	8.600			5400	2900	
1137		シスメックス	シスメックスKX-21_	35.00	85.00	35.00	85.00	5600	3100	
1300		シスメックス	シスメックスXNシリー	3.300	8.600	3.300	8.600	5800	3100	
1301		シスメックス	シスメックスXEシリー	30.00	89.00	30.00	89.00	5590	3070	
1302		ベックマン・コー	ヘックマン・コールター	3300	8600	3300	8600	6000	3200	
1305		シスメックス	シスメックスXTシリー	3.300	8.600	3.300	8.600	5760	3090	
1308		2.00 2 200	3 on 1 horaza 13 dl	3.300	8.600	3.300	8.600	5280	2930	
1310		シスメックス	シスメックスXNシリー	45.00	70.00	45.00	70.00	5710	3200	
1313		2. 2. 27	) h #11CD100	33.00	95.00	33.00	95.00	5520	3060	
1315		シーメンス	シーメンスHCD120	3300	8600	3300	8600	5050	2820 3170	
1316 1317		シスメックス 日本光電	シスメックスXNシリー 光電MEK-7300	34.00 35.00	94.00 97.00	31.00 35.00	88.00 97.00	5770 5500	3000	
1325		口平儿电	儿电MER 7300	3.300	8.600	3.300	8.600	5440	3050	
1326		シスメックス	シスメックスpocH-1	3500	9700	3500	9700	6000	3200	
1327		シーメンス	シーメンスHCD120	3.300	8.600	3.300	8.600	5200	2900	
1328		日本光電	光電MEK-6400	35.00	80.00	5.500	0.000	5400	2900	
1329		ベックマン・コー	ヘックマン・コールター	3.300	8.600	3.300	8.600	5620	3070	
1330		シーメンス	シーメンスHCD120	3.500	9.700	0.000	0.000	5490	3030	
1331		シスメックス	シスメックスXEシリー	45.00		45.00	85.00	5300	2900	
1335		シスメックス	シスメックスK-4500	39.00		35.00	91.00	5800	3100	
.337		シスメックス	シスメックスXNシリー	3.300		3.300	8.600	5730	3170	
1339		シスメックス	シスメックスXTシリー	3.300		3.300	8.600	5400	3000	
341		シスメックス	シスメックスXNシリー	3.300	8.600	3.300	8.600	5700	3140	
343		シスメックス	シスメックスXNシリー	3.300		3.300	8.600	5700	3100	
1344		シスメックス	シスメックスXTシリー	3.300		3.300	8.600	5700	2900	
1346		シスメックス	シスメックスXNシリー	39.00	98.00		91.00	5600	3000	
1347		シスメックス	シスメックスK-4500	3.300	8.600			5600	2900	
1348		シスメックス	シスメックスXEシリー	40.00	85.00	40.00	85.00	5300	2900	
349		シスメックス	シスメックスXTシリー	3.300	8.600	3.300	8.600	5640	3090	
1350		シスメックス	シスメックスXSシリー	3500	9700			5560	3320	
351				33.00	86.00	33.00	86.00	5750	3050	
1352		シスメックス	シスメックスXTシリー	39.00	98.00	35.00	91.00	5670	3020	
1355		シーメンス	シーメンスHCD120	3300	8600	3300	8600	5790	2960	
1356		シスメックス	シスメックスXTシリー	33.00	86.00	33.00	86.00	5900	3100	
1357		シスメックス	シスメックスXEシリー	35.00	90.00	35.00	90.00	5850	3140	
1358		シスメックス	シスメックスXTシリー	3.300	8.600			5500	2850	
1359		シスメックス	シスメックスXTシリー	3.300	8.600	3.300	8.600	5650	3190	
360		シスメックス	シスメックスXNシリー	3400	9400	3100	8800	5750	3180	

64 WBC 施設No.が低い順に並んでいます

施設	御亭區珊	社事 ルーカー	松红豆	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	
1361				3.300	8.600			5100	2800	
1362		シーメンス	シーメンスHCD120	3800	9200	3600	8900	5390	2890	
1365		シスメックス	シスメックスXNシリー	3.300	8.600	3.300	8.600	5510	3000	
1367		シスメックス	シスメックスpocH-1	33.00	86.00			5800	3100	
1368				3.300	8.600	3.300	8.600	5600	2900	
1370		シスメックス	シスメックスXTシリー	3.300	8.600	3.300	8.600	5670	3000	
1371		シスメックス	シスメックスXSシリー	3.300	8.600			5600	3400	
1373		シスメックス	シスメックスXSシリー	3.800	9.200			5600	3100	
1374		ホリバ(堀場製作	堀場LC-660_66	3.500	9.700	3.500	9.700	5200	2800	
1375		シスメックス	シスメックスKX-21_	3500	9700			5500	3000	
1378		シスメックス	シスメックスK-4500	35.00	97.00			5400	2700	
1382		ダイナボット	アホットシャハ°ンCD	3.300	8.600	3.300	8.600	6300	3300	
1385		シスメックス	シスメックスXSシリー	3.300	8.600			5800	3100	
1390		シスメックス	シスメックスXNシリー	45.00	85.00			5500	3100	
391		シスメックス	シスメックスXNシリー	40.00	90.00	40.00	90.00	5700	3300	
1393		日本光電	光電MEK-6400	3500	9800	3500	9800	5300	2900	
394		シスメックス	シスメックスXP-100	3300	8600			5600	3100	
1396		ダイナボット	アボットジャパンCD	33.00	86.00	33.00	86.00	5500	2900	
1400		シスメックス	シスメックスXSシリー	3.300	8.600	3.300	8.600	5660	3130	
1401		シスメックス	シスメックスXTシリー	3.300	8.600	3.300	8.600	5750	3100	
1402		シスメックス	シスメックスXNシリー	3.300	8.600	3.300	8.600	5750	3130	
1403		シスメックス	シスメックスXTシリー	33.00	86.00	33.00	86.00	5350	3170	
1404		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	5690	3030	
1405		シスメックス	シスメックスXSシリー	35.00	97.00	35.00	97.00	5670	3190	
407				3500	10000			5500	3000	
1408		シスメックス	シスメックスXSシリー	36.00	96.00	30.00	85.00	5480	3050	
1410		シスメックス	シスメックスXSシリー	36.00	96.00	30.00	85.00	5440	3050	
1411		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	5470	2930	
1413		ホリバ(堀場製作	堀場LC-667CR	3.300	8.600	3.300	8.600	5100	2900	
1415		ホリバ(堀場製作	堀場FL-278CR	3.500	9.800	3.500	9.800	5250	2950	
1418		ホリバ(堀場製作	堀場LC-660_66	33.00	86.00	33.00	86.00	5300	3000	
1419		シスメックス	シスメックスXSシリー	4000	8500	4000	8500	5500	3090	
1501		シスメックス	シスメックスXEシリー	39.00	98.00	35.00	91.00	5330	3110	
1502		シスメックス	シスメックスXEシリー	40.00	80.00	40.00	80.00	5200	2990	
1505		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	5200	2700	
1506		シスメックス	シスメックスXNシリー	3900	9800	3500	9100	5370	3090	
1511		シスメックス	シスメックスXTシリー	3.300	8.600	3.300	8.600	4800	2900	
512		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	5080	2920	
1513		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	2880	2250	
1514		シスメックス	シスメックスXNシリー	3.300	8.600	3.300	8.600	4900	3000	
1518		シスメックス	シスメックスK-4500	35.00	92.00	35.00	92.00	5700	2800	
1519		シスメックス	シスメックスXTシリー	3.300		3.300	8.600	4880	2610	
1521		シスメックス	シスメックスXP-100	35.00	90.00	35.00	90.00	5600	2960	
1523		ホリバ(堀場製作	堀場LCシリース゛	3300	8600			5160	2910	
1525		ホリバ(堀場製作	堀場LC-660_66	3500	9800			5500	2300	
1528		シスメックス	シスメックスXTシリー	3.300	8.600	3.300	8.600	5440	3070	
1529		シスメックス	シスメックスXEシリー	3500	9700	3500	9700	5140	2990	
1530				3.300	8.600	3.300	8.600	5300	3000	
531		シスメックス	シスメックスXTシリー	50.00	85.00	50.00	85.00	5550	3040	
1532		シスメックス	シスメックスXEシリー	3.300	8.600			5300	2890	
1533		シスメックス	シスメックスXTシリー	33.00	86.00			5400	3000	
1534		シスメックス	シスメックスXSシリー	3300	8600			5470	3110	
1538		ホリバ(堀場製作	堀場PENTRA60	3300	8600			5500	3000	
1540		シスメックス	シスメックスXSシリー	33.00	86.00	33.00	86.00	4830	3070	
1541		シスメックス	シスメックスXTシリー	4000	9000			4920	2960	
1542		シスメックス	シスメックスXTシリー	3900	9800	3500	9100	4720	1710	
1543		シスメックス	シスメックスXTシリー	3500	9200	3500	9200	3120	2570	

64 WBC 施設No.が低い順に並んでいます

施設	测令压押	*** ユ エ	466 BB	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	
1546		ホリバ(堀場製作	堀場LC-667CR					3500	2000	
1548		シスメックス	シスメックスXSシリー	33.00	86.00	33.00	86.00	5670	3030	
1549		シスメックス	シスメックスXSシリー	3500	9800	3500	9800	5590	3040	
1550		シスメックス	シスメックスXTシリー	3500	9700	3500	9700	5100	1690	
1552		ホリバ(堀場製作	堀場LC-667CR	3900	9800	3500	9100	5600	3100	
1554		シスメックス	シスメックスK-4500	5000	8000	5000	8000	3700	2700	
1555		シスメックス	シスメックスXSシリー	3900	9800	3500	9100	5400	2900	
1557		ホリバ(堀場製作	堀場PENTRA60	35.00	98.00			2000	1900	
1558		シスメックス	シスメックスXNシリー	40.00	90.00	40.00	90.00	5650	3180	
1559		ホリバ(堀場製作	堀場PENTRA60	3300	8600	3300	8600	3800	2800	
1560		ホリバ(堀場製作	堀場LC-660_66	3900	9800	3500	9100	4800	1800	
1561		シスメックス	シスメックスXNシリー	3300	8600	3300	8600	5640	3100	
1562		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	5100	3000	
1901		シスメックス	シスメックスXEシリー	3500	9800	3500	9800	4000	1600	
1902		シスメックス	シスメックスXEシリー	35.00	97.00	35.00	97.00	5120	2980	
1903		シスメックス	シスメックスXEシリー	3900	9800	3500	9100	5300	2800	
1909		シスメックス	シスメックスXEシリー	3500	9200	3500	9200	5400	3000	
1911		シーメンス	シーメンスHCD120	3800	9200	3600	8900	5390	2890	
1916		シスメックス	シスメックスXTシリー	3300	8600	3300	8600	5600	3000	
1917		シスメックス	シスメックスXTシリー	3900	9800	3500	9100	5700	3100	
1920		シスメックス	シスメックスK-4500	3500	9200	3500	9200	5600	2900	
1922		シスメックス	シスメックスXTシリー	3900	9800	3500	9100	5500	3000	
1923		シスメックス	シスメックスXTシリー	39.00	98.00	35.00	91.00	5598	3034	
1925		ホリバ(堀場製作	堀場PENTRA60	3900	9800	3500	9100	5100	2800	
1926		シスメックス	シスメックスXEシリー	4000	9000	4000	9000	5000	2900	
1928		シスメックス	シスメックスXTシリー	3900	9800	3500	9100	4400	2500	
1930		シスメックス	シスメックスXTシリー	35.00	98.00	35.00	98.00	5300	3200	
1931		シスメックス	シスメックスXTシリー	35.00	98.00	35.00	98.00		3000	
1932		シスメックス	シスメックスXTシリー	3500	9700			4930	3030	
1933		シスメックス	シスメックスKX-21_	3200	9000	3200	9000	5000	3000	
1934		シスメックス	シスメックスXTシリー	35.00	98.00	35.00	98.00	5600	3000	
1935		シスメックス	シスメックスXTシリー	35.00	97.00	35.00	97.00	5710	3140	
1936		シスメックス	シスメックスXTシリー	35.00	90.00	35.00	90.00	5600	3000	
1937		シスメックス	シスメックスXNシリー	3500	9000	3500	9000	1800	2600	
2002		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	5480	3080	
2006		シスメックス	シスメックスXEシリー	32.00	89.00	32.00	89.00	5500	3000	
2008		シスメックス	シスメックスXNシリー	3.300	8.600	3.300	8.600	5560	3060	
2009		シスメックス	シスメックスK-4500	50.00	80.00	50.00	80.00	5900	3200	
2010		シスメックス	シスメックスXSシリー	39.00	98.00	35.00	91.00	5830	3180	
2011		シスメックス	シスメックスXTシリー	35.00	98.00	35.00	98.00	5500	2900	
2012		ホリバ(堀場製作	堀場LC-660_66	3.500	10.00	3.500	10.00	5300	2900	
3001		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	5600	2930	
3013		ホリバ(堀場製作	堀場LC-660_66	35.00	98.00			5600	3000	
3018		シスメックス	シスメックスXP-100	35.00	80.00			5400	3100	
3022		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	5600	3200	
3027		シスメックス	シスメックスXEシリー	3900	9800	3500	9100	5400	2900	
3048		ベックマン・コー	ヘックマン・コールター	3.300	8.600	3.300	8.600	5600	3100	
3055		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	5650	3240	
3056				35.00	90.00	35.00	90.00	5710	2960	
3907		シスメックス	シスメックスXEシリー	35.00	90.00	35.00	90.00	5400	3100	
4002		シスメックス	シスメックスXNシリー	3.300	8.600			5500	3100	
4039		シスメックス	シスメックスKX-21_	5000	8000	5000	8000	5400	3000	
4040		ベックマン・コー	ヘックマン・コールター	3900	9800	3500	9100	5800	3200	
4902				4500	8500	4500	8500	5500	3000	
5003		シスメックス	シスメックスXEシリー	40.00	90.00	40.00	90.00	5630	3050	
5005		シスメックス	シスメックスXNシリー	3.300	8.600			5700	3140	

64 WBC 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足原生	四来/ //	70克台	下限	上限	下限	上限	試料08	試料34	
5010		シスメックス	シスメックスXNシリー	3.300	8.600			5680	3110	
6006		日本光電	光電MEK-6400	45.00	90.00	45.00	90.00	5600	2900	
6008		シスメックス	シスメックスXNシリー	3.300	8.600	3.300	8.600	5960	3140	
6015		ベックマン・コー	ヘックマン・コールター	3900	9800	3500	9100	6000	3200	
6016		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	7350	3130	
7001		シスメックス	シスメックスXEシリー	35.00	930.0	35.00	93.00	5340	2870	
7002		シスメックス	シスメックスXNシリー	3.300	8.600	3.300	8.600	5640	3220	
7007		シーメンス	シーメンスHCD120	4.000	9.000	4.000	9.000	4700	2820	
7011		シーメンス	シーメンスHCD120	3.300	8.600			5140	2910	
7025		シスメックス	シスメックスK-4500	40.00	80.00			5700	3000	
7901		シスメックス	シスメックスXEシリー	35.00	93.00	35.00	93.00	5600	2900	
8004		シスメックス	シスメックスXEシリー	3.300	8.600	3.300	8.600	5500	3000	
8011		シスメックス	シスメックスXSシリー	39.00	98.00	35.00	91.00	5620	3210	

65 RBC 施設No.が低い順に並んでいます

施設		CILW CV A 9		男性基準	節用	女性基	準節囲			試料報告値
No	測定原理	試薬メーカー	機器		上限	下限	上限	試料08	試料34	
1001		シスメックス	シスメックスXNシリー	435.0	555.0	386.0	492.0	376.0	354.0	
1002		シスメックス	シスメックスXEシリー		550.0	360.0	480.0	378.0	353.0	
1004		シスメックス	シスメックスXNシリー		555.0	386.0	492.0	378.0	351.0	
1006		シーメンス	シーメンスHCD120	4.350 5	5.550	3.860	4.920	376.0	343.0	
1010		シスメックス	シスメックスXEシリー	374.0	561.0	372.0	502.0	382.0	357.0	
1011		シスメックス	シスメックスXEシリー	400.0	539.0	360.0	489.0	377.0	351.0	
1012		シスメックス	シスメックスXEシリー	435.0	555.0	386.0	492.0	380.0	356.0	
1013		シスメックス	シスメックスXTシリー	4.350	5.550	3.860	4.920	372.0	352.0	
1015		シスメックス	シスメックスXEシリー	430.0		370.0	490.0	383.0	357.0	
1018		シスメックス	シスメックスXEシリー			3.860	4.920	378.0	351.0	
1021		シスメックス	シスメックスXTシリー			376.0	516.0	381.0	351.0	
1023						386.0	492.0	376.0	289.0	
1024		シスメックス	シスメックスXNシリー			376.0	516.0	377.0	354.0	
1026		シスメックス	シスメックスXTシリー		5.550	3.860	4.920	356.0	345.0	
1028		シスメックス	シスメックスK-4500			376.0	500.0	368.0	346.0	
1029 1031		シスメックス シスメックス	シスメックスK-4500 シスメックスXEシリー		555.0 555.0	386.0 386.0	492.0 492.0	380.0 382.0	359.0 356.0	
1031		シスメックス	シスメックスXSシリー			376.0	500.0	374.0	352.0	
1032		シスメックス	シスメックスXSシリー			376.0	516.0	380.0	357.0	
1033		シスメックス	シスメックスXTシリー			376.0	516.0	379.0	358.0	
1035		シスメックス	シスメックスXEシリー			378.0	497.0	381.0	362.0	
1038		シスメックス	シスメックスXEシリー		5.550	3.860	4.920	382.0	354.0	
1039		シスメックス	シスメックスXTシリー		5.550	3.860	4.920	372.0	355.0	
1040		シスメックス	シスメックスXEシリー		555.0	386.0	492.0	383.0	338.0	
1044		シスメックス	シスメックスXSシリー		530.0	380.0	480.0	379.0	351.0	
1046		シスメックス	シスメックスXSシリー	427.0	570.0	376.0	500.0	382.0	359.0	
1049		シスメックス	シスメックスXTシリー	427.0	570.0	376.0	500.0	354.0	353.0	
1050		シスメックス	シスメックスXNシリー	471.0	530.0	380.0	480.0	374.0	355.0	
1051		シスメックス	シスメックスXTシリー	427.0	570.0	376.0	500.0	377.0	352.0	
1054		ベックマン・コー	ベックマン・コールター	420.0	570.0	380.0	480.0	373.0	348.0	
1055		シーメンス	シーメンスHCD120	435.0	555.0	386.0	492.0	385.0	257.0	
1056		シスメックス	シスメックスXTシリー	427.0	540.0	376.0	500.0	376.0	352.0	
1057		シスメックス	シスメックスXSシリー	438.0	577.0	376.0	516.0	372.0	346.0	
1058		シーメンス	シーメンスHCD120	430.0	570.0	380.0	500.0	377.0	354.0	
1059		シスメックス	シスメックスXTシリー			376.0	516.0	377.0	350.0	
1060		シスメックス	シスメックスXSシリー			376.0	516.0	372.0	352.0	
1062		ベックマン・コー	ヘックマン・コールター			3.860	4.920	371.0	358.0	
1064		シスメックス	シスメックスXTシリー			360.0	500.0	367.0	347.0	
1069		ガノナギ…	アボットシ゛ャハ゜ンCD			376.0	500.0	374.0	352.0	
1072 1073		ダイナボット シーメンス	シーメンスHCD120			3.800 380.0	4.800 480.0	373.0 370.0	351.0 357.0	
1073		シスメックス	シスメックスXSシリー			376.0	516.0	357.0	338.0	
1075		ホリバ(堀場製作	堀場PENTRA60			386.0	492.0	368.0	344.0	
1076		シスメックス	シスメックスKX-21_			376.0	500.0	379.0	356.0	
1077		*******	77////MAY 21_			376.0	500.0	369.0	336.0	
1079				12110	,,,,,	0.0.0	300.0	380.0	362.0	
1080				427.0	570.0	376.0	500.0	377.0	357.0	
1081		ダイナボット	アホットシャハ°ンCD			386.0	492.0	372.0	345.0	
1084		シスメックス	シスメックスXTシリー		555.0	386.0	492.0	375.0	351.0	
1088		シスメックス	シスメックスXTシリー	410.0	530.0	380.0	480.0	371.0	343.0	
1089		シスメックス	シスメックスXTシリー	4.350	5.550	3.860	4.920	373.0	352.0	
1090		シスメックス	シスメックスXTシリー	4.350	5.550	3.860	4.920	383.0	356.0	
1091				420.0	560.0	375.0	495.0	367.0	349.0	
1093		シスメックス	シスメックスXTシリー	400.0	550.0	350.0	500.0	377.0	357.0	
1094		シスメックス	シスメックスXNシリー	4.300	5.700	3.700	4.900	383.0	355.0	
1097		日本光電	光電MEK-6400			376.0	516.0	372.0	350.0	
1099		ホリバ(堀場製作	堀場LC-660_66	427.0	570.0	376.0	500.0	322.0	338.0	

65 RBC 施設No.が低い順に並んでいます

<b></b> を 設	3811 ct - 100 - 100	* * ****	15% 1111	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	
1101		シスメックス	シスメックスXEシリー	4.100	5.200	3.800	4.800	375.0	356.0	
1102				4.350		3.860	4.920	372.0	351.0	
1104		シスメックス	シスメックスKX-21_	438.0	577.0	376.0	516.0	382.0	360.0	
1105		シスメックス	シスメックスXP-100	438.0	577.0	376.0	516.0	369.0	348.0	
1108		シスメックス	シスメックスXSシリー	420.0	560.0	375.0	495.0	375.0	351.0	
1120		シスメックス	シスメックスXEシリー	435.0	555.0	386.0	492.0	378.0	355.0	
1121		シスメックス	シスメックスXSシリー	438.0	577.0	376.0	516.0	374.0	349.0	
1122		ベックマン・コー	ヘックマン・コールター	427.0	570.0	376.0	500.0	385.0	356.0	
1123		シスメックス	シスメックスXP-100	438.0	577.0	376.0	516.0	377.0	349.0	
1124		日本光電	光電MEK-6400	435.0	555.0	386.0	492.0	380.0	355.0	
1125		シスメックス	シスメックスKX-21_					372.0	346.0	
1126		シスメックス	シスメックスXSシリー	427.0	570.0	376.0	500.0	371.0	351.0	
1127		シスメックス	シスメックスXTシリー	438.0		376.0	516.0	377.0	356.0	
1128		シスメックス	シスメックスXNシリー	4.350	5.550		4.920	377.0	351.0	
1129		シスメックス	シスメックスXSシリー	438.0	577.0	376.0	516.0	368.0	341.0	
1130		シスメックス	シスメックスXNシリー	4.350	5.550	3.860	4.920	281.0	353.0	
1133		シスメックス	シスメックスXSシリー	427.0		376.0	500.0	374.0	353.0	
1134		シスメックス	シスメックスXSシリー	438.0		376.0	516.0	374.0	357.0	
1135		シスメックス	シスメックスpocH-1	427.0		376.0	500.0	386.0	333.0	
1136		シスメックス	シスメックスKX-21_	4.350		3.860	4.920	382.0	359.0	
1137		シスメックス	シスメックスKX-21_	430.0	570.0		490.0	376.0	353.0	
1300		シスメックス	シスメックスXNシリー	4.350	5.550	3.860	4.920	372.0	352.0	
1301		シスメックス	シスメックスXEシリー	430.0	559.0	380.0	539.0	373.0	354.0	
1302		ベックマン・コー	ヘックマン・コールター	435.0	555.0	386.0	492.0	381.0	359.0	
1305		シスメックス	シスメックスXTシリー	4.350	5.550	38.60	4.920	372.0	347.0	
1308		ミノフィッカフ	シスメックスXNシリー	4.350	5.550	3.860	4.920	373.0	347.0 348.0	
1310 1313		シスメックス	7AAY/AAN7Y	420.0 410.0	550.0 570.0	420.0 380.0	550.0 510.0	376.0 381.0	357.0	
1315		シーメンス	シーメンスHCD120	435.0	555.0	386.0	492.0	378.0	355.0	
1316		シスメックス	シスメックスXNシリー	384.0		345.0	460.0	385.0	362.0	
1317		日本光電	光電MEK-7300	438.0	577.0		516.0	374.0	351.0	
1325		A.1.704E	Juliania Too	4.350	5.550		4.920	374.0	356.0	
1326		シスメックス	シスメックスpocH-1	438.0	577.0	376.0	516.0	392.0	370.0	
1327		シーメンス	シーメンスHCD120	4.350	5.550	3.860	4.920	367.0	349.0	
1328		日本光電	光電MEK-6400	410.0	530.0	380.0	480.0	364.0	341.0	
1329		ベックマン・コー	ヘックマン・コールター	4.350	5.550	3.860	4.920	375.0	348.0	
1330		シーメンス	シーメンスHCD120	3.760	5.770			376.0	350.0	
1331		シスメックス	シスメックスXEシリー	400.0	520.0	380.0	480.0	383.0	363.0	
1335		シスメックス	シスメックスK-4500	420.0	570.0	370.0	510.0	371.0	348.0	
1337		シスメックス	シスメックスXNシリー	4.350	5.550	3.860	4.920	381.0	355.0	
1339		シスメックス	シスメックスXTシリー	4.350	5.550	3.860	4.920	370.0	347.0	
1341		シスメックス	シスメックスXNシリー	4.350	5.550	3.860	4.920	379.0	357.0	
1343		シスメックス	シスメックスXNシリー	4.350	5.550	3.860	4.920	381.0	358.0	
1344		シスメックス	シスメックスXTシリー	4.350	5.550	3.860	4.920	372.0	351.0	
1346		シスメックス	シスメックスXNシリー	427.0	570.0	376.0	500.0	378.0	356.0	
1347		シスメックス	シスメックスK-4500	4.350	5.550	3.860	4.920	376.0	352.0	
1348		シスメックス	シスメックスXEシリー	400.0	520.0	380.0	480.0	377.0	354.0	
1349		シスメックス	シスメックスXTシリー	435.0	555.0	386.0	492.0	374.0	350.0	
1350		シスメックス	シスメックスXSシリー	438.0	577.0	376.0	516.0	368.0	347.0	
1351				435.0	555.0	386.0	492.0	378.0	352.0	
1352		シスメックス	シスメックスXTシリー	420.0	570.0		500.0	380.0	355.0	
1355		シーメンス	シーメンスHCD120	435.0		386.0	492.0	389.0	348.0	
1356		シスメックス	シスメックスXTシリー	435.0	555.0	386.0	492.0	374.0	350.0	
1357		シスメックス	シスメックスXEシリー	450.0	550.0	385.0	465.0	383.0	356.0	
1358		シスメックス	シスメックスXTシリー	4.350		3.860	4.920	373.0	353.0	
1359		シスメックス	シスメックスXTシリー	4.350		3.860	4.920	379.0	356.0	
1360		シスメックス	シスメックスXNシリー	427.0	570.0	376.0	500.0	379.0	355.0	

65 RBC 施設No.が低い順に並んでいます

施設	细小压和	-4 tht4=	146 00	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	
1361				4.350	5.550	3.860	4.920	361.0	339.0	
1362		シーメンス	シーメンスHCD120	420.0	560.0		495.0	371.0	349.0	
1365		シスメックス	シスメックスXNシリー	4.350	5.550	3.860	4.920	375.0	350.0	
1367		シスメックス	シスメックスpocH-1	435.0	555.0	386.0	492.0	385.0	360.0	
1368				4.350	5.550	3.860	4.920	380.0	354.0	
1370		シスメックス	シスメックスXTシリー	4.350	5.550	3.860	4.920	372.0	351.0	
1371		シスメックス	シスメックスXSシリー	4.350	555.0	3.860	4.920	366.0	346.0	
1373		シスメックス	シスメックスXSシリー	420.0	560.0	370.0	490.0	383.0	359.0	
1374		ホリバ(堀場製作	堀場LC-660_66	4.380		3.760	5.160	369.0	344.0	
1375		シスメックス	シスメックスKX-21_	438.0		376.0	516.0	372.0	350.0	
1378		シスメックス	シスメックスK-4500	438.0	577.0	376.0	516.0	373.0	351.0	
1382		ダイナボット	アボットジャハシCD	4.350	5.550	3.860	4.920	389.0	349.0	
1385 1390		シスメックス	シスメックスXSシリー	4.350	520.0	3.860 380.0	4.920	385.0 388.0	358.0 361.0	
1390		シスメックス シスメックス	シスメックスXNシリー シスメックスXNシリー	400.0 420.0	570.0		480.0 510.0	379.0	356.0	
1393		日本光電	光電MEK-6400	427.0	570.0	376.0	500.0	376.0	353.0	
1394		シスメックス	シスメックスXP-100	435.0	555.0		492.0	370.0	349.0	
1396		ダイナボット	アボットシャハ°ンCD	435.0	555.0	386.0	492.0	374.0	346.0	
1400		シスメックス	シスメックスXSシリー	4.350	5.550	3.860	4.920	375.0	355.0	
1401		シスメックス	シスメックスXTシリー	4.350	5.550	3.860	4.920	375.0	351.0	
1402		シスメックス	シスメックスXNシリー	4.350	5.550	3.860	4.920	373.0	349.0	
1403		シスメックス	シスメックスXTシリー	435.0	555.0	386.0	492.0	371.0	348.0	
1404		シスメックス	シスメックスXEシリー	4.350	5.550	3.860	4.920	381.0	352.0	
1405		シスメックス	シスメックスXSシリー	438.0	577.0	376.0	516.0	370.0	353.0	
1407				385.0	580.0			372.0	342.0	
1408		シスメックス	シスメックスXSシリー	400.0	552.0	378.0	499.0	382.0	356.0	
1410		シスメックス	シスメックスXSシリー	400.0	552.0	378.0	499.0	387.0	361.0	
1411		シスメックス	シスメックスXEシリー	4.350	5.550	3.860	4.920	379.0	360.0	
1413		ホリバ(堀場製作	堀場LC-667CR	4.350	5.550	3.860	4.920	366.0	342.0	
1415		ホリバ(堀場製作	堀場FL-278CR	4.270	5.700	3.760	5.000	394.0	376.0	
1418		ホリバ(堀場製作	堀場LC-660_66	435.0	555.0	386.0	492.0	362.0	339.0	
1419		シスメックス	シスメックスXSシリー	410.0	530.0	380.0	480.0	380.0	351.0	
1501		シスメックス	シスメックスXEシリー	427.0	570.0	376.0	500.0	382.0	359.0	
1502		シスメックス	シスメックスXEシリー	380.0	580.0	380.0	580.0	373.0	349.0	
1505		シスメックス	シスメックスXEシリー	4.350	5.550	3.860	4.920	377.0	353.0	
1506		シスメックス	シスメックスXNシリー	427.0	570.0	376.0	500.0	373.0	351.0	
1511		シスメックス	シスメックスXTシリー	4.350		3.860	4.920	379.0	355.0	
1512		シスメックス シスメックス	シスメックスXEシリー	4.350		3.860	4.920	375.0	354.0	
1513 1514		シスメックス	シスメックスXEシリー シスメックスXNシリー	4.350 4.350		3.860 3.860	4.920 4.920	382.0 375.0	352.0 349.0	
1514		シスメックス	シスメックスK-4500	420.0		370.0	490.0	374.0	349.0	
1519		シスメックス	シスメックスXTシリー	4.400		3.900	4.900	377.0	346.0	
1521		シスメックス	シスメックスXP-100	390.0		350.0	500.0	371.0	349.0	
1523		ホリバ(堀場製作	堀場LCシリース	435.0		386.0	492.0	367.0	347.0	
1525		ホリバ(堀場製作	堀場LC-660_66	427.0		376.0	500.0	386.0	329.0	
1528		シスメックス	シスメックスXTシリー	4.350		3.860	4.920	374.0	350.0	
1529		シスメックス	シスメックスXEシリー	438.0	577.0	376.0	516.0	385.0	357.0	
1530				4.350	5.550	3.860	4.920	363.0	339.0	
1531		シスメックス	シスメックスXTシリー	410.0	530.0	380.0	480.0	370.0	352.0	
1532		シスメックス	シスメックスXEシリー	4.350	5.550	3.860	4.920	376.0	352.0	
1533		シスメックス	シスメックスXTシリー	435.0	555.0	386.0	492.0	379.0	358.0	
1534		シスメックス	シスメックスXSシリー	435.0	555.0	386.0	492.0	376.0	354.0	
1538		ホリバ(堀場製作	堀場PENTRA60	435.0	555.0	386.0	492.0	366.0	343.0	
1540		シスメックス	シスメックスXSシリー	435.0	555.0	386.0	492.0	372.0	368.0	
1541		シスメックス	シスメックスXTシリー	410.0	520.0	380.0	480.0	376.0	352.0	
1542		シスメックス	シスメックスXTシリー	427.0		376.0	500.0	372.0	336.0	
1543		シスメックス	シスメックスXTシリー	420.0	550.0	370.0	490.0	375.0	352.0	

65 RBC 施設No.が低い順に並んでいます

施設	)	- h-#+- \	Lett men	男性基準	進範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	
1546		ホリバ(堀場製作	堀場LC-667CR					319.0	310.0	
1548		シスメックス	シスメックスXSシリー	435.0	555.0	386.0	492.0	374.0	350.0	
1549		シスメックス	シスメックスXSシリー		570.0		500.0	372.0	348.0	
1550		シスメックス	シスメックスXTシリー	438.0	577.0	376.0	516.0	374.0	326.0	
1552		ホリバ(堀場製作	堀場LC-667CR	427.0	570.0	376.0	500.0	362.0	347.0	
1554		シスメックス	シスメックスK-4500	410.0	530.0	380.0	480.0	403.0	357.0	
1555		シスメックス	シスメックスXSシリー	427.0	570.0	376.0	500.0	381.0	353.0	
1557		ホリバ(堀場製作	堀場PENTRA60	427.0	570.0	376.0	500.0	308.0	345.0	
1558		シスメックス	シスメックスXNシリー	400.0	500.0	350.0	450.0	377.0	358.0	
1559		ホリバ(堀場製作	堀場PENTRA60	435.0	555.0	386.0	492.0	365.0	340.0	
1560		ホリバ(堀場製作	堀場LC-660_66	427.0	570.0	376.0	500.0	362.0	320.0	
1561		シスメックス	シスメックスXNシリー	435.0	555.0	386.0	492.0	375.0	349.0	
1562		シスメックス	シスメックスXEシリー	435.0	555.0	386.0	492.0	379.0	353.0	
1901		シスメックス	シスメックスXEシリー	427.0	570.0	376.0	500.0	384.0	331.0	
1902		シスメックス	シスメックスXEシリー	438.0	577.0	376.0	516.0	380.0	357.0	
1903		シスメックス	シスメックスXEシリー	427.0	570.0	376.0	500.0	384.0	357.0	
1909		シスメックス	シスメックスXEシリー	420.0	550.0	370.0	490.0	383.0	361.0	
1911		シーメンス	シーメンスHCD120	420.0	560.0	375.0	495.0	371.0	349.0	
1916		シスメックス	シスメックスXTシリー	435.0	555.0	386.0	492.0	376.0	353.0	
1917		シスメックス	シスメックスXTシリー	427.0	570.0	376.0	500.0	375.0	350.0	
1920		シスメックス	シスメックスK-4500	420.0	550.0	370.0	490.0	374.0	349.0	
1922		シスメックス	シスメックスXTシリー	427.0	570.0	376.0	500.0	378.0	352.0	
1923		シスメックス	シスメックスXTシリー	427.0	570.0	376.0	500.0	369.0	347.0	
1925		ホリバ(堀場製作	堀場PENTRA60	427.0	570.0	376.0	500.0	373.0	352.0	
1926		シスメックス	シスメックスXEシリー	400.0	550.0	360.0	500.0	377.0	354.0	
1928		シスメックス	シスメックスXTシリー	427.0	570.0	376.0	500.0	375.0	351.0	
1930		シスメックス	シスメックスXTシリー	427.0	570.0	376.0	500.0	377.0	351.0	
1931		シスメックス	シスメックスXTシリー	427.0	570.0	376.0	500.0		351.0	
1932		シスメックス	シスメックスXTシリー	438.0	577.0	376.0	516.0	367.0	347.0	
1933		シスメックス	シスメックスKX-21_	400.0	550.0		500.0	383.0	359.0	
1934		シスメックス	シスメックスXTシリー	427.0	570.0	376.0	500.0	374.0	351.0	
1935		シスメックス	シスメックスXTシリー	438.0	577.0	376.0	516.0	378.0	352.0	
1936		シスメックス	シスメックスXTシリー	427.0	570.0	376.0	500.0	381.0	358.0	
2002		シスメックス	シスメックスXEシリー			3.860	4.920	378.0	351.0	
2006		シスメックス	シスメックスXEシリー		530.0	380.0	480.0	378.0	356.0	
2008		シスメックス	シスメックスXNシリー		5.550	3.860	4.920	377.0	353.0	
2009		シスメックス	シスメックスK-4500		530.0	350.0	480.0	375.0	349.0	
2010		シスメックス	シスメックスXSシリー		570.0		500.0	372.0	347.0	
2011		シスメックス	シスメックスXTシリー		570.0		500.0	371.0	350.0	
2012		ホリバ(堀場製作	堀場LC-660_66		5.800		5.800	355.0	342.0	
3001		シスメックス	シスメックスXEシリー		5.550		4.920	377.0	352.0	
3013		ホリバ(堀場製作	堀場LC-660_66		570.0		500.0	368.0	359.0	
3018		シスメックス	シスメックスXP-100		577.0		516.0	379.0	357.0	
3022		シスメックス	シスメックスXEシリー		5.550		4.920	381.0	358.0	
3027		シスメックス	シスメックスXEシリー		570.0		500.0	379.0	353.0	
3048		ベックマン・コー	ベックマン・コールター		5.550		4.920	373.0	350.0	
3055		シスメックス	シスメックスXEシリー			3.860	4.920	374.0	353.0	
3056		シノフィックフ	シタブッカラVE2 II.		560.0	380.0	500.0	372.0	348.0	
3907		シスメックス	シスメックスXEシリー			376.0	500.0	380.0	354.0	
4002		シスメックス	シスメックスXNシリー シスメックスKV=91		5.550	3.860	4.920	381.0	357.0	
4039		シスメックス	シスメックスKX-21_		535.0	380.0	480.0	372.0	351.0	
4040		ベックマン・コー	ヘ゛ックマン・コールター		570.0		500.0	377.0	354.0	
4902		3,71.47	シタオッカタンロンボ		530.0		480.0	370.0	345.0	
5003		シスメックス	シスメックスXEシリー		565.0		497.0	379.0	354.0	
5005		シスメックス	シスメックスXNシリー			386.0	492.0	376.0	353.0	
5006		シスメックス	シスメックスXNシリー		5.550		4.920	387.0	361.0	
5010		シスメックス	シスメックスXNシリー	4.350	ა.ⴢას	3.860	4.920	374.0	351.0	

65 RBC 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足尔生	四条/ //	75发 台台	下限	上限	下限	上限	試料08	試料34	
6006		日本光電	光電MEK-6400	440.0	560.0	380.0	500.0	368.0	350.0	·
6008		シスメックス	シスメックスXNシリー	4.350	5.550	3.860	4.920	381.0	356.0	
6015		ベックマン・コー	ベックマン・コールター	427.0	570.0	376.0	500.0	366.0	345.0	
6016		シスメックス	シスメックスXEシリー	435.0	555.0	386.0	492.0	504.0	357.0	
7001		シスメックス	シスメックスXEシリー	410.0	560.0	365.0	500.0	380.0	355.0	
7002		シスメックス	シスメックスXNシリー	4.350	5.550	3.860	4.920	378.0	360.0	
7007		シーメンス	シーメンスHCD120	410.0	530.0	380.0	480.0	387.0	354.0	
7011		シーメンス	シーメンスHCD120	4.350	5.550	3.860	4.920	373.0	347.0	
7025		シスメックス	シスメックスK-4500	450.0	550.0	400.0	500.0	375.0	351.0	
7901		シスメックス	シスメックスXEシリー	410.0	560.0	365.0	500.0	381.0	357.0	
8004		シスメックス	シスメックスXEシリー	4.350	5.550	3.860	4.920	379.0	350.0	
8011		シスメックス	シスメックスXSシリー	427.0	570.0	376.0	500.0	369.0	348.0	

48 HB 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲		試料報告値
No	MACANAL		1950-ры	下限	上限	下限	上限	試料08	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.70	16.80		14.80	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.50	17.50	11.50	14.50	12.20	
	SLS(ラウリル硫酸ナ	シスメックス	) h =110p.100	40.50	10.00			12.30	
	AAO(アルキルアミン	シーメンス	シーメンスHCD120	13.70	16.80		14.80	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	11.60	18.00		15.50	12.30	
	SLS(ラウリル硫酸ナ SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.10	16.60 16.80		14.60	12.20 12.30	
	SLS(ラウリル硫酸ナ	シスメックス シスメックス	シスメックスXEシリー シスメックスXTシリー	13.70 13.70	16.80		14.80 14.80	12.40	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.50	17.00		15.00	12.40	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	16.80		14.80	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.60	18.30		15.20	12.40	
	SLS(ラウリル硫酸ナ	シスメックス		13.70	16.80		11.80	12.40	
1024	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.60	18.30	11.20	15.20	12.30	
1026	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70	16.80	11.60	14.80	12.10	
1028	SLS(ラウリル硫酸ナ	シスメックス	シスメックスK-4500	13.50	17.60	11.30	15.20	12.30	
1029	SLS(ラウリル硫酸ナ	シスメックス	シスメックスK-4500	13.70	16.80	11.60	14.80	12.30	
1031	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	16.80	11.60	14.80	12.20	
1032	上記以外の非シ	シスメックス	シスメックスXSシリー	13.50	17.60	11.30	15.20	12.20	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXSシリー	13.60	18.30	11.20	15.20	12.40	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.60	18.30		15.20	12.00	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	17.40		14.90	12.40	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	16.80		14.80	12.00	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70	16.80		14.80	12.20	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	16.80		14.80	12.20	
	SLS(ラウリル硫酸ナ SLS(ラウリル硫酸ナ	シスメックス シスメックス	シスメックスXSシリー シスメックスXSシリー	14.00 13.50	18.00 17.60		16.00 15.20	12.10 12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.50	17.60		15.20	12.00	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	14.00	18.00		16.00	12.20	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.50	17.60		15.20	12.20	
	SLS(ラウリル硫酸ナ	ベックマン・コー	ヘックマン・コールター	13.00	17.00		16.00	11.90	
1055	AAO(アルキルアミン	シーメンス	シーメンスHCD120	13.70	16.80	11.60	14.80	12.60	
1056	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.50	17.60	11.30	15.20	12.40	
1057	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXSシリー	13.60	18.30	11.20	15.20	12.20	
1058	AAO(アルキルアミン	シーメンス	シーメンスHCD120	13.50	17.50	11.50	15.00	12.60	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.60	18.30	11.20	15.20	12.50	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXSシリー	13.60	18.30		15.20	12.50	
	SLS(ラウリル硫酸ナ	ベックマン・コー	ヘックマン・コールター	13.70	16.80		14.80	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.00	18.00		16.00	12.20	
	4級アンモニウム塩	シスメックス	アポットシャハ°ンCD	13.50		11.30	15.20	12.20	
	4級アンモニウム塩 AAO(アルキルアミン	ダイナボット シーメンス	シーメンスHCD120	13.00 14.00	18.00	12.00	16.00 16.00	12.50 12.40	
	AAO()ルイル/ くン SLS(ラウリル硫酸ナ	シスメックス	シスメックスXSシリー	13.60	18.30		15.20	11.90	
	4級アンモニウム塩	ホリバ(堀場製作	堀場PENTRA60	13.70	16.80		14.80	12.10	
	上記以外の非シ	シスメックス	シスメックスKX-21_	13.50		11.30	15.20	12.20	
	上記以外の非シ			13.50	17.60		15.20	12.10	
1079	上記以外の非シ							12.00	
1080	シアンメトヘモグロビン	日本光電		13.50	17.60	11.30	15.20	12.50	
1081	4級アンモニウム塩	ダイナボット	アボットシャハ°ンCD	13.70	16.80	11.60	14.80	12.70	
1084		シスメックス	シスメックスXTシリー	13.70	16.80	11.60	14.80	12.40	
1088	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	14.00	18.00	12.00	16.00	12.40	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70	16.80		14.80	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70	16.80		14.80	12.40	
	SLS(ラウリル硫酸ナ	日本光電	2/7467VT2.0	13.50		11.50	15.30	12.10	
1093	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー シスメックスXNシリー	13.00	17.00		15.00	12.40	
	4級アンモニウム塩	シスメックス 日本光電	光電MEK-6400	13.50 13.60		11.50 11.20	15.00 15.20	12.30 12.50	
	上記以外の非シ	ホリバ(堀場製作	堀場LC-660_66	13.50		11.30	15.20	12.30	

48 HB 施設No.が低い順に並んでいます

施設	110.77  211 /1219			男性基	準範囲	女性基	準範囲		試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	
1101	シアンメトヘモグロビン	シスメックス	シスメックスXEシリー	13.00	18.00	12.00	16.00	12.50	
1102				13.70	16.80	11.60	14.80	12.20	
1104		シスメックス	シスメックスKX-21_	13.60	18.30	11.20	15.20	12.50	
1105	上記以外の非シ	シスメックス	シスメックスXP-100	13.60	18.30	11.20	15.20	12.10	
1108	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXSシリー	13.50	17.70	11.50	15.30	12.50	
1120	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	16.80	11.60	14.80	12.30	
1121		シスメックス	シスメックスXSシリー	13.60	18.30		15.20	12.40	
	上記以外の非シ	ベックマン・コー	ヘックマン・コールター	13.50		11.30	15.20	12.46	
	4級アンモニウム塩	シスメックス	シスメックスXP-100	13.60		11.20	15.20	11.90	
1124 1125		日本光電 シスメックス	光電MEK-6400 シスメックスKX-21_	13.70	16.80	11.60	14.80	12.40 12.10	
1126		シスメックス	シスメックスXSシリー	13.50	17 60	11.30	15.20	12.10	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.60		11.20	15.20	12.40	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.70	16.80		14.80	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXSシリー	13.60		11.20	15.20	12.50	
1130		シスメックス	シスメックスXNシリー	13.70	16.80	11.60	14.80	12.00	
1133	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXSシリー	13.50	17.60	11.30	15.20	12.20	
1134	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXSシリー	13.60	18.30	11.20	15.20	12.20	
1135	上記以外の非シ	シスメックス	シスメックスpocH-1	13.50	17.60	11.30	15.20	12.70	
1136	4級アンモニウム塩	シスメックス	シスメックスKX-21_	13.70	16.80	11.60	14.80	12.30	
1137		シスメックス	シスメックスKX-21_	13.50	17.00	11.50	15.00	12.50	
1300	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.70	16.80	11.60	14.80	12.10	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.00	17.90		15.90	12.20	
	上記以外の非シ	ベックマン・コー	ヘ・ックマン・コールター	13.70	16.80		14.80	12.40	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70	16.80		14.80	12.20	
	SLS(ラウリル硫酸ナ	日本光電	Serie bergannil	13.70		11.60	14.80	10.60	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	12.80	17.60		17.60	12.20	
	SLS(ラウリル硫酸ナ AAO(アルキルアミン	シスメックス シーメンス	シーメンスHCD120	13.00 13.70	16.80	11.00	15.00 14.80	12.30 12.60	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	12.60		10.10	14.60	11.00	
	シアンメトヘモグロビン	日本光電	光電MEK-7300	13.60	18.30		15.20	12.10	
	上記以外の非シ	日本光電		13.70	16.80		14.80	12.40	
1326		シスメックス	シスメックスpocH-1	13.60	18.30		15.20	12.80	
1327	上記以外の非シ	シーメンス	シーメンスHCD120	13.70	16.80	11.60	14.80	12.50	
1328	シアンメトヘモグロビン	日本光電	光電MEK-6400	14.00	17.00	12.00	15.00	12.10	
1329	シアンメトヘモグロビン	ベックマン・コー	ヘックマン・コールター	13.70	16.80	11.60	14.80	12.50	
1330	上記以外の非シ	シーメンス	シーメンスHCD120	11.20	18.30			12.40	
1331	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	12.00	18.00	11.00	15.00	12.40	
1335		シスメックス	シスメックスK-4500	13.50	18.00	11.00	15.50	11.00	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.70		11.60	14.80	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70		11.60	14.80	12.10	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.70		11.60	14.80	12.20	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.70		11.60	14.80	12.40	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー シスメックスXNシリー	13.70		11.60	14.80	12.30	
	SLS(ラウリル硫酸ナ SLS(ラウリル硫酸ナ	シスメックス シスメックス	シスメックスK-4500	13.50 13.70		11.30 11.60	15.20 14.80	12.30 12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	12.00	18.00		15.00	12.10	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70		11.60	14.80	12.20	
1350	U /// MINEX /	シスメックス	シスメックスXSシリー	13.60	18.30		15.20	12.10	
1351		シスメックス		13.70		11.60	14.80	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.50		11.00	15.50	12.40	
	AAO(アルキルアミン	シーメンス	シーメンスHCD120	13.70		11.60	14.80	12.80	
1356	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70	16.80	11.60	14.80	12.50	
1357	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	14.00	18.00	12.00	16.00	12.20	
1358	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70	16.80	11.60	14.80	12.20	
1359	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70	16.80	11.60	14.80	12.40	
1360	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	14.00	18.00	12.00	16.00	12.30	

48 HB 施設No.が低い順に並んでいます

施設	110.7 PAT //RTC		Lik 00	男性基	準範囲	女性基	準範囲		試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	
1361		日本光電		13.70	16.80	11.60	14.80	12.10	
1362	AAO(アルキルアミン	シーメンス	シーメンスHCD120	13.50	17.70	11.50	15.30	12.60	
1365	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.70	16.80	11.60	14.80	12.20	
	上記以外の非シ	シスメックス	シスメックスpocH-1	13.70	16.80		14.80	12.50	
	SLS(ラウリル硫酸ナ	日本光電		13.70	16.80		14.80	12.40	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70	16.80		14.80	12.40	
	SLS(ラウリル硫酸ナ SLS(ラウリル硫酸ナ	シスメックス シスメックス	シスメックスXSシリー シスメックスXSシリー	13.70 13.50	16.80 18.00		14.80 15.80	12.10 12.30	
1374	3上3(ノソリル利に日久)	ホリバ(堀場製作	堀場LC-660_66	13.60	18.30		15.20	12.10	
	上記以外の非シ	シスメックス	シスメックスKX-21_	13.60	18.30	11.20	10.20	12.30	
1378		シスメックス	シスメックスK-4500	13.60	18.30	11.20	15.20	12.30	
1382	4級アンモニウム塩	ダイナボット	アボットジャパンCD	13.70	16.80	11.60	14.80	13.00	
1385	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXSシリー	13.70	16.80	11.60	14.80	12.40	
1390	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	12.00	18.00	11.00	15.00	12.40	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.50	18.00	11.00	15.50	12.30	
	4級アンモニウム塩	日本光電	光電MEK-6400	13.50	17.60		15.20	12.50	
	上記以外の非シ	シスメックス	シスメックスXP-100	13.70	16.80		14.80	11.90	
	4級アンモニウム塩	ダイナボット	アボットシャハンCD	13.70	16.80		14.80	12.50	
	SLS(ラウリル硫酸ナ SLS(ラウリル硫酸ナ	シスメックス シスメックス	シスメックスXSシリー シスメックスXTシリー	13.70 13.70	16.80 16.80		14.80 14.80	12.30 12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.70	16.80		14.80	11.90	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70	16.80		14.80	12.20	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	16.80		14.80	12.40	
1405	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXSシリー	13.60	18.30	11.20	15.20	12.20	
1407				11.00	16.50			12.30	
1408	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXSシリー	13.20	17.20	10.80	14.90	12.20	
1410	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXSシリー	13.20	17.20	10.80	14.90	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	16.80		14.80	12.20	
	上記以外の非シ	ホリバ(堀場製作	堀場LC-667CR	13.70	16.80		14.80	12.40	
1415	上記以外の非シ	ホリバ(堀場製作ホリバ(堀場製作	堀場FL-278CR 堀場 C-660 66	13.50	17.60 16.80		15.20	12.70 12.30	
1418 1419	上記がクトッフォトン	シスメックス	堀場LC-660_66 シスメックスXSシリー	13.70 14.00	18.00		14.80 16.00	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.50	17.60		15.20	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	12.00	16.00		16.00	12.20	
1505		シスメックス	シスメックスXEシリー	13.70	16.80	11.60	14.80	12.30	
1506	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.50	17.60	11.30	15.20	12.40	
1511	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70	16.80	11.60	14.80	12.50	
1512	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	16.80		14.80	12.20	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	16.80		14.80	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.70	16.80		14.80	12.30	
	SLS(ラウリル硫酸ナ SLS(ラウリル硫酸ナ	シスメックス シスメックス	シスメックスK-4500 シスメックスXTシリー	13.50 13.70	18.00 16.80		15.50 14.80	12.30 12.30	
1515	3上3(ノソリル利に日久)	シスメックス	シスメックスXP-100	12.10	18.00		16.00	12.30	
	シアンメトヘモグロビン	ホリバ(堀場製作	堀場LCシリーズ	13.70	16.80		14.80	12.10	
	上記以外の非シ	ホリバ(堀場製作	堀場LC-660_66	13.50	17.60		15.20	12.40	
1528	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70	16.80	11.60	14.80	12.50	
1529	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.60	18.30	11.20	15.20	12.20	
1530	SLS(ラウリル硫酸ナ	日本光電		13.70	16.80	11.60	14.80	12.00	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.60	16.40		15.40	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	16.80		14.80	12.20	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.70	16.80		14.80	12.50	
	SLS(ラウリル硫酸ナ	シスメックス まルバ畑担制作	シスメックスXSシリー 堀担DENTDAGO	13.70	16.80		14.80	12.20	
	シアンメトヘモグロビン SLS(ラウリル硫酸ナ	ホリバ(堀場製作シスメックス	堀場PENTRA60 シスメックスXSシリー	13.70 13.70	16.80 16.80		14.80 14.80	12.10 12.20	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.00	18.00		16.00	12.50	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.50	17.60		15.20	12.20	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.50	18.00		15.50	12.20	

48 HB 施設No.が低い順に並んでいます

施設				男性基準	範囲	女性基	準範囲		試料報告値
No	測定原理	試薬メーカー	機器		上限	下限	上限	試料08	
	しまいはあまい		## C 6676D	112		- 1 121			
	上記以外の非シ	ホリバ(堀場製作	堀場LC-667CR	40.50				11.60	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXSシリー			11.60	14.80	12.10	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXSシリー			11.30	15.20	12.20	
1550	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー			11.20	15.20	12.20	
1552		ホリバ(堀場製作	堀場LC-667CR	13.50	17.60	11.30	15.20	12.40	
1554		シスメックス	シスメックスK-4500	14.00	18.00	12.00	16.00	12.30	
1555		シスメックス	シスメックスXSシリー	13.50	17.60	11.30	15.20	12.30	
1557		ホリバ(堀場製作	堀場PENTRA60	13.50	17.80	11.30	17.60	11.40	
1558	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.00	18.00	12.00	16.00	12.40	
1559	シアンメトヘモグロビン	ホリバ(堀場製作	堀場PENTRA60	13.70	16.80	11.60	14.80	12.20	
1560		ホリバ(堀場製作	堀場LC-660_66	13.50	17.60	11.30	15.20	12.60	
1561	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.70	16.80	11.60	14.80	12.10	
1562	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	16.80	11.60	14.80	12.20	
1901	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.50	17.60	11.30	15.20	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー			11.20	15.20	12.20	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー			11.30	15.20	12.50	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー			11.50	15.50	12.20	
	AAO(アルキルアミン	シーメンス	シーメンスHCD120			11.50	15.30	12.60	
	AAO()ルイルバン SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー			11.60		12.20	
	ひたび(ノソフル/柳川日安)						14.80		
1917	CI C/Shila Thesa	シスメックス	シスメックスXTシリー			11.30	15.20	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスK-4500			11.50	15.50	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー			11.30	15.20	12.40	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー			11.30	15.20	12.30	
1925		ホリバ(堀場製作	堀場PENTRA60			11.30	15.20	12.40	
1926	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.50	17.50	11.50	15.50	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.50	17.60	11.30	15.20	12.40	
1930	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.50	17.60	11.30	15.20	12.30	
1932	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.60	18.30	11.20	15.20	12.30	
1933	上記以外の非シ	シスメックス	シスメックスKX-21_	13.00	18.00	11.30	16.00	12.30	
1934	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.50	17.60	11.30	15.20	12.30	
1935	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.60	18.30	11.20	15.20	12.20	
1936	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー	13.50	17.60	11.30	15.20	12.10	
2002	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	16.80	11.60	14.80	12.20	
2006	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.00	18.00	12.00	16.00	12.20	
2008	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.70	16.80	11.60	14.80	12.20	
2009		シスメックス	シスメックスK-4500	14.00	18.00	12.00	16.00	12.30	
2010		シスメックス	シスメックスXSシリー		17.60	11.30	15.20	12.20	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXTシリー			11.30	15.20	12.20	
	AAO(アルキルアミン	ホリバ(堀場製作	堀場LC-660_66			11.00	16.50	12.20	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー			11.60	14.80	12.20	
	上記以外の非シ	ホリバ(堀場製作	堀場LC-660_66			11.30	15.20	12.20	
			_						
	上記以外の非シ	シスメックス	シスメックスXP-100			11.20	15.20	12.50	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー			11.60	14.80	12.10	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー			11.30	15.20	12.20	
	シアンメトヘモグロビン	ベックマン・コー	ヘックマン・コールター			11.60	14.80	12.50	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー			11.60	14.80	12.20	
3056		日本光電				11.00	15.00	12.30	
3907	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.50	17.60	11.30	15.20	12.10	
4002	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.70	16.80	11.60	14.80	12.40	
4039		シスメックス	シスメックスKX-21_	14.00	18.00	12.00	16.00	12.40	
4040	シアンメトヘモグロビン	ベックマン・コー	ベックマン・コールター	13.50	17.60	11.30	15.20	12.30	
4902	SLS(ラウリル硫酸ナ	日本光電		14.00	18.00	12.00	16.00	12.10	
5003	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー			11.30	14.90	12.30	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー			11.60	14.80	12.00	
	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー			11.60	14.80	12.50	
	シアンメトヘモグロビン	シスメックス	シスメックスXNシリー			11.60	14.80	12.10	
	シアンメトヘモグロビン	日本光電	光電MEK-6400			12.00	16.00	11.80	
2000		, , , , , , , , , , , , , , , , , ,	, <u></u>	11.00	_,,,,			-1.00	

48 HB 施設No.が低い順に並んでいます

施設	测空原理	測定原理 試薬メーカー		男性基準範囲 機器		女性基	準範囲		試料報告値
No	例足原垤	武楽人一万一	70文石计	下限	上限	下限	上限	試料08	
6008	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.70	16.80	11.60	14.80	12.30	
6015		ベックマン・コー	ベックマン・コールター	13.50	17.60	11.30	15.20	12.30	
6016	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	16.80	11.60	14.80	16.50	
7001	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.10	17.50	11.00	15.10	12.30	
7002	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXNシリー	13.70	16.80	11.60	14.80	12.30	
7007		シーメンス	シーメンスHCD120	13.60	16.80	12.00	15.20	12.80	
7011	シアンメトヘモグロビン	シーメンス	シーメンスHCD120	14.00	18.00	12.00	16.00	12.60	
7025	SLS(ラウリル硫酸ナ	シスメックス	シスメックスK-4500	14.00	18.00	12.00	16.00	12.30	
7901	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.10	17.50	11.00	15.10	12.20	
8004	SLS(ラウリル硫酸ナ	シスメックス	シスメックスXEシリー	13.70	16.80	11.60	14.80	12.20	
8011		シスメックス	シスメックスXSシリー	13.50	17.60	11.30	15.20	12.30	

67 HT 施設No.が低い順に並んでいます

施設				EE Lab. 11 Me Art TITE	1 . Lil	Sittle Arke LTEE			3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
	測定原理	試薬メーカー	機器			準範囲	oolw4€	1 0 12k4€	試料報告值
No					下限	上限	試料08	試料34	
1001		シスメックス	シスメックスXNシリー		35.10	44.40	34.30	31.40	
1002		シスメックス	シスメックスXEシリー	39.00 52.00		44.00	34.70	32.20	
1004		シスメックス	シスメックスXNシリー		35.10	44.40	34.90	32.00	
1006		シーメンス	シーメンスHCD120		35.10	44.40	35.80	34.40	
1010		シスメックス	シスメックスXEシリー		34.00	45.50	36.30	31.70	
1011		シスメックス	シスメックスXEシリー		35.50	43.90	33.70	31.30	
1012		シスメックス	シスメックスXEシリー		35.10	44.40	34.50	32.10	
1013		シスメックス シスメックス	シスメックスXTシリー		35.10 35.00	44.40	34.10	32.40 31.80	
1015 1018		シスメックス	シスメックスXEシリー シスメックスXEシリー	40.00 50.00 40.70 50.10		45.00 44.40	37.40 34.40	31.80	
1021		シスメックス	シスメックスXTシリー	40.40 51.90		45.20	34.00	31.80	
1023		•	***************************************		35.10	44.40	34.40	26.40	
1024		シスメックス	シスメックスXNシリー		34.30	45.20	35.30	33.20	
1026		シスメックス	シスメックスXTシリー		35.10	44.40	30.40	39.90	
1028		シスメックス	シスメックスK-4500		33.40	44.90	33.40	31.70	
1029		シスメックス	シスメックスK-4500		35.00	44.40	34.10	32.40	
1031		シスメックス	シスメックスXEシリー	40.70 50.10		44.40	34.70	32.30	
1032		シスメックス	シスメックスXSシリー	39.80 51.80	33.40	44.90	33.60	31.70	
1033		シスメックス	シスメックスXSシリー	40.40 51.90	34.30	45.20	35.30	34.80	
1034		シスメックス	シスメックスXTシリー	40.40 51.90	34.30	45.20	34.20	32.40	
1035		シスメックス	シスメックスXEシリー	40.20 51.50	33.60	44.60	34.40	32.80	
1038		シスメックス	シスメックスXEシリー	40.70 50.10	35.10	44.40	34.60	31.90	
1039		シスメックス	シスメックスXTシリー	40.70 50.10	35.10	44.40	33.90	32.30	
1040		シスメックス	シスメックスXEシリー	40.70 50.10	35.10	44.40	34.70	30.20	
1044		シスメックス	シスメックスXSシリー	39.00 52.00	35.00	48.00	33.90	31.50	
1046		シスメックス	シスメックスXSシリー	39.80 51.80	33.40	44.90	34.50	32.40	
1049		シスメックス	シスメックスXTシリー	39.80 51.80	33.40	44.90	33.70	32.50	
1050		シスメックス	シスメックスXNシリー	39.00 52.00	35.00	48.00	33.80	35.20	
1051		シスメックス	シスメックスXTシリー		33.40	44.90	35.50	32.10	
1054		ベックマン・コー	ヘ・ックマン・コールター	39.00 53.00		48.00	35.90	32.70	
1055		シーメンス	シーメンスHCD120		35.10	44.40	37.70	27.50	
1056		シスメックス	シスメックスXTシリー		33.00	45.00	34.00	31.90	
1057		シスメックス	シスメックスXSシリー		34.30	45.20	33.70	31.30	
1058		シーメンス シスメックス	シーメンスHCD120 シスメックスXTシリー	42.00 53.00		47.00	36.40	33.60	
1059 1060		シスメックス	シスメックスXIシリー	40.40 51.90 40.40 51.90	34.30	45.20 45.20	35.50 40.80	32.20 32.00	
1062		ベックマン・コー	ヘー・ツクマン・コールター		35.10	44.40	35.60	33.80	
1064		シスメックス	シスメックスXTシリー	38.00 52.00		48.00	37.10	31.60	
1069		**********	770////////////////////////////////////	39.80 51.80		44.90	34.10	34.70	
1072		ダイナボット	アボットシ゛ャハ゜ンCD	40.00 48.00		42.00	35.70	33.50	
1073		シーメンス	シーメンスHCD120	39.00 52.00		48.00	35.10	33.70	
1074		シスメックス	シスメックスXSシリー	40.40 51.90		45.20	32.30	30.60	
1075		ホリバ(堀場製作	堀場PENTRA60	40.00 50.00		44.40	35.50	31.70	
1076		シスメックス	シスメックスKX-21_	39.80 51.80	33.40	44.90	36.90	32.80	
1077				39.80 51.80	33.40	44.90	28.60	26.70	
1079							35.60	33.50	
1080				39.80 51.80	33.40	44.90	32.20	30.80	
1081		ダイナボット	アボットジャパンCD	40.70 50.10	35.10	44.40	35.30	32.60	
1084		シスメックス	シスメックスXTシリー	40.70 50.10	35.10	44.40	33.20	31.10	
1088		シスメックス	シスメックスXTシリー	40.00 48.00	34.00	42.00	33.40	31.30	
1089		シスメックス	シスメックスXTシリー	40.70 50.10	35.10	44.40	34.20	32.20	
1090		シスメックス	シスメックスXTシリー	40.70 50.10	35.10	44.40	34.50	34.00	
1091				40.00 51.50		45.20	33.80	31.70	
1093		シスメックス	シスメックスXTシリー	38.00 50.00		45.00	34.50	32.40	
		シスメックス	シスメックスXNシリー	40.00 50.00		45.00	34.80	35.20	
1094			and a company						
1094 1097 1099		日本光電 ホリバ(堀場製作	光電MEK-6400 堀場LC-660_66	40.40 51.90 39.80 51.80		45.20 44.90	37.70 22.70	33.10 25.90	

67 HT 施設No.が低い順に並んでいます

施設		(L. V. W. ME)	T95 BB	男性基準	範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	
1101		シスメックス	シスメックスXEシリー	40.00 4	18.00	34.00	42.00	35.70	31.90	
1102					50.10	35.10	44.40	34.00	32.00	
1104		シスメックス	シスメックスKX-21_	40.40 5	51.90	34.30	45.20	34.30	32.60	
1105		シスメックス	シスメックスXP-100	40.40 5	51.90	34.30	45.20	33.10	31.20	
1108		シスメックス	シスメックスXSシリー	40.00 5	51.50	34.30	45.20	34.20	31.90	
1120		シスメックス	シスメックスXEシリー	40.70 5	50.10	35.10	44.40	33.90	31.70	
1121		シスメックス	シスメックスXSシリー	40.40 5	51.90	34.30	45.20	33.70	31.40	
1122		ベックマン・コー	ヘックマン・コールター	39.80 5	51.80	33.40	44.90	36.90	33.60	
1123		シスメックス	シスメックスXP-100	40.40 5	51.90	34.30	45.20	34.00	32.00	
1124		日本光電	光電MEK-6400	40.70 5	50.10	35.10	44.40	36.70	33.00	
1125		シスメックス	シスメックスKX-21_					34.80	32.90	
1126		シスメックス	シスメックスXSシリー	39.80 5	51.80	33.40	44.90	34.10	32.40	
1127		シスメックス	シスメックスXTシリー	40.40 5	51.90	34.30	45.20	34.50	32.60	
1128		シスメックス	シスメックスXNシリー			35.10	44.40	35.10	32.10	
1129		シスメックス	シスメックスXSシリー	40.40 5	51.90	34.30	45.20	33.60	31.50	
1130		シスメックス	シスメックスXNシリー			35.10	44.40	23.80	36.80	
1133		シスメックス	シスメックスXSシリー			33.40	44.90	34.20	32.10	
1134		シスメックス	シスメックスXSシリー			34.30	45.20	39.10	32.00	
1135		シスメックス	シスメックスpocH-1			33.40	44.90	35.50	31.00	
1136		シスメックス	シスメックスKX-21_			35.10	44.40	34.90	32.90	
1137		シスメックス	シスメックスKX-21_			35.00	45.00	34.90	32.90	
1300		シスメックス	シスメックスXNシリー			35.10	44.40	34.30	31.70	
1301		シスメックス	シスメックスXEシリー			34.00	45.00	34.10	31.80	
1302		ベックマン・コー シスメックス	ヘ [*] ックマン・コールター シスメックスXTシリー			35.10 35.10	44.40	36.10	33.50	
1305 1308		ンヘトツクヘ	√ΛΣΨ//ΛΧ1√Y [™]			35.10	44.10 44.40	34.10	31.70 32.20	
1310		シスメックス	シスメックスXNシリー			40.00	47.00	34.60 34.40	31.70	
1313			VANYYAANVY			34.00	46.00	34.30	32.20	
1315		シーメンス	シーメンスHCD120			35.10	44.40	37.10	34.40	
1316		シスメックス	シスメックスXNシリー			32.00	43.00	35.10	32.60	
1317		日本光電	光電MEK-7300			34.30	45.20	35.40	31.70	
1325						35.10	44.40	36.50	33.90	
1326		シスメックス	シスメックスpocH-1			34.30	45.20	36.20	34.70	
1327		シーメンス	シーメンスHCD120			35.10	44.40	35.80	33.60	
1328		日本光電	光電MEK-6400	40.00 5	54.00	34.00	46.00	35.40	31.80	
1329		ベックマン・コー	ベックマン・コールター	40.70 5	50.10	35.10	44.40	35.30	32.40	
1330		シーメンス	シーメンスHCD120	34.30 5	51.90			36.20	33.60	
1331		シスメックス	シスメックスXEシリー	38.00 5	50.00	35.00	45.00	34.60	32.90	
1335		シスメックス	シスメックスK-4500	40.00 5	52.00	34.00	46.00	33.70	31.60	
1337		シスメックス	シスメックスXNシリー	40.70 5	50.10	35.10	44.40	34.90	32.40	
1339		シスメックス	シスメックスXTシリー	40.70 5	50.10	35.10	44.40	33.80	32.20	
1341		シスメックス	シスメックスXNシリー	40.70 5	50.10	35.10	44.40	35.30	33.00	
1343		シスメックス	シスメックスXNシリー	40.70 5	50.10	35.10	44.40	34.90	31.90	
1344		シスメックス	シスメックスXTシリー			35.10	44.40	34.40	32.50	
1346		シスメックス	シスメックスXNシリー			33.40	44.90	34.00	32.10	
1347		シスメックス	シスメックスK-4500			35.10	44.40	34.00	32.10	
1348		シスメックス	シスメックスXEシリー			35.00	45.00	33.50	31.60	
1349		シスメックス	シスメックスXTシリー			35.10	44.40	34.20	32.20	
1350		シスメックス	シスメックスXSシリー			34.30	45.20	32.90	31.70	
1351		3.07 1. 200	Sept begazens it			35.10	44.40	35.90	33.00	
1352		シスメックス	シスメックスXTシリー			33.00	46.00	34.20	31.60	
1355		シーメンス	シーメンスHCD120			35.10	44.40	37.40	33.10	
1356		シスメックス	シスメックスXTシリー			35.10	44.40	33.50	31.50	
1357		シスメックス	シスメックスXEシリー			34.00	45.00	35.30	32.60	
1358		シスメックス	シスメックスXTシリー			35.10	44.40	33.60	31.70	
1359		シスメックス	シスメックスXTシリー			35.10	44.40	34.70	32.70	
1360		シスメックス	シスメックスXNシリー	40.00 5	52.00	33.50	45.00	34.90	32.20	

67 HT 施設No.が低い順に並んでいます

施設	0.17 EXT /IRT			男性基準筆	6囲	女性基	進新囲			試料報告値
No	測定原理	試薬メーカー	機器		:限	下限	上限	試料08	試料34	P OF I THE LITTLE
1361						35.10	44.40	34.50	31.40	
1362		シーメンス	シーメンスHCD120			34.30	45.20	34.80	32.40	
1365		シスメックス	シスメックスXNシリー			35.10	44.40	34.50	32.00	
1367		シスメックス	シスメックスpocH-1			35.10	44.40	34.30	32.50	
1368				40.70 50	0.10	35.10	44.40	34.60	32.40	
1370		シスメックス	シスメックスXTシリー	40.70 50	0.10	35.10	44.40	33.80	31.90	
1371		シスメックス	シスメックスXSシリー	40.70 50	0.10	35.10	44.40	33.70	31.90	
1373		シスメックス	シスメックスXSシリー	39.00 51	1.00	34.00	45.00	34.50	32.30	
1374		ホリバ(堀場製作	堀場LC-660_66	40.40 51	1.90	34.30	45.20	34.70	31.60	
1375		シスメックス	シスメックスKX-21_	11.20 15	5.20			33.90	32.00	
1378		シスメックス	シスメックスK-4500	40.40 51	1.90	34.30	45.20	34.30	32.70	
1382		ダイナボット	アボットシャハ゜ンCD			35.10	44.40	36.60	33.60	
1385		シスメックス	シスメックスXSシリー			35.10	44.40	34.80	32.50	
1390		シスメックス	シスメックスXNシリー			35.00	45.00	36.30	33.60	
1391		シスメックス	シスメックスXNシリー			34.00	46.00	35.40	32.90	
1393		日本光電	光電MEK-6400 シスメックスXP-100			33.40 35.10	44.90	35.80 34.30	32.60 32.40	
1394 1396		シスメックス ダイナボット	アボットシャハ°ンCD			35.10	44.40 44.40	34.60	32.40	
1400		シスメックス	シスメックスXSシリー			35.10	44.40	34.70	32.70	
1401		シスメックス	シスメックスXTシリー			35.10	44.40	34.40	32.00	
1402		シスメックス	シスメックスXNシリー			35.10	44.40	34.10	31.30	
1403		シスメックス	シスメックスXTシリー			35.10	44.40	33.30	31.50	
1404		シスメックス	シスメックスXEシリー			35.10	44.40	34.50	31.60	
1405		シスメックス	シスメックスXSシリー			34.30	45.20	33.80	32.20	
1407					0.00			35.80	10.90	
1408		シスメックス	シスメックスXSシリー	40.40 51	1.10	35.60	45.40	35.10	32.80	
1410		シスメックス	シスメックスXSシリー	40.40 51	1.10	35.60	45.40	34.20	31.90	
1411		シスメックス	シスメックスXEシリー	40.70 50	0.10	35.10	44.40	33.80	32.00	
1413		ホリバ(堀場製作	堀場LC-667CR	40.70 50	0.10	35.10	44.40	35.40	32.30	
1415		ホリバ(堀場製作	堀場FL-278CR	39.80 51	1.80	33.40	44.90	38.60	35.30	
1418		ホリバ(堀場製作	堀場LC-660_66	40.70 50	0.10	35.10	44.40	34.70	32.10	
1419		シスメックス	シスメックスXSシリー	39.00 52	2.00	35.00	48.00	34.50	31.90	
1501		シスメックス	シスメックスXEシリー	39.80 51	1.80	33.40	44.90	34.50	32.30	
1502		シスメックス	シスメックスXEシリー	35.00 52		35.00	52.00	33.80	31.70	
1505		シスメックス	シスメックスXEシリー			35.10	44.40	34.00	35.00	
1506		シスメックス	シスメックスXNシリー			33.40	44.90	33.80	31.90	
1511		シスメックス	シスメックスXTシリー			35.10	44.40	34.20	32.20	
1512		シスメックス	シスメックスXEシリー			35.10	44.40	34.10	31.90	
1513 1514		シスメックス シスメックス	シスメックスXEシリー シスメックスXNシリー			35.10 35.10	44.40	34.50	31.90 31.70	
1514		シスメックス	シスメックスK-4500			35.10	44.40 45.00	34.10 34.70	34.90	
1519		シスメックス	シスメックスXTシリー			35.10	44.40	34.00	31.40	
1521		シスメックス	シスメックスXP-100			33.00	46.00	34.60	33.30	
1523		ホリバ(堀場製作	堀場LCシリース゛			35.10	44.40	35.20	31.50	
1525		ホリバ(堀場製作	堀場LC-660_66			33.40	44.90	36.90	27.90	
1528		シスメックス	シスメックスXTシリー			35.10	44.40	33.00	31.30	
1529		シスメックス	シスメックスXEシリー			34.30	45.20	34.20	31.80	
1530						35.10	44.40	33.00	31.00	
1531		シスメックス	シスメックスXTシリー	40.00 48	3.00	34.00	42.00	33.80	32.30	
1532		シスメックス	シスメックスXEシリー	40.70 50	0.10	35.10	44.40	33.40	31.10	
1533		シスメックス	シスメックスXTシリー	40.70 50	0.10	35.10	44.40	34.10	32.40	
1534		シスメックス	シスメックスXSシリー	40.70 50	0.10	35.10	44.40	33.10	31.20	
1538		ホリバ(堀場製作	堀場PENTRA60	40.70 50	0.10	35.10	44.40	36.00	31.00	
1540		シスメックス	シスメックスXSシリー	40.70 50	0.10	35.10	44.40	34.50	33.90	
1541		シスメックス	シスメックスXTシリー	40.00 48	3.00	34.00	42.00	34.50	32.30	
1542		シスメックス	シスメックスXTシリー			33.40	44.90	34.00	32.50	
1543		シスメックス	シスメックスXTシリー	39.00 52	2.00	35.00	45.00	35.50	35.90	

67 HT 施設No.が低い順に並んでいます

	10.77 EXV //EX	に並んています		田址甘滩炒田		t ista /s/r 1333			-1 대 에 나 나는
施設	測定原理	試薬メーカー	機器	男性基準範囲 下限 上限	女性 ^五 下限	は準範囲	試料08	試料34	試料報告値
No		2 27 2/10 10 #ul /6	IDIBLO ASSOR	741 XH.1	1, 117	上限			
1546		ホリバ(堀場製作	堀場LC-667CR	40.50.50.40	0= 40		24.30	26.00	
1548		シスメックス	シスメックスXSシリー		35.10	44.40	33.30	31.40	
1549		シスメックス	シスメックスXSシリー	39.80 51.80		44.90	33.90	31.70	
1550		シスメックス	シスメックスXTシリー	40.40 51.90		45.20	33.50	29.80	
1552		ホリバ(堀場製作	堀場LC-667CR	39.80 51.80		44.90	34.10	32.10	
1554		シスメックス	シスメックスK-4500	39.00 52.00		48.00	33.20	31.80	
1555		シスメックス	シスメックスXSシリー	39.80 51.80		44.90	34.30	32.10	
1557		ホリバ(堀場製作	堀場PENTRA60	39.80 51.80		44.90	22.10	31.70	
1558		シスメックス	シスメックスXNシリー	36.00 48.00		43.00	34.10	32.30	
1559		ホリバ(堀場製作	堀場PENTRA60		35.10	44.40	35.90	32.70	
1560		ホリバ(堀場製作 シスメックス	堀場LC-660_66 シスメックスXNシリー	39.80 51.80		44.90	33.90	26.30	
1561				40.70 50.10		44.40	35.90	32.90	
1562		シスメックス	シスメックスXEシリー	40.70 50.10 39.80 51.80		44.40	34.10	31.80	
1901 1902		シスメックス シスメックス	シスメックスXEシリー シスメックスXEシリー	39.80 51.80 40.40 51.90		44.90 45.20	34.60 34.30	29.40 31.70	
1903 1909		シスメックス シスメックス	シスメックスXEシリー シスメックスXEシリー	39.80 51.80 39.00 52.00		44.90 45.00	34.20 34.30	35.00 32.20	
		シーメンス	シーメンスHCD120		34.30			32.40	
1911 1916		シスメックス	シスメックスXTシリー		35.10	45.20 44.40	34.80 34.10	32.40	
1916		シスメックス	シスメックスXTシリー	39.80 51.80		44.40	34.40	32.30	
1917		シスメックス	シスメックスX1シリー シスメックスK-4500	39.00 52.00		45.00	34.40	34.50	
1922		シスメックス	シスメックスXTシリー	39.80 51.80		44.90	34.70	32.40	
1923		シスメックス	シスメックスXTシリー	39.80 51.80 39.80 51.80		44.90	34.00	31.80	
1925		ホリバ(堀場製作	堀場PENTRA60	39.80 51.80 39.80 51.80		44.90	36.00	32.60	
1926		シスメックス	シスメックスXEシリー	40.00 50.00	33.00	45.00	37.20	35.00	
1928		シスメックス	シスメックスXTシリー	39.80 51.80		44.90	34.30	35.40	
1930		シスメックス	シスメックスXTシリー	39.80 51.80		44.90	34.40	32.10	
1931		シスメックス	シスメックスXTシリー	39.80 51.80		44.90	51.10	32.20	
1932		シスメックス	シスメックスXTシリー	40.40 51.90		45.20	34.30	31.80	
1933		シスメックス	シスメックスKX-21_		34.00	48.00	35.50	33.40	
1934		シスメックス	シスメックスXTシリー	39.80 51.80		44.90	34.20	32.40	
1935		シスメックス	シスメックスXTシリー	40.40 51.90		45.20	34.90	32.70	
1936		シスメックス	シスメックスXTシリー	39.80 51.80		44.90	34.60	32.70	
1937		シスメックス	シスメックスXNシリー	39.80 51.80		44.90	34.40	33.60	
2002		シスメックス	シスメックスXEシリー	40.70 50.10		44.40	34.60	32.20	
2006		シスメックス	シスメックスXEシリー	39.00	36.00		34.10	32.10	
2008		シスメックス	シスメックスXNシリー	40.70 50.10	35.10	44.40	35.30	32.40	
2009		シスメックス	シスメックスK-4500		34.00	42.00	34.30	32.00	
2010		シスメックス	シスメックスXSシリー	39.80 51.80	33.40	44.90	33.20	31.00	
2011		シスメックス	シスメックスXTシリー	39.80 51.80	33.40	44.90	33.70	31.90	
2012		ホリバ(堀場製作	堀場LC-660_66	35.00 50.00	35.00	50.00	33.50	31.80	
3001		シスメックス	シスメックスXEシリー	40.70 50.10	35.10	44.40	34.00	31.50	
3013		ホリバ(堀場製作	堀場LC-660_66	39.80 51.80	33.40	44.90	35.30	33.70	
3018		シスメックス	シスメックスXP-100	40.40 51.90	34.30	45.20	34.20	32.30	
3022		シスメックス	シスメックスXEシリー	40.70 50.10	35.10	44.40	34.50	32.50	
3027		シスメックス	シスメックスXEシリー	39.80 51.80	33.40	44.90	33.70	31.30	
3048		ベックマン・コー	ベックマン・コールター	40.70 50.10	35.10	44.40	35.70	32.90	
3055		シスメックス	シスメックスXEシリー	40.70 50.10	35.10	44.40	33.40	31.60	
3056				40.00 52.00	34.00	45.00	33.70	31.50	
3907		シスメックス	シスメックスXEシリー	39.80 51.80	33.40	44.90	34.70	31.90	
4002		シスメックス	シスメックスXNシリー	40.70 50.10	35.10	44.40	35.40	32.90	
4039		シスメックス	シスメックスKX-21_	38.00 50.00	34.00	46.00	33.70	32.00	
4040		ベックマン・コー	ベックマン・コールター	39.80 51.80	33.40	44.90	36.20	33.20	
4902					35.00	48.00	34.30	31.90	
5003		シスメックス	シスメックスXEシリー		33.60	44.60	34.70	32.30	
5005		シスメックス	シスメックスXNシリー	40.70 50.10	35.10	44.40	34.40	32.10	
5006		シスメックス	シスメックスXNシリー		35.10	44.40	35.60	33.20	

67 HT 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	男性基準範囲		女性基準範囲		試料報告値	
No				下限	上限	下限	上限	試料08	試料34	
5010		シスメックス	シスメックスXNシリー	40.70	50.10	35.10	44.40	34.80	32.70	_
6006		日本光電	光電MEK-6400	38.00	54.00	36.00	47.00	35.10	32.10	
6008		シスメックス	シスメックスXNシリー	40.70	50.10	35.10	44.40	35.60	33.00	
6015		ベックマン・コー	ヘックマン・コールター	39.80	51.80	33.40	44.90	35.90	33.40	
6016		シスメックス	シスメックスXEシリー	40.70	50.10	35.10	44.40	44.50	31.90	
7001		シスメックス	シスメックスXEシリー	39.00	52.00	33.00	46.00	33.80	32.00	
7002		シスメックス	シスメックスXNシリー	40.70	50.10	35.10	44.40	34.60	32.00	
7007		シーメンス	シーメンスHCD120	40.00	48.00	34.00	44.00	36.40	34.00	
7011		シーメンス	シーメンスHCD120	39.00	52.00	35.00	48.00	35.20	33.00	
7025		シスメックス	シスメックスK-4500	40.00	50.00	36.00	45.00	34.40	32.30	
7901		シスメックス	シスメックスXEシリー	39.00	52.00	33.00	46.00	34.20	31.60	
8004		シスメックス	シスメックスXEシリー	40.70	50.10	35.10	44.40	33.90	31.80	
8011		シスメックス	シスメックスXSシリー	39.80	51.80	33.40	44.90	33.30	31.60	

68 MCV 施設No.が低い順に並んでいます

施設	0.77 PENT //RT			男忙	生基準筆	範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下		上限	下限	上限	試料08	試料34	
1001		シスメックス	シスメックスXNシリー	84.	.00 98	8.00	84.00	98.00	91.00	89.00	
1002		シスメックス	シスメックスXEシリー	87.	.00 10	03.0	87.00	99.00	91.70	91.10	
1004		シスメックス	シスメックスXNシリー	83.	.60 98	8.20	83.60	98.20	92.30	91.20	
1006		シーメンス	シーメンスHCD120	83.	.60 98	8.20	83.60	98.20	95.10	100.2	
1010		シスメックス	シスメックスXEシリー	82.	70 10	01.1	82.70	101.1	95.00	88.80	
1011		シスメックス	シスメックスXEシリー	86.	.00 10	01.0	85.00	99.00	89.40	89.20	
1012		シスメックス	シスメックスXEシリー						90.60	90.20	
1013		シスメックス	シスメックスXTシリー	83.		8.20	00.00	100.0	91.70	92.00	
1015		シスメックス シスメックス	シスメックスXEシリー シスメックスXEシリー	83.			83.00	100.0	97.70	89.10	
1018 1021		シスメックス	シスメックスXTシリー	83. 83.			83.60 80.00	98.20 101.0	90.80 89.20	90.60 90.60	
1023		•, , , ,	***************************************	83.		8.20	00.00	101.0	91.50	91.30	
1024		シスメックス	シスメックスXNシリー	83.			80.00	101.0	93.60	93.80	
1026		シスメックス	シスメックスXTシリー	83.	.60 98	8.20			85.40	115.7	
1028		シスメックス	シスメックスK-4500	82.	70 10	06.6	79.00	100.0	90.70	91.60	
1029		シスメックス	シスメックスK-4500	83.	.60 98	8.20	83.60	98.20	89.80	90.40	
1031		シスメックス	シスメックスXEシリー	83.	.60 98	8.20			90.80	90.70	
1032		シスメックス	シスメックスXSシリー	82.	70 10	01.6	79.00	100.0	89.80	90.10	
1033		シスメックス	シスメックスXSシリー	83.			80.00	101.0	92.70	97.70	
1034		シスメックス	シスメックスXTシリー	83.			80.00	101.0	90.20	90.50	
1035		シスメックス	シスメックスXEシリー	83.			83.00	101.0	90.30	90.60	
1038 1039		シスメックス シスメックス	シスメックスXEシリー シスメックスXTシリー	83. 83.			83.60 83.60	98.20 98.20	90.60 91.10	90.10 91.00	
1039		シスメックス	シスメックスXEシリー	83.			83.60	98.20	90.60	89.30	
1044		シスメックス	シスメックスXSシリー	83.		3.00	00.00	30.20	89.40	89.70	
1046		シスメックス	シスメックスXSシリー	80.			80.00	100.0	90.30	90.30	
1049		シスメックス	シスメックスXTシリー	82.	70 10	01.6	79.00	100.0	95.30	92.20	
1050		シスメックス	シスメックスXNシリー	89.	.00 99	9.00	89.00	99.00	90.40	99.20	
1051		シスメックス	シスメックスXTシリー	82.	70 10	01.8	79.00	100.0	94.20	91.20	
1054		ベックマン・コー	ヘックマン・コールター	82.			82.00	100.0	96.30	94.00	
1055		シーメンス	シーメンスHCD120	83.		8.20			97.80	107.0	
1056		シスメックス	シスメックスXTシリー	83.			79.00	100.0	90.40	90.60	
1057		シスメックス	シスメックスXSシリー	83.			80.00	101.0	90.60	90.50	
1058 1059		シーメンス シスメックス	シーメンスHCD120 シスメックスXTシリー	87. 83.			87.00 80.00	102.0 101.0	96.60 94.20	95.00 92.00	
1060		シスメックス	シスメックスXSシリー	00.	.00 10	01.0	00.00	101.0	109.7	90.90	
1062		ベックマン・コー	ベックマン・コールター	83.	.60 98	8.20	83.60	98.20	96.00	94.20	
1064		シスメックス	シスメックスXTシリー	83.			83.00	99.00	101.0	91.10	
1069				82.	70 10	01.6	79.00	100.0	91.20	98.60	
1072		ダイナボット	アホットシャハ°ンCD	85.	.00 10	0.00	85.00	100.0	95.70	95.30	
1073		シーメンス	シーメンスHCD120	83.	.00 10	01.0	79.00	99.00	94.90	94.30	
1074		シスメックス	シスメックスXSシリー	83.			80.00	101.0	90.50	90.50	
1075		ホリバ(堀場製作	堀場PENTRA60	83.			83.60	98.20	96.00	92.00	
1076		シスメックス	シスメックスKX-21_	82.			79.00	100.0	97.30	92.00	
1077 1079				83.	.00 10	04.0	80.00	103.0	77.70 93.70	79.60 92.50	
1079				82.	70 10	01.6	79.00	100.0	85.40	86.30	
1081		ダイナボット	アボットシ゛ャハ゜ンCD	83.			83.60	98.20	94.80	94.60	
1084		シスメックス	シスメックスXTシリー	83.			83.60	98.20	88.50	88.60	
1088		シスメックス	シスメックスXTシリー	85.			85.00	103.0	90.00	91.30	
1089		シスメックス	シスメックスXTシリー	83.	.60 98	8.20	83.60	98.20	91.70	92.00	
1090		シスメックス	シスメックスXTシリー	83.	.60 98	8.20	83.60	98.20	90.10	95.50	
1091				85.	.00 10	02.0	84.00	102.0	92.10	90.80	
1093		シスメックス	シスメックスXTシリー	83.			83.00	100.0	91.50	90.80	
1094		シスメックス	シスメックスXNシリー	83.			83.00	100.0	90.90	99.20	
1097		日本光電	光電MEK-6400	83.			80.00	101.0	101.0	94.60	
1099		ホリバ(堀場製作	堀場LC-660_66	82.	10 I(	υ1.b	79.00	100.0	70.60	76.80	

68 MCV 施設No.が低い順に並んでいます

施設	0.77 PAN //RI			男性	:基準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下队			上限	試料08	試料34	
1101		シスメックス	シスメックスXEシリー	85.0	0 101.0	84.00	100.0	95.20	89.60	
1102				83.0	0 100.0	83.00	100.0	91.40	91.20	
1104		シスメックス	シスメックスKX-21_	83.0	0 101.0	80.00	101.0	89.80	90.60	
1105		シスメックス	シスメックスXP-100	83.0	0 101.0	80.00	101.0	90.00	90.00	
1108		シスメックス	シスメックスXSシリー	85.0	0 102.0	84.00	102.0	91.20	90.90	
1120		シスメックス	シスメックスXEシリー	83.6		83.60	98.20	89.80	89.30	
1121		シスメックス	シスメックスXSシリー	83.0		80.00	101.0	90.20	90.00	
1122		ベックマン・コー	ヘックマン・コールター	82.7	0 101.6	79.00	100.0	95.90	94.30	
1123 1124		シスメックス 日本光電	シスメックスXP-100 光電MEK-6400	92.6	0 98.20			90.20 96.60	91.50 93.00	
1124		シスメックス	シスメックスKX-21_	83.6	0 50.20	'		93.50	95.10	
1126		シスメックス	シスメックスXSシリー	82.7	0 101.6	79.00	100.0	91.80	92.30	
1127		シスメックス	シスメックスXTシリー	83.0		80.00	101.0	91.50	91.60	
1128		シスメックス	シスメックスXNシリー	83.6	0 98.20	83.60	98.20	93.10	91.50	
1129		シスメックス	シスメックスXSシリー	83.0	0 101.0	80.00	101.0	91.30	92.40	
1130		シスメックス	シスメックスXNシリー	83.6	0 98.20	83.60	98.20	84.70	104.2	
1133		シスメックス	シスメックスXSシリー	83.0		79.00	100.0	91.40	90.90	
1134		シスメックス	シスメックスXSシリー	83.0		80.00	101.0	104.5	89.60	
1135		シスメックス	シスメックスpocH-1	82.7		79.00	100.0	91.90	92.50	
1136		シスメックス シスメックス	シスメックスKX-21_	83.6			100.0	91.40	91.60	
1137 1300		シスメックス	シスメックスKX-21_ シスメックスXNシリー	83.0 83.6		83.00 83.60	100.0 98.20	93.00 90.30	93.30 90.60	
1301		シスメックス	シスメックスXEシリー	85.0		85.00	103.0	91.40	89.80	
1302		ベックマン・コー	ベックマン・コールター	83.6		83.60	98.20	94.90	93.20	
1305		シスメックス	シスメックスXTシリー	83.6			98.20	91.20	91.40	
1308				83.6	0 98.20	83.60	98.20	92.90	93.00	
1310		シスメックス	シスメックスXNシリー	83.0	0 93.00	83.00	93.00	91.50	91.10	
1313				83.0		83.00	102.0	90.00	90.00	
1315		シーメンス	シーメンスHCD120	83.6			98.20	98.30	96.90	
1316		シスメックス	シスメックスXNシリー	86.0		84.00	100.0	91.10	90.60	
1317 1325		日本光電	光電MEK-7300	83.0 83.6		80.00 83.60	101.0 98.20	94.80 96.00	90.50 95.20	
1326		シスメックス	シスメックスpocH-1	83.0		80.00	101.0	92.30	93.80	
1327		シーメンス	シーメンスHCD120	83.6		83.60	98.20	97.50	96.40	
1328		日本光電	光電MEK-6400	85.0				97.40	93.40	
1329		ベックマン・コー	ヘ゛ックマン・コールター	83.6	0 98.20	83.60	98.20	94.10	93.00	
1330		シーメンス	シーメンスHCD120	86.0	0 102.0	)		96.40	96.20	
1331		シスメックス	シスメックスXEシリー	85.0	0 100.0	85.00	100.0	90.00	91.00	
1335		シスメックス	シスメックスK-4500	83.0		80.00	103.0	91.00	91.00	
1337		シスメックス	シスメックスXNシリー	83.6		83.60	98.20	91.60	91.30	
1339 1341		シスメックス シスメックス	シスメックスXTシリー シスメックスXNシリー	83.6 83.6		83.60 83.60	98.20 98.20	91.40 93.10	92.80 92.40	
1343		シスメックス	シスメックスXNシリー	83.6		83.60	98.20	91.40	89.40	
1344		シスメックス	シスメックスXTシリー	83.6		83.60	98.20	92.50	92.60	
1346		シスメックス	シスメックスXNシリー	82.7		79.00	100.0	90.00	90.00	
1347		シスメックス	シスメックスK-4500	83.6	0 98.20	)		90.40	91.30	
1348		シスメックス	シスメックスXEシリー	85.0	0 100.0	85.00	100.0	89.10	89.50	
1349		シスメックス	シスメックスXTシリー	83.6		83.60	98.20	91.40	92.00	
1350		シスメックス	シスメックスXSシリー	83.0		80.00	101.0	89.40	91.40	
1351		3,73, 27	Log L Avgram II	83.6		83.60	98.20	95.00	93.80	
1352		シスメックス	シスメックスXTシリー	82.0		82.00	104.0	90.00	89.00	
1355 1356		シーメンス シスメックス	シーメンスHCD120 シスメックスXTシリー	83.6 83.6		83.60 83.60	98.20 98.20	96.30 89.60	95.30 90.00	
1357		シスメックス	シスメックスXEシリー	85.6		82.00	95.00	92.20	91.60	
1358		シスメックス	シスメックスXTシリー	83.6			23.00	90.10	89.80	
1359		シスメックス	シスメックスXTシリー	83.6		83.60	98.20	91.60	91.90	
1360		シスメックス	シスメックスXNシリー	80.0	0 100.0	80.00	100.0	92.40	91.80	

68 MCV 施設No.が低い順に並んでいます

施設	测亭压油	± 4±€	1446 12.12	男性基準	<b>華範囲</b>	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	
1361				83.60	98.20			95.40	92.70	
1362		シーメンス	シーメンスHCD120	85.00	102.0	84.00	102.0	93.80	92.80	
1365		シスメックス	シスメックスXNシリー	83.60	98.20	83.60	98.20	92.10	91.50	
1367		シスメックス	シスメックスpocH-1	83.60	98.20			89.20	90.20	
1368				83.60	98.20	83.60	98.20	91.10	91.50	
1370		シスメックス	シスメックスXTシリー	83.60	98.20	83.60	98.20	90.90	90.90	
1371		シスメックス	シスメックスXSシリー	83.60	98.20			92.10	92.20	
1373		シスメックス	シスメックスXSシリー	84.00	101.0	79.00	101.0	90.20	90.00	
1374		ホリバ(堀場製作	堀場LC-660_66		101.0		101.0	94.10	91.90	
1375		シスメックス	シスメックスKX-21_		101.0		101.0	91.00	91.00	
1378		シスメックス	シスメックスK-4500		101.0		101.0	92.00	93.20	
1382		ダイナボット	アボットシャハ°ンCD		98.20	83.60	98.20	93.00	92.30	
1385		シスメックス	シスメックスXSシリー		98.20			90.40	90.80	
1390		シスメックス	シスメックスXNシリー		100.0	00.00	102.0	94.00	93.00	
1391		シスメックス 日本光電	シスメックスXNシリー 半零MEK-6400		103.0		103.0	93.40	92.40	
1393 1394		ロ平元电 シスメックス	光電MEK-6400 シスメックスXP-100		101.6 98.20	79.00	100.0	95.20 92.20	92.40 92.40	
1396		ダイナボット	アボットシャハ°ンCD			83.60	98.20	92.70	92.50	
1400		シスメックス	シスメックスXSシリー			83.60	98.20	92.70	92.10	
1401		シスメックス	シスメックスXTシリー			83.60	98.20	91.70	91.20	
1402		シスメックス	シスメックスXNシリー			83.60	98.20	91.40	89.70	
1403		シスメックス	シスメックスXTシリー			83.60	98.20	89.80	90.50	
1404		シスメックス	シスメックスXEシリー			83.60	98.20	90.60	89.80	
1405		シスメックス	シスメックスXSシリー				101.0	91.40	91.20	
1407			, , , , ,		97.00			96.30	92.90	
1408		シスメックス	シスメックスXSシリー		102.5	85.00	101.0	91.90	92.10	
1410		シスメックス	シスメックスXSシリー	85.60	102.5	85.00	101.0	88.40	88.40	
1411		シスメックス	シスメックスXEシリー	83.60	98.20	83.60	98.20	89.20	88.90	
1413		ホリバ(堀場製作	堀場LC-667CR	83.60	98.20	83.60	98.20	96.90	94.20	
1415				82.70	101.6	79.00	100.0	98.00	93.90	
1418		ホリバ(堀場製作	堀場LC-660_66	83.60	98.20	83.60	98.20	95.90	94.70	
1419		シスメックス	シスメックスXSシリー	83.00	101.0	80.00	100.0	90.80	90.90	
1501		シスメックス	シスメックスXEシリー	82.70	101.6	79.00	100.0	90.30	90.00	
1502		シスメックス	シスメックスXEシリー	80.00	100.0	80.00	100.0	90.60	90.80	
1505		シスメックス	シスメックスXEシリー	83.60	98.20		98.20	90.20	99.20	
1506		シスメックス	シスメックスXNシリー			79.00	100.0	90.60	90.90	
1511		シスメックス	シスメックスXTシリー	83.60	98.20	83.60	98.20	90.30	90.70	
1512		シスメックス	シスメックスXEシリー		98.20		98.20	90.90	90.10	
1513		シスメックス	シスメックスXEシリー		98.20		98.20	90.30	90.60	
1514		シスメックス	シスメックスXNシリー		98.20		98.20	90.90	90.80	
1518		シスメックス	シスメックスK-4500		100.0		98.00	92.80	100.0	
1519		シスメックス	シスメックスXTシリー		98.20		98.20	90.20	90.80	
1521		シスメックス	シスメックスXP-100		99.00	89.00	99.00	93.10	95.40	
1523		ホリバ(堀場製作 ホリバ(堀場製作	堀場LCシリース*		98.20	70.00	100.0	96.00	90.70	
1525 1528		シスメックス	堀場LC-660_66 シスメックスXTシリー		101.6 98.20		100.0 98.20	95.60 88.20	84.80 89.40	
1529		シスメックス	シスメックスXEシリー		101.0		101.0	88.80	89.10	
1530		*******	770///AL7/		98.20		98.20	91.10	91.50	
1531		シスメックス	シスメックスXTシリー		100.0		100.0	91.40	91.80	
1532		シスメックス	シスメックスXEシリー		98.20	_ 1.00		88.80	88.40	
1533		シスメックス	シスメックスXTシリー		98.20			90.00	90.50	
1534		シスメックス	シスメックスXSシリー		98.20			88.10	88.20	
1538		ホリバ(堀場製作	堀場PENTRA60		98.20			97.00	91.00	
1540		シスメックス	シスメックスXSシリー		98.20	83.60	98.20	92.70	92.10	
1541		シスメックス	シスメックスXTシリー		101.0		100.0	91.80	91.50	
1542		シスメックス	シスメックスXTシリー			79.00	100.0	91.40	96.70	

68 MCV 施設No.が低い順に並んでいます

施設	201 et a mar - m	- titt	Lak mm	男性基準範	囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限 上		下限	上限	試料08	試料34	
1546		ホリバ(堀場製作	堀場LC-667CR					76.20	83.80	
1548		シスメックス	シスメックスXSシリー	83.60 98.	20 8	83.60	98.20	89.00	89.60	
1549		シスメックス	シスメックスXSシリー	82.70 103	1.6	79.00	100.0	91.10	91.10	
1550		シスメックス	シスメックスXTシリー	83.00 103	1.0 8	80.00	101.0	89.60	91.40	
1552		ホリバ(堀場製作	堀場LC-667CR	82.70 101	1.6	79.00	100.0	94.20	92.50	
1554		シスメックス	シスメックスK-4500					82.50	89.00	
1555		シスメックス	シスメックスXSシリー	82.70 103	1.6	79.00	100.0	90.00	90.90	
1557		ホリバ(堀場製作	堀場PENTRA60	82.70 103	1.8	79.00	100.0	72.00	92.00	
1558		シスメックス	シスメックスXNシリー	80.00 100	0.0	80.00	100.0	90.50	90.20	
1559		ホリバ(堀場製作	堀場PENTRA60	83.60 98.	20 8	83.60	98.20	98.00	96.00	
1560		ホリバ(堀場製作	堀場LC-660_66	82.70 103	1.6	79.00	100.0	93.60	82.20	
1561		シスメックス	シスメックスXNシリー	83.60 98.	20 8	83.60	98.20	95.70	94.30	
1562		シスメックス	シスメックスXEシリー	83.60 98.	20 8	83.60	98.20	90.00	90.10	
1901		シスメックス	シスメックスXEシリー	82.70 103	1.6	79.00	100.0	90.10	88.80	
1902		シスメックス	シスメックスXEシリー	83.00 103	1.0 8	80.00	101.0	90.30	88.80	
1903		シスメックス	シスメックスXEシリー	82.70 103	1.6	79.00	100.0	89.10	98.00	
1909		シスメックス	シスメックスXEシリー	85.00 100	0.0	84.00	98.00	89.60	89.30	
1911		シーメンス	シーメンスHCD120	85.00 102	2.0 8	84.00	102.0	93.80	92.80	
1916		シスメックス	シスメックスXTシリー	83.60 98.	20 8	83.60	98.20	90.70	91.50	
1917		シスメックス	シスメックスXTシリー	82.70 103	1.6	79.00	100.0	91.70	92.30	
1920		シスメックス	シスメックスK-4500	85.00 100	0.0	84.00	98.00	92.00	99.00	
1922		シスメックス	シスメックスXTシリー	82.70 103	1.6	79.00	100.0	91.80	92.00	
1923		シスメックス	シスメックスXTシリー	82.70 103	1.6	79.00	100.0	92.20	91.90	
1925		ホリバ(堀場製作	堀場PENTRA60	83.00 102		79.00	100.0	96.00	92.00	
1926		シスメックス	シスメックスXEシリー			88.00	100.0	98.70	98.90	
1928		シスメックス	シスメックスXTシリー			79.00	100.0	91.50	100.9	
1930		シスメックス	シスメックスXTシリー			79.00	100.0	91.20	91.50	
1931		シスメックス	シスメックスXTシリー			79.00	100.0	00.50	91.70	
1932		シスメックス	シスメックスXTシリー			80.00	101.0	93.50	91.60	
1933		シスメックス	シスメックスKX-21_			83.00	99.00	92.70	93.00	
1934		シスメックス	シスメックスXTシリー			79.00	100.0	91.40	92.30	
1935		シスメックス	シスメックスXTシリー			80.00	101.0	92.30	92.90	
1936		シスメックス シスメックス	シスメックスXTシリー シスメックスXNシリー			80.00	101.0	91.00	91.30	
1937 2002		シスメックス	シスメックスXEシリー			83.00 83.60	103.0 98.20	93.70 91.50	95.70 91.70	
2002		シスメックス	シスメックスXEシリー			83.00	98.00	90.20	90.20	
2008		シスメックス	シスメックスXNシリー			83.60	98.20	93.40	91.80	
2009		シスメックス	シスメックスK-4500			83.00	93.00	91.30	91.60	
2010		シスメックス	シスメックスXSシリー			79.00	100.0	89.20	89.30	
2011		シスメックス	シスメックスXTシリー			79.00	100.0	90.80	91.10	
2012		ホリバ(堀場製作	堀場LC-660_66			80.00	97.00	94.20	93.00	
3001		シスメックス	シスメックスXEシリー			83.60	98.20	90.00	90.00	
3013		ホリバ(堀場製作	堀場LC-660_66			79.00	100.0	95.80	93.90	
3018		シスメックス	シスメックスXP-100	83.00 103		-		90.10	90.60	
3022		シスメックス	シスメックスXEシリー			83.60	98.20	90.60	90.80	
3027		シスメックス	シスメックスXEシリー			79.00	100.0	88.90	88.70	
3048		ベックマン・コー	ヘックマン・コールター		20 8	83.60	98.20	95.80	94.10	
3055		シスメックス	シスメックスXEシリー			83.60	98.20	89.30	89.50	
3056				84.00 102	2.0 8	84.00	102.0	90.60	90.50	
3907		シスメックス	シスメックスXEシリー	80.00 103	1.0 8	80.00	101.0	91.30	90.10	
4002		シスメックス	シスメックスXNシリー	83.60 98.	20			92.90	92.20	
4039		シスメックス	シスメックスKX-21_	85.00 100	0.0	85.00	100.0	90.10	91.00	
4040		ベックマン・コー	ベックマン・コールター	82.70 103	1.6	79.00	100.0	96.10	93.80	
4902				80.00 100	0.0	80.00	100.0	92.70	92.50	
5003		シスメックス	シスメックスXEシリー	79.00 103	1.0	79.00	101.0	91.60	91.10	
5005		シスメックス	シスメックスXNシリー	83.60 98.	20			91.50	90.90	
5006		シスメックス	シスメックスXNシリー	83.60 98.	20 0	83.60	98.20	92.00	92.00	

68 MCV 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足原垤	武衆/一//	79文台计	下限	上限	下限	上限	試料08	試料34	
5010		シスメックス	シスメックスXNシリー	83.60	98.20			93.10	93.12	
6006		日本光電	光電MEK-6400	83.00	100.0	83.00	100.0	95.40	91.70	
6008		シスメックス	シスメックスXNシリー	83.60	98.20	83.60	98.20	93.40	92.70	
6015		ベックマン・コー	ヘックマン・コールター	82.70	101.6	79.00	100.0	98.20	97.00	
6016		シスメックス	シスメックスXEシリー	83.60	98.20	83.60	98.20	88.30	89.40	
7001		シスメックス	シスメックスXEシリー	82.00	101.0	82.00	101.0	88.90	90.10	
7002		シスメックス	シスメックスXNシリー	83.60	98.20	83.60	98.20	91.50	88.90	
7007		シーメンス	シーメンスHCD120	78.00	101.0	78.00	101.0	94.10	96.00	
7011		シーメンス	シーメンスHCD120	83.60	98.20			92.30	92.60	
7025		シスメックス	シスメックスK-4500	83.00	102.0			91.70	92.00	
8004		シスメックス	シスメックスXEシリー	83.60	98.20	83.60	98.20	89.20	89.50	
8011		シスメックス	シスメックスXSシリー	82.70	101.6	89.00	100.0	90.20	90.80	

69 MCH 施設No.が低い順に並んでいます

施設	124 700	に並んていより		男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	* * 1
1001		シスメックス	シスメックスXNシリー	27.50	33.20	27.50	33.20	32.70	31.10	
1002		シスメックス	シスメックスXEシリー	29.00	35.00		34.00	32.40	30.80	
1004		シスメックス	シスメックスXNシリー	27.50	33.20	27.50	33.20	32.50	31.30	
1006		シーメンス	シーメンスHCD120	27.50	33.20	27.50	33.20	32.80	32.40	
1010		シスメックス	シスメックスXEシリー	28.00	34.60	26.30	34.30	32.20	30.30	
1011		シスメックス	シスメックスXEシリー	28.00	34.00	27.00	33.00	32.50	30.80	
1012		シスメックス	シスメックスXEシリー					32.40	30.80	
1013		シスメックス	シスメックスXTシリー	27.50	33.20			33.30	31.30	
1015		シスメックス	シスメックスXEシリー	28.00		28.00	34.00	32.40	30.30	
1018		シスメックス	シスメックスXEシリー	27.50		27.50	33.20	32.50	31.10	
1021		シスメックス	シスメックスXTシリー	28.20		26.40	34.30	32.50	31.10	
1023		3,771, 47	Service de la se	27.50	33.20	00.40	0.4.00	33.00	37.70	
1024		シスメックス シスメックス	シスメックスXNシリー シスメックスXTシリー	28.20	33.20	26.40	34.30	32.60 34.00	31.10	
1026 1028		シスメックス	シスメックスK-4500	27.50 28.00	34.60	26.30	34.30	33.50	31.30 31.50	
1029		シスメックス	シスメックスK 4500	27.50	33.20		33.20	32.50	30.50	
1025		シスメックス	シスメックスXEシリー	27.50	33.20	21.50	33.20	31.90	30.30	
1032		シスメックス	シスメックスXSシリー	28.00	34.60	26.30	34.30	32.60	31.00	
1033		シスメックス	シスメックスXSシリー	28.20	34.70		34.30	32.40	31.00	
1034		シスメックス	シスメックスXTシリー	28.20	34.70		34.30	31.70	29.90	
1035		シスメックス	シスメックスXEシリー	27.00		27.00	32.00	32.50	30.10	
1038		シスメックス	シスメックスXEシリー	27.50	33.20	27.50	33.20	31.40	30.50	
1039		シスメックス	シスメックスXTシリー	27.50	33.20	27.50	33.20	32.80	30.70	
1040		シスメックス	シスメックスXEシリー	27.50	33.20	27.50	33.20	31.90	32.80	
1044		シスメックス	シスメックスXSシリー	27.00	32.00			31.90	30.80	
1046		シスメックス	シスメックスXSシリー	27.00	32.00	27.00	32.00	32.20	30.60	
1049		シスメックス	シスメックスXTシリー	28.00	34.60	26.30	34.30	34.00	30.80	
1050		シスメックス	シスメックスXNシリー	28.00	35.00	28.00	35.00	32.60	30.40	
1051		シスメックス	シスメックスXTシリー	28.00	34.60	26.30	34.30	32.40	31.00	
1054		ベックマン・コー	ヘックマン・コールター	28.00	35.00	28.00	35.00	31.90	30.60	
1055		シーメンス	シーメンスHCD120	27.50	33.20			32.70	43.20	
1056		シスメックス	シスメックスXTシリー	28.00	35.00		34.00	33.00	31.30	
1057		シスメックス	シスメックスXSシリー	28.20	34.70	26.40	34.30	32.80	31.80	
1058		シーメンス	シーメンスHCD120	28.00	34.00	28.00	34.00	33.30	31.60	
1059		シスメックス	シスメックスXTシリー	28.20	34.70	26.40	34.30	33.20	31.70	
1060		シスメックス	シスメックスXSシリー	97.50	22.20	97.50	22.00	33.60	31.50	
1062 1064		ベックマン・コー	ベックマン・コールター	27.50		27.50	33.20	33.00	31.20	
1064		シスメックス	シスメックスXTシリー	29.00 28.00		29.00 26.30	35.00 34.30	33.40 32.60	31.90 30.70	
1072		ダイナボット	アボットジャパンCD	28.00		28.00	33.00	33.50	31.50	
1073		シーメンス	シーメンスHCD120	28.10	34.50		33.60	33.50	30.70	
1074		シスメックス	シスメックスXSシリー	28.20		26.40	34.30	33.30	31.70	
1075		ホリバ(堀場製作	堀場PENTRA60	27.50		27.50	33.20	32.90	31.30	
1076		シスメックス	シスメックスKX-21_	28.00		26.30	34.30	32.30	30.80	
1077				28.00	36.00	26.00	35.00	32.90	32.10	
1079								31.60	30.10	
1080				28.00	34.60	26.30	34.30	33.20	31.10	
1081		ダイナボット	アボットジャパンCD	27.50	33.20	27.50	33.20	34.00	32.60	
1084		シスメックス	シスメックスXTシリー	27.50	33.20	27.50	33.20	33.10	31.30	
1088		シスメックス	シスメックスXTシリー	27.00	32.00	27.00	32.00	33.40	32.10	
1089		シスメックス	シスメックスXTシリー	27.50	33.20	27.50	33.20	33.50	31.30	
1090		シスメックス	シスメックスXTシリー	27.50		27.50	33.20	32.40	31.20	
1091				28.00		27.00	34.00	33.00	30.90	
1093		シスメックス	シスメックスXTシリー	28.00		28.00	34.00	32.90	30.80	
1094		シスメックス	シスメックスXNシリー	28.00		28.00	34.00	32.10	31.00	
1097		日本光電	光電MEK-6400	28.20		26.40	34.30	33.60	31.70	
1099		ホリバ(堀場製作	堀場LC-660_66	28.00	34.60	26.30	34.30	38.20	31.90	

69 MCH 施設No.が低い順に並んでいます

施設	油中压用	34 THE 1	146 111	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	
1101		シスメックス	シスメックスXEシリー	26.00	32.00	26.00	32.00	33.30	30.90	
1102				28.00	34.00	28.00	34.00	32.80	31.10	
1104		シスメックス	シスメックスKX-21_	28.20	34.70	26.40	34.30	32.70	30.80	
1105		シスメックス	シスメックスXP-100	28.20	34.70	26.40	34.30	32.60	31.10	
1108		シスメックス	シスメックスXSシリー	28.00	35.00	27.00	34.00	33.30	31.60	
1120		シスメックス	シスメックスXEシリー	27.50	33.20	27.50	33.20	32.50	31.20	
1121		シスメックス	シスメックスXSシリー	28.20	34.70	26.40	34.30	33.10	31.70	
1122		ベックマン・コー	ヘックマン・コールター	28.00	34.60	26.30	34.30	32.30	31.00	
1123		シスメックス	シスメックスXP-100					31.60	30.60	
1124		日本光電	光電MEK-6400	27.50	33.20			32.60	30.70	
1125		シスメックス	シスメックスKX-21_					32.50	31.50	
1126		シスメックス	シスメックスXSシリー	28.00	34.60	26.30	34.30	32.90	31.10	
1127		シスメックス	シスメックスXTシリー	28.20		26.40	34.30	32.90	30.90	
1128		シスメックス	シスメックスXNシリー	27.50		27.50	33.20	32.60	30.80	
1129		シスメックス	シスメックスXSシリー	28.20	34.70	26.40	34.30	34.00	32.30	
1130		シスメックス	シスメックスXNシリー	27.50	33.20		33.20	42.70	30.60	
1133		シスメックス	シスメックスXSシリー	28.00		26.30	34.30	32.60	30.90	
1134		シスメックス	シスメックスXSシリー	28.20	34.70		34.30	32.60	30.80	
1135		シスメックス	シスメックスpocH-1	28.00	34.60	26.30	34.30	32.50	31.10	
1136		シスメックス	シスメックスKX-21_	27.50	33.20			32.20	30.40	
1137		シスメックス	シスメックスKX-21_	28.00	34.00	28.00	34.00	33.40	31.70	
1300		シスメックス	シスメックスXNシリー	27.50		27.50	33.20	32.10	31.10	
1301		シスメックス	シスメックスXEシリー	27.00		27.00	36.00	32.70	30.80	
1302		ベックマン・コー	ヘックマン・コールター	27.50		27.50	33.20	32.70	31.10	
1305		シスメックス	シスメックスXTシリー	27.50	33.20	27.50	33.20	32.80	31.00	
1308		ミノフィッカフ	シスメックスXNシリー	27.50		27.50 27.00	33.20	30.60	31.90 31.00	
1310 1313		シスメックス	2 × × 9 9 × X N 2 9 —	27.00 27.00		27.00	33.00 34.50	32.40 32.30	30.50	
1315		シーメンス	シーメンスHCD120	27.50		27.50	33.20	33.50	31.80	
1316		シスメックス	シスメックスXNシリー	27.50		26.10	35.50	32.10	30.40	
1317		日本光電	光電MEK-7300	28.20		26.40	34.30	32.30	30.90	
1325		A.1.704E	)	27.50	33.20		33.20	32.40	31.20	
1326		シスメックス	シスメックスpocH-1	28.20	34.70		34.30	32.70	30.50	
1327		シーメンス	シーメンスHCD120	27.50		27.50	33.20	34.00	32.00	
1328		日本光電	光電MEK-6400	28.20	34.00			33.20	31.80	
1329		ベックマン・コー	ヘックマン・コールター	27.50	33.20	27.50	33.20	33.30	31.80	
1330		シーメンス	シーメンスHCD120	27.00	32.00			33.00	31.90	
1331		シスメックス	シスメックスXEシリー	27.00	33.00	27.00	33.00	32.40	30.00	
1335		シスメックス	シスメックスK-4500	28.00	36.00	26.00	35.00	33.20	31.60	
1337		シスメックス	シスメックスXNシリー	27.50	33.20	27.50	33.20	32.30	31.00	
1339		シスメックス	シスメックスXTシリー	27.50	33.20	27.50	33.20	32.70	31.10	
1341		シスメックス	シスメックスXNシリー	27.50	33.20	27.50	33.20	32.20	30.50	
1343		シスメックス	シスメックスXNシリー	27.50	33.20	27.50	33.20	32.40	30.90	
1344		シスメックス	シスメックスXTシリー	27.50	33.20	27.50	33.20	33.10	31.60	
1346		シスメックス	シスメックスXNシリー	28.00	34.60	26.30	34.30	32.50	30.30	
1347		シスメックス	シスメックスK-4500	27.50	33.20			32.70	31.30	
1348		シスメックス	シスメックスXEシリー	27.00	33.00	27.00	33.00	32.20	30.50	
1349		シスメックス	シスメックスXTシリー	27.50		27.50	33.20	32.60	31.10	
1350		シスメックス	シスメックスXSシリー	28.20		26.40	34.30	32.90	31.40	
1351				27.50		27.50	33.20	32.50	31.50	
1352		シスメックス	シスメックスXTシリー	27.00		27.00	35.00	32.60	31.30	
1355		シーメンス	シーメンスHCD120	27.50		27.50	33.20	32.80	31.60	
1356		シスメックス	シスメックスXTシリー	27.50		27.50	33.20	33.40	31.70	
1357		シスメックス	シスメックスXEシリー	29.00		28.00	35.00	31.90	30.10	
1358		シスメックス	シスメックスXTシリー	27.50	33.20	05	0.7	32.70	30.90	
1359		シスメックス	シスメックスXTシリー	27.50		27.50	33.20	32.70	30.60	
1360		シスメックス	シスメックスXNシリー	28.00	32.00	28.00	32.00	32.50	30.90	

69 MCH 施設No.が低い順に並んでいます

No 1361 1362 1365 1367 1368 1370 1371 1373 1374 1375 1378 1382 1385 1390 1391 1393 1394 1396 1400 1401 1402 1403 1404 1405	測定原理	試薬メーカー シーメンス シスメックス シスメックス シスメックス シスメッククス シスメッククス ホリバメクス シスメックス ホリバメクス ボリバルクス ドリクス ドリクス ドリクス ドリクス ドリクス ドリクス ドリクス ドリ	機器  シーメンスHCD120 シスメックスXNシリー シスメックスXTシリー シスメックスXTシリー シスメックスXSシリー シスメックスXSシリー 堀場LC-660_66 シスメックスKX-21_ シスメックスKX-21」 シスメックスXSシリー ・ジスメックスXXシリー シスメックスXXシリー シスメックスXNシリー シスメックスXNシリー シスメックスXNシリー シスメックスXP-100 アボットシャハ*ンCD シスメックスXSシリー シスメックスXSシリー シスメックスXSシリー シスメックスXSシリー シスメックスXTシリー	下限 27.50 28.00 27.50 27.50 27.50 27.50 27.50 27.50 27.50 27.80 28.20 28.20 27.50 27.50 27.50 27.50 27.50 27.50 27.50 27.50 27.50 27.50 27.50	33.20 33.20 33.20 33.20 34.00 34.70 34.70 33.20 33.20 35.00 34.60 33.20	27.50	上限 34.00 33.20 33.20 34.30 34.30 34.30 35.00 34.30	就料08 33.50 34.00 32.60 32.40 32.70 33.30 33.10 32.20 33.90 33.20 32.20 32.20 32.20 32.30 32.50	31.70 32.40 31.20 30.20 31.20 31.60 31.50 30.50 31.40 31.50 30.80 31.80 30.70 30.50 31.40	
1362 1365 1367 1368 1370 1371 1373 1374 1375 1378 1382 1385 1390 1391 1393 1394 1400 1401 1402 1403 1404		シスメックス シスメックス シスメックス シスメックス シスメックス ホリバ(堀場製作 シスメックス ダイナボックス シスメックス 日本メックス ダイナボックス シスメックス ダイナボックス ジスメックス ジスメックス ジスメックス ジスメックス	シスメックスXNシリー シスメックスPocH-1 シスメックスXTシリー シスメックスXSシリー ジスメックスXSシリー 堀場LC-660_66 シスメックスKX-21_ シスメックスK-4500 アボットシャハ*ンCD シスメックスXSシリー シスメックスXNシリー シスメックスXNシリー 光電MEK-6400 シスメックスXP-100 アボットシャハ*ンCD	28.00 27.50 27.50 27.50 27.50 27.50 27.80 28.20 28.20 27.50 27.50 27.50 27.50 27.50 27.50 27.50	35.00 33.20 33.20 33.20 33.20 34.00 34.70 34.70 33.20 33.20 35.00 34.60 33.20	27.50 27.50 27.50 26.40 26.40 27.50	33.20 33.20 33.20 34.30 34.30 34.30 33.20	34.00 32.60 32.40 32.70 33.30 33.10 32.20 32.90 33.10 33.20 32.20 32.20 32.50	32.40 31.20 30.20 31.20 31.60 31.50 30.50 31.40 31.50 30.80 31.80 30.70 30.50 31.20	
1365 1367 1368 1370 1371 1373 1374 1375 1378 1382 1385 1390 1391 1393 1394 1396 1400 1401 1402 1403 1404		シスメックス シスメックス シスメックス シスメックス シスメックス ホリバ(堀場製作 シスメックス ダイナボックス シスメックス 日本メックス サボックス ジスメックス サボックス ジスメックス ジスメックス ジスメックス ジスメックス ジスメックス	シスメックスXNシリー シスメックスPocH-1 シスメックスXTシリー シスメックスXSシリー ジスメックスXSシリー 堀場LC-660_66 シスメックスKX-21_ シスメックスK-4500 アボットシャハ*ンCD シスメックスXSシリー シスメックスXNシリー シスメックスXNシリー 光電MEK-6400 シスメックスXP-100 アボットシャハ*ンCD	27.50 27.50 27.50 27.50 27.50 27.50 27.80 28.20 28.20 27.50 27.50 27.50 27.50 27.50 27.50 27.50 27.50	33.20 33.20 33.20 33.20 34.00 34.70 34.70 33.20 33.20 35.00 34.60 33.20	27.50 27.50 27.50 26.40 26.40 27.50	33.20 33.20 33.20 34.30 34.30 34.30 33.20	32.60 32.40 32.70 33.30 33.10 32.20 32.90 33.10 33.20 32.20 32.20 32.50	31.20 30.20 31.20 31.60 31.50 30.50 31.40 31.50 30.80 31.80 30.70 30.50 31.20	
3367 3368 3370 3371 3373 3374 3375 3378 3382 3385 3390 3391 3393 3394 4396 4400 4401 4402 4403 4404		シスメックス シスメックス シスメックス シスメックス ホリバ(堀場製作 シスメックス ダイナボックス ダイナボックス シスメックス サボックス シスメックス 日本 光ックス ダイナボックス ダイナボックス ジスメックス ジスメックス ジスメックス シスメックス シスメックス	シスメックスpocH-1 シスメックスXTシリー シスメックスXSシリー シスメックスXSシリー 堀場LC-660_66 シスメックスKX-21_ シスメックスKX-4500 アボットジャハ*ンCD シスメックスXSシリー シスメックスXNシリー シスメックスXNシリー 光電MEK-6400 シスメックスXP-100 アボットジャハ*ンCD シスメックスXSシリー	27.50 27.50 27.50 27.50 27.80 28.20 28.20 27.50 27.50 27.50 27.50 27.50 27.50 27.50	33.20 33.20 33.20 34.00 34.70 34.70 33.20 33.20 35.00 34.60 33.20	27.50 27.50 26.40 26.40 27.50 27.00	33.20 33.20 34.30 34.30 34.30 33.20	32.40 32.70 33.30 33.10 32.20 32.90 33.10 33.20 32.20 32.20 32.50	30.20 31.20 31.60 31.50 30.50 31.40 31.50 30.80 31.80 30.70 30.50 31.20	
3368 3370 3371 3373 3374 3375 3378 3382 3385 3390 3391 3393 3394 4309 4400 4401 4402 4403 4404		シスメックス シスメックス シスメックス ホリバ(堀場製作 シスメックス ダイナボット シスメックス レスメックス 日本光で ダイナボックス シスメックス ロ本メックス ダイナボックス ジスメックス ジスメックス シスメックス	シスメックスXTシリー シスメックスXSシリー シスメックスXSシリー 堀場LC-660_66 シスメックスKX-21_ シスメックスK-4500 アボットジャハ*ンCD シスメックスXNシリー シスメックスXNシリー 光電MEK-6400 シスメックスXP-100 アボットジャハ*ンCD シスメックスXSシリー	27.50 27.50 27.50 27.80 28.20 28.20 27.50 27.50 27.50 28.00 27.50 27.50 27.50	33.20 33.20 34.00 34.70 34.70 33.20 33.20 35.00 34.60 33.20	27.50 26.40 26.40 27.50 27.00	34.30 34.30 34.30 33.20	32.70 33.30 33.10 32.20 32.90 33.10 33.20 32.20 32.20 32.50	31.20 31.60 31.50 30.50 31.40 31.50 30.80 31.80 30.70 30.50 31.20	
1370 1371 1373 1374 1375 1378 1382 1385 1390 1391 1393 1394 1396 1400 1401 1402 1403 1404		シスメックス シスメックス ホリバ(堀場製作 シスメックス グイナボット シスメックス シスメックス サボックス シスメックス ダイナボックス シスメックス ダイナボックス ジスメックス ジスメックス	シスメックスXSシリー シスメックスXSシリー 堀場LC-660_66 シスメックスKX-21_ シスメックスK-4500 アボットシ*ャハ*ンCD シスメックスXSシリー シスメックスXNシリー 光電MEK-6400 シスメックスXP-100 アボットシ*ャハ*ンCD シスメックスXSシリー	27.50 27.80 27.80 28.20 28.20 27.50 27.50 27.00 28.00 27.50 27.50 27.50	33.20 33.20 34.00 34.70 34.70 33.20 33.20 35.00 34.60 33.20	27.50 26.40 26.40 27.50 27.00	34.30 34.30 34.30 33.20	33.30 33.10 32.20 32.90 33.10 33.00 32.20 32.20 32.50	31.60 31.50 30.50 31.40 31.50 30.80 31.80 30.70 30.50 31.20	
1371 1373 1374 1375 1378 1382 1385 1390 1391 1393 1394 1400 1401 1402 1403 1404		シスメックス シスメックス ホリバ(堀場製作 シスメックス グイナボット シスメックス シスメックス サボックス シスメックス ダイナボックス シスメックス ダイナボックス ジスメックス ジスメックス	シスメックスXSシリー シスメックスXSシリー 堀場LC-660_66 シスメックスKX-21_ シスメックスK-4500 アボットシ*ャハ*ンCD シスメックスXSシリー シスメックスXNシリー 光電MEK-6400 シスメックスXP-100 アボットシ*ャハ*ンCD シスメックスXSシリー	27.50 27.80 28.20 28.20 27.50 27.50 27.00 28.00 27.50 27.50 27.50	33.20 34.00 34.70 34.70 33.20 33.20 33.00 35.00 34.60 33.20	26.40 26.40 26.40 27.50	34.30 34.30 34.30 33.20	33.10 32.20 32.90 33.10 33.00 33.20 32.20 32.50	31.50 30.50 31.40 31.50 30.80 31.80 30.70 30.50 31.20	
1373 1374 1375 1378 1382 1385 1390 1391 1393 1394 1396 1400 1401 1402 1403 1404		シスメックス ホリバ(堀場製作 シスメックス ジスメックス ダイナボット シスメックス シスメックス サボックス ダイナボックス ダイナボックス ダイナボックス ジスメックス シスメックス	シスメックスXSシリー 堀場LC-660_66 シスメックスKX-21_ シスメックスK-4500 アボットシ・ヤハ・ンCD シスメックスXSシリー シスメックスXNシリー シスメックスXNシリー 光電MEK-6400 シスメックスXP-100 アボットシ・ヤハ・ンCD シスメックスXSシリー	27.80 28.20 28.20 28.20 27.50 27.50 27.00 27.00 28.00 27.50 27.50 27.50	34.00 34.70 34.70 33.20 33.20 33.00 35.00 34.60 33.20	26.40 26.40 27.50 27.00	34.30 34.30 33.20	32.20 32.90 33.10 33.00 33.20 32.20 32.00 32.50	30.50 31.40 31.50 30.80 31.80 30.70 30.50 31.20	
1374 1375 1378 1382 1385 1390 1391 1393 1394 1396 1400 1401 1402 1403 1403		ホリバ(堀場製作 シスメックス シスメックス ダイナボット シスメックス シスメックス 日本光電 シスメックス ダイナボット シスメックス ジスメックス シスメックス	堀場LC-660_66 シスメックスKX-21_ シスメックスK-4500 アボットシ・ャハ*ンCD シスメックスXSシリー シスメックスXNシリー シスメックスXNシリー 光電MEK-6400 シスメックスXP-100 アボットシ・ャハ*ンCD シスメックスXSシリー	28.20 28.20 28.20 27.50 27.50 27.00 28.00 27.50 27.50 27.50	34.70 34.70 34.70 33.20 33.20 35.00 34.60 33.20	26.40 26.40 27.50 27.00	34.30 34.30 33.20	32.90 33.10 33.00 33.20 32.20 32.00 32.50	31.40 31.50 30.80 31.80 30.70 30.50 31.20	
1375 1378 1382 1385 1390 1391 1393 1394 1396 1400 1401 1402 1403 1403		シスメックス シスメックス ダイナボット シスメックス シスメックス 日本光電 シスメックス ダイナボット シスメックス シスメックス	シスメックスKX-21_ シスメックスK-4500 アボットシ'ャハ°ンCD シスメックスXSシリー シスメックスXNシリー シスメックスXNシリー 光電MEK-6400 シスメックスXP-100 アボットシ'ャハ°ンCD シスメックスXSシリー	28.20 28.20 27.50 27.50 27.00 27.00 28.00 27.50 27.50	34.70 34.70 33.20 33.20 35.00 34.60 33.20	26.40 26.40 27.50 27.00	34.30 34.30 33.20	33.10 33.00 33.20 32.20 32.00 32.50	31.50 30.80 31.80 30.70 30.50 31.20	
1378 1382 1385 1390 1391 1393 1394 1396 1400 1401 1402 1403 1404		シスメックス ダイナボット シスメックス シスメックス 日本光電 シスメックス ダイナボット シスメックス シスメックス	シスメックスK-4500 アポットジャパンCD シスメックスXSシリー シスメックスXNシリー シスメックスXNシリー 光電MEK-6400 シスメックスXP-100 アポットジャパンCD シスメックスXSシリー	28.20 27.50 27.50 27.00 27.00 28.00 27.50 27.50	34.70 33.20 33.20 33.00 35.00 34.60 33.20	26.40 27.50 27.00	34.30 33.20 35.00	33.00 33.20 32.20 32.00 32.50	30.80 31.80 30.70 30.50 31.20	
1382 1385 1390 1391 1393 1394 1396 1400 1401 1402 1403 1403		ダイナボット シスメックス シスメックス 日本光電 シスメックス ダイナボット シスメックス シスメックス シスメックス	アボットシ・ャパンCD シスメックスXSシリー シスメックスXNシリー シスメックスXNシリー 光電MEK-6400 シスメックスXP-100 アボットシ・ャパンCD シスメックスXSシリー	27.50 27.50 27.00 27.00 28.00 27.50 27.50	33.20 33.20 33.00 35.00 34.60 33.20	27.50 27.00	33.20 35.00	33.20 32.20 32.00 32.50	31.80 30.70 30.50 31.20	
1385 1390 1391 1393 1394 1396 1400 1401 1402 1403 1403		シスメックス シスメックス シスメックス 日本光電 シスメックス ダイナボット シスメックス シスメックス シスメックス	シスメックスXSシリー シスメックスXNシリー シスメックスXNシリー 光電MEK-6400 シスメックスXP-100 アボットシャハ*ンCD シスメックスXSシリー	27.50 27.00 27.00 28.00 27.50 27.50 27.50	33.20 33.00 35.00 34.60 33.20	27.00	35.00	32.20 32.00 32.50	30.70 30.50 31.20	
1390 1391 1393 1394 1396 1400 1401 1402 1403 1404		シスメックス シスメックス 日本光電 シスメックス ダイナボット シスメックス シスメックス シスメックス	シスメックスXNシリー シスメックスXNシリー 光電MEK-6400 シスメックスXP-100 アボットシ*ャパンCD シスメックスXSシリー	27.00 27.00 28.00 27.50 27.50 27.50	33.00 35.00 34.60 33.20			32.00 32.50	30.50 31.20	
1391 1393 1394 1396 1400 1401 1402 1403 1404		シスメックス 日本光電 シスメックス ダイナボット シスメックス シスメックス シスメックス	シスメックスXNシリー 光電MEK-6400 シスメックスXP-100 アボットシ'ャハ°ンCD シスメックスXSシリー	27.00 28.00 27.50 27.50 27.50	35.00 34.60 33.20			32.50	31.20	
1393 1394 1396 1400 1401 1402 1403		日本光電 シスメックス ダイナボット シスメックス シスメックス シスメックス	光電MEK-6400 シスメックスXP-100 アホ'ットシ'ャハ"ンCD シスメックスXSシリー	28.00 27.50 27.50 27.50	34.60 33.20					
1394 1396 1400 1401 1402 1403		シスメックス ダイナボット シスメックス シスメックス シスメックス	シスメックスXP-100 アボットジャハ°ンCD シスメックスXSシリー	27.50 27.50 27.50	33.20	20.30	34.30		31.40	
1396 1400 1401 1402 1403 1404		ダイナボット シスメックス シスメックス シスメックス	アポットジャハ°ンCD シスメックスXSシリー	27.50 27.50				32.00	30.30	
1400 1401 1402 1403 1404		シスメックス シスメックス シスメックス	シスメックスXSシリー	27.50		27 50	22 20			
1401 1402 1403 1404		シスメックス シスメックス				27.50 27.50	33.20 33.20	33.40 32.80	32.10 31.00	
1402 1403 1404		シスメックス	***************************************	27.50		27.50	33.20	32.80	31.30	
1403 1404			シスメックスXNシリー	27.50		27.50	33.20	31.90	30.70	
1404			シスメックスXTシリー	27.50		27.50	33.20	32.90	31.00	
		シスメックス	シスメックスXEシリー	27.50		27.50	33.20	32.50	31.30	
		シスメックス	シスメックスXSシリー	28.20		26.40	34.30	33.00	31.20	
1407			, , ,	26.50	33.50			33.00	31.80	
1408		シスメックス	シスメックスXSシリー	28.20	34.40	26.80	33.20	31.90	30.60	
1410		シスメックス	シスメックスXSシリー	28.20	34.40	26.80	33.20	31.80	30.50	
1411		シスメックス	シスメックスXEシリー	27.50	33.20	27.50	33.20	32.20	30.30	
1413		ホリバ(堀場製作	堀場LC-667CR	27.50	33.20	27.50	33.20	34.00	32.60	
1415				28.00	34.60	26.30	34.30	32.20	31.10	
1418		ホリバ(堀場製作	堀場LC-660_66	27.50	33.20	27.50	33.20	34.00	32.40	
1419		シスメックス	シスメックスXSシリー	29.00	36.00	28.00	35.00	32.10	30.80	
1501		シスメックス	シスメックスXEシリー	28.00	34.60	26.30	34.30	32.20	30.60	
1502		シスメックス	シスメックスXEシリー	27.00	36.00	27.00	36.00	32.70	31.20	
1505		シスメックス	シスメックスXEシリー	27.50	33.20	27.50	33.20	32.60	30.90	
1506		シスメックス	シスメックスXNシリー	28.00	34.60	26.30	34.30	33.20	31.10	
1511		シスメックス	シスメックスXTシリー	27.50	33.20	27.50	33.20	32.90	31.40	
1512		シスメックス	シスメックスXEシリー	27.50	33.20	27.50	33.20	32.50	30.80	
1513		シスメックス	シスメックスXEシリー	27.50		27.50	33.20	32.20	31.00	
1514		シスメックス	シスメックスXNシリー	27.50		27.50	33.20	32.80	31.20	
1518		シスメックス	シスメックスK-4500	28.00		28.00	34.00	32.90	31.20	
1519		シスメックス	シスメックスXTシリー	27.50		27.50	33.20	32.60	31.50	
1521		シスメックス	シスメックスXP-100	29.00		29.00	35.00	33.10	31.50	
1523		ホリバ(堀場製作	堀場LCシリーズ	27.50	33.20	00.00	04.00	33.00	30.90	
1525		ホリバ(堀場製作	堀場LC-660_66	28.00		26.30	34.30	32.10	34.10	
1528		シスメックス	シスメックスXTシリー	27.50		27.50	33.20	33.40	31.70	
1529 1530		シスメックス	シスメックスXEシリー	28.20		26.40	34.30	31.70	30.40	
1531		シスメックス	シスメックスXTシリー	27.50 27.00		27.50 27.00	33.20 33.00	33.20 33.20	31.60 31.30	
1532		シスメックス	シスメックスXEシリー	27.50	33.20	21.00	JJ.00	32.40	30.70	
1533		シスメックス	シスメックスXTシリー	27.50	33.20			33.00	31.00	
1534		シスメックス	シスメックスXSシリー	27.50	33.20			32.40	30.70	
1534		ホリバ(堀場製作	堀場PENTRA60	27.50	33.20			33.00	31.00	
1540		シスメックス	が場っていて KAOO シスメックスXSシリー	27.50		27.50	33.20	32.80	31.00	
1540		シスメックス	シスメックスXTシリー	26.00	32.00	21.00	00.40	33.20	31.70	
1542		シスメックス	シスメックスXTシリー	28.00		26.30	34.30	32.80	32.40	
1543		シスメックス	シスメックスXTシリー	28.00		28.00	34.00	32.50	31.00	

69 MCH 施設No.が低い順に並んでいます

施設	御心店世	-1. ( tht:45	144 1111	男性基準	範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限 _	上限	下限	上限	試料08	試料34	
1546		ホリバ(堀場製作	堀場LC-667CR					36.30	33.30	
1548		シスメックス	シスメックスXSシリー	27.50 3	3.20	27.50	33.20	32.40	30.80	
1549		シスメックス	シスメックスXSシリー	28.00 3	34.60	26.30	34.30	32.80	31.30	
1550		シスメックス	シスメックスXTシリー	28.20 3	34.70	26.40	34.30	32.60	32.80	
1552		ホリバ(堀場製作	堀場LC-667CR	28.00 3	34.60	26.30	34.30	34.30	32.40	
1554		シスメックス	シスメックスK-4500					30.50	30.80	
1555		シスメックス	シスメックスXSシリー	28.00 3	34.60	26.30	34.30	32.30	30.60	
1557		ホリバ(堀場製作	堀場PENTRA60	28.00 3	34.60	26.30	34.30	37.10	30.00	
1558		シスメックス	シスメックスXNシリー	28.00 3	6.00	28.00	36.00	32.90	31.00	
1559		ホリバ(堀場製作	堀場PENTRA60	27.50 3	33.20	27.50	33.20	33.40	31.60	
1560		ホリバ(堀場製作	堀場LC-660_66	28.00 3	34.60	26.30	34.30	34.80	35.40	
1561		シスメックス	シスメックスXNシリー	27.50 3	33.20	27.50	33.20	32.30	30.90	
1562		シスメックス	シスメックスXEシリー	27.50 3	3.20	27.50	33.20	32.20	30.60	
1901		シスメックス	シスメックスXEシリー	28.00 3	34.60	26.30	34.30	32.00	33.50	
1902		シスメックス	シスメックスXEシリー	28.20 3	34.70	26.40	34.30	32.10	30.30	
1903		シスメックス	シスメックスXEシリー	28.00 3	34.60	26.30	34.30	32.60	30.50	
1909		シスメックス	シスメックスXEシリー	28.00 3	34.00	28.00	34.00	31.90	29.90	
1911		シーメンス	シーメンスHCD120			27.00	34.00	34.00	32.40	
1916		シスメックス	シスメックスXTシリー	27.50 3	3.20	27.50	33.20	32.40	30.90	
1917		シスメックス	シスメックスXTシリー	28.00 3	34.60	26.30	34.30	32.80	31.40	
1920		シスメックス	シスメックスK-4500			28.00	34.00	33.00	31.00	
1922		シスメックス	シスメックスXTシリー		34.60	26.30	34.30	32.80	31.30	
1923		シスメックス	シスメックスXTシリー		34.60	26.30	34.30	33.40	31.70	
1925		ホリバ(堀場製作	堀場PENTRA60		34.60	26.30	34.30	33.20	31.20	
1926		シスメックス	シスメックスXEシリー		5.00	29.00	35.00	32.60	30.80	
1928		シスメックス	シスメックスXTシリー			26.30	34.30	33.10	31.10	
1930		シスメックス	シスメックスXTシリー		34.60	26.30	34.30	32.60	31.10	
1931		シスメックス	シスメックスXTシリー			26.30	34.30	00.50	31.30	
1932		シスメックス	シスメックスXTシリー			26.40	34.30	33.50	31.70	
1933		シスメックス	シスメックスKX-21_			29.00	35.00	32.10	30.40	
1934		シスメックス	シスメックスXTシリー			26.30	34.30	32.90	31.60	
1935 1936		シスメックス シスメックス	シスメックスXTシリー シスメックスXTシリー			26.40 27.00	34.30	32.30	31.00 30.20	
1937		シスメックス	シスメックスXNシリー			27.00	34.00 34.00	31.90 33.20	31.30	
2002		シスメックス	シスメックスXEシリー			27.50	33.20	32.30	31.10	
2002		シスメックス	シスメックスXEシリー			29.20	33.60	32.30	30.30	
2008		シスメックス	シスメックスXNシリー			27.50	33.20	32.40	30.80	
2009		シスメックス	シスメックスK-4500			27.00	32.00	32.70	31.30	
2010		シスメックス	シスメックスXSシリー			26.30	34.30	32.80	31.10	
2011		シスメックス	シスメックスXTシリー			26.30	34.30	32.90	31.10	
2012		ホリバ(堀場製作	堀場LC-660_66			26.50	33.50	34.30	32.20	
3001		シスメックス	シスメックスXEシリー			27.50	33.20	31.90	30.60	
3013		ホリバ(堀場製作	堀場LC-660_66			26.30	34.30	33.50	32.00	
3018		シスメックス	シスメックスXP-100	28.20 3	34.70			32.90	31.00	
3022		シスメックス	シスメックスXEシリー			27.50	33.20	31.80	30.40	
3027		シスメックス	シスメックスXEシリー	28.00 3	34.60	26.30	34.30	32.20	30.90	
3048		ベックマン・コー	ヘックマン・コールター	27.50 3	3.20	27.50	33.20	33.30	31.70	
3055		シスメックス	シスメックスXEシリー			27.50	33.20	32.60	30.60	
3056				29.00 3	5.00	29.00	35.00	33.10	31.60	
3907		シスメックス	シスメックスXEシリー	27.00 3	34.00	27.00	34.00	31.80	30.50	
4002		シスメックス	シスメックスXNシリー	27.50 3	3.20			32.50	30.50	
4039		シスメックス	シスメックスKX-21_	29.00 3	5.00	29.00	35.00	33.70	31.50	
4040		ベックマン・コー	ヘ・ックマン・コールター	28.00 3	34.60	26.30	34.30	32.60	31.20	
4902				29.00 3	5.00	29.00	35.00	32.70	31.30	
5003		シスメックス	シスメックスXEシリー	28.00 3	3.00	28.00	33.00	32.30	30.80	
5005		シスメックス	シスメックスXNシリー	27.50 3	3.20			31.80	30.40	
		シスメックス	シスメックスXNシリー	27.50 3	2 20	27.50	33.20	32.30	30.70	

69 MCH 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足原生	四条/ //	70克台	下限	上限	下限	上限	試料08	試料34	
5010		シスメックス	シスメックスXNシリー	27.50	33.20			32.30	30.90	
6006		日本光電	光電MEK-6400	27.00	31.00	27.00	31.00	32.10	30.00	
6008		シスメックス	シスメックスXNシリー	27.50	33.20	27.50	33.20	32.30	30.90	
6015		ベックマン・コー	ヘックマン・コールター	28.00	34.60	26.30	34.90	33.70	32.40	
6016		シスメックス	シスメックスXEシリー	27.50	33.20	27.50	33.20	32.70	30.50	
7001		シスメックス	シスメックスXEシリー	27.00	34.00	27.00	34.00	32.40	30.70	
7002		シスメックス	シスメックスXNシリー	27.50	33.20	27.50	33.20	32.50	30.80	
7007		シーメンス	シーメンスHCD120	27.00	36.00	27.00	36.00	32.90	31.70	
7011		シーメンス	シーメンスHCD120	27.50	33.20			33.30	31.80	
7025		シスメックス	シスメックスK-4500	27.00	34.00			32.80	31.10	
8004		シスメックス	シスメックスXEシリー	27.50	33.20	27.50	33.20	32.10	30.40	
8011		シスメックス	シスメックスXSシリー	28.00	34.60	26.30	34.30	33.30	31.60	

70 MCHC 施設No.が低い順に並んでいます

施設	10.10	CIENT CV-23		男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	K OLL IN EL EX
1001		シスメックス	シスメックスXNシリー	31.70	35.30	31.70	35.30	35.90	35.00	
1002		シスメックス	シスメックスXEシリー	33.00	36.00	33.00	36.00	35.30	33.80	
1004		シスメックス	シスメックスXNシリー	31.70	35.30	31.70	35.30	35.20	34.40	
1006		シーメンス	シーメンスHCD120	31.70	35.30	31.70	35.30	34.50	32.30	
1010		シスメックス	シスメックスXEシリー	31.60	36.60	30.70	3636	33.90	34.10	
1011		シスメックス	シスメックスXEシリー	32.00	35.00	31.00	34.50	36.30	34.50	
1012		シスメックス	シスメックスXEシリー					35.80	34.20	
1013		シスメックス	シスメックスXTシリー	31.70	35.30			36.40	34.00	
1015		シスメックス	シスメックスXEシリー	32.00	36.00	32.00	36.00	33.20	34.00	
1018		シスメックス	シスメックスXEシリー	31.70	35.30	31.70	35.30	35.80	34.40	
1021		シスメックス	シスメックスXTシリー	31.80	36.40	31.30	36.10	36.50	34.30	
1023				31.70	34.80			36.00	41.30	
1024		シスメックス	シスメックスXNシリー	31.80		31.30	36.10	34.80	33.10	
1026		シスメックス	シスメックスXTシリー	31.70	35.30			39.80	27.10	
1028		シスメックス	シスメックスK-4500	31.60	36.60		36.60	36.90	34.40	
1029		シスメックス	シスメックスK-4500	31.70	35.30	31.70	35.30	36.20	33.80	
1031		シスメックス	シスメックスXEシリー	31.70	35.30			35.10	33.40	
1032		シスメックス	シスメックスXSシリー	31.60	36.60		36.60	36.30	34.40	
1033		シスメックス	シスメックスXSシリー	31.80		31.30	36.10	34.90	31.70	
1034		シスメックス	シスメックスXTシリー	31.80		31.30	36.10	35.10	33.00	
1035		シスメックス	シスメックスXEシリー	32.00	36.00	32.00	36.00	36.00	33.20	
1038		シスメックス	シスメックスXEシリー	31.70		31.70	35.30	34.70	33.90	
1039		シスメックス シスメックス	シスメックスXTシリー	31.70		31.70	35.30	36.00	33.70	
1040 1044		シスメックス	シスメックスXEシリー シスメックスXSシリー	31.70 32.00	36.00	31.70	35.30	35.20 35.70	36.80 34.30	
1044		シスメックス	シスメックスXSシリー	31.00		31.00	36.00	35.70	34.00	
1049		シスメックス	シスメックスXTシリー	31.60	36.60		36.60	35.70	33.40	
1050		シスメックス	シスメックスXNシリー	30.00	36.00	30.00	36.00	36.10	30.70	
1051		シスメックス	シスメックスXTシリー	31.60	36.60	30.70	36.60	34.40	34.00	
1054		ベックマン・コー	ベックマン・コールター	31.00		31.00	36.00	33.10	32.50	
1055		シーメンス	シーメンスHCD120	31.70	35.30			33.50	40.40	
1056		シスメックス	シスメックスXTシリー	32.00	37.00	30.00	37.00	36.50	34.50	
1057		シスメックス	シスメックスXSシリー	31.80	36.40	31.30	36.10	36.20	35.10	
1058		シーメンス	シーメンスHCD120	30.20	35.10	30.20	35.10	34.50	33.30	
1059		シスメックス	シスメックスXTシリー	31.80	36.40	31.30	36.10	35.20	34.50	
1060		シスメックス	シスメックスXSシリー					30.60	34.70	
1062		ベックマン・コー	ヘックマン・コールター	31.70	35.30	31.70	35.30	34.40	33.20	
1064		シスメックス	シスメックスXTシリー	31.00	36.00	31.00	36.00	32.90	34.90	
1069				31.60	36.60	30.70	36.60	35.80	31.10	
1072		ダイナボット	アホットシャハ゜ンCD	31.00	35.00	31.00	35.00	35.00	33.10	
1073		シーメンス	シーメンスHCD120	31.80	36.40	31.10	36.20	35.30	32.50	
1074		シスメックス	シスメックスXSシリー	31.80	36.40	31.30	36.10	36.80	35.00	
1075		ホリバ(堀場製作	堀場PENTRA60	31.70		31.70	35.30	34.20	34.10	
1076		シスメックス	シスメックスKX-21_	31.60	36.60	30.70	36.60	33.20	33.40	
1077								42.40	40.40	
1079								33.70	32.50	
1080		68 A 115 1	713 113 ° 0-	31.60		30.70	36.60	38.80	36.00	
1081		ダイナボット	アボットシャハプンCD	31.70		31.70	35.30	35.90	34.50	
1084		シスメックス	シスメックスXTシリー	31.70		31.70	35.30	37.30	35.40	
1088		シスメックス	シスメックスXTシリー	32.00		32.00	36.00	37.10	35.10	
1089		シスメックス	シスメックスXTシリー	31.70		31.70	35.30	36.70	34.20	
1090		シスメックス	シスメックスXTシリー	31.70		31.70	35.30	35.90	32.60	
1091 1093		シスメックス	シスメックスXTシリー	31.00 31.00		31.00 31.00	36.00 36.00	35.80 35.90	34.10 34.00	
1093		シスメックス	シスメックスXTシリー シスメックスXNシリー		36.00		36.00	35.90 35.30	34.00	
1094		日本光電	ンヘアツクへXNンリー 光電MEK-6400	32.00 31.80		31.30	36.10	33.20	33.50	
1097		ホリバ(堀場製作	堀場LC-660_66	31.60		30.70	36.60	54.10	41.50	
1000		ハワイツ山物液中	лш-лл ⊏С 000_00	51.00	50.00	50.10	50.00	01.10	11.00	

70 MCHC 施設No.が低い順に並んでいます

施設		(L. V. W. ME)	Tele BB	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	
1101		シスメックス	シスメックスXEシリー	32.00	36.00	32.00	36.00	35.00	34.50	
1102				32.00	36.00		36.00	35.90	34.10	
1104		シスメックス	シスメックスKX-21_	31.80	36.40	31.30	36.10	36.40	34.00	
1105		シスメックス	シスメックスXP-100	31.80	36.40	31.30	36.10	36.20	34.40	
1108		シスメックス	シスメックスXSシリー	31.00	36.00	31.00	36.00	36.50	34.80	
1120		シスメックス	シスメックスXEシリー	31.70	35.30	31.70	35.30	36.20	34.90	
1121		シスメックス	シスメックスXSシリー	31.80	36.40	31.30	36.10	36.30	35.30	
1122		ベックマン・コー	ヘックマン・コールター	31.60	36.60	30.70	36.60	33.70	32.90	
1123		シスメックス	シスメックスXP-100					35.10	33.30	
1124		日本光電	光電MEK-6400	31.70	35.30			33.80	33.00	
1125		シスメックス	シスメックスKX-21_					34.80	33.10	
1126		シスメックス	シスメックスXSシリー	31.60	36.60	30.70	36.60	35.90	33.60	
1127		シスメックス	シスメックスXTシリー	31.80		31.30	36.10	35.90	33.70	
1128		シスメックス	シスメックスXNシリー	31.70		31.70	35.30	35.00	33.60	
1129		シスメックス	シスメックスXSシリー	31.80	36.40	31.30	36.10	37.20	34.90	
1130		シスメックス	シスメックスXNシリー	31.70		31.70	35.30	50.40	29.30	
1133		シスメックス	シスメックスXSシリー	31.60		30.70	36.60	35.70	34.00	
1134		シスメックス	シスメックスXSシリー	31.80		31.30	36.10	31.20	34.40	
1135		シスメックス	シスメックスpocH-1	31.60	36.60	30.70	36.60	35.40	33.80	
1136		シスメックス	シスメックスKX-21_	31.70	35.30			35.20	33.10	
1137		シスメックス	シスメックスKX-21_	32.00	36.00	32.00	36.00	35.90	34.00	
1300		シスメックス	シスメックスXNシリー	31.70		31.70	35.30	35.60	34.40	
1301		シスメックス	シスメックスXEシリー	31.00	36.00		36.00	35.80	34.30	
1302		ベックマン・コー	ベックマン・コールター こくフォッカフVT2 (II	31.70		31.70 31.70	35.30	34.50	33.40	
1305 1308		シスメックス	シスメックスXTシリー	31.70 31.70	35.30	31.70	35.30 35.30	35.70	33.70 32.90	
1310		シスメックス	シスメックスXNシリー	32.00		32.00	36.00	34.40 35.50	34.10	
1313			7 AFYY AZINYY	31.00		31.00	35.50	35.90	33.90	
1315		シーメンス	シーメンスHCD120	31.70		31.70	35.30	34.10	32.90	
1316		シスメックス	シスメックスXNシリー	31.30		29.70	36.20	35.20	33.50	
1317		日本光電	光電MEK-7300	31.80		31.30	36.10	34.10	34.10	
1325				31.70		31.70	35.30	33.80	32.70	
1326		シスメックス	シスメックスpocH-1	31.80	36.40	31.30	36.10	35.40	32.60	
1327		シーメンス	シーメンスHCD120	31.70		31.70	35.30	34.90	33.20	
1328		日本光電	光電MEK-6400	30.70	35.50			34.10	34.00	
1329		ベックマン・コー	ヘ゛ックマン・コールター	31.70	35.30	31.70	35.30	35.40	34.20	
1330		シーメンス	シーメンスHCD120	30.00	36.00			34.30	33.20	
1331		シスメックス	シスメックスXEシリー	31.00	36.00	31.00	36.00	35.80	33.10	
1335		シスメックス	シスメックスK-4500	31.00	36.00	31.00	36.00	36.60	34.80	
1337		シスメックス	シスメックスXNシリー	31.70	35.30	31.70	35.30	35.20	34.00	
1339		シスメックス	シスメックスXTシリー	31.70	35.30	31.70	35.30	35.80	33.50	
1341		シスメックス	シスメックスXNシリー	31.70	35.30	31.70	35.30	34.60	33.00	
1343		シスメックス	シスメックスXNシリー	31.70	35.30	31.70	35.30	35.50	34.80	
1344		シスメックス	シスメックスXTシリー	31.70	35.30	31.70	35.30	35.80	34.20	
1346		シスメックス	シスメックスXNシリー	31.60	36.60	30.70	36.60	36.20	33.60	
1347		シスメックス	シスメックスK-4500	31.70	35.30			36.20	34.30	
1348		シスメックス	シスメックスXEシリー	31.00	36.00	31.00	36.00	36.00	34.40	
1349		シスメックス	シスメックスXTシリー	31.70		31.70	35.30	35.70	33.90	
1350		シスメックス	シスメックスXSシリー	31.80		31.30	36.10	36.80	34.40	
1351				31.70		31.70	35.30	34.30	33.60	
1352		シスメックス	シスメックスXTシリー	32.00		32.00	36.40	36.30	35.10	
1355		シーメンス	シーメンスHCD120	31.70		31.70	35.30	34.10	33.20	
1356		シスメックス	シスメックスXTシリー	31.70		31.70	35.30	37.30	35.20	
1357		シスメックス	シスメックスXEシリー	29.00		29.00	36.00	34.60	32.80	
1358		シスメックス	シスメックスXTシリー	31.70	35.30		0-	36.30	34.40	
1359		シスメックス	シスメックスXTシリー	31.70		31.70	35.30	35.70	33.30	
1360		シスメックス	シスメックスXNシリー	31.00	35.00	31.00	35.00	35.20	33.70	

70 MCHC 施設No.が低い順に並んでいます

議談   接票   接票   接票   接票   接票   接票   接票   接				2年32 HH	₩ 甘	<b>淮</b> 纮田	田州甘				七七三几
1361	叶竹取口胆	計料34	對約08					機器	試薬メーカー	測定原理	施設
1982				工队	1 1933						-
365   シスメックス				26.00	21.00			27 - 20 ZI ICD 190	34 117		
1367   シスタックス											
368				33.30	31.70						
37.0   シスメックス   シスメックスドンサー   31.70   35.30   31.70   35.30   36.70   34.80   34.80   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70				35.30	31.70			2 AAYYA POCI I	V // // //		
1371   シスメックス								シスメックスVTシリー	シスメックス		
1373				33.30	31.70						
1374         ボリハペ報場製作         掲場して660.66         31.80         31.80         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00         31.00											
1375				36.10	31.30						
1378   シスメックス											
1382   ダイナボット											
1385   シスメックス   シスメックスNSシザー   31.00   35.30   35.00   34.00   34.00   32.70   34.30   32.70   34.30   32.70   34.30   32.70   34.30   32.70   34.30   32.70   34.30   32.70   34.30   32.70   34.30   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.70   34.7											
1391       シスメックス       ジスメックスNXビリー       31.00       36.00       31.00       36.00       34.70       33.70         1393       日本光電       光電MEK-6400       31.60       36.00       30.70       36.00       34.90       34.00         1394       ジスメックス       ジスメックスアン(アメックスアンで)       31.70       35.30       35.00       35.00       32.70         1396       ダイナボット       アメックスアン(アメックスアングスアングスアングスアングスアングスアングスアングスアングスアングスアング											
1393       日本光電       光電MEK-6400       31.60       36.60       30.70       36.90       34.90       34.00         1394       シスメックス       シスメックストウイスSP-100       31.70       35.30       31.70       35.30       35.00       34.70       32.70         1400       シスメックス       シスメックススSP-1       31.70       35.30       31.70       35.30       35.00       35.40       36.00         1401       シスメックス       シスメックスXPXTSP-1       31.70       35.30       31.70       35.30       35.80       34.40         1402       シスメックス       シスメックスXPXTSP-1       31.70       35.30       31.70       35.30       36.60       34.30         1403       シスメックス       シスメックスXPXTSP-1       31.70       35.30       31.70       35.30       35.90       34.80         1404       シスメックス       シスメックスXPSP-1       31.70       35.00       31.70       35.30       35.00       36.00       34.30         1407       エスックス       シスメックスXPSP-1       31.70       35.00       31.70       35.30       35.00       35.90       34.30         1407       シスメックス       シスメックスXPSP-1       31.70       35.0       31.70       35.00       36.00       34.30		32.70	34.30			36.00	31.00	シスメックスXNシリー	シスメックス		1390
1394       シスメックス       シスメックスとP-100       31.70       35.30       31.70       35.30       36.10       34.70         1396       ダイナボット       アボットシャペンCD       31.70       35.30       31.70       35.30       36.10       34.70         1400       シスメックス       シスメックススンシリー       31.70       35.30       31.70       35.30       35.00       35.00       34.00         1401       シスメックス       シスメックスXンシリー       31.70       35.30       31.70       35.30       36.00       34.20         1402       シスメックス       シスメックスXTシリー       31.70       35.30       31.70       35.30       36.00       34.30         1403       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.00       34.30         1404       シスメックス       シスメックスXEシリー       31.80       36.00       31.70       35.30       36.00       34.30         1407       シスメックス       シスメックスXEシリー       31.80       36.00       30.00       36.00       34.30         1410       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.00       36.00       36.00       36.00       36.00       36.00       36.00       3		33.70	34.70	36.00	31.00	36.00	31.00	シスメックスXNシリー	シスメックス		1391
1396 ダイナボット アボッド・アベンCD 31.70 35.30 31.70 35.30 36.10 34.70 1400 シスメックス シスメクススとジリー 31.70 35.30 31.70 35.30 35.40 35.60 1401 シスメックス シスメクススドンリー 31.70 35.30 31.70 35.30 35.80 34.40 1402 シスメックス シスメクススドンリー 31.70 35.30 31.70 35.30 36.00 34.20 1403 シスメックス シスメクススドンリー 31.70 35.30 31.70 35.30 36.00 34.20 1403 シスメックス シスメクススとジリー 31.70 35.30 31.70 35.30 36.00 34.30 1404 シスメックス シスメクススとジリー 31.70 35.30 31.70 35.30 36.00 34.30 1404 シスメックス シスメクススとジリー 31.80 36.00 36.00 36.10 36.30 34.30 1407 36.30 36.00 36.00 36.30 36.00 34.30 1407 36.30 36.00 36.00 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36.30 36		34.00	34.90	36.60	30.70	36.60	31.60	光電MEK-6400	日本光電		1393
1400       ンスメックス       シスメックス       カスカッスXSシリー       31.70       35.30       31.70       35.30       36.00       34.30         1407       シスメックス       シスメックス       シスメックス       シスメックス       カスカックスXSシリー       31.50       35.00       36.10       34.20       34.30         1407       シスメックス       シスメックスXSシリー       31.50       35.00       36.10       34.20       34.30         1410       シスメックス       シスメックスXSシリー       31.80       34.80       30.70       34.00       36.00       35.00         1411       シスメックス       シスメックスXEシリー       31.60       36.00       31.70       35.30       31.00       36.00       36.10       34.00         1419       ウスメックス       シスメックスタンスンンスンンスンンスンンスンンスンンスンンスンンスンンスンンスンンスンンス		32.70	34.70			35.30	31.70	シスメックスXP-100	シスメックス		1394
1401 シスメックス シスメックス ソスメックス ストックス ストックスストジリー ストックス ストッ		34.70	36.10	35.30	31.70	35.30	31.70	アボットシ゛ャハ゜ンCD	ダイナボット		1396
1402       シスメックス       シスメックスXYシリー       31.70       35.30       31.70       35.30       34.90       34.20         1403       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.90       35.90       34.80         1404       シスメックス       シスメックスXSシリー       31.80       36.40       31.30       36.10       36.10       34.20         1407       シスメックス       シスメックス       シスメックスXSシリー       31.80       36.40       31.30       34.00       34.30         1408       シスメックス       シスメックスXSシリー       31.80       34.80       30.70       34.00       34.80       35.52         1410       シスメックス       シスメックスXEシリー       31.80       34.80       30.70       34.00       34.50       34.10         1411       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.10       34.10         1418       ボリバ、堀楊製作       堀場して-667CR       31.70       35.30       31.70       35.30       35.30       35.10       34.30         1419       シスメックス       シスメックススシンクス       シスメックスエシンクスンシンクスンシンクスンシンクスンシンクスンシンクスンシンクスンシン		33.60	35.40	35.30	31.70	35.30	31.70	シスメックスXSシリー	シスメックス		1400
1403 シスメックス シスメックXXEシリー 31.70 35.30 31.70 35.30 36.00 34.30 1404 シスメックス シスメックスXEシリー 31.70 35.30 35.30 35.90 34.80 1405 シスメックス シスメックスXSシリー 31.80 36.00 36.10 36.10 34.20 36.00 36.00 34.30 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.0		34.40	35.80	35.30	31.70	35.30	31.70	シスメックスXTシリー	シスメックス		1401
1404       シスメックス       シスメックスXEシリー       31.70       35.30       35.90       34.80         1405       シスメックス       シスメックスXSシリー       31.80       36.00       31.30       36.10       36.10       34.20         1407       シスメックス       シスメックスXSシリー       31.80       34.80       30.70       34.00       34.80       33.52         1410       シスメックス       シスメックスXSシリー       31.80       34.80       30.70       34.00       36.00       34.50         1411       シスメックス       シスメックスXSシリー       31.70       35.30       31.70       35.30       36.10       34.10         1413       ホリバ爆機製作       棚場して-667CR       31.70       35.30       31.70       35.30       35.10       34.60         1418       ホリバ爆機製作       棚場して-660_66       31.70       35.30       31.70       35.30       35.40       33.30         1510       シスメックス       シスメックスメンクスメンシスメックススンシリススンシリススンシリススンシリススンシリススンシリススンシリススンシ		34.20	34.90	35.30	31.70	35.30	31.70	シスメックスXNシリー	シスメックス		1402
1405 シスメックス シスメックスSSシリー 31.80 36.40 31.30 36.10 36.10 34.20 1407 31.50 シスメックスSSシリー 31.80 34.80 35.50 シスメックス シスメックスSSシリー 31.80 34.80 30.70 34.00 34.80 33.52 1410 シスメックス シスメックスSSシリー 31.80 34.80 30.70 34.00 34.00 34.50 34.50 1411 シスメックス シスメックスEシリー 31.70 35.30 31.70 35.30 35.10 34.10 34.10 1413 ホリバ(堀場製作 堀場LC-667CR 31.70 35.30 36.60 35.30 35.10 34.60 1415 カリバ(堀場製作 堀場LC-660_66 31.70 35.30 36.60 35.30 35.10 34.60 1418 カリバ(堀場製作 堀場LC-660_66 31.70 35.30 36.00 35.30 35.10 34.00 1418 カリバ(堀場製作 堀場LC-660_66 31.70 35.30 36.00 35.40 33.30 33.10 1418 カリバ(堀場製作 堀場LC-660_66 31.70 35.30 36.00 35.40 35.40 33.90 1501 シスメックス シスメックスSシリー 31.60 36.60 30.70 36.60 35.70 34.10 34.00 1501 シスメックス シスメックスXEシリー 31.60 36.60 30.70 36.60 35.70 34.10 1502 シスメックス シスメックスXEシリー 31.60 36.60 30.70 36.60 36.00 36.00 34.40 1505 シスメックス シスメックスXEシリー 31.70 35.30 36.60 36.00 36.00 34.40 1506 シスメックス シスメックスXEシリー 31.70 35.30 36.60 36.00 36.00 34.00 34.00 1501 シスメックス シスメックスXEシリー 31.70 35.30 36.00 36.00 36.00 34.00 34.00 1501 シスメックス シスメックスXEシリー 31.70 35.30 36.00 36.00 36.00 34.00 34.00 1501 シスメックス シスメックスXEシリー 31.70 35.30 35.30 36.00 36.00 34.00 34.00 1501 シスメックス シスメックスXEシリー 31.70 35.30 35.30 35.30 36.00 34.00 34.00 1501 シスメックス シスメックスXEシリー 31.70 35.30 35.30 35.30 36.00 34.00 34.00 1501 シスメックス シスメックスXEシリー 31.70 35.30 35.30 35.30 36.00 34.00 34.00 1501 シスメックス シスメックスXEシリー 31.70 35.30 35.30 35.30 35.00 34.20 1501 シスメックススシウス シスメックスXEシリー 31.70 35.30 35.30 35.30 35.00 36.00 34.00 1501 501 501 501 502 502 502 502 502 502 502 502 502 502		34.30	36.60	35.30	31.70	35.30	31.70	シスメックスXTシリー	シスメックス		1403
1407       1408       シスメックス       シスメックスXSシリー       31.50       35.00       34.00       34.30       34.30         1410       シスメックス       シスメックスXSシリー       31.80       34.80       30.70       34.00       34.50       34.50         1411       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.00       34.10         1413       ホリバ(堀場製作       堀場LC-667CR       31.70       35.30       31.70       35.30       35.10       34.60         1418       ホリバ(堀場製作       堀場LC-660_66       31.70       35.30       31.70       35.30       35.40       34.30         1419       シスメックス       シスメックスXSシリー       31.60       36.60       30.70       36.60       35.40       33.90         1501       シスメックス       シスメックスXEシリー       31.60       36.60       30.70       36.60       35.70       34.10         1502       シスメックス       シスメックスXEシリー       31.60       36.60       30.70       36.60       35.70       34.10         1505       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.00       36.60       36.70       34.20         1511       シスメックス       シ		34.80	35.90	35.30	31.70	35.30	31.70	シスメックスXEシリー	シスメックス		1404
1408       シスメックス       シスメックスXSシリー       31.80       34.80       30.70       34.00       34.80       33.52         1410       シスメックス       シスメックスXEシリー       31.80       34.80       30.70       34.00       36.00       34.50         1411       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.10       34.60         1415       ボリバ(堀場製作       堀場LC-667CR       31.60       36.60       30.70       36.60       33.30       33.10         1418       ボリバ(堀場製作       堀場LC-660_66       31.70       35.30       31.70       35.30       35.40       34.30         1419       シスメックス       シスメックスXSシリー       31.60       36.60       30.70       36.60       35.40       33.90         1501       シスメックス       シスメックスXEシリー       31.60       36.60       37.00       36.00       35.70       34.10         1502       シスメックス       シスメックスXEシリー       31.60       36.60       37.00       36.10       34.40         1505       シスメックス       シスメックスXEシリー       31.60       36.60       36.60       36.70       34.20         1511       シスメックス       シスメックスXEシリー       31.70       35.30       31.70		34.20	36.10	36.10	31.30	36.40	31.80	シスメックスXSシリー	シスメックス		1405
1410       シスメックス       ジスメックスSUPT       31.80       34.80       30.70       34.00       36.00       34.50         1411       シスメックス       ジスメックスKEシリー       31.70       35.30       31.70       35.30       36.10       34.10         1413       ホリバ(堀揚製作       堀場LC-667CR       31.70       35.30       31.70       35.30       35.10       34.60         1418       ホリバ(堀揚製作       堀場LC-660_66       31.70       35.30       31.70       35.30       35.40       34.30         1419       シスメックス       シスメックスXEシリー       31.60       36.00       31.70       35.30       35.40       33.30         1501       シスメックス       シスメックスXEシリー       31.60       36.00       31.00       36.00       35.40       35.40       34.10         1502       シスメックス       シスメックスXEシリー       31.60       36.60       37.00       36.60       35.70       36.10       34.40         1505       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.20       31.10         1506       シスメックス       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.40       34.60         1511       シ		34.30	34.30			35.00	31.50				1407
1411 シスメックス シスメックスXEシリー 31.70 35.30 31.70 35.30 36.10 34.10 34.10 34.13 31.70 35.30 31.70 35.30 35.30 36.10 34.60 34.15 31.70 35.30 31.70 35.30 35.30 35.10 34.60 34.15 31.70 35.30 31.70 35.30 35.10 34.60 34.15 31.70 35.30 31.70 35.30 35.10 34.60 34.15 31.70 35.30 35.30 35.10 34.60 34.15 31.70 35.30 35.30 35.40 34.30 34.18 31.70 35.30 35.30 35.40 34.30 34.19 35.30 35.40 34.30 34.19 35.30 35.40 35.40 35.40 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.50 35.5		33.52	34.80	34.00	30.70	34.80	31.80	シスメックスXSシリー	シスメックス		1408
1413   ボリバ(堀場製作   堀場LC-667CR   31.70   35.30   31.70   35.30   35.30   35.10   34.60     1415   31.60   36.60   30.70   36.60   33.30   33.10     1418   ボリバ(堀場製作   堀場LC-660_66   31.70   35.30   31.70   35.30   35.40   34.30     1419   シスメックス   シスメックスXSシリー   31.00   36.00   31.00   36.00   35.40   33.90     1501   シスメックス   シスメックスXEシリー   31.60   36.60   30.70   36.60   35.70   34.10     1502   シスメックス   シスメックスXEシリー   31.00   37.00   31.00   37.00   36.10   34.40     1505   シスメックス   シスメックスXEシリー   31.70   35.30   31.70   35.30   36.20   31.10     1506   シスメックス   シスメックスXEシリー   31.70   35.30   31.70   35.30   36.60   36.70   34.20     1511   シスメックス   シスメックスXEシリー   31.70   35.30   31.70   35.30   36.40   34.60     1512   シスメックス   シスメックスXEシリー   31.70   35.30   31.70   35.30   35.70   34.20     1513   シスメックス   シスメックスXEシリー   31.70   35.30   31.70   35.30   35.70   34.20     1514   シスメックス   シスメックスXNシリー   31.70   35.30   31.70   35.30   36.10   34.40     1518   シスメックス   シスメックスXNシリー   31.70   35.30   31.70   35.30   36.10   34.40     1518   シスメックス   シスメックスXNシリー   31.70   35.30   31.70   35.30   36.10   34.40     1518   シスメックス   シスメックスXNシリー   31.70   35.30   31.70   35.30   36.10   34.40     1518   シスメックス   シスメックスXNシリー   31.70   35.30   31.70   35.30   36.10   34.40     1518   シスメックス   シスメックスXNシリー   31.70   35.30   31.70   35.30   36.00   35.40   31.20     1518   シスメックス   シスメックスXNシリー   31.70   31.70   35.30   36.00   35.40   31.20     1519   シスメックス   シスメックスXNシリー   31.70   31.70   35.30   31.70   35.30   36.10   34.40     1518   シスメックス   シスメックスXNシリー   31.70   31.70   31.70   35.30   31.70   35.30   36.10   34.40     1518   シスメックス   シスメックス   シスメックス   シスメックス   システックス   シス   シス   シス   シス   シス   シス   シス		34.50	36.00	34.00	30.70	34.80	31.80	シスメックスXSシリー	シスメックス		1410
1415											
1418       ポリバ(堀場製作       堀場LC-660_66       31.70       35.30       31.70       35.30       35.40       34.30         1419       シスメックス       シスメックスXSシリー       31.00       36.00       31.00       36.00       35.40       33.90         1501       シスメックス       シスメックスXEシリー       31.60       36.60       30.70       36.60       35.70       34.10         1502       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.00       34.40         1505       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.20       31.10         1506       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.60       36.70       34.20         1511       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.80       34.20         1513       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.70       34.20         1514       シスメックス       シスメックスXNシリスXNシリー       31.70       35.30       31.70       35.30       35.70       34.20         1518       シスメックス       シスメックスXNシリスXNシリー<								堀場LC-667CR	ホリバ(堀場製作		
1419       シスメックス       シスメックスXSシリー       31.00       36.00       31.00       36.00       35.40       33.90         1501       シスメックス       シスメックスXEシリー       31.60       36.60       30.70       36.60       35.70       34.10         1502       シスメックス       シスメックスXEシリー       31.00       37.00       31.00       37.00       36.10       34.40         1505       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.20       31.10         1506       シスメックス       シスメックスXEシリー       31.60       36.60       31.60       36.60       36.70       34.20         1511       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.40       34.60         1512       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.80       34.20         1513       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.70       34.20         1514       シスメックス       シスメックスXPシウスXNシリー       31.70       35.30       31.70       35.30       36.10       34.40         1518       シスメックス       シスメックスXPクスXNシリー       31.70 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>y y a comment with</td> <td></td> <td></td>									y y a comment with		
1501 シスメックス シスメックスXEシリー 31.60 36.60 30.70 36.60 35.70 34.10 1502 シスメックス シスメックスXEシリー 31.00 37.00 31.00 37.00 36.10 34.40 1505 シスメックス シスメックスXEシリー 31.70 35.30 31.70 35.30 36.20 31.10 1506 シスメックス シスメックスXNシリー 31.60 36.60 36.60 36.60 36.70 34.20 1511 シスメックス シスメックスXTシリー 31.70 35.30 31.70 35.30 36.40 34.60 1512 シスメックス シスメックスXEシリー 31.70 35.30 31.70 35.30 35.80 34.20 1513 シスメックス シスメックスXEシリー 31.70 35.30 31.70 35.30 35.80 34.20 1513 シスメックス シスメックスXEシリー 31.70 35.30 31.70 35.30 35.70 34.20 1514 シスメックス シスメックスXNシリー 31.70 35.30 31.70 35.30 35.70 34.20 1514 シスメックス シスメックスXNシリー 31.70 35.30 31.70 35.30 36.10 34.40 1518 シスメックス シスメックスKー4500 31.00 36.00 31.00 36.00 35.40 31.20											
1502       シスメックス       シスメックスXEシリー       31.00       37.00       31.00       37.00       36.10       34.40         1505       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.20       31.10         1506       シスメックス       シスメックスXNシリー       31.60       36.60       36.60       36.70       34.20         1511       シスメックス       シスメックスXTシリー       31.70       35.30       31.70       35.30       36.40       34.60         1512       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.80       34.20         1513       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.70       34.20         1514       シスメックス       シスメックスKー4500       31.70       35.30       31.70       35.30       35.70       34.40         1518       シスメックス       シスメックスKー4500       31.00       36.00       31.00       36.00       35.40       31.20											
1505       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.20       31.10         1506       シスメックス       シスメックスXNシリー       31.60       36.60       31.60       36.60       36.70       34.20         1511       シスメックス       シスメックスXTシリー       31.70       35.30       31.70       35.30       36.40       34.60         1512       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.80       34.20         1513       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       36.10       34.40         1514       シスメックス       シスメックスK-4500       31.00       36.00       31.00       36.00       35.40       31.20											
1506       シスメックス       シスメックスXNシリー       31.60       36.60       36.60       36.70       34.20         1511       シスメックス       シスメックスXTシリー       31.70       35.30       31.70       35.30       36.40       34.60         1512       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.80       34.20         1513       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.70       34.20         1514       シスメックス       シスメックスK-4500       31.00       36.00       31.00       36.00       35.40       31.20											
1511       シスメックス       シスメックスXTシリー       31.70       35.30       31.70       35.30       36.40       34.60         1512       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.80       34.20         1513       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.70       34.20         1514       シスメックス       シスメックスXNシリー       31.70       35.30       31.70       35.30       36.10       34.40         1518       シスメックス       シスメックスK-4500       31.00       36.00       31.00       36.00       35.40       31.20											
1512       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.80       34.20         1513       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.70       34.20         1514       シスメックス       シスメックスKー4500       31.70       35.30       31.70       35.30       36.10       34.40         1518       シスメックス       シスメックスKー4500       31.00       36.00       31.00       36.00       35.40       31.20											
1513       シスメックス       シスメックスXEシリー       31.70       35.30       31.70       35.30       35.70       34.20         1514       シスメックス       シスメックスK-4500       31.70       35.30       31.70       35.30       36.10       34.40         1518       シスメックス       シスメックスK-4500       31.00       36.00       31.00       36.00       35.40       31.20											
1514       シスメックス       シスメックスXNシリー       31.70       35.30       31.70       35.30       36.10       34.40         1518       シスメックス       シスメックスK-4500       31.00       36.00       31.00       36.00       35.40       31.20											
1518 シスメックス シスメックスK-4500 31.00 36.00 31.00 36.00 35.40 31.20											
1521 シスメックス シスメックスXP-100 31.00 36.00 31.00 36.00 35.60 33.00											
1523 ホリバ(堀場製作 堀場LCシリーズ 31.70 35.30 34.40 34.10									ホリバ(堀場製作		
1525 ホリバ(堀場製作 堀場LC-660_66 31.60 36.60 30.70 36.60 33.60 40.30				36.60	30.70						
1528 シスメックス シスメックスXTシリー 31.70 35.30 31.70 35.30 37.90 35.50		35.50		35.30				シスメックスXTシリー	シスメックス		1528
1529 シスメックス シスメックスXEシリー 31.80 36.40 31.30 36.10 35.70 34.10		34.10		36.10	31.30	36.40	31.80	シスメックスXEシリー	シスメックス		1529
1530     31.70     35.30     31.70     35.30     36.50     34.50			36.50				31.70				1530
1531 シスメックス シスメックスXTシリー 32.00 36.00 32.00 36.00 36.40 34.10		34.10	36.40	36.00	32.00	36.00	32.00	シスメックスXTシリー	シスメックス		1531
1532 シスメックス シスメックスXEシリー 31.70 35.30 36.50 34.70		34.70	36.50			35.30	31.70	シスメックスXEシリー	シスメックス		1532
1533 シスメックス シスメックスXTシリー 31.70 35.30 36.70 34.30		34.30	36.70			35.30	31.70	シスメックスXTシリー	シスメックス		1533
1534 シスメックス シスメックスXSシリー 31.70 35.30 36.80 34.80		34.80	36.80			35.30	31.70	シスメックスXSシリー	シスメックス		1534
1538 ホリバ(堀場製作 堀場PENTRA60 31.70 35.30 34.00 34.00		34.00	34.00			35.30	31.70	堀場PENTRA60	ホリバ(堀場製作		1538
1540 シスメックス シスメックスXSシリー 31.70 35.30 31.70 35.30 35.40 33.60		33.60	35.40	35.30	31.70	35.30	31.70	シスメックスXSシリー	シスメックス		1540
1541 シスメックス シスメックスXTシリー 32.00 36.00 36.20 34.70		34.70	36.20			36.00	32.00	シスメックスXTシリー	シスメックス		1541
1549 3/7 3/7 3/7 3/7 3/7 3/7 3/7 3/7 3/7 3/7		33.50	35.90	36.60	30.70	36.60	31.60	シスメックスXTシリー	シスメックス		1542
1542 シスメックス シスメックスXTシリー 31.60 36.60 30.70 36.60 35.90 33.50		30.40	34.40	36.00	31.00	36.00	31.00	シスメックスXTシリー	シスメックス		1543

70 MCHC 施設No.が低い順に並んでいます

施設	3811	*******	TW DD	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	
1546		ホリバ(堀場製作	堀場LC-667CR					47.60	39.70	
1548		シスメックス	シスメックスXSシリー	31.70	35.30	31.70	35.30	36.30	34.40	
1549		シスメックス	シスメックスXSシリー	31.60	36.60	30.70	36.60	36.00	34.40	
1550		シスメックス	シスメックスXTシリー	31.80	36.40	31.30	36.10	36.40	35.90	
1552		ホリバ(堀場製作	堀場LC-667CR	31.60	36.60	30.70	36.60	36.20	35.00	
1554		シスメックス	シスメックスK-4500					36.90	34.70	
1555		シスメックス	シスメックスXSシリー	31.60	36.60	30.70	36.60	35.90	33.60	
1557		ホリバ(堀場製作	堀場PENTRA60	31.60	36.60	30.70	36.60	51.80	32.60	
1558		シスメックス	シスメックスXNシリー	28.00	35.00	28.00	35.00	36.40	34.40	
1559		ホリバ(堀場製作	堀場PENTRA60	31.70	35.30	31.70	35.30	34.00	32.90	
1560		ホリバ(堀場製作	堀場LC-660_66	31.60	36.60	30.70	36.90	37.10	43.20	
1561		シスメックス	シスメックスXNシリー	31.70	35.30	31.70	35.30	33.70	32.80	
1562		シスメックス	シスメックスXEシリー	31.70		31.70	35.30	35.80	34.00	
1901		シスメックス	シスメックスXEシリー	31.60	36.60	30.70	36.60	35.50	37.80	
1902		シスメックス	シスメックスXEシリー	31.80	36.40	31.30	36.10	35.60	34.10	
1903		シスメックス	シスメックスXEシリー	31.60	36.60	30.70	36.60	36.50	31.10	
1909		シスメックス	シスメックスXEシリー	31.00		31.00	36.00	35.50	33.50	
1911		シーメンス	シーメンスHCD120	31.00		31.00	36.00	36.20	34.90	
1916		シスメックス	シスメックスXTシリー	31.70	35.30		35.30	35.80	33.70	
1917		シスメックス	シスメックスXTシリー	31.60	36.60	30.70	36.60	35.80	34.10	
1920		シスメックス	シスメックスK-4500	31.00	36.00	31.00	36.00	36.00	32.00	
1922		シスメックス	シスメックスXTシリー	31.60	36.60	30.70	36.60	35.70	34.00	
1923		シスメックス	シスメックスXTシリー	31.60	36.60	30.70	36.60	36.20	34.60	
1925		ホリバ(堀場製作	堀場PENTRA60	31.60	36.60	30.70	36.60	34.50	33.70	
1926		シスメックス	シスメックスXEシリー	31.00	36.00	31.00	36.00	33.10	31.10	
1928 1930		シスメックス シスメックス	シスメックスXTシリー シスメックスXTシリー	31.60 31.60	36.60 36.60	30.70 30.70	36.60 36.60	36.20 35.80	30.80 34.00	
1931		シスメックス	シスメックスXTシリー	31.60	36.60	30.70	36.60	33.80	34.20	
1932		シスメックス	シスメックスXTシリー	31.80	36.40		36.10	35.90	34.60	
1933		シスメックス	シスメックスKX-21_	31.00		31.00	36.00	34.60	32.60	
1934		シスメックス	シスメックスXTシリー	31.60	36.60	30.70	36.60	36.00	34.30	
1935		シスメックス	シスメックスXTシリー	31.80	36.40		36.10	35.00	33.30	
1936		シスメックス	シスメックスXTシリー	31.00	36.00	31.00	36.00	35.10	33.00	
1937		シスメックス	シスメックスXNシリー	31.00		31.00	36.00	35.50	32.70	
2002		シスメックス	シスメックスXEシリー	31.70		31.70	35.30	35.30	33.90	
2006		シスメックス	シスメックスXEシリー	30.80	35.10	30.80	35.10	35.80	33.60	
2008		シスメックス	シスメックスXNシリー	31.70	35.30	31.70	35.30	34.70	33.50	
2009		シスメックス	シスメックスK-4500	32.00	36.00	32.00	36.00	35.80	34.10	
2010		シスメックス	シスメックスXSシリー	31.60	36.60	30.70	36.60	36.70	34.80	
2011		シスメックス	シスメックスXTシリー	31.60	36.60	30.70	36.60	36.20	34.20	
2012		ホリバ(堀場製作	堀場LC-660_66	31.50	35.00	31.50	35.00	36.40	34.60	
3001		シスメックス	シスメックスXEシリー	31.70	35.30	31.70	35.30	35.50	34.00	
3013		ホリバ(堀場製作	堀場LC-660_66	31.60	36.60	30.70	36.60	35.00	34.00	
3018		シスメックス	シスメックスXP-100	31.80	36.40			36.50	34.30	
3022		シスメックス	シスメックスXEシリー	31.70	35.30	31.70	35.30	35.10	33.50	
3027		シスメックス	シスメックスXEシリー	31.60		30.70	36.60	36.20	34.80	
3048		ベックマン・コー	ヘックマン・コールター	31.70	35.30	31.70	35.30	34.80	33.70	
3055		シスメックス	シスメックスXEシリー	31.70		31.70	35.30	36.50	34.20	
3056				31.00		31.00	36.00	36.50	34.90	
3907		シスメックス	シスメックスXEシリー	31.00		31.00	36.00	34.90	33.90	
4002		シスメックス	シスメックスXNシリー	31.70	35.30			35.00	33.10	
4039		シスメックス	シスメックスKX-21_	31.00		31.00	36.00	36.70	34.60	
4040		ベックマン・コー	ヘックマン・コールター	31.60		30.70	36.60	34.00	33.20	
4902				31.00		31.00	36.00	35.30	33.90	
5003		シスメックス	シスメックスXEシリー	31.00		31.00	36.00	35.30	33.80	
5005		シスメックス	シスメックスXNシリー	31.70	35.30		0 =	34.80	33.40	
5006		シスメックス	シスメックスXNシリー	31.70	35.30	31.70	35.30	35.10	33.40	

70 MCHC 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性基	準範囲	女性基	準範囲			試料報告値
No	例足原垤	武楽/一ガー	70文石计	下限	上限	下限	上限	試料08	試料34	
5010		シスメックス	シスメックスXNシリー	30.00	36.00			34.70	33.20	
6006		日本光電	光電MEK-6400	32.00	36.00	32.00	36.00	33.60	32.70	
6008		シスメックス	シスメックスXNシリー	31.70	35.30	31.70	35.30	34.60	33.30	
6015		ベックマン・コー	ヘックマン・コールター	31.60	36.60	30.70	36.60	34.30	33.40	
6016		シスメックス	シスメックスXEシリー	31.70	35.30	31.70	35.30	37.10	34.20	
7001		シスメックス	シスメックスXEシリー	31.00	36.50	31.00	36.50	36.40	34.10	
7002		シスメックス	シスメックスXNシリー	31.70	35.30	31.70	35.30	35.50	34.70	
7007		シーメンス	シーメンスHCD120	31.00	37.00	31.00	37.00	35.00	33.00	
7011		シーメンス	シーメンスHCD120	31.70	35.30			35.90	34.40	
7025		シスメックス	シスメックスK-4500	32.00	36.00			35.80	33.70	
8004		シスメックス	シスメックスXEシリー	31.70	35.30	31.70	35.30	36.00	34.00	
8011		シスメックス	シスメックスXSシリー	31.60	36.60	30.70	36.60	36.90	34.80	

71 PLT 施設No.が低い順に並んでいます

	10.77 EXV //EXV	に並んていまり		田址甘油炉口					34 W 14 D4 D4
施設	測定原理	試薬メーカー	機器	男性基準範围 下限 上阶		上 基準範囲	on l≄4≴	試料34	試料報告値
No							試料08		
1001		シスメックス	シスメックスXNシリー		0 15.8		234.0	144.0	
1002		シスメックス	シスメックスXEシリー		0 15.0		237.0	133.0	
1004		シスメックス	シスメックスXNシリー		0 158.		229.0	124.0	
1006		シーメンス	シーメンスHCD120		0 158.		226.0	116.0	
1010		シスメックス	シスメックスXEシリー		0 12.9		197.0	126.0	
1011		シスメックス	シスメックスXEシリー シスメックスXEシリー		0 13.0		136.0	125.0	
1012 1013		シスメックス シスメックス	シスメックスXEシリー シスメックスXTシリー	15.80 34.8 158.0 348.	0 15.8	34.80	229.0 223.0	132.0 134.0	
1015		シスメックス	シスメックスXEシリー		0 0 12.0	00 35.00	205.0	130.0	
1013		シスメックス	シスメックスXEシリー		0 12.0		220.0	133.0	
1021		シスメックス	シスメックスXTシリー		0 14.0		214.0	124.0	
1023		• • • • • • • • • • • • • • • • • • • •	***************************************	15.80 34.8			235.0	173.0	
1024		シスメックス	シスメックスXNシリー	14.00 37.9			222.0	114.0	
1026		シスメックス	シスメックスXTシリー	158.0 348.			232.0	157.0	
1028		シスメックス	シスメックスK-4500	15.00 35.0			226.0	115.0	
1029		シスメックス	シスメックスK-4500		0 15.8	34.80	215.0	120.0	
1031		シスメックス	シスメックスXEシリー	15.80 34.8	0		236.0	131.0	
1032		シスメックス	シスメックスXSシリー	13.10 36.2	0 13.0	00 36.90	241.0	125.0	
1033		シスメックス	シスメックスXSシリー	14.00 37.9	0 14.0	00 37.90	226.0	115.0	
1034		シスメックス	シスメックスXTシリー	14.00 37.9	0 14.0	00 37.90	233.0	125.0	
1035		シスメックス	シスメックスXEシリー	12.00 38.0	0 12.0	00 38.00	236.0	135.0	
1038		シスメックス	シスメックスXEシリー	158.0 348.	0 158.	.0 348.0	230.0	126.0	
1039		シスメックス	シスメックスXTシリー	158.0 348.	0 158.	.0 348.0	158.0	103.0	
1040		シスメックス	シスメックスXEシリー	15.80 34.8	0 15.8	34.80	246.0	127.0	
1044		シスメックス	シスメックスXSシリー	14.00 38.0	0		232.0	125.0	
1046		シスメックス	シスメックスXSシリー	13.00 32.0	0 13.0	00 32.00	229.0	119.0	
1049		シスメックス	シスメックスXTシリー	13.00 36.9	0 13.0	00 36.90	215.0	126.0	
1050		シスメックス	シスメックスXNシリー		0 13.0		229.0	121.0	
1051		シスメックス	シスメックスXTシリー		0 13.0		186.0	117.0	
1054		ベックマン・コー	ヘ゛ックマン・コールター		0 13.0	00 40.00	214.0	115.0	
1055		シーメンス	シーメンスHCD120	15.80 34.8			228.0	156.0	
1056		シスメックス	シスメックスXTシリー		0 13.0	00 36.00	221.0	124.0	
1057		シスメックス	シスメックスXSシリー	14.00 37.9		0.500	222.0	108.0	
1058		シーメンス	シーメンスHCD120		0 12.0		216.0	122.0	
1059 1060		シスメックス シスメックス	シスメックスXTシリー シスメックスXSシリー		0 14.0	00 37.90	181.0	126.0 113.0	
1062		ベックマン・コー	~		0 0 158.	.0 348.0	122.0 194.0	105.0	
1064		シスメックス	シスメックスXTシリー		0 13.0		150.0	116.0	
1069		<b>3</b> 2 (9 (9 ) 2 )	77////A17/		0 13.0		224.0	113.0	
1072		ダイナボット	アボットシ゛ャハ゜ンCD		0 130.		178.0	104.0	
1073		シーメンス	シーメンスHCD120		0 12.5		245.0	128.0	
1074		シスメックス	シスメックスXSシリー		0 14.0		220.0	121.0	
1075		ホリバ(堀場製作	堀場PENTRA60		0 15.8		232.0	122.0	
1076		シスメックス	シスメックスKX-21_	13.00 36.9	0		207.0	113.0	
1077				13.00 36.9	0 13.0	00 36.90	254.0	136.0	
1079							233.0	126.0	
1080				13.00 36.9	0 13.0	00 36.90	223.0	159.0	
1081		ダイナボット	アボットジャパンCD	15.80 34.8	0 15.8	34.80	202.0	115.0	
1084		シスメックス	シスメックスXTシリー	15.80 34.8	0 15.8	34.80	223.0	130.0	
1088		シスメックス	シスメックスXTシリー	13.00 31.6	0 13.0	00 31.60	213.0	119.0	
1089		シスメックス	シスメックスXTシリー	158.0 348.	0 158.	.0 348.0	225.0	121.0	
1090		シスメックス	シスメックスXTシリー	158.0 348.	0 158.	.0 348.0	221.0	113.0	
1091				13.00 36.0	0 13.0	36.00	233.0	126.0	
1093		シスメックス	シスメックスXTシリー		0 14.0		201.0	120.0	
1094		シスメックス	シスメックスXNシリー		0 150.		224.0	126.0	
1097		日本光電	光電MEK-6400		0 14.0		189.0	133.0	
1099		ホリバ(堀場製作	堀場LC-660_66	13.00 36.9	0 13.0	00 36.90	235.0	136.0	

71 PLT 施設No.が低い順に並んでいます

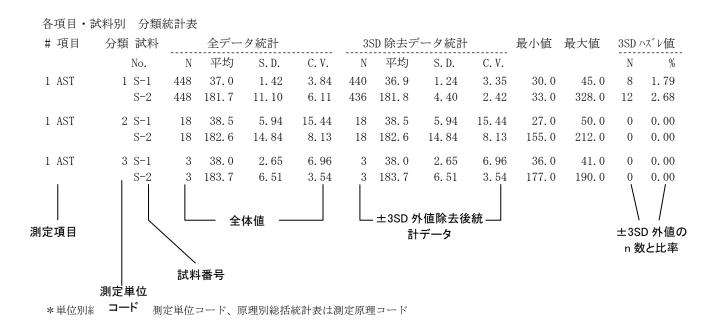
***********************************		10.77 区( )原(	に並んていまり		P 14. # 346 665 [TI	/ . Lil. +	± 146 66 TITI			3-1-14 D4
1910日 シストウタス タストウストロンド 1820 8520 1820 8520 1820 1820 1820 1820 1820 1820 1820 18	施設	測定原理	試薬メーカー	機器	男性基準範囲			oo lak4∉	1 o lok4€	試料報告値
1926								<b></b>		
144			シスメックス	シスメックスXEシリー						
1188				) = ) b=====			348.0			
1988										
12日   ウス・サクス   スメッケス   スメッケ										
12日										
1日2										
12日   日本光度   大きが大きが、										
124  日本光度										
1425   ウスタクス							37.90			
12日					15.80 34.80					
127日					12.00 26.00	12.00	26.00			
128										
129										
11日の							340.0			
133							249.0			
134										
1318										
136							37.90			
137										
300   シストクタス   シストクスへの   シストクスへの   ストクスへの				-			35.00			
1301										
302										
335   シスナクス										
1308   リスメックス										
1310			• • • • • • • • • • • • • • • • • • • •	\$71/7/7/A1\$7						
14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14.50   14			シスメックス	シスメックスXNシリー						
1515   シーメンス   シーメンスト   ジストゥッスト   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00										
1316 シスタックス シスタックス シスタックス シスタックス 14.00 37.90 14.00 37.90 14.00 37.90 14.00 37.90 14.00 12.00 14.00 12.00 14.00 12.00 14.00 12.00 14.00 12.00 14.00 12.00 14.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 1										
1317 日本光電										
1325   1326   1327   1328   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329   1329										
3286   シスメックス										
1327 シーメンス シーメン HCD120 158.0 348.0 158.0 348.0 26.0 119.0 1328 日本光電 光電MEK-6400 12.00 30.00 - 242.0 130.0 1329 ベックマン・コー・グックマン・コールター 158.0 348.0 158.0 348.0 158.0 348.0 150.0 112.0 112.0 1330 シーズンス シーグス HCD120 140.0 379.0 - 242.0 133.0 1330 シーズンス シスナクス シスナクス 150.0 15.00 35.00 35.00 35.00 320.0 134.0 1335 シスナックス シスナクス シスナクス 150.0 12.00 34.00 15.00 36.00 211.0 114.0 1337 シスメックス シスメクス シスナクス 158.0 348.0 158.0 348.0 230.0 129.0 1339 シスメックス シスナクス シスナクス 158.0 348.0 158.0 348.0 158.0 348.0 241.0 126.0 1331 シスメックス シスナクス シスナクス 158.0 348.0 158.0 348.0 241.0 126.0 1331 シスメックス シスナクス シスナクス 158.0 348.0 158.0 348.0 241.0 126.0 135.0 1344 シスメックス シスナクス シスナクスス 158.0 348.0 158.0 348.0 240.0 135.0 136.0 136.0 134.0 1343 シスメックス シスナクススンシー 158.0 348.0 158.0 348.0 240.0 135.0 136.0 136.0 1344 シスメックス シスナクススンシー 158.0 348.0 158.0 348.0 240.0 135.0 136.0 136.0 134.0 1343 シスメックス シスナクススンシー 158.0 348.0 158.0 348.0 231.0 123.0 123.0 1344 シスメックス シスナクススンシー 158.0 348.0 158.0 348.0 231.0 123.0 136.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0 134.0			シスメックス	シスメックスpocH-1						
1329   パックマン・コー パックマン・コールター   158.0   158.0   158.0   348.0   158.0   215.0   112.0   1130   1130   12.0   1130   12.0   1130   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.0   12.	1327		シーメンス	シーメンスHCD120	158.0 348.0	158.0	348.0	226.0	119.0	
1330 シーメンス シスケウスNHCD120 140.0 379.0	1328		日本光電	光電MEK-6400	12.00 30.00			242.0	130.0	
1331 シスメックス シスメックス シスメックス に	1329		ベックマン・コー	ヘックマン・コールター	158.0 348.0	158.0	348.0	215.0	112.0	
1335 シスメックス シスメックス シスメックス 15.00 12.00 34.00 21.00 14.0 14.0 1337 シスメックス シスメックス シスメックス 158.0 348.0 158.0 348.0 230.0 129.0 1339 シスメックス シスメックス シスメックス 158.0 348.0 158.0 348.0 241.0 126.0 1341 シスメックス シスメックス 15.00 158.0 348.0 158.0 348.0 241.0 126.0 134.0 シスメックス シスメックス 15.00 158.0 348.0 158.0 348.0 246.0 135.0 134.0 シスメックス シスメックス 15.00 158.0 348.0 158.0 348.0 246.0 135.0 134.0 134.0 シスメックス シスメックス 158.0 348.0 158.0 348.0 158.0 348.0 226.0 120.0 134.4 シスメックス シスメックスXアンリー 158.0 348.0 158.0 348.0 231.0 123.0 134.0 134.0 134.0 シスメックス シスメックスXアンリー 13.10 36.20 13.00 36.90 231.0 122.0 134.0 134.0 134.0 シスメックス シスメックスXビシリー 15.00 35.00 15.00 35.00 15.00 35.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15	1330		シーメンス	シーメンスHCD120	140.0 379.0			242.0	123.0	
1337 シスメックス シスメックスNSVサー 158.0 348.0 158.0 348.0 230.0 129.0 1339 シスメックス シスメックスNSVサー 158.0 348.0 158.0 348.0 241.0 126.0 1341 シスメックス シスメックスNSVサー 158.0 348.0 158.0 348.0 241.0 126.0 1343 シスメックス シスメックスNSVサー 158.0 348.0 158.0 348.0 246.0 135.0 1344 シスメックス シスメックスNSVサー 158.0 348.0 158.0 348.0 226.0 120.0 1344 シスメックス シスメックスNSVサー 158.0 348.0 158.0 348.0 231.0 123.0 1346 シスメックス シスメックス シスメックスNSVサー 13.10 36.20 13.00 36.90 231.0 122.0 1347 シスメックス シスメックス シスメックスNSVサー 158.0 348.0 158.0 348.0 230.0 120.0 1348 シスメックス シスメックスシックス シスメックスNSVサー 15.00 35.00 15.00 35.00 230.0 126.0 1349 シスメックス シスメックスNSVサー 15.00 34.80 15.00 34.80 15.00 230.0 126.0 1350 シスメックス シスメックスNSVサー 15.00 34.80 15.00 34.80 239.0 127.0 1351 セ	1331		シスメックス	シスメックスXEシリー	15.00 35.00	15.00	35.00	232.0	134.0	
1339       シスメックス       シスメックスXTYリー       158.0       348.0       158.0       348.0       241.0       126.0         1341       シスメックス       シスメックスXNシリー       158.0       348.0       158.0       348.0       26.0       135.0         1343       シスメックス       シスメックスXNシリー       158.0       348.0       158.0       348.0       226.0       120.0         1344       シスメックス       シスメックスXDシリー       158.0       348.0       158.0       348.0       231.0       123.0         1346       シスメックス       シスメックスXDシリー       13.10       36.20       13.00       36.90       231.0       122.0         1347       シスメックス       シスメックスXEシリー       15.00       35.00       15.00       35.00       15.00       19.0         1348       シスメックス       シスメックスXEシリー       15.00       35.00       15.00       35.00       16.0       19.0         1350       シスメックス       シスメックスXTYシリー       15.80       34.80       15.80       34.80       23.0       125.0         1351       エスメックス       シスメックススメックスXTYシリー       12.00       36.90       12.00       36.90       12.0       18.0         1352       シスメックス       シスメックススタックス       シスメックススーストンストンストンス	1335		シスメックス	シスメックスK-4500	12.00 34.00	12.00	34.00	211.0	114.0	
1341 シスメックス シスメックスNSVリー 158.0 348.0 158.0 348.0 246.0 135.0 1343 シスメックスNSVリー 158.0 348.0 158.0 348.0 226.0 120.0 1344 シスメックス シスメックスNSVリー 158.0 348.0 158.0 348.0 226.0 120.0 1344 シスメックス シスメックスNSVリー 158.0 348.0 158.0 348.0 231.0 123.0 1346 シスメックス シスメックスNSVリー 13.10 36.20 13.00 36.20 13.00 231.0 122.0 1347 シスメックス シスメックス シスメックス シスメックス 158.0 348.0 158.0 348.0 158.0 19.0 19.0 1348 シスメックス シスメックス シスメックスNSVリー 15.00 35.00 15.00 35.00 230.0 126.0 1349 シスメックス シスメックスNSVリー 15.80 34.80 15.80 34.80 238.0 125.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135	1337		シスメックス	シスメックスXNシリー	158.0 348.0	158.0	348.0	230.0	129.0	
1343 シスメックス シスメックスXVシリー 158.0 348.0 158.0 348.0 226.0 120.0 1344 シスメックス シスメックスXVシリー 158.0 348.0 158.0 348.0 231.0 123.0 1346 シスメックス シスメックスXVシリー 13.10 36.20 13.00 36.90 231.0 122.0 1347 シスメックス シスメックスXEシリー 15.00 35.00 15.00 35.00 230.0 126.0 119.0 1348 シスメックス シスメックスXEシリー 15.00 35.00 15.00 35.00 230.0 126.0 125.0 1349 シスメックス シスメックスXTシリー 15.80 34.80 15.80 34.80 15.80 238.0 125.0 1350 シスメックス シスメックスXEシリー 15.00 37.90 セリカリー 15.80 34.80 15.80 34.80 239.0 131.0 1351 15.80 シスメックス シスメックスXTシリー 12.00 36.90 12.00 36.90 222.0 118.0 1355 シーメンス シスメックスXTシリー 15.80 34.80 15.80 34.80 239.0 131.0 1355 シーメンス シスメックスXTシリー 15.80 34.80 15.80 34.80 221.0 127.0 1356 シスメックス シスメックスXTシリー 15.80 34.80 15.80 34.80 21.0 127.0 137.0 137.0 137.0 15.80 34.80 15.80 34.80 21.0 127.0 137.0 137.0 137.0 14.00 44.00 44.00 44.00 44.00 44.00 24.00 24.00 24.00 138.0 138.0 138.0 138.0 138.0 138.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 13	1339		シスメックス	シスメックスXTシリー	158.0 348.0	158.0	348.0	241.0	126.0	
1344   シスメックス   シスメックスXTシリー   158.0   348.0   158.0   348.0   231.0   123.0     1346   シスメックス   シスメックス   シスメックスKNシリー   13.10   36.20   13.00   36.90   231.0   122.0     1347   シスメックス   シスメックス   シスメックスKE-4500   158.0   348.0   15.00   35.00   230.0   19.0     1348   シスメックス   シスメックス   シスメックスXEシリー   15.00   35.00   15.00   35.00   230.0   126.0     1349   シスメックス   シスメックス   シスメックスXTシリー   15.80   34.80   15.80   34.80   238.0   125.0     1350   シスメックス   シスメックス   シスメックスXSシリー   14.00   37.90	1341		シスメックス	シスメックスXNシリー	158.0 348.0	158.0	348.0	246.0	135.0	
1346 シスメックス シスメックスXXNシリー 13.10 36.20 13.00 36.90 231.0 122.0 1347 シスメックス シスメックスK-4500 158.0 348.0 206.0 119.0 1348 シスメックス シスメックスXXEシリー 15.00 35.00 15.00 35.00 230.0 126.0 1349 シスメックス シスメックスXXEシリー 15.80 34.80 15.80 34.80 238.0 125.0 1350 シスメックス シスメックスXXEシリー 14.00 37.90 244.0 127.0 1351 15.80 34.80 15.80 34.80 239.0 131.0 1352 シスメックス シスメックスXXTシリー 12.00 36.90 12.00 36.90 222.0 118.0 1355 シーメンス シーメンスHCD120 15.80 34.80 15.80 34.80 219.0 127.0 1356 シスメックス シスメックスXXTシリー 15.80 34.80 15.80 34.80 219.0 127.0 1357 シスメックス シスメックスXXTシリー 15.80 34.80 15.80 34.80 219.0 122.0 1358 シスメックス シスメックスXXTシリー 15.80 34.80 15.80 34.80 219.0 122.0 1359 シスメックス シスメックスXXTシリー 15.00 34.00 14.00 44.00 14.00 241.0 138.0 1359 シスメックス シスメックスXXTシリー 15.00 34.80 15.80 34.80 238.0 132.0	1343		シスメックス	シスメックスXNシリー	158.0 348.0	158.0	348.0	226.0	120.0	
1347 シスメックス シスメックスK-4500 158.0 348.0 230.0 119.0 1348 シスメックス シスメックスXEシリー 15.00 35.00 15.00 35.00 230.0 126.0 1349 シスメックス シスメックスXSシリー 15.80 34.80 15.80 34.80 238.0 125.0 1350 シスメックス シスメックスXSシリー 14.00 37.90 244.0 127.0 1351 15.80 34.80 15.80 34.80 239.0 131.0 1352 シスメックス シスメックスXTシリー 12.00 36.90 12.00 36.90 22.0 118.0 1355 シーメンス シーメンスHCD120 15.80 34.80 15.80 34.80 239.0 131.0 1356 シスメックス シスメックスXTシリー 15.80 34.80 15.80 34.80 221.0 127.0 1356 シスメックス シスメックスXTシリー 15.80 34.80 15.80 34.80 219.0 127.0 1357 シスメックス シスメックスXEシリー 14.00 44.00 14.00 44.00 241.0 138.0 138.0 1358 シスメックス シスメックスXTシリー 158.0 348.0 231.0 122.0 122.0 1358 シスメックス シスメックスXTシリー 158.0 34.80 238.0 132.0 132.0 132.0	1344		シスメックス	シスメックスXTシリー	158.0 348.0	158.0	348.0	231.0	123.0	
1348 シスメックス シスメックスXEシリー 15.00 35.00 15.00 35.00 230.0 126.0 1349 シスメックス シスメックスXSシリー 15.80 34.80 15.80 34.80 238.0 125.0 1350 シスメックス シスメックスXSシリー 14.00 37.90 ・ 244.0 127.0 1351 15.80 34.80 15.80 34.80 239.0 131.0 1352 シスメックス シスメックスXTシリー 12.00 36.90 12.00 36.90 22.0 118.0 1355 シーメンス シーメンスHCD120 15.80 34.80 15.80 34.80 21.0 127.0 1356 シスメックス シスメックスXTシリー 15.80 34.80 15.80 34.80 21.0 127.0 1356 シスメックス シスメックスXTシリー 15.80 34.80 15.80 34.80 21.0 127.0 1357 シスメックス シスメックスXEシリー 14.00 44.00 14.00 44.00 241.0 138.0 138.0 1358 シスメックス シスメックスXTシリー 15.00 34.80 15.80 34.80 21.0 122.0 122.0 1358 シスメックス シスメックスXTシリー 15.00 34.80 15.00 34.80 231.0 128.0 138.0 1359 シスメックス シスメックスXTシリー 15.00 34.80 15.80 34.80 238.0 132.0	1346		シスメックス	シスメックスXNシリー	13.10 36.20	13.00	36.90	231.0	122.0	
1349 シスメックス シスメックスXTシリー 15.80 34.80 15.80 34.80 238.0 125.0 1350 シスメックス シスメックスXSシリー 14.00 37.90 244.0 127.0 1351 15.80 34.80 15.80 34.80 239.0 131.0 1352 シスメックス シスメックスXTシリー 12.00 36.90 12.00 36.90 22.0 118.0 1355 シーメンス シーメンスHCD120 15.80 34.80 15.80 34.80 221.0 127.0 1356 シスメックス シスメックスXTシリー 15.80 34.80 15.80 34.80 221.0 127.0 1357 シスメックス シスメックスXEシリー 14.00 44.00 14.00 44.00 241.0 138.0 138.0 1358 シスメックス シスメックスXTシリー 158.0 348.0 234.0 234.0 128.0 1359 シスメックス シスメックスXTシリー 158.0 348.0 158.0 348.0 238.0 132.0	1347		シスメックス	シスメックスK-4500	158.0 348.0			206.0	119.0	
1350 シスメックス シスメックスXSシリー 14.00 37.90 244.0 127.0 1351 15.80 34.80 15.80 34.80 239.0 131.0 1352 シスメックス シスメックスXTシリー 12.00 36.90 12.00 36.90 222.0 118.0 1355 シーメンス シーメンスHCD120 15.80 34.80 15.80 34.80 21.0 127.0 127.0 1356 シスメックス シスメックスXTシリー 15.80 34.80 15.80 34.80 21.0 127.0 1357 シスメックス シスメックスXEシリー 14.00 44.00 14.00 44.00 241.0 138.0 138.0 1358 シスメックス シスメックスXTシリー 158.0 348.0 234.0 128.0 128.0 1359 シスメックス シスメックスXTシリー 158.0 348.0 158.0 348.0 238.0 132.0	1348		シスメックス	シスメックスXEシリー	15.00 35.00	15.00	35.00	230.0	126.0	
1351	1349		シスメックス	シスメックスXTシリー	15.80 34.80	15.80	34.80	238.0	125.0	
1352 シスメックス シスメックスXTシリー 12.00 36.90 12.00 36.90 222.0 118.0 1355 シーメンス シーメンスHCD120 15.80 34.80 15.80 34.80 221.0 127.0 1356 シスメックス シスメックスXTシリー 15.80 34.80 15.80 34.80 219.0 122.0 1357 シスメックス シスメックスXEシリー 14.00 44.00 14.00 44.00 241.0 138.0 1358 シスメックス シスメックスXTシリー 158.0 348.0 234.0 234.0 128.0 1359 シスメックス シスメックスXTシリー 158.0 348.0 158.0 348.0 238.0 132.0	1350		シスメックス	シスメックスXSシリー	14.00 37.90			244.0	127.0	
1355 シーメンス シーメンスHCD120 15.80 34.80 15.80 34.80 221.0 127.0 1356 シスメックス シスメックスXTシリー 15.80 34.80 15.80 34.80 219.0 122.0 1357 シスメックス シスメックスXEシリー 14.00 44.00 14.00 44.00 241.0 138.0 1358 シスメックス シスメックスXTシリー 158.0 348.0 234.0 128.0 1359 シスメックス シスメックスXTシリー 158.0 348.0 158.0 348.0 238.0 132.0	1351				15.80 34.80	15.80	34.80	239.0	131.0	
1356       シスメックス       シスメックスXTシリー       15.80       34.80       15.80       34.80       219.0       122.0         1357       シスメックス       シスメックスXEシリー       14.00       44.00       14.00       241.0       138.0         1358       シスメックス       シスメックスXTシリー       158.0       348.0       234.0       128.0         1359       シスメックス       シスメックスXTシリー       158.0       348.0       158.0       348.0       238.0       132.0	1352		シスメックス	シスメックスXTシリー	12.00 36.90	12.00	36.90	222.0	118.0	
1357       シスメックス       シスメックスXEシリー       14.00       44.00       14.00       241.0       138.0         1358       シスメックス       シスメックスXTシリー       158.0       348.0       234.0       128.0         1359       シスメックス       シスメックスXTシリー       158.0       348.0       158.0       348.0       238.0       132.0	1355		シーメンス	シーメンスHCD120	15.80 34.80	15.80	34.80	221.0	127.0	
1358       シスメックス       シスメックスXTシリー       158.0       348.0       234.0       128.0         1359       シスメックス       シスメックスXTシリー       158.0       348.0       158.0       348.0       238.0       132.0	1356		シスメックス	シスメックスXTシリー	15.80 34.80	15.80	34.80	219.0	122.0	
1359 シスメックス シスメックスXTシリー 158.0 348.0 158.0 348.0 238.0 132.0	1357		シスメックス	シスメックスXEシリー	14.00 44.00	14.00	44.00	241.0	138.0	
	1358		シスメックス	シスメックスXTシリー	158.0 348.0			234.0	128.0	
1360 シスメックス シスメックスXNシリー 15.00 35.00 15.00 35.00 230.0 123.0	1359		シスメックス	シスメックスXTシリー	158.0 348.0	158.0	348.0	238.0	132.0	
	1360		シスメックス	シスメックスXNシリー	15.00 35.00	15.00	35.00	230.0	123.0	
	1360		シスメックス	シスメックスXNシリー	15.00 35.00	15.00	35.00	230.0	123.0	

71 PLT 施設No.が低い順に並んでいます

包設	測空百四	試薬メーカー	<b>松</b> 早	男性基準	準範囲	女性基	準範囲			試料報告值
No	測定原理	試楽メーカー	機器	下限	上限	下限	上限	試料08	試料34	
361				158.0	348.0			227.0	128.0	
362		シーメンス	シーメンスHCD120		36.00	13.00	36.00	215.0	111.0	
365		シスメックス	シスメックスXNシリー		348.0		348.0	246.0	136.0	
367		シスメックス	シスメックスpocH-1		34.80			228.0	127.0	
368			. , 1		348.0	158.0	348.0	242.0	137.0	
370		シスメックス	シスメックスXTシリー		34.80		34.80	242.0	133.0	
.371		シスメックス	シスメックスXSシリー		348.0			230.0	126.0	
.373		シスメックス	シスメックスXSシリー		38.00			231.0	121.0	
374		ホリバ(堀場製作	堀場LC-660_66			140.0	379.0	228.0	13.00	
1375		シスメックス	シスメックスKX-21_	14.00	37.90			236.0	123.0	
.378		シスメックス	シスメックスK-4500		37.90			207.0	115.0	
382		ダイナボット	アボットシャハ°ンCD	158.0	348.0	158.0	348.0	204.0	111.0	
385		シスメックス	シスメックスXSシリー	158.0	348.0			214.0	103.0	
390		シスメックス	シスメックスXNシリー	15.00	35.00			220.0	124.0	
391		シスメックス	シスメックスXNシリー	10.00	38.00	10.00	38.00	236.0	137.0	
393		日本光電	光電MEK-6400	13.00	36.90	13.00	36.90	266.0	140.0	
394		シスメックス	シスメックスXP-100		35.00			236.0	121.0	
396		ダイナボット	アボットジャパンCD	15.80	34.80	15.80	34.80	205.0	111.0	
400		シスメックス	シスメックスXSシリー		348.0		348.0	227.0	120.0	
401		シスメックス	シスメックスXTシリー	158.0	348.0	158.0	348.0	235.0	130.0	
402		シスメックス	シスメックスXNシリー	158.0	348.0	158.0	348.0	205.0	65.00	
403		シスメックス	シスメックスXTシリー	15.80	34.80	15.80	34.80	233.0	125.0	
404		シスメックス	シスメックスXEシリー	158.0	348.0	158.0	348.0	233.0	128.0	
405		シスメックス	シスメックスXSシリー	14.00	37.90	14.00	37.90	231.0	120.0	
407				15.00	39.00			236.0	141.0	
408		シスメックス	シスメックスXSシリー	14.80	33.90	15.00	36.10	235.0	125.0	
410		シスメックス	シスメックスXSシリー	14.80	33.90	15.00	36.10	224.0	125.0	
411		シスメックス	シスメックスXEシリー	158.0	348.0	158.0	348.0	232.0	131.0	
413		ホリバ(堀場製作	堀場LC-667CR	158.0	348.0	158.0	348.0	202.0	103.0	
415		ホリバ(堀場製作	堀場FL-278CR	130.0	369.0	130.0	369.0	252.0	139.0	
418		ホリバ(堀場製作	堀場LC-660_66	15.80	34.80	15.80	34.80	241.0	125.0	
419		シスメックス	シスメックスXSシリー	12.00	35.00	12.00	35.00	230.0	126.0	
501		シスメックス	シスメックスXEシリー	13.10	36.20	13.00	36.90	236.0	132.0	
502		シスメックス	シスメックスXEシリー	12.00	40.00	12.00	40.00	231.0	126.0	
505		シスメックス	シスメックスXEシリー	158.0	348.0	158.0	348.0	227.0	131.0	
506		シスメックス	シスメックスXNシリー	13.10	36.20	13.00	36.90	218.0	124.0	
511		シスメックス	シスメックスXTシリー	158.0	348.0	158.0	348.0	226.0	120.0	
512		シスメックス	シスメックスXEシリー	158.0	348.0	158.0	348.0	236.0	132.0	
513		シスメックス	シスメックスXEシリー	158.0	348.0	158.0	348.0	198.0	115.0	
514		シスメックス	シスメックスXNシリー	158.0	348.0	158.0	348.0	226.0	126.0	
518		シスメックス	シスメックスK-4500	10.00	40.00	10.00	40.00	230.0	119.0	
519		シスメックス	シスメックスXTシリー	158.0	348.0	158.0	348.0	222.0	125.0	
521		シスメックス	シスメックスXP-100	12.00	38.00	12.00	38.00	224.0	124.0	
1523		ホリバ(堀場製作	堀場LCシリース゛		348.0			218.0	120.0	
525		ホリバ(堀場製作	堀場LC-660_66	13.00	36.90			224.0	131.0	
528		シスメックス	シスメックスXTシリー	158.0	348.0	158.0	348.0	229.0	124.0	
529		シスメックス	シスメックスXEシリー	14.00	37.90	14.00	37.90	230.0	125.0	
530					348.0		348.0	227.0	122.0	
531		シスメックス	シスメックスXTシリー		40.00	10.00	40.00	244.0	132.0	
532		シスメックス	シスメックスXEシリー		348.0			229.0	134.0	
533		シスメックス	シスメックスXTシリー	15.80	34.80			221.0	121.0	
534		シスメックス	シスメックスXSシリー	15.80	34.80			232.0	124.0	
538		ホリバ(堀場製作	堀場PENTRA60		34.80			240.0	120.0	
540		シスメックス	シスメックスXSシリー	15.80	34.80	15.80	34.80	226.0	112.0	
541		シスメックス	シスメックスXTシリー	13.00	40.00			230.0	124.0	
542		シスメックス	シスメックスXTシリー	13.10	36.20	13.00	36.90	207.0	95.00	
543		シスメックス	シスメックスXTシリー	10.00	10.00	10.00	40.00	153.0	116.0	

71 PLT 施設No.が低い順に並んでいます

施設	油中压和	±4-74± ) . 1-	144 1111	男性基	準範囲	女性基	準範囲			試料報告値
No	測定原理	試薬メーカー	機器	下限	上限	下限	上限	試料08	試料34	
1546		ホリバ(堀場製作	堀場LC-667CR					323.0	157.0	
1548		シスメックス	シスメックスXSシリー	15.80	34.80	15.80	34.80	241.0	123.0	
1549		シスメックス	シスメックスXSシリー	13.00	36.90	13.00	36.90	223.0	121.0	
1550		シスメックス	シスメックスXTシリー	14.00	37.90	14.00	37.90	230.0	131.0	
1552		ホリバ(堀場製作	堀場LC-667CR	131.0	362.0	130.0	369.0	222.0	101.0	
1554		シスメックス	シスメックスK-4500	12.00	36.00	12.00	36.00	293.0	130.0	
1555		シスメックス	シスメックスXSシリー	13.10	36.20	13.00	36.90	236.0	116.0	
1557		ホリバ(堀場製作	堀場PENTRA60	13.00	36.90			281.0	55.00	
1558		シスメックス	シスメックスXNシリー	10.00	35.00	10.00	35.00	236.0	126.0	
1559		ホリバ(堀場製作	堀場PENTRA60	15.80	34.80	15.80	34.80	226.0	125.0	
1560		ホリバ(堀場製作	堀場LC-660_66	13.10	36.20	13.00	36.90	227.0	141.0	
1561		シスメックス	シスメックスXNシリー	15.80	34.80	15.80	34.80	226.0	125.0	
1562		シスメックス	シスメックスXEシリー	15.80		15.80	34.80	244.0	142.0	
1901		シスメックス	シスメックスXEシリー	13.00		13.00	36.90	230.0	140.0	
1902		シスメックス	シスメックスXEシリー	14.00		14.00	37.90	233.0	127.0	
1903		シスメックス	シスメックスXEシリー	13.10		13.00	36.90	226.0	126.0	
1909		シスメックス	シスメックスXEシリー	10.00		10.00	40.00	238.0	128.0	
1911		シーメンス	シーメンスHCD120	13.00		13.00	36.00	215.0	111.0	
1916		シスメックス	シスメックスXTシリー	15.80		15.80	34.80	229.0	121.0	
1917		シスメックス	シスメックスXTシリー	13.10		13.00	36.90	233.0	129.0	
1920		シスメックス	シスメックスK-4500	10.00		10.00	40.00	231.0	113.0	
1922		シスメックス	シスメックスXTシリー	13.10		13.00	36.90	227.0	125.0	
1923		シスメックス	シスメックスXTシリー	13.10		13.00	36.90	227.0	124.0	
1925		ホリバ(堀場製作 シスメックス	堀場PENTRA60	13.00		13.00 15.00	36.90 40.00	228.0 231.0	117.0	
1926 1928		シスメックス	シスメックスXEシリー シスメックスXTシリー	15.00 13.10		13.00	36.90	181.0	130.0 114.0	
1930		シスメックス	シスメックスXTシリー	13.00		13.00	36.90	223.0	121.0	
1931		シスメックス	シスメックスXTシリー	13.00		13.00	36.90	225.0	128.0	
1932		シスメックス	シスメックスXTシリー	14.00	37.90	10.00	50.50	227.0	125.0	
1933		シスメックス	シスメックスKX-21_	13.00		13.00	36.00	227.0	127.0	
1934		シスメックス	シスメックスXTシリー	13.00		13.00	36.90	226.0	117.0	
1935		シスメックス	シスメックスXTシリー	14.00		14.00	37.90	217.0	126.0	
1936		シスメックス	シスメックスXTシリー	13.00		13.00	37.00	240.0	129.0	
1937		シスメックス	シスメックスXNシリー	13.00		13.00	35.00	222.0	111.0	
2002		シスメックス	シスメックスXEシリー	158.0	348.0	158.0	348.0	243.0	134.0	
2006		シスメックス	シスメックスXEシリー	15.20	36.10	15.20	36.10	243.0	138.0	
2008		シスメックス	シスメックスXNシリー	158.0	348.0	158.0	348.0	244.0	130.0	
2009		シスメックス	シスメックスK-4500	12.00	40.00	12.00	40.00	238.0	128.0	
2010		シスメックス	シスメックスXSシリー	13.10	74.00	13.00	36.90	228.0	120.0	
2011		シスメックス	シスメックスXTシリー	13.00	36.90	13.00	36.90	222.0	126.0	
2012		ホリバ(堀場製作	堀場LC-660_66	150.0	390.0	150.0	390.0	210.0	117.0	
3001		シスメックス	シスメックスXEシリー	158.0	348.0	158.0	348.0	238.0	135.0	
3013		ホリバ(堀場製作	堀場LC-660_66	13.00	36.90			242.0	140.0	
3018		シスメックス	シスメックスXP-100	14.00	37.90			241.0	124.0	
3022		シスメックス	シスメックスXEシリー	158.0		158.0	348.0	236.0	123.0	
3027		シスメックス	シスメックスXEシリー	13.10		13.00	36.90	231.0	134.0	
3048		ベックマン・コー	ヘックマン・コールター	158.0		158.0	348.0	204.0	111.0	
3055		シスメックス	シスメックスXEシリー	158.0		158.0	348.0	240.0	135.0	
3056		3 m 3 2 m	la harran	13.00		13.00	37.00	228.0	127.0	
3907		シスメックス	シスメックスXEシリー	13.00		13.00	37.00	234.0	133.0	
4002		シスメックス	シスメックスXNシリー	158.0	348.0	14.00	04.00	243.0	127.0	
4039		シスメックス	シスメックスKX-21_	14.00		14.00	34.00	234.0	129.0	
4040		ベックマン・コー	ヘ゛ックマン・コールター	13.10		13.00	36.90	207.0	113.0	
4902		シノフィン・カフ	3/7 J., 47 VD2 /IL	13.00		13.00	36.00	238.0	126.0	
5003		シスメックス	シスメックスXEシリー	13.00		13.00	37.00	237.0	130.0	
5005		シスメックス	シスメックスXNシリー	15.80	34.80	150 0	240 0	234.0	124.0	
5006		シスメックス	シスメックスXNシリー	158.0	ა48.0	158.0	348.0	233.0	134.0	


71 PLT 施設No.が低い順に並んでいます

施設	測定原理	試薬メーカー	機器	男性	基準範囲	女性基	準範囲			試料報告値
No	例足亦生	四条/ //	70交合计	下限	上限	下限	上限	試料08	試料34	
5010		シスメックス	シスメックスXNシリー	158.0	348.0			238.0	126.0	
6006		日本光電	光電MEK-6400	11.00	34.00	11.00	34.00	257.0	141.0	
6008		シスメックス	シスメックスXNシリー	158.0	348.0	158.0	348.0	233.0	123.0	
6015		ベックマン・コー	ヘックマン・コールター	13.10	36.20	13.00	36.90	211.0	109.0	
6016		シスメックス	シスメックスXEシリー	15.80	34.80	15.80	34.80	306.0	129.0	
7001		シスメックス	シスメックスXEシリー	13.00	36.00	13.00	36.00	232.0	128.0	
7002		シスメックス	シスメックスXNシリー	158.0	348.0	158.0	348.0	233.0	123.0	
7007		シーメンス	シーメンスHCD120	12.00	38.00	12.00	38.00	201.0	113.0	
7011		シーメンス	シーメンスHCD120	158.0	348.0			227.0	120.0	
7025		シスメックス	シスメックスK-4500	12.00	35.00			229.0	121.0	
7901		シスメックス	シスメックスXEシリー	13.00	36.00	13.00	36.00	253.0	134.0	
8004		シスメックス	シスメックスXEシリー	158.0	348.0	158.0	348.0	242.0	131.0	
8011		シスメックス	シスメックスXSシリー	13.10	36.20	13.00	36.90	230.0	128.0	

# [生化学項目]

項 目 別 統 計 表

# 総括統計表(基本統計量)見方



#### ○一般化学項目(蛋白分画を除く)

	蛋白分画を除く/ 	,
1. グルコース	1:mg/dL	1:GOD-POD 法
(GLU)		2:GOD-電極法
		3:HK(GK)-UV法
		4:グハコース脱水素酵素(GLDH)法
		5:ドライケミストリー法
		9:その他
a hind i	4 . / 17	- '
2. クレアチニン	1:mg/dL	1:化学的測定法(ヤッフェ法)
(CRTN)		2:欠番
		3:酵素法(H202比色法)
		4:ドライケミストリー法
		9: その他
3. 尿酸	1:mg/dL	酵素的測定法(ウリカーゼ)
(UA)	0,	1: UV 測定法
(011)		2: H202比色法
		3: ドライケミストリー法
		9:その他
4. 尿素窒素	1:mg/dL	酵素法(ウレアーゼ)
(BUN)		1:未消去法
		2:消去法・低濃度(アンモニア濃度 20mg/dL 以下)
		3:消去法・高濃度(アンモニア濃度 80mg/dL 以上)
		4:回避法
		5:ドライケミストリー法
	参照:「尿素窒素 試薬一覧」14ページ	9:その他(上記以外の酵素法を含む)
5. 総ビリルビン		1: ジアダ法
•	1:mg/dL	· · · · · · · · · · · · · · · · · · ·
(T-BIL)		2:安定化ジアゾニウム塩法
		3:酵素法
		4:欠番
		5:バナジン酸法
		6: 亜硝酸汁リウム塩法
		7:ドライケミストリー法
	参照:「測定原理・試薬一覧」15ページ	9:その他
6. 直接ビリルビン	1:mg/dL	1:ジアゾ法
(D-BIL)	1 · mg/ cm/	2:安定化ジアゾニウム塩法
(D DIL)		3:酵素法δビリルビンを測り込まない方法
		- * * · · · · · · · · · · · · · · · · ·
		4:酵素法δビリルビンを測り込む方法
		5:バナジン酸法
		6: 亜硝酸汁リウム塩法
		7:ドライケミストリー法
	参照:「測定原理・試薬一覧」15ページ	9:その他
7. 無機リン	1:mg/dL	1:リンモリブ・デン酸法
(IP)	-	2:酵素法
\/		3:ドライケミストリー法
		9:その他
O 84	1 • / JT	
8. 鉄	1: μ g/dL	1:比色法(除蛋白あり)松原法-国際基準法-
(Fe)		2:比色法(除蛋白なし) 発色剤:フェロジェン
		3:比色法(除蛋白なし) バソフェナンスロリンスルホン酸 Na
		4:比色法(除蛋白なし) ニトロン PSAP
		5:比色法(除蛋白なし) フェレン
		6:比色法(除蛋白なし) 電極法
		7:ドライケミストリー法
1		9: その他
		3・・C ♥/汀匹

9. カルシウム	1:mg/dL	1:比色法(o-CPC)
(Ca)	(mEq/Lの報告データは2を乗じ	2:比色法(MXB)
(04)	てmg/dLに換算して下さい。)	3:酵素法
		4:7ルセナソ・Ⅲ法
		4.7 <i>/// 1</i> 114公 5:クロロホスホナソ [*] Ⅲ
		6:ドライケミストリー法
40 18 10 10	4.7	9:その他
10. マグ ネシウム	1:mg/dL	1:キシリジルブル一法
(Mg)		2:酵素法
		3:ドライケミストリー法
		9:その他
11. ナトリウム	1:mmol/L	1:炎光法 内部基準
12. カリウム		2:イオン選択電極法 直接法
(Na)		3:イオン選択電極法 希釈法
(K)		4:欠番
		5:ドライケミストリー法
		9:その他
13. クロール	1:mmol/L	1:電量滴定法(クロライドメーターなど)
(C1)	· ·	2: 付沙選択電極法 直接法
(02)		3:分選択電極法 希釈法
		4:欠番
		5:ドライケミストリー法
		9:その他
 14. 総蛋白	1:g/dL	1:t ゴンット法
14. 松虫口 (TP)	1·g/ dL	
(IP)		2:屈折計法
		3:ドライケミストリー法
45 91987	4. / 17	9: その他 1: Pgg Vb
15. アルブミン	1:g/dL	1:BCG 法
(ALB)		2:BCP 法
		3:BCP 改良法
		4:ドライケミストリー法
		9: その他
16. 総コレステロール	1:mg/dL	1:酵素法
(T-CHO)		2:ドライケミストリー法
		9: その他
17. HDLーコレステロール	1:mg/dL	1:酵素修飾法(協和メデックス等)
	9: 単位未報告	2:選択阻害法(積水メディカル等)
		3:選択消去法(和光純薬)
		4:消去法(デンカ生研等)
		5:反応阻害法(シスメックス)
		6: ドライケミストリー法
		9:その他
18. LDL-コレステロール	1:mg/dL	1:選択的可溶化法(協和メデックス等)
10. LDL ~V// P /V	I·lig/ QL	2:酵素的測定法(積水メディカル等)
		3:選択消去法(和光純薬)
		4:消去法(疗)为生研等)
		5:選択的酵素阻害法(シスメックス)
		6:ドライケミストリー法
		9: その他

mg/dL	酵素的測定法
1:総グ、リセロール	1:UV 測定法
•	2:H202比色法(GK-G3PD)
	3:ドライケミストリー法
	9: その他
, , ,	3. CV/IE
1:mg/dL	1:免疫比濁法
	2:欠番
	3:ラテックス免疫比濁法
	4:欠番
	5:ラテックス比ろう法
	6: ドライケミストリー
	99:その他
1:mg/dL	1:免疫比濁法(専用機)
	2:免疫比濁法(汎用機)
	3:ラテックス免疫比濁法(専用機)
	4:ラテックス免疫比濁法(汎用機)
	7:免疫比ろう法
	99:その他
1:U/mL	1:免疫比濁法(専用機)
	2:免疫比濁法(汎用機)
	3:ラテックス免疫比濁法(専用機)
	4: ラテックス免疫比濁法 (汎用機)
	5:ラテックス比ろう法
	6: ドライケミストリー
	99:その他
1:g/dL	1:シアンメトヘモグロビン
	2:オキシヘモク゛ロヒ゛ン
	3:SLS (ラウリル硫酸ナトリウム)
	4: AAO (アルキルアミンオキサイト*)
	5: 4級アンモニウム塩法
	6:イミダゾール法
	9:上記以外の非シアンメトヘモグロビン法
1:%(NGSP 値)	HPLC 法不安定分画を除去する方法
2:%(JDS 値)	1:アークレイ
3:その他( )	2:東ソー
	3:その他
	4:HPLC 法不安定分画を除去しない方法
	免疫学的方法
	5: 協和メデックス (デタミナーL HbA1c)
	6:協和メデックス (メタボリード HbA1c)
	7:ロシュタ゛イアグ ノスティックス(コバス試薬)
	8:富士レビオ
	9:シーメンス DCA2000
	1
	10:シーメンス(ディメンジョン)
	10:シーメンス(ディメンジョン) 11:積水メディカル
	1:総がリセロールを除去しない方法) 2: TG がリセロール (遊離がリセロールを除去する方法) 3: 単位未報告 1:mg/dL  1:U/mL  1:U/mL  1:g/dL  1:g/dL  1:%(NGSP 値) 2:%(JDS 値)

49 : HbA1c	検体容器	遠心機の条件	血球層の採取位置	前処理試料のHb濃度(HPLCのA0エリア等含む)の確認の有無
	1 : NaF	1: ( ) rpm ( ) 分	1:遠心分離後の血球層の下部(採血管の 底部から血球30%くらい)	1:行っている
	2 : EDTA	2:()g()分	2:遠心分離後の血球層の中部(採血管底 部の血球30%から60%くらい)	2:行っていない
	3 : NaF-EDTA		3:遠心分離後の血球層の上部	
	4:~パリン		4:全血を用い前処理(自動前処理も含む) して測定	
	5:その他( )		5:その他())	

## 【尿素窒素試薬一覧 平成29年度】

- 1) 測定単位は「1」、測定原理は「影響を受けない又は処理できるアンチニア濃度」で分類する
- 2) 試薬名は「R1の JAN コード」を記入のこと
- 3) 一覧に掲載されていない試薬の場合は「試薬名記入欄」に詳細に記入のこと

メーカー名	試 薬 名	メーカー表示	影響を受けない又は処理できる アンモニア濃度	コート*表 測定原理
ロシュ・タ゛イアク゛ノスティックス	リキテック BUN		, v s · / IDX/X	
ヘ゛ックマン・コールター	シンクロン BUN			
ディト `ベーリンク`	フレックスカートリッシ゛ BUN	_		
\$\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\f	オート L「ミス゛ホ」BUN	十次十	見る組みず、ゴンナフ	1
·	_	未消去	影響を受ける	1
和光純薬	L タイプ ワコー UN	_		
ハ・イエルメテ・イカル	キ゛ルフォート゛尿素窒素 EXT	_		
<b>利ンパ</b> ス	AU リエーシ゛ェント UN II			
協和メデックス (ロシュ・ダイアグノスティックス装置)	デタミナー L UN		20mg/dL	
極東製薬	ランヒ°ア リキット゛S BUN		2mg/dL	
シスメックス	BUN試薬・L「コクサイ」		13mg/dL	
シノテスト	クイックオート ネオ BUN	→ 次 →	2mg/dL	
セロテック	UN-L	消去	10mg/dL	2 (低濃度)
積水メディカル	ピュアオート S UN		4mg/dL	(旧场辰/支)
アルフレッサ ファーマ	ネスコート VL II BUN		2.5mg/dL	
LSI メディエンス	イアトロ LQ UN レート II		20mg/dL	
和光純薬	L タイプ ワコー UN3		10mg/dL	
ニットーホ゛ーメテ゛ィカル	N-アッセイ BUN <i>-</i> L(C タイプ゜)	未消去	10mg/dL	
栄研化学	エクテ゛ィア XL UN-II-E		500mg/dL	
カイノス	アクアオート カイノス UN−Ⅱ		500mg/dL	
シスメックス	BUN 試薬・D「コクサイ」		500mg/dL	
シノテスト	クイックオート ネオ UN	消去	2000mg/dL	3
セロテック	UN-SL		300mg/dL	(高濃度)
和光純薬	L タイプ ワコー UN2		500mg/dL	
ニットーホ゛ーメテ゛ィカル	N-アッセイ BUN -L(Dタイプ°)		300mg/dL	
カイノス	アクアオート カイノス UN-EN		影響を受けない	
関東化学	シカリキット゛N UN	7	150mg/dL	1
協和メデックス	デタミナー L UN Ⅱ	7	100mg/dL	1
極東製薬	ビアンコーレ リキッド BUN	回 避	100mg/dL	4
積水メディカル	t° 17t-1 S UN-L	7	80mg/dL	1
ミス゛ホメテ゛ィー	オート LT「ミズホ」UN -W	7	150mg/dL	1
LSI メディエンス	イアトロ LQ UNレート(A) II	7	500mg/dL	1
富士フィルム	富士ドライケムスライドBUN-PIII			
	スポ゜ットケム <b>II</b> BUN	1		
アークレイ	スポ゜ットケム D UN	   h`` ライケミストリー	影響を受ける	5
オーソ・クリニカルタ゛イアク゛ノスティックス	ビトロススライド BUN			
扶桑薬品	アイ・スタットカートリッシ゛+6			

T-BIL 測定原理一覧表

測定原理	販売元	製造販売元	試薬名
1:ジアゾ法	アルフレッサファーマ	アルフレッサファーマ	ネスコート ヒ゛リルヒ゛ン キットーK
			ネスコート ビリルビン キット-N
			ネスコート T-BIL-V1
	シーメンス	シーメンス	フレックスカートリッシ゛ 総ビリルビン TBIL
	シスメックス	シスメックス	T・BIL 試薬・A
	積水メディカル	積水メディカル	クリニメイト BIL-2 試薬
			オートセラ BIL-2
	ベックマン・コールター	ヘ゛ックマン ・ コールター	シンクロンシステム 総ビリルビン試薬
	ロシュ	ロシュ	コハ゛ス インテケ゛ラ試薬 T-BIL
3:酵素法	アルフレッサファーマ	アルフレッサファーマ	ネスコート VL T-BIL
	栄研化学	栄研化学	エクディアL'栄研'T-BIL
	シスメックス	シスメックス	T・BIL 試薬・C 「コクサイ」
	ニットーボ゛ーメテ゛ィカル	ニットーボ゛ーメテ゛ィカル	N-アッセイ L T-BIL-S ニットーボー
	シスメックス	工力	エルシステム・T-BIL
	カイノス	工厂力	アクアオート カイノス T-BIL 試薬
	関東化学	工力	シカリキット゛ T-BIL
	シノテスト	工厂力	アキュラスオート T-BIL
	積水メディカル	工力	ユニメディ「T-BIL-LQ」
	LSI メディエンス	工厂力	イプトロ LQ T-BILII
5: バナジン酸法	アルフレッサファーマ	アルフレッサファーマ	ネスコート T-BIL-VE
	和光純薬	和光純薬	総ビリルビン E-HA テストワコー
			総ビリルビン E-HR ワコー
			Dimension 用 総ビリルビン E-HR ワコー
6:亜硝酸 Na 塩法	日東紡績	日東紡績	N-アッセイ L T-BIL ニットーボー
7:ドライケミストリー法	アークレイ	アークレイ	スポ゚ットケム D T−BIL
	オーソ	オーソ	ビトロス スライド TBIL
	富士フィルム	富士フィルム	富士ドライケムスライド TBIL-PIII

D-BIL 測定原理一覧表

D-BIL 測定原理一覧表	11 11 11 11 11 11 11 11 11 11 11 11 11	制生服老二	**************************************
測定原理	販売元	製造販売元	試薬名
1:ジアゾ法	アルフレッサファーマ	アルフレッサファーマ	ネスコート ヒ゛リルヒ゛ン キットーΚ
			ネスコート ビリルビン キット-N
			ネスコート D-BIL-V1
	シーメンス	シーメンス	フレックスカートリッジ 直接ビリルビン DBIL
	シスメックス	シスメックス	D·BIL 試薬·A
	積水メディカル	積水メディカル	クリニメイト D-BIL-2 試薬
			オートセラ D-BIL-2
	ヘ゛ックマン ・コールター	ベックマン・コールター	シンクロンシステム 直接ビリルビン試薬
	口シュ	ロシュ	コバス インテグラ試薬 D-BIL
3:酵素法	栄研化学	栄研化学	エクディア L '栄研' D-BIL
(δビリルビンを	カイノス	工于力	アクアオート カイノス D-BIL 試薬
測り込まない方法)	関東化学	工力	シカリキット゛ D-BIL
	シスメックス	工升	エルシステム・D-BIL
	シノテスト	工升	アキュラスオート D-BIL
	積水メディカル	工产力	ユニメディ「D-BIL-LQ」
	LSI メディエンス	工升	イアトロ LQ D-BIL (A)
4:酵素法	アルフレッサファーマ	アルフレッサファーマ	ネスコート VL D-BIL
(δビリルビンを			ネスコート D-BIL-VE
測り込む方法)	ニットーホ゛ーメテ゛ィカル	ニットーホ゛ーメテ゛ィカル	N-アッセイ L D-BIL-S ニットーボー
	シスメックス	シスメックス	D·BIL 試薬・C 「コクサイ」
5: バナジン酸法	和光純薬	和光純薬	直接ビリルビン E-HA テストワコー
			直接ビリルビン E-HR ワコー
			Dimension 用 直接ビリルビン E-HR ワコー
6: 亜硝酸 Na 塩法	日東紡績	日東紡績	N-アッセイ L D-BIL ニットーボー
7:ドライケミストリー法	オーソ	オーソ	ビトロス スライド BuBc
	富士フィルム	富士フィルム	富士ドライケムスライド DBIL-PII

#### ○酵素項目コード表(測定原理別で統計処理いたします)

	則定原理別で統計処理い	
22.アルカリ性フォスファターセ゛	1:IU/L	1:EAE 緩衝液(JSCC 標準化対応法)
(ALP)	9:その他	4:AMP 緩衝液(IFCC 標準化対応法)
		6:ドライケミストリー法
		9:その他
OO CTD	1 • TII /I	1: γ - / ^ ' / / / / / / / / / / / / / / / / /
23. γ-GTP	1:IU/L	, , , , , , , , , , , , , , , , , , , ,
	9:その他	7:ドライケミストリー法
		9:その他
24. AST (GOT)	1:IU/L	1: JSCC 標準化対応法
25. ALT (GPT)	9:その他	2:ドライケミストリー法
		9:その他
26. CK	1: IU/L	1: IFCC (JSCC) 標準化対応法
20. ON	9:その他	2:ドライケミストリー法
	9.50 VIII	
		9:その他
27. アミラーセ゛	1:IU/L (JSCC) ※1	非還元末端非修飾がず糖比色法
(AMY)	2: IU/L (その他) <b>※</b> 1	1: G3-CNP 基質
	9:上記以外の単位	2: G5-PNP 基質
		3: G5-CNP 基質
		4: G7-PNP 基質
		5: G7-CNP 基質
		非還元末端修飾利立 糖比色法
		6: ベンジルーG5ーPNP 基質
		7: 3-ケトブ・チリテ・ン-G5-CNP 基質
		8: 6-アジ化-G5-CNP 基質
		9: ベンジリデン-G7-PNP 基質
		10: 4,6-エチリテン-G7-PNP 基質
		非還元末端 Galactose 修飾
		11: Gal-G2-CNP 基質
		13: Gal-G5-PNP(CNP)基質
		14:ドライケミストリー法
	参照:「AMY 測定原理	19:その他
	試薬一覧」18ページ	19・での性
28. LD	1:IU/L	1:P→L UV 法
(LDH)	9:その他	2:L→P UV 法(JSCC 標準化対応)
(LDH)	3. C √ >   E	3:ドライケミストリー法
00 11 10		9:その他
30. コリンエステラーセ゛	1:IU/L(JSCC) ※2	1:アセチルコリンを基質とする法
(chE)	2: IU/L(その他) <b>※</b> 2	fオコリン誘導体を基質とする法
	9:上記以外の単位	2: アセチルチオコリン基質
		3: プロピオニルチオニリン基質
		4: ブチリルチオコリン基質
		5: 2,3-ジメトキシベンゾイルチオコリン基質
		6: 5-メチルー2 テノイルチオコリン基質
		_ · · · · · · · · · · · · · · · · · · ·
		7: ヘンゾーイルチャン・基質
		ヘ、ング・イルコリン誘導体を基質とする法
		8: ベンゾイルコリン基質
		9: P-ヒドロキシベンゾイルコリン基質
		10: 3,4-ジヒドロキシベンゾイルコリン基質
		11:ドライケミストリー法
	参照:「ChE 測定原理	
		19:その他
	試薬一覧」18ペッジ	

#### ※1 アミラーゼの単位と測定原理の記入について

- ・測定単位についてはERM などで検量し、JSCC 標準化対応法の値を報告ている施設はコード1を、JSCC 標準化対 応法の値以外の値を報告している施設は、コード2を選択してください。
- ・測定原理については、使用している試薬の基質でコードを選択してください。

#### ※2 コリンエステラーゼの単位と測定原理の記入について

- ・測定単位についてはERM などで検量し、JSCC 標準化対応法の値を報告ている施設はコード1を、JSCC 標準化対 応法の値以外の値を報告している施設は、コード2を選択してください。
- ・測定原理については、使用している試薬の基質でコードを選択してください。

#### ○検量方法分類コード表

	7314773	
	1:	溶媒ベース水溶液の標準物質を使用 (表示値で使用)
	2:	溶媒ベース水溶液の標準物質を使用 (表示値以外で使用)
<del></del>	3:	血清ベースの標準液を使用 (表示値で使用)
般化学	4:	血清ベースの標準液を使用 (表示値以外で使用)
学	5:	市販管理血清などを使用 (表示値で使用)
	6:	市販管理血清などを使用 (表示値以外で使用)
	20:	その他
	7:	係数を使用 実測 K-factor
	8:	係数を使用 指定 factor
te	9:	検量用ERMを使用 (表示値で使用)
酵素	10:	検量用ERMを使用 (表示値以外で使用)
710	11:	認証ERMを使用 (表示値で使用)
	12:	認証ERMを使用 (表示値以外で使用)
	20:	その他
l "	13:	IFCC由来
漿	14:	WHO由来
血漿蛋白	15:	国内標準由来
	20:	その他
	16:	メーカー独自標準品
<u>0</u>	17:	メーカー指定/NGSP 準拠
HbA1c	18:	メーカー指定/日本糖尿病学会(JDS)準拠
+	19:	メーカー指定以外/NGSP 準拠
	20:	その他

※相関から求めた係数とか系列病院で合わせるための係数とかを乗じている場合は表示値以外の中から選んでください。

AM\	/測定原理・試薬-	覧表			
J-ŀ.	測定原理	販売元	製造販売元	試薬名	基質
		(株)LSIメディエンス	オリエンタル酵母	AMY-G3CNP	G3-CNP
	北海二十地北坡外子口	㈱カイノス	㈱カイノス	アクアオートカイノスAMYG3試薬	G3-CNP
1	非還元末端非修飾オリ ゴ糖比色法:G3-CNP	関東化学(株)	関東化学(株)	シカリキッドAMY	G3-CNP
	基質	シーメンスヘルスケア・ダ イアグノスティック(株)	シーメンスヘルスケア・ダ イアグノスティック(株)	フレックスカートリッジAMY	CNPG3
		和光純薬工業(株)(株)	和光純薬工業(株)(株)	Lタイプワコー アミラーゼ	BG5P
6	   非還元末端修飾オリゴ   糖比色法:ベンジル-	<b>栄研化学㈱</b>	栄研化学(株)	エクディアXL栄研'AMY II	B-pNP-G5
0	福氏色伝:ハンラルー G5-PNP基質	㈱シノテスト	㈱シノテスト	クイックオートネオAMY-5	B-pNP-G5
		㈱シノテスト	㈱シノテスト	アキュラスオートAMY-IF	Et-pNP-G7
		㈱セロテック	㈱セロテック	セロテックAMY	Et-G7-PNP
		関東化学㈱	関東化学㈱	シカフィットAMY-G7	Et-G7-PNP
		極東製薬工業㈱	(株)シノテスト	アキュラスオートAMY-IF	ET-pNP-G7
	非還元末端修飾オリゴ	(#)	積水メディカル(株)	クオリジェント AMY-G7	ET-pNP-G7
10	糖比色法:4,6-1ナリ	付か グブイ カル(株)	関小ステイ 刀ル(柄)	ピュアオートSAMY-G7	ET-pNP-G7
	デン-G7-PNP基質	デンカ生研(株)	デンカ生研(株)	自動分析用試薬「生研」AMY-S	Et-G7-PNP
		ベックマン・コールター(株)	ベックマン・コールター(株)	AUリエージェントAMY	Et-G7-PNP
			㈱シノテスト	アキュラスオートAMY-IF	Et-G7-PNP
		ロシュ・ダイアグノス ティックス㈱	ロシュ・ダイアグノス	コバスシステム コバス試薬AMYⅡ	Et-pNP-G7
		, , , , , , , , , , , , , , , , , , ,	ティックス㈱	リキテックAMY ESP	Et-G7-PNP
		(株)ミズホメディー	㈱ミズホメディー	オートL「ミズホ」AMY-G2	Gal-G2-CNP
		関東化学㈱	関東化学(株)	シカリキッドN-AMY	Gal-G2-CNP
	非還元末端ガラクトー	協和メデックス㈱	協和メデックス㈱	デタミナーL AMY G2	Gal-G2-CNP
11	ス修飾:Gal-G2-CNP	<b>着水メディカル㈱</b>	  積水メディカル(株)	クオリジェント AMY-G2	Gal-G2-CNP
	基質		「貝小ハノイノブル(が)	ピュアオートSAMY-G2	Gal-G2-CNP
		東洋紡㈱	東洋紡(株)	ダイヤカラーAMY-Lダイレクト	Gal-G2-CNP
		日立化成㈱	日立化成(株)	セラテスタム AMY	Gal-G2-CNP
		アルフレッサファーマ㈱	アルフレッサファーマ㈱	ネスコートVL AMY	Gal-G5-4NP
13	非還元末端ガラクトー ス修飾:Gal-G5-	シスメックス(株)	  シスメックス(株)	AMY試薬L「コクサイ」	Gal-G5-pNP
13	PNP(CNP)基質		) / / / / / / / / / / / / / / / / / / /	エルシステム・AMY	Gal-G5-pNP
		ニットーボーメディカル(株)	ニットーボーメディカル(株)	N-アッセイAMYニットーボー	Gal-G5-α-PNP
		アークレイ㈱	㈱アークレイファクトリー	スポットケムD-02 SD-4810	BG7-pNP
14	ドライケミストリー法	オーソ・クリニカル・ダイ アグノスティックス(株)	オーソ・クリニカル・ダイ アグノスティックス(株)	ビトロススライドAMY J	アミロペクチン
		富士フィルムメディカル㈱	富士フィルム(株)	富士ドライケムスライドAMYL-P3	Et-G7-PNP
19	その他	セントラル科学貿易	ABAXIS社	マルチローターV PBCRP	

一覧に掲載されてない試薬の場合は「試薬名記入欄」に詳細に記入のこと

ChE	測定原理・試薬一覧表				
J- <b>/</b> *	測定原理	販売元	製造販売元	試薬名	基質
3	チオコリンを基質とする法: プロピオニルチオコリン基質	和光純薬工業(株)	和光純薬工業㈱	Lタイプワコー ChE	MTTC
4	チオコリンを基質とする法:	オーソ・クリニカル・ダイ アグノスティックス(株)	オーソ・クリニカル・ダイ アグノスティックス(株)	ビトロススライドCHEJ300	ヨウ化プチリルチオコリン
4	ブチリルチオコリン基質	ロシュ・ダイアグノス ティックス(株)	ロシュ・ダイアグノス ティックス(株)	リキテックコリンエステラーゼ	ヨウ化プチリルチオコリン
5	チオコリンを基質とする 法:2.3-ジメトキシベンゾイル チオコリン基質	シスメックス(株)	シスメックス㈱	CHE試薬·L「コクサイ」	DMBT
7	チオコリンを基質とする法:ベンゾイルチオコリン基質	関東化学(株)	関東化学㈱	シカフィット ChE シカリキッド CHE	BZTC BZTC
		栄研化学(株)	栄研化学(株)	エクディアXL`栄研'CHE	pHBC
		㈱カイノス	(株)カイノス	アクアオート カイノス CHE試薬	pHBC
		(株)セロテック	㈱セロテック	セロテックChE-CL	pHBC
		関東化学(株)	関東化学(株)	シカフィット ChE J	pHBC
	ベンゾイルコリンを基質とす	協和メデックス(株)	協和メデックス㈱	デタミナーL ChE	pHBC
9	る法:P-ヒドロキシベンゾイ	極東製薬工業㈱	極東製薬工業㈱	ランピア リキッド ChE	pHBC
	ルコリン基質	積水メディカル(株)	㈱シノテスト	クイックオートネオ Ch-E	pHBC
		ニットーボーメディカル(株)	ニットーボーメディカル(株)	N-アッセイ L ChE	pHBC
		ロシュ・ダイアグノス ティックス(株)	㈱シノテスト	クイックオートネオ Ch-E	pHBC
		和光純薬工業㈱	和光純薬工業㈱	Lタイプワコー ChE・J	pHBC
10	ドライケミストリー法	富士フィルムメディカル(株)	富士フィルム(株)	富士ドライケムスライドCHE-P	pHBC
一覧に	掲載されてない試薬の場合は	「試薬名記入欄」に詳細に記	入のこと <u></u>		

## 項目別総括統計表(単位別)

各項目・試料別 分類統計表

(ペップ 1)

台·坦口· inv	1750 万规机	<b>洞</b>			(., _>	1 )							
# 項目	分類 試料		全デー	タ統計		3	SD 除去	データ統	計	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
1 GLU	1 S-1	220	191. 7	3. 23	1. 69	215	191. 8	2. 42	1. 26	169. 0	207. 0	5	2. 27
	S-2	220	149. 7	3. 26	2. 18	214	149. 8	1. 91	1. 28	115. 0	161. 0	6	2. 73
	S-3	220	86. 5	1. 69	1. 96	214	86. 4	1. 30	1. 50	81. 0	96. 0	6	2. 73
2 CRTN	1 S-1	219	3. 38	0. 060	1. 76	215	3. 38	0. 048	1. 41	3. 10	3. 76	4	1. 83
	S-2	219	2. 34	0. 053	2. 28	213	2. 34	0. 035	1. 51	1. 90	2. 62	6	2. 74
	S-3	219	0. 79	0. 040	5. 05	212	0. 79	0. 025	3. 12	0. 69	1. 20	7	3. 20
3 UA	1 S-1	214	3. 84	0. 088	2. 29	210	3. 84	0. 071	1. 85	3. 20	4. 10	4	1.87
	S-2	214	5. 30	0. 115	2. 16	210	5. 31	0. 073	1. 37	4. 30	5. 60	4	1.87
	S-3	214	7. 55	0. 123	1. 62	212	7. 55	0. 091	1. 21	6. 40	7. 90	2	0.93
4 BUN	1 S-1	220	43. 6	0. 82	1. 88	216	43. 6	0. 70	1. 61	39. 5	46. 1	4	1. 82
	S-2	220	31. 7	0. 77	2. 42	216	31. 7	0. 54	1. 69	25. 3	34. 8	4	1. 82
	S-3	220	13. 6	0. 39	2. 86	219	13. 6	0. 35	2. 56	12. 9	16. 2	1	0. 45
5 T-BIL	1 S-1	97	3. 85	0. 125	3. 24	94	3. 85	0. 100	2. 59	3. 30	4. 20	3	3. 09
	S-2	97	2. 58	0. 100	3. 86	96	2. 58	0. 080	3. 11	2. 00	2. 80	1	1. 03
	S-3	97	0. 74	0. 049	6. 66	96	0. 74	0. 047	6. 31	0. 60	0. 90	1	1. 03
6 D-BIL	1 S-1	168	1. 67	0. 165	9. 88	168	1. 67	0. 165	9. 88	1. 21	2. 00	0	0.00
	S-2	168	1. 05	0. 094	8. 91	168	1. 05	0. 094	8. 91	0. 78	1. 30	0	0.00
	S-3	168	0. 17	0. 076	45. 07	167	0. 16	0. 053	31. 91	0. 05	0. 88	1	0.60
7 IP	1 S-1	163	6. 08	0. 148	2. 43	158	6. 10	0. 088	1. 44	4. 70	6. 30	5	3. 07
	S-2	163	5. 02	0. 080	1. 59	163	5. 02	0. 080	1. 59	4. 80	5. 20	0	0. 00
	S-3	163	3. 43	0. 074	2. 16	161	3. 43	0. 069	2. 01	3. 20	3. 70	2	1. 23
8 FE	1 S-1	179	91. 8	2. 13	2. 32	179	91. 8	2. 13	2. 32	86. 0	97. 0	0	0.00
	S-2	179	105. 1	2. 46	2. 34	179	105. 1	2. 46	2. 34	100. 0	111. 0	0	0.00
	S-3	179	124. 8	2. 97	2. 38	179	124. 8	2. 97	2. 38	118. 0	133. 0	0	0.00
9 CA	1 S-1	199	7. 26	0. 136	1. 88	198	7. 26	0. 133	1. 83	6. 80	7. 60	1	0.50
	S-2	199	8. 18	0. 137	1. 67	196	8. 18	0. 128	1. 56	7. 78	8. 60	3	1.51
	S-3	199	9. 56	0. 146	1. 52	197	9. 57	0. 137	1. 43	8. 98	10. 00	2	1.01
10 MG	1 S-1	88	4. 52	0. 088	1. 95	87	4. 52	0. 079	1. 74	4. 39	4. 90	1	1. 14
	S-2	88	3. 69	0. 090	2. 44	87	3. 68	0. 072	1. 94	3. 56	4. 20	1	1. 14
	S-3	88	2. 29	0. 097	4. 24	86	2. 29	0. 082	3. 58	2. 00	2. 70	2	2. 27
11 NA	1 S-1	207	127. 4	0. 99	0. 77	204	127. 4	0. 91	0. 72	124. 0	130. 7	3	1. 45
	S-2	207	131. 6	12. 25	9. 31	202	132. 8	0. 88	0. 66	3. 5	135. 8	5	2. 42
	S-3	207	141. 1	3. 82	2. 71	206	141. 4	1. 01	0. 72	88. 4	143. 7	1	0. 48
12 K	1 S-1	207	4. 18	9. 046	216. 65	204	3. 54	0. 046	1. 29	3. 45	133. 70	3	1. 45
	S-2	207	4. 20	0. 039	0. 93	204	4. 20	0. 037	0. 87	4. 07	4. 32	3	1. 45
	S-3	207	5. 68	6. 225	109. 66	204	5. 25	0. 053	1. 02	4. 82	94. 80	3	1. 45
13 CL	1 S-1	210	91. 0	3. 81	4. 19	205	90. 9	1. 14	1. 26	86. 0	142. 9	5	2. 38
	S-2	210	95. 0	6. 33	6. 67	202	95. 4	0. 96	1. 01	5. 2	100. 0	8	3. 81
	S-3	210	102. 7	1. 09	1. 06	207	102. 7	0. 98	0. 96	100. 0	108. 0	3	1. 43
14 TP	1 S-1	218	5. 96	0. 082	1. 38	212	5. 96	0. 067	1. 13	5. 50	6. 21	6	2. 75
	S-2	218	6. 85	0. 087	1. 27	211	6. 84	0. 071	1. 04	6. 40	7. 10	7	3. 21
	S-3	217	8. 19	0. 104	1. 27	211	8. 19	0. 088	1. 07	7. 90	8. 60	6	2. 76
15 ALB	1 S-1	215	3. 76	0. 076	2. 01	212	3. 76	0. 068	1. 81	3. 50	4. 10	3	1. 40
	S-2	215	4. 28	0. 081	1. 88	214	4. 29	0. 076	1. 78	3. 90	4. 50	1	0. 47
	S-3	214	5. 08	0. 106	2. 09	210	5. 08	0. 090	1. 77	4. 70	5. 70	4	1. 87
16 T-CHO	1 S-1	205	133. 3	2. 38	1. 79	203	133. 4	2. 18	1. 63	122. 0	139. 0	2	0. 98
	S-2	205	160. 2	3. 74	2. 33	204	160. 4	2. 68	1. 67	123. 0	168. 0	1	0. 49
	S-3	205	201. 7	3. 13	1. 55	204	201. 8	3. 06	1. 52	192. 0	210. 0	1	0. 49

	1771 J1 XX	LD 1 2X			(, )	۷)							
# 項目	分類 試料		全デー	タ統計		3	SD 除去	データ統語	<del>\</del> 	最小値	最大値	3SD	ハズレ値
17 HDL	NO. 1 S-1	N 86	平均 42.8	S. D. 1. 38	C. V. 3. 22	N 81	平均 43.0	S. D. 0. 80	C. V. 1. 86	35. 0	45. 0	N 5	% 5. 81
	S-2 S-3	86 86	49. 6 59. 8	1. 34 1. 49	2. 71 2. 49	83 85	49. 7 59. 9	1. 01 1. 23	2. 04 2. 06	43. 0 52. 0	53. 0 63. 0	3 1	3. 49 1. 16
18 LDL	1 S-1	116	75. 3	2. 98	3.95	116	75. 3	2.98	3. 95	70.7	83.0	0	0.00
	S-2 S-3	116 116	91. 6 116. 1	3. 90 4. 71	4. 26 4. 06	115 116	91. 5 116. 1	3. 74 4. 71	4. 09 4. 06	86. 0 110. 0	104. 0 128. 0	1 0	0.86 0.00
21 TG	2 S-1 S-2	212 212	65. 2 79. 2	1. 41 1. 89	2. 16 2. 39	209 208	65. 3 79. 4	1. 22 1. 40	1. 87 1. 76	58. 0 63. 0	68. 0 83. 0	3 4	1. 42 1. 89
	S-3	212	100.8	1. 74	1. 73	208	100. 9	1. 55	1. 54	94. 0	105. 0	4	1.89
22 ALP	1 S-1 S-2	213 213	385. 2 325. 9	31. 76 19. 86	8. 25 6. 09	204 206	387. 9 328. 0	6. 03 5. 63	1. 55 1. 72	36. 1 83. 0	415. 0 346. 0	9 7	4. 23 3. 29
	S-3	213	234. 6	12. 72	5. 42	211	235. 4	4. 96	2. 11	65. 0	250. 0	2	0. 94
22 ALP	9 S-1	1	388. 0 330. 0	0. 00 0. 00	0.00 0.00	1	388. 0 330. 0	0.00	0.00	388. 0 330. 0	388. 0 330. 0	0	0.00 0.00
	S-2 S-3	1 1	237. 0	0.00	0.00	1 1	237. 0	0. 00 0. 00	0. 00 0. 00	237. 0	237. 0	0	0.00
23 R-GT	1 S-1	218	156. 5	11. 99	7.66	212	155. 8	2. 10	1. 35	140.0	328.0	6	2. 75
	S-2 S-3	218 218	108. 7 37. 7	2. 64 1. 20	2. 42 3. 18	213 207	108. 9 37. 8	1. 57 0. 84	1. 44 2. 23	82. 0 31. 0	117. 0 41. 0	5 11	2. 29 5. 05
23 R-GT	9 S-1	1	157. 0	0.00	0.00	1	157. 0	0.00	0.00	157. 0	157.0	0	0.00
	S-2 S-3	1 1	110. 0 39. 0	0. 00 0. 00	0.00 0.00	1 1	110. 0 39. 0	0. 00 0. 00	0. 00 0. 00	110. 0 39. 0	110. 0 39. 0	0	0. 00 0. 00
24 AST	1 S-1	216	116. 5	2. 58	2. 21	209	116. 7	1.95	1. 67	101. 0	123. 1	7	3. 24
	S-2 S-3	216 216	80. 7 26. 4	2. 23 0. 96	2. 77 3. 63	211 215	80. 9 26. 4	1. 34 0. 88	1. 65 3. 34	57. 0 24. 0	86. 0 32. 0	5 1	2. 31 0. 46
25 ALT	1 S-1	216	136. 4	3. 88	2.85	204	137. 1	2.71	1. 97	117. 0	145. 0	12	5. 56
	S-2 S-3	216 216	91. 4 23. 7	3. 10 1. 18	3. 39 4. 96	212 209	91. 6 23. 7	2. 29 0. 84	2. 50 3. 55	65. 0 18. 0	97. 2 31. 0	4 7	1.85 3.24
26 CK	1 S-1	211	357. 6	6. 05	1.69	206	357. 9	4.96	1. 39	319. 0	376.0	5	2.37
	S-2 S-3	211 211	281. 7 167. 3	6. 82 4. 56	2. 42 2. 72	207 205	282. 1 167. 1	4. 12 2. 72	1. 46 1. 63	207. 0 156. 0	295. 0 216. 0	4 6	1. 90 2. 84
26 CK	9 S-1	1	359. 0	0.00	0.00	1	359. 0	0.00	0.00	359. 0	359.0	0	0.00
	S-2	1	281.0	0.00	0.00	1	281. 0	0.00	0.00	281.0	281.0	0	0.00
	S-3	1	168.0	0.00	0.00	1	168. 0	0.00	0.00	168. 0	168.0	0	0.00
27 AMY	1 S-1	209	230. 2	6.68	2.90	206	230. 7	4.40	1. 91	162. 0	242.0	3	1.44
	S-2	209	173.8	5. 58	3. 21	207	174. 3	3. 53	2.03	126. 0	184. 0	2	0.96
	S-3	209	89. 0	2. 50	2.81	208	89. 1	1. 99	2. 23	67. 0	95. 0	1	0.48
28 LD	1 S-1	215	350.2	5. 87	1.68	213	350. 3	5. 17	1.48	318.0	376.0	2	0. 93
	S-2	215	298. 2	6. 92	2.32	213	298. 5	4. 38	1. 47	221.0	313.0	2	0.93
	S-3	215	220. 4	3. 49	1. 58	215	220. 4	3. 49	1. 58	211.0	230. 0	0	0.00
30 CHE	1 S-1	182	232.6	10. 45	4.49	181	233. 4	3.60	1. 54	101.0	243. 0	1	0.55
	S-2	182	279. 9	12. 58	4. 49	180	280. 8	4. 12	1. 47	121. 0	293. 0	2	1. 10
	S-3	182	352. 1	15. 63	4. 44	181	353. 2	5. 15	1. 46	154. 0	367. 0	1	0.55
31 HDL(S)	1 S-1	66	46.6	1.05	2. 25	63	46. 6	0.80	1. 72	43. 0	50.0	3	4. 55
	S-2	66	54. 3	1. 79	3.30	63	54. 5	0.94	1. 73	43.0	58.0	3	4. 55
	S-3	66	66. 5	1. 41	2.11	65	66. 5	1.30	1.96	63. 0	71.0	1	1. 52

D. S.D. B.A.	1/1/1 /1/25/10/1	41120			( . 🗸	0 /							
# 項目	分類 試料		全デー	タ統計		3	SD 除去	データ統	計	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
32 HDL(W)	1 S-1	29	42.0	0.63	1.51	29	42.0	0.63	1. 51	41.0	43.0	0	0.00
	S-2	29	48.9	0.71	1.45	29	48.9	0.71	1.45	48.0	51.0	0	0.00
	S-3	29	59.3	0.90	1.51	29	59. 3	0.90	1. 51	58.0	61.0	0	0.00
33 LDL(S)	1 S-1 S-2 S-3	65 65 65	76. 2 92. 5 118. 0	1. 79 3. 23 2. 15	2. 35 3. 49 1. 82	63 63 62	76. 4 92. 9 118. 1	1. 49 1. 76 1. 69	1. 96 1. 89 1. 43	70. 0 72. 0 111. 0	80. 0 97. 0 124. 0	2 2 3	3. 08 3. 08 4. 62
34 LDL(W)	1 S-1 S-2 S-3	5 5 5	79. 3 96. 9 122. 2	2. 21 2. 74 2. 95	2. 78 2. 83 2. 42	5 5 5	79. 3 96. 9 122. 2	2. 21 2. 74 2. 95	2. 78 2. 83 2. 42	76. 0 93. 0 117. 0	82. 0 100. 0 124. 0	0 0 0	0. 00 0. 00 0. 00
35 T-BIL(V)	1 S-1 S-2 S-3	118 118 118	3. 66 2. 44 0. 64	0. 066 0. 058 0. 046	1.81 2.39 7.08	118 118 118	3. 66 2. 44 0. 64	0. 066 0. 058 0. 046	1. 81 2. 39 7. 08	3. 50 2. 30 0. 58	3. 82 2. 60 0. 74	0 0 0	0. 00 0. 00 0. 00
36 Alb	1 S-1 S-6	27 27	64. 0 51. 8	2. 94 2. 99	4. 60 5. 77	27 27	64. 0 51. 8	2. 94 2. 99	4. 60 5. 77	56. 9 46. 7	68. 2 55. 8	0	0.00 0.00
37 α1-G	1 S-1 S-6	27 27	2. 77 4. 06	0. 658 0. 617	23. 75 15. 17	27 27	2.77 4.06	0. 658 0. 617	23. 75 15. 17	2. 00 3. 40	4. 20 5. 20	0	0.00 0.00
38 o2-G	1 S-1 S-6	27 27	7. 57 10. 07	0. 721 1. 060	9. 53 10. 53	27 27	7. 57 10. 07	0. 721 1. 060	9. 53 10. 53	6. 10 7. 30	8. 50 11. 60	0	0.00 0.00
39 β-G	1 S-1 S-6	27 27	9. 08 19. 72	1. 620 2. 119	17. 85 10. 75	27 27	9. 08 19. 72	1. 620 2. 119	17. 85 10. 75	6. 90 16. 50	12. 00 23. 30	0	0.00 0.00
40 y-G	1 S-1 S-6	27 27	16. 63 14. 35	1. 549 1. 216	9. 32 8. 48	27 27	16. 63 14. 35	1. 549 1. 216	9. 32 8. 48	14. 40 13. 00	20. 30 17. 30	0	0.00 0.00
41 CRP	1 S-12 S-13 S-14	233 233 233	0. 48 6. 02 11. 44	0. 072 0. 438 0. 506	15. 11 7. 27 4. 42	220 230 230	0. 47 6. 05 11. 43	0. 018 0. 211 0. 461	3. 71 3. 48 4. 03	0. 37 0. 26 9. 80	1. 48 6. 60 13. 50	13 3 3	5. 58 1. 29 1. 29
42 IgG	1 S-12 S-13 S-14	65 65 65	1296. 5 1315. 8 1338. 4	23. 06 25. 78 25. 81	1. 78 1. 96 1. 93		1296. 5 1314. 4 1337. 0	23. 06 23. 26 23. 63	1. 78 1. 77 1. 77	1229. 5 1250. 0 1273. 0	1355. 0 1407. 0 1424. 0	0 1 1	0. 00 1. 54 1. 54
43 IgA	1 S-12 S-13 S-14	65 65 65	277. 4 305. 1 332. 6	5. 82 6. 33 6. 75	2. 10 2. 08 2. 03	65 65 65	277. 4 305. 1 332. 6	5. 82 6. 33 6. 75	2. 10 2. 08 2. 03	265. 0 291. 2 318. 0	292. 0 321. 0 349. 0	0 0 0	0.00 0.00 0.00
44 IgM	1 S-12 S-13 S-14	65 65 65	86. 8 90. 2 94. 2	1. 70 1. 93 2. 00	1. 96 2. 14 2. 12	64 65 64	86. 7 90. 2 94. 3	1. 58 1. 93 1. 85	1. 83 2. 14 1. 96	82. 8 85. 7 87. 9	92. 0 95. 0 99. 0	1 0 1	1. 54 0. 00 1. 54
45 C3	1 S-12 S-13 S-14	42 42 42	130. 4 137. 2 143. 4	2. 40 2. 54 2. 39	1. 84 1. 85 1. 67	42 42 42	130. 4 137. 2 143. 4	2. 40 2. 54 2. 39	1. 84 1. 85 1. 67	124. 0 130. 8 138. 0	135. 0 141. 7 149. 5	0 0 0	0. 00 0. 00 0. 00
46 C4	1 S-12 S-13 S-14	42 42 42	27. 5 28. 9 30. 3	0. 76 0. 82 0. 79	2. 77 2. 83 2. 62	42 40 41	27. 5 28. 8 30. 2	0. 76 0. 59 0. 55	2. 77 2. 04 1. 81	26. 0 27. 9 29. 0	29. 0 32. 0 34. 0	0 2 1	0. 00 4. 76 2. 38
48 Hb	1 S-8	239	12. 29	0.367	2.99	228	12. 29	0. 155	1. 26	10.60	16. 50	11	4.60
49 HbA1c	1 S-5 S-8	202 200	8. 16 5. 06	0. 200 0. 118	2. 46 2. 32	195 197	8. 14 5. 06	0. 156 0. 108	1. 91 2. 14	7. 40 4. 60	8. 91 5. 40	7 3	3. 47 1. 50
50 PT(秒)	1 S-31 S-32	153 153	11. 7 37. 8	0. 76 8. 39	6. 47 22. 22	150 153	11. 7 37. 8	0. 69 8. 39	5. 94 22. 22	10. 2 18. 3	14. 1 51. 6	3	1. 96 0. 00
51 PT(%)	2 S-31 S-32	153 153	98. 9 17. 7	7. 88 6. 32	7. 97 35. 63	147 153	98. 3 17. 7	5. 46 6. 32	5. 56 35. 63	76. 2 9. 8	146. 3 35. 4	6	3. 92 0. 00

台步	11 * 部外代	加 汀類的	山区			(*/ -5	4 )							
#	項目	分類 試料		全デー	夕統計			3 SD 除去	データ統	計	最小値	最大値	3SD	ハズレ値
		NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
52	PT(INR)	3 S-31 S-32	153 153	1. 00 3. 67	0. 046 2. 820	4. 58 76. 91	152 152	1. 00 3. 44	0. 044 0. 440	4. 43 12. 78	0. 87 2. 40	1. 15 37. 90	1 1	0. 65 0. 65
53	APTT (秒)	1 S-31 S-32	138 138	27. 9 46. 9	2. 36 8. 01	8. 44 17. 10	128 138	28. 4 46. 9	1. 57 8. 01	5. 53 17. 10	20. 3 27. 0	31. 7 63. 8	10 0	7. 25 0. 00
54	Fib(mg/d	L) 1 S-31 S-32	109 109	291. 1 232. 4	25. 82 22. 63	8. 87 9. 74	108 108	292. 6 233. 6	20. 78 18. 96	7. 10 8. 12	131. 3 103. 2	352. 0 284. 0	1 1	0. 92 0. 92
55	HDL(Ot)	1 S-1 S-2 S-3	29 29 29	44. 4 51. 9 63. 2	2. 30 2. 57 3. 11	5. 18 4. 94 4. 92	29 29 28	44. 4 51. 9 62. 8	2. 30 2. 57 2. 51	5. 18 4. 94 3. 99	41. 0 48. 0 58. 8	49. 0 58. 0 73. 0	0 0 1	0. 00 0. 00 3. 45
56	LDL (Ot)	1 S-1 S-2	8 8	77. 2 94. 9	2. 27 3. 99	2. 95 4. 21	8 8	77. 2 94. 9	2. 27 3. 99	2. 95 4. 21	74. 0 89. 0	80. 0 99. 0	0	0.00 0.00
63	RF	1 S-12 S-13 S-14	80 80 80	12. 8 69. 4 132. 7	2. 62 8. 16 13. 24	20. 49 11. 76 9. 98	80 80 80	12. 8 69. 4 132. 7	2. 62 8. 16 13. 24	20. 49 11. 76 9. 98	5. 0 49. 8 114. 8	17. 3 89. 1 171. 0	0 0 0	0.00 0.00 0.00
81	GLU (F)	1 S-1 S-2 S-3	21 21 21	188. 6 149. 5 88. 2	4. 73 3. 25 2. 06	2. 51 2. 17 2. 34	21 21 21	188. 6 149. 5 88. 2	4. 73 3. 25 2. 06	2. 51 2. 17 2. 34	177. 0 143. 0 85. 0	199. 0 157. 0 93. 0	0 0 0	0.00 0.00 0.00
82	CRTN(F)	1 S-1 S-2 S-3	28 28 28	3. 23 2. 26 0. 75	0. 111 0. 078 0. 058	3. 44 3. 44 7. 70	28 28 28	3. 23 2. 26 0. 75	0. 111 0. 078 0. 058	3. 44 3. 44 7. 70	3. 00 2. 10 0. 60	3. 50 2. 40 0. 80	0 0 0	0.00 0.00 0.00
83	UA(F)	1 S-1 S-2 S-3	17 17 17	3. 93 5. 36 7. 57	0. 092 0. 100 0. 140	2. 34 1. 86 1. 85	17 17 17	3. 93 5. 36 7. 57	0. 092 0. 100 0. 140	2. 34 1. 86 1. 85	3. 80 5. 20 7. 40	4. 10 5. 60 7. 90	0 0 0	0.00 0.00 0.00
84	BUN (F)	1 S-1 S-2 S-3	25 25 25	43. 9 32. 1 13. 8	1. 23 0. 73 0. 36	2. 80 2. 26 2. 63	24 25 25	44. 0 32. 1 13. 8	0. 95 0. 73 0. 36	2. 16 2. 26 2. 63	40. 0 30. 0 13. 0	45. 4 33. 2 14. 4	1 0 0	4. 00 0. 00 0. 00
85	T-BIL(F)	1 S-1 S-2 S-3	24 24 24	3. 40 2. 29 0. 63	0. 100 0. 085 0. 086	2. 93 3. 72 13. 65	23 24 24	3. 42 2. 29 0. 63	0. 078 0. 085 0. 086	2. 28 3. 72 13. 65	3. 10 2. 10 0. 40	3. 60 2. 40 0. 80	1 0 0	4. 17 0. 00 0. 00
86	D-BIL(F)	1 S-1 S-2 S-3	4 4 4	2. 03 1. 38 0. 28	0. 050 0. 050 0. 050	2. 47 3. 64 18. 18	4 4 4	2. 03 1. 38 0. 28	0. 050 0. 050 0. 050	2. 47 3. 64 18. 18	2. 00 1. 30 0. 20	2. 10 1. 40 0. 30	0 0 0	0. 00 0. 00 0. 00
87	IP(F)	1 S-1 S-2 S-3	3 3 3	6. 47 5. 20 3. 63	0. 153 0. 100 0. 058	2. 36 1. 92 1. 59	3 3 3	6. 47 5. 20 3. 63	0. 153 0. 100 0. 058	2. 36 1. 92 1. 59	6. 30 5. 10 3. 60	6. 60 5. 30 3. 70	0 0 0	0. 00 0. 00 0. 00
89	CA(F)	1 S-1 S-2 S-3 S-3	19 19 19 8	6. 77 7. 68 9. 28 121. 5	0. 264 0. 272 0. 322 5. 79	3. 90 3. 54 3. 48 4. 77	19 19 19 8	6. 77 7. 68 9. 28 121. 5	0. 264 0. 272 0. 322 5. 79	3. 90 3. 54 3. 48 4. 77	6. 30 7. 10 8. 70 113. 0	7. 20 8. 10 9. 80 127. 0	0 0 0	0.00 0.00 0.00 0.00
90	MG(F)	1 S-1 S-2 S-3	1 1 1	4. 50 3. 80 2. 40	0.000 0.000 0.000	0.00 0.00 0.00	1 1 1	4. 50 3. 80 2. 40	0. 000 0. 000 0. 000	0. 00 0. 00 0. 00	4. 50 3. 80 2. 40	4. 50 3. 80 2. 40	0 0 0	0. 00 0. 00 0. 00
91	NA(F)	1 S-1 S-2 S-3	26 26 26	129. 1 134. 9 143. 9	0. 74 0. 56 0. 63	0. 58 0. 42 0. 44	25 26 26	129. 0 134. 9 143. 9	0. 45 0. 56 0. 63	0. 35 0. 42 0. 44	128. 0 134. 0 143. 0	132. 0 136. 0 145. 0	1 0 0	3. 85 0. 00 0. 00
92	K(F)	1 S-1 S-2 S-3	26 26 26	3. 48 4. 18 5. 30	0. 049 0. 049 0. 034	1. 41 1. 18 0. 65	26 26 23	3. 48 4. 18 5. 30	0. 049 0. 049 0. 000	1. 41 1. 18 0. 00	3. 40 4. 10 5. 20	3. 60 4. 30 5. 40	0 0 3	0. 00 0. 00 11. 54
93	CL(F)	1 S-1 S-2 S-3	27 27 27	88. 8 94. 3 102. 1	1. 26 1. 71 2. 03	1. 42 1. 81 1. 99	27 27 27	88. 8 94. 3 102. 1	1. 26 1. 71 2. 03	1. 42 1. 81 1. 99	87. 0 92. 0 99. 0	91. 0 98. 0 108. 0	0 0 0	0. 00 0. 00 0. 00

1.81 PAU	77 77 75/1941	1120			( - )	5 /							
# 項目 2	汾類 試料		全デー	タ統計		3	SD 除去	データ統	<b>計</b> 	最小値	最大値	3SD	ハス V値 
	NO.	N	平均	S.D.	C. V.	N	平均	S.D.	C. V.			N	%
94 TP(F)	1 S-1	23	5. 90	0.107	1.80	23	5.90	0. 107	1.80	5.80	6.20	0	0.00
	S-2	23	6.83	0. 107	1.57	23	6.83	0. 107	1. 57	6.60	7. 10	0	0.00
	S-3	23	8. 21	0. 135	1.64	23	8. 21	0. 135	1. 64	8.00	8.60	0	0.00
95 ALB(F)	1 S-1	16	4.07	0.149	3.67	16	4.07	0. 149	3.67	3.80	4.30	0	0.00
	S-2	16	4. 61	0. 157	3.41	16	4.61	0. 157	3. 41	4. 30	4. 80	0	0.00
	S-3	16	5. 28	0. 144	2.73	16	5. 28	0. 144	2. 73	4. 90	5. 40	0	0.00
96 T-CHO(F)	1 S-1	14	126.5	5.03	3.98	14	126. 5	5.03	3. 98	121.0	137.0	0	0.00
	S-2	14	156. 0	6. 39	4.09	14	156. 0	6. 39	4. 09	142.0	168.0	0	0.00
	S-3	14	203. 4	8. 52	4. 19	14	203. 4	8. 52	4. 19	186. 0	219.0	0	0.00
99 TG(F)	1 S-1	14	71. 4	4. 18	5.86	14	71. 4	4. 18	5. 86	60.0	75.0	0	0.00
	S-2 S-3	14	87. 2	4. 87	5.58	14	87. 2	4.87	5. 58	74. 0	92.0	0	0.00
	5-3	14	111. 4	5. 56	4.99	14	111. 4	5. 56	4. 99	96. 0	117. 0	0	0.00
100 ALP (F)	1 S-1	18	363. 2	14.81	4.08	18	363. 2	14.81	4. 08	329.0	392.0	0	0.00
	S-2	18	300.7	13. 96	4.64	18	300. 7	13.96	4. 64	277. 0	326.0	0	0.00
	S-3	18	198. 6	8. 79	4. 43	18	198. 6	8. 79	4. 43	182. 0	215.0	0	0.00
100 ALP (F)	9 S-1	1	378.0	0.00	0.00	1	378.0	0.00	0.00	378.0	378.0	0	0.00
	S-2	1	309. 0	0.00	0.00	1	309. 0	0.00	0.00	309. 0	309.0	0	0.00
	S-3	1	203. 0	0.00	0.00	1	203. 0	0.00	0.00	203. 0	203. 0	0	0.00
101 R-GT (F)	1 S-1	21	172.0	6.91	4.02	21	172.0	6.91	4.02	156.0	181.0	0	0.00
	S-2	21	115. 4	4. 21	3.65	21	115. 4	4. 21	3.65	105. 0	121.0	0	0.00
	S-3	21	35. 5	2. 11	5. 95	19	36. 1	1.08	2. 99	29. 0	38.0	2	9. 52
101 R-GT (F)	9 S-1	1	187. 0	0.00	0.00	1	187. 0	0.00	0.00	187. 0	187.0	0	0.00
	S-2 S-3	1	121. 0	0.00	0.00	1	121. 0	0.00	0.00	121. 0	121.0	0	0.00
	ა–ა	1	39. 0	0.00	0.00	1	39. 0	0.00	0.00	39. 0	39. 0	0	0.00
102 AST (F)	1 S-1	26	107. 4	5. 19	4.83	26	107. 4	5. 19	4.83	96.0	122.0	0	0.00
	S-2 S-3	26 26	76. 0 28. 5	3. 88 0. 90	5. 10 3. 17	26 26	76. 0 28. 5	3. 88 0. 90	5. 10 3. 17	65. 0 26. 0	85. 0 31. 0	0	0.00 0.00
	ა-ა	20	20. 0	0.90	3.17	20	20. 0	0.90	3. 17	20.0	31.0	0	0.00
102 AST (F)	9 S-1	2	108. 5	2. 12	1.96	2	108. 5	2. 12	1. 96	107. 0	110.0	0	0.00
	S-2 S-3	2 2	77. 0 29. 0	1. 41 1. 41	1.84 4.88	2 2	77. 0 29. 0	1. 41 1. 41	1. 84 4. 88	76. 0 28. 0	78. 0 30. 0	0	0.00 0.00
	3 3	4	29.0	1.41	4.00	4	29.0	1.41	4.00	20.0	30.0	U	0.00
103 ALT (F)	1 S-1	28	130. 4	4. 95	3.80	28	130. 4	4. 95	3.80	118.0	139.0	0	0.00
	S-2 S-3	28 28	89. 3 26. 4	3. 56 1. 53	3. 99 5. 77	28 28	89. 3 26. 4	3. 56 1. 53	3. 99 5. 77	82. 0 23. 0	96. 0 31. 0	0	0.00 0.00
		20	20.4	1. 00	5.11	20	20.4	1. 55	5. 11		31.0	U	
104 CK(F)	1 S-1	24	384. 0	11. 52	3.00	24	384. 0	11. 52	3.00	362. 0	417.0	0	0.00
	S-2 S-3	24 24	292. 4 156. 6	7. 89 4. 97	2. 70 3. 17	24 24	292. 4 156. 6	7. 89 4. 97	2. 70 3. 17	277. 0 145. 0	313. 0 166. 0	0	0.00 0.00
												V	
104 CK(F)	9 S-1	2	382.5	4. 95	1.29	2	382. 5	4. 95	1. 29	379. 0	386.0	0	0.00
	S-2 S-3	2 2	294. 0 156. 5	0. 00 3. 54	0.00 2.26	2 2	294. 0 156. 5	0. 00 3. 54	0. 00 2. 26	294. 0 154. 0	294. 0 159. 0	0	0.00 0.00
105 AMY (F)	1 S-1	26	217.3	26. 31	12. 10	26	217. 3	26. 31	12. 10	140.0	236. 0	0	0.00
	S-2 S-3	26 26	164. 4 85. 2	19. 02 6. 87	11. 57 8. 06	26 25	164. 4 86. 1	19. 02 5. 44	11. 57 6. 32	111. 0 64. 0	179. 0 92. 0	0	0.00 3.85
106 LD(F)	1 S-1	18	349. 4	9. 56	2.74	18	349. 4	9.56	2. 74	331. 0	362. 0	0	0.00
	S-2 S-3	18 18	303. 4 224. 8	9. 46 6. 43	3. 12 2. 86	18 18	303. 4 224. 8	9. 46 6. 43	3. 12 2. 86	288. 0 215. 0	322. 0 236. 0	0	0.00 0.00
107 CHE (F)	1 S-1	5	226.6	5. 94	2.62	5	226. 6	5. 94	2. 62	218. 0	232.0	0	0.00
	S-2 S-3	5 5	274. 6 349. 0	5. 46 9. 77	1. 99 2. 80	5 5	274. 6 349. 0	5. 46 9. 77	1. 99 2. 80	268. 0 335. 0	281. 0 359. 0	0	0.00 0.00
100 (77)													
108 CRP (F)	1 S-12 S-13	12 12	0. 59 6. 23	0. 067 0. 235	11. 30 3. 77	12 12	0. 59 6. 23	0. 067 0. 235	11. 30 3. 77	0. 50 5. 90	0. 70 6. 60	0	0.00 0.00
	S-14	12	10. 72	2. 795	26. 08	12	10. 72	2. 795	26. 08	7. 00	13. 50	0	0.00

台·垻目 * 部(科)/	1 万%积6	1衣			(1/ -5	U )							
# 項目 分	類 試料		全デー	タ統計		3	SD 除去	データ統言	<del> </del>	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
116 GLU(A1)	1 S-1	4	207. 0	8. 76	4. 23	4	207. 0	8. 76	4. 23	196. 0	215. 0	0	0.00
	S-2	4	161. 5	4. 80	2. 97	4	161. 5	4. 80	2. 97	157. 0	168. 0	0	0.00
	S-3	4	90. 8	0. 96	1. 06	4	90. 8	0. 96	1. 06	90. 0	92. 0	0	0.00
117 CRTN(A1)	1 S-1	3	3. 40	0. 265	7. 78	3	3. 40	0. 265	7. 78	3. 10	3. 60	0	0.00
	S-2	3	2. 37	0. 058	2. 44	3	2. 37	0. 058	2. 44	2. 30	2. 40	0	0.00
	S-3	3	0. 77	0. 058	7. 53	3	0. 77	0. 058	7. 53	0. 70	0. 80	0	0.00
118 UA(A1)	1 S-1	1	3. 60	0.000	0.00	1	3. 60	0. 000	0. 00	3. 60	3. 60	0	0.00
	S-2	1	5. 40	0.000	0.00	1	5. 40	0. 000	0. 00	5. 40	5. 40	0	0.00
	S-3	1	8. 00	0.000	0.00	1	8. 00	0. 000	0. 00	8. 00	8. 00	0	0.00
119 BUN(A1)	1 S-1	4	44. 5	3. 32	7. 45	4	44. 5	3. 32	7. 45	41. 0	49. 0	0	0.00
	S-2	4	31. 0	1. 63	5. 27	4	31. 0	1. 63	5. 27	29. 0	33. 0	0	0.00
	S-3	4	13. 5	0. 58	4. 28	4	13. 5	0. 58	4. 28	13. 0	14. 0	0	0.00
120 T-BIL(A1)	1 S-1	3	3. 73	0. 058	1. 55	3	3. 73	0. 058	1. 55	3. 70	3. 80	0	0.00
	S-2	3	2. 37	0. 058	2. 44	3	2. 37	0. 058	2. 44	2. 30	2. 40	0	0.00
	S-3	3	0. 63	0. 058	9. 12	3	0. 63	0. 058	9. 12	0. 60	0. 70	0	0.00
122 IP(A1)	1 S-1	1	5. 80	0.000	0.00	1	5. 80	0. 000	0. 00	5. 80	5. 80	0	0.00
	S-2	1	4. 90	0.000	0.00	1	4. 90	0. 000	0. 00	4. 90	4. 90	0	0.00
	S-3	1	3. 20	0.000	0.00	1	3. 20	0. 000	0. 00	3. 20	3. 20	0	0.00
124 CA(A1)	1 S-1	3	6. 60	0. 265	4. 01	3	6. 60	0. 265	4. 01	6. 40	6. 90	0	0.00
	S-2	3	7. 07	0. 513	7. 26	3	7. 07	0. 513	7. 26	6. 50	7. 50	0	0.00
	S-3	3	7. 50	0. 346	4. 62	3	7. 50	0. 346	4. 62	7. 30	7. 90	0	0.00
125 MG(A1)	1 S-1	1	4. 70	0.000	0.00	1	4. 70	0.000	0. 00	4. 70	4. 70	0	0.00
	S-2	1	3. 70	0.000	0.00	1	3. 70	0.000	0. 00	3. 70	3. 70	0	0.00
	S-3	1	2. 30	0.000	0.00	1	2. 30	0.000	0. 00	2. 30	2. 30	0	0.00
126 NA(A1)	1 S-1	4	127. 5	1. 29	1. 01	4	127. 5	1. 29	1. 01	126. 0	129. 0	0	0.00
	S-2	4	133. 5	1. 00	0. 75	4	133. 5	1. 00	0. 75	133. 0	135. 0	0	0.00
	S-3	4	142. 3	2. 75	1. 94	4	142. 3	2. 75	1. 94	139. 0	145. 0	0	0.00
127 K(A1)	1 S-1	4	3. 70	0. 082	2. 21	4	3. 70	0. 082	2. 21	3. 60	3. 80	0	0.00
	S-2	4	4. 33	0. 096	2. 21	4	4. 33	0. 096	2. 21	4. 20	4. 40	0	0.00
	S-3	4	5. 38	0. 126	2. 34	4	5. 38	0. 126	2. 34	5. 20	5. 50	0	0.00
128 CL(A1)	1 S-1	1	87. 0	0. 00	0.00	1	87. 0	0. 00	0. 00	87. 0	87. 0	0	0.00
	S-2	1	92. 0	0. 00	0.00	1	92. 0	0. 00	0. 00	92. 0	92. 0	0	0.00
	S-3	1	102. 0	0. 00	0.00	1	102. 0	0. 00	0. 00	102. 0	102. 0	0	0.00
129 TP(A1)	1 S-1	3	5. 63	0. 115	2. 05	3	5. 63	0. 115	2. 05	5. 50	5. 70	0	0. 00
	S-2	3	6. 57	0. 115	1. 76	3	6. 57	0. 115	1. 76	6. 50	6. 70	0	0. 00
	S-3	3	8. 10	0. 361	4. 45	3	8. 10	0. 361	4. 45	7. 80	8. 50	0	0. 00
130 ALB(A1)	1 S-1	2	3. 40	0. 141	4. 16	2	3. 40	0. 141	4. 16	3. 30	3. 50	0	0.00
	S-2	2	3. 90	0. 141	3. 63	2	3. 90	0. 141	3. 63	3. 80	4. 00	0	0.00
	S-3	2	4. 65	0. 071	1. 52	2	4. 65	0. 071	1. 52	4. 60	4. 70	0	0.00
131 T-CHO(A1)	1 S-1	3	137. 7	0. 58	0. 42	3	137. 7	0. 58	0. 42	137. 0	138. 0	0	0.00
	S-2	3	167. 0	4. 58	2. 74	3	167. 0	4. 58	2. 74	162. 0	171. 0	0	0.00
	S-3	3	212. 0	12. 12	5. 72	3	212. 0	12. 12	5. 72	201. 0	225. 0	0	0.00
132 HDL(A1)	1 S-1	1	36. 0	0. 00	0.00	1	36. 0	0. 00	0. 00	36. 0	36. 0	0	0.00
	S-2	1	45. 0	0. 00	0.00	1	45. 0	0. 00	0. 00	45. 0	45. 0	0	0.00
	S-3	1	56. 0	0. 00	0.00	1	56. 0	0. 00	0. 00	56. 0	56. 0	0	0.00
134 TG(A1)	1 S-1	1	59. 0	0. 00	0.00	1	59. 0	0. 00	0. 00	59. 0	59. 0	0	0.00
	S-2	1	76. 0	0. 00	0.00	1	76. 0	0. 00	0. 00	76. 0	76. 0	0	0.00
	S-3	1	98. 0	0. 00	0.00	1	98. 0	0. 00	0. 00	98. 0	98. 0	0	0.00
135 ALP(A1)	1 S-1	1	489. 0	0. 00	0.00	1	489. 0	0. 00	0. 00	489. 0	489. 0	0	0.00
	S-2	1	406. 0	0. 00	0.00	1	406. 0	0. 00	0. 00	406. 0	406. 0	0	0.00
	S-3	1	311. 0	0. 00	0.00	1	311. 0	0. 00	0. 00	311. 0	311. 0	0	0.00

	) /J 755(I)/LI	1120			( . 🗸	' /							
# 項目 分	類 試料		全デー	タ統計		3	SD 除去	データ統	計 	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S.D.	C. V.	N	平均	S.D.	C. V.			N	%
136 R-GT (A1)	1 S-1	3	185.3	15.04	8. 12	3	185. 3	15.04	8. 12	168.0	195.0	0	0.00
	S-2	3	133. 7	7. 77	5. 81	3	133. 7	7. 77	5. 81	125. 0	140.0	0	0.00
	S-3	3	51.0	1. 00	1.96	3	51. 0	1.00	1.96	50.0	52.0	0	0.00
137 AST (A1)	1 S-1	4	102.8	8.30	8.08	4	102.8	8.30	8.08	92.0	112.0	0	0.00
	S-2	4	72.8	6.60	9.07	4	72. 8	6.60	9. 07	64. 0	80.0	0	0.00
	S-3	4	30. 5	2. 08	6.83	4	30. 5	2.08	6.83	28. 0	33.0	0	0.00
138 ALT (A1)	1 S-1	4	133.5	4. 93	3.70	4	133. 5	4. 93	3.70	127.0	139.0	0	0.00
	S-2	4	88.3	3. 10	3.51	4	88. 3	3. 10	3. 51	84. 0	91.0	0	0.00
	S-3	4	30.0	2. 16	7. 20	4	30. 0	2. 16	7. 20	27. 0	32.0	0	0.00
139 CK(A1)	1 S-1	3	439.3	9. 02	2.05	3	439. 3	9.02	2.05	430.0	448.0	0	0.00
	S-2 S-3	3 3	324. 7 157. 3	10. 79 4. 93	3. 32 3. 14	3	324. 7 157. 3	10. 79 4. 93	3. 32 3. 14	317. 0 154. 0	337. 0 163. 0	0	0.00 0.00
	3 3	3	157.5	4. 33	5. 14	3	157. 5	4. 33	J. 14	154. 0	103. 0	U	0.00
141 LD(A1)	1 S-1	3	326.0	32. 60	10.00	3	326. 0	32.60	10.00	295.0	360.0	0	0.00
	S-2 S-3	3 3	269. 7 191. 0	21. 73 14. 53	8. 06 7. 61	3	269. 7 191. 0	21. 73 14. 53	8. 06 7. 61	250. 0 176. 0	293. 0 205. 0	0	0.00 0.00
	5.0	J	131.0	14.00	7.01	J	131.0	14. 00	1.01	170.0	200.0	O	0.00
146 GLU(A2)	1 S-1	1	174. 0	0.00	0.00	1	174. 0	0.00	0.00	174. 0	174.0	0	0.00
	S-2 S-3	1 1	138. 0 84. 0	0. 00 0. 00	0.00 0.00	1 1	138. 0 84. 0	0. 00 0. 00	0. 00 0. 00	138. 0 84. 0	138. 0 84. 0	0	0.00 0.00
	5 0	1	01.0	0.00		1	01.0	0.00	0.00	01.0	01.0	O	0.00
147 CRTN (A2)	1 S-1	1	3. 30	0.000	0.00	1	3. 30	0.000	0.00	3.30	3. 30	0	0.00
	S-2 S-3	1 1	2. 30 0. 80	0.000 0.000	0.00 0.00	1 1	2. 30 0. 80	0. 000 0. 000	0. 00 0. 00	2. 30 0. 80	2. 30 0. 80	0	0.00 0.00
		1	0.00	0.000	0.00	1	0.00	0.000	0.00	0.00	0.00	O	0.00
148 UA(A2)	1 S-1	1	3.80	0.000	0.00	1	3.80	0.000	0.00	3.80	3.80	0	0.00
	S-2 S-3	1 1	5. 50 8. 10	0.000 0.000	0.00 0.00	1 1	5. 50 8. 10	0. 000 0. 000	0. 00 0. 00	5. 50 8. 10	5. 50 8. 10	0	0.00 0.00
		•	0.10	0.000		1	0.10	0.000		0.10	0.10	V	
149 BUN (A2)	1 S-1	1	41.0	0.00	0.00	1	41. 0	0.00	0.00	41. 0	41.0	0	0.00
	S-2 S-3	1 1	28. 0 12. 0	0. 00 0. 00	0.00 0.00	1 1	28. 0 12. 0	0. 00 0. 00	0. 00 0. 00	28. 0 12. 0	28. 0 12. 0	0	0.00 0.00
	5 0	-	12.0	0.00	0.00	_	12. 0	0.00	0.00	12.0	12.0	V	0.00
150 T-BIL(A2)	1 S-1	1	3. 70	0.000	0.00	1	3. 70	0.000	0.00	3.70	3. 70	0	0.00
	S-2 S-3	1 1	2. 30 0. 70	0.000 0.000	0.00 0.00	1 1	2. 30 0. 70	0. 000 0. 000	0. 00 0. 00	2. 30 0. 70	2. 30 0. 70	0	0.00 0.00
		-				-							
154 CA(A2)	1 S-1	1	7. 60	0.000	0.00	1	7. 60	0. 000 0. 000	0.00	7.60	7. 60 9. 00	0	0.00
	S-2 S-3	1 1	9. 00 9. 90	0.000 0.000	0.00 0.00	1 1	9. 00 9. 90	0.000	0. 00 0. 00	9. 00 9. 90	9.00	0	0.00 0.00
156 NA (A2)	1 S-1 S-2	1 1	127. 0 134. 0	0. 00 0. 00	0.00 0.00	1 1	127. 0 134. 0	0. 00 0. 00	0. 00 0. 00	127. 0 134. 0	127. 0 134. 0	0	0.00 0.00
	S-3	1	144. 0	0.00	0.00	1	144. 0	0.00	0.00	144. 0	144. 0	0	0.00
.==()													
157 K(A2)	1 S-1 S-2	1 1	3. 70 4. 40	0.000 0.000	0.00 0.00	1 1	3. 70 4. 40	0. 000 0. 000	0. 00 0. 00	3. 70 4. 40	3. 70 4. 40	0	0.00 0.00
	S-3	1	5. 70	0.000	0.00	1	5. 70	0.000	0.00	5. 70	5. 70	0	0.00
150 mp (10)			<b>5</b> 00								<b>5</b> 00	•	
159 TP(A2)	1 S-1 S-2	1 1	5. 90 7. 10	0.000 0.000	0.00 0.00	1 1	5. 90 7. 10	0. 000 0. 000	0. 00 0. 00	5. 90 7. 10	5. 90 7. 10	0	0.00 0.00
	S-3	1	9. 10	0.000	0.00	1	9. 10	0.000	0.00	9. 10	9. 10	0	0.00
160 ALD (A9)	1 C 1	1	4.00	0.000	0.00	1	4.00	0.000	0.00	4 90	4 90	0	0.00
160 ALB (A2)	1 S-1 S-2	1 1	4. 20 5. 00	0.000 0.000	0.00 0.00	1 1	4. 20 5. 00	0. 000 0. 000	0. 00 0. 00	4. 20 5. 00	4. 20 5. 00	0	0.00 0.00
	S-3	1	5. 80	0.000	0.00	1	5. 80	0.000	0.00	5. 80	5. 80	0	0.00
161 T-CHO(A2)	1 S-1	1	144. 0	0.00	0.00	1	1/// 0	0.00	0.00	144 0	144. 0	0	0.00
101 1 CHU(A2)	S-2	1 1	144. 0 168. 0	0.00	0.00	1 1	144. 0 168. 0	0.00	0.00	144. 0 168. 0	168.0	0	0.00
	S-3	1	209. 0	0.00	0.00	1	209. 0	0.00	0.00	209. 0	209. 0	0	0.00
162 HDL (A2)	1 S-1	1	34. 0	0.00	0.00	1	34. 0	0.00	0.00	34.0	34.0	0	0.00
102 HDL (A2)	S-2	1	38. 0	0.00	0.00	1	38. 0	0.00	0.00	38. 0	38. 0	0	0.00
	S-3	1	54.0	0.00	0.00	1	<b>54.</b> 0	0.00	0.00	<b>54.</b> 0	54.0	0	0.00

D. KD PANJO	.) )) >>()	120			( • •	0 )							
# 項目 分	類 試料		全デー	タ統計		3	SD 除去	データ統言	+	最小値	最大値	3SD	ハズ V値 
164 TG(A2)	NO. 1 S-1 S-2 S-3	N 1 1 1	平均 73.0 87.0 109.0	S. D. 0. 00 0. 00 0. 00	C. V. 0. 00 0. 00 0. 00	N 1 1	平均 73.0 87.0 109.0	S. D. 0. 00 0. 00 0. 00	C. V. 0. 00 0. 00 0. 00	73. 0 87. 0 109. 0	73. 0 87. 0 109. 0	N 0 0	% 0.00 0.00 0.00
165 ALP (A2)	1 S-1	1	317. 0	0. 00	0. 00	1	317. 0	0. 00	0. 00	317. 0	317. 0	0	0.00
	S-2	1	301. 0	0. 00	0. 00	1	301. 0	0. 00	0. 00	301. 0	301. 0	0	0.00
	S-3	1	210. 0	0. 00	0. 00	1	210. 0	0. 00	0. 00	210. 0	210. 0	0	0.00
166 R-GT (A2)	1 S-1	1	184. 0	0. 00	0. 00	1	184. 0	0. 00	0. 00	184. 0	184. 0	0	0.00
	S-2	1	132. 0	0. 00	0. 00	1	132. 0	0. 00	0. 00	132. 0	132. 0	0	0.00
	S-3	1	47. 0	0. 00	0. 00	1	47. 0	0. 00	0. 00	47. 0	47. 0	0	0.00
167 AST (A2)	1 S-1	1	112. 0	0. 00	0. 00	1	112. 0	0. 00	0. 00	112. 0	112. 0	0	0.00
	S-2	1	75. 0	0. 00	0. 00	1	75. 0	0. 00	0. 00	75. 0	75. 0	0	0.00
	S-3	1	27. 0	0. 00	0. 00	1	27. 0	0. 00	0. 00	27. 0	27. 0	0	0.00
168 ALT (A2)	1 S-1	1	127. 0	0. 00	0. 00	1	127. 0	0. 00	0. 00	127. 0	127. 0	0	0. 00
	S-2	1	82. 0	0. 00	0. 00	1	82. 0	0. 00	0. 00	82. 0	82. 0	0	0. 00
	S-3	1	25. 0	0. 00	0. 00	1	25. 0	0. 00	0. 00	25. 0	25. 0	0	0. 00
169 CK (A2)	1 S-1	1	382. 0	0. 00	0. 00	1	382. 0	0. 00	0. 00	382. 0	382. 0	0	0.00
	S-2	1	285. 0	0. 00	0. 00	1	285. 0	0. 00	0. 00	285. 0	285. 0	0	0.00
	S-3	1	148. 0	0. 00	0. 00	1	148. 0	0. 00	0. 00	148. 0	148. 0	0	0.00
170 AMY (A2)	1 S-1	1	301. 0	0. 00	0. 00	1	301. 0	0. 00	0. 00	301. 0	301. 0	0	0.00
	S-2	1	218. 0	0. 00	0. 00	1	218. 0	0. 00	0. 00	218. 0	218. 0	0	0.00
	S-3	1	118. 0	0. 00	0. 00	1	118. 0	0. 00	0. 00	118. 0	118. 0	0	0.00
171 LD(A2)	1 S-1	1	317. 0	0. 00	0. 00	1	317. 0	0. 00	0. 00	317. 0	317. 0	0	0. 00
	S-2	1	261. 0	0. 00	0. 00	1	261. 0	0. 00	0. 00	261. 0	261. 0	0	0. 00
	S-3	1	166. 0	0. 00	0. 00	1	166. 0	0. 00	0. 00	166. 0	166. 0	0	0. 00
176 GLU(0)	1 S-1	4	184. 2	3. 42	1. 86	4	184. 2	3. 42	1. 86	181. 0	189. 0	0	0.00
	S-2	4	146. 0	3. 48	2. 39	4	146. 0	3. 48	2. 39	143. 0	151. 0	0	0.00
	S-3	4	89. 2	1. 92	2. 15	4	89. 2	1. 92	2. 15	88. 0	92. 0	0	0.00
177 CRTN (0)	1 S-1	2	3. 35	0. 071	2. 11	2	3. 35	0. 071	2. 11	3. 30	3. 40	0	0.00
	S-2	2	2. 35	0. 071	3. 01	2	2. 35	0. 071	3. 01	2. 30	2. 40	0	0.00
	S-3	2	0. 80	0. 000	0. 00	2	0. 80	0. 000	0. 00	0. 80	0. 80	0	0.00
178 UA(0)	1 S-1	4	3. 81	0. 020	0. 52	4	3. 81	0. 020	0. 52	3. 80	3. 84	0	0.00
	S-2	4	5. 30	0. 005	0. 09	4	5. 30	0. 005	0. 09	5. 30	5. 31	0	0.00
	S-3	4	7. 48	0. 096	1. 28	4	7. 48	0. 096	1. 28	7. 40	7. 60	0	0.00
179 BUN (0)	1 S-1	4	46. 3	0. 83	1. 79	4	46. 3	0. 83	1. 79	45. 6	47. 5	0	0.00
	S-2	4	33. 5	0. 85	2. 55	4	33. 5	0. 85	2. 55	33. 0	34. 8	0	0.00
	S-3	4	14. 4	0. 54	3. 80	4	14. 4	0. 54	3. 80	13. 9	15. 1	0	0.00
180 T-BIL(0)	1 S-1	4	4. 16	0. 049	1. 18	4	4. 16	0. 049	1. 18	4. 10	4. 20	0	0.00
	S-2	4	2. 71	0. 083	3. 07	4	2. 71	0. 083	3. 07	2. 60	2. 80	0	0.00
	S-3	4	0. 75	0. 053	7. 06	4	0. 75	0. 053	7. 06	0. 70	0. 80	0	0.00
181 D-BIL(0)	1 S-1	1	0. 68	0.000	0. 00	1	0. 68	0. 000	0. 00	0. 68	0. 68	0	0.00
	S-2	1	0. 17	0.000	0. 00	1	0. 17	0. 000	0. 00	0. 17	0. 17	0	0.00
	S-3	1	0. 00	0.000	0. 00	1	0. 00	0. 000	0. 00	0. 00	0. 00	0	0.00
182 IP(0)	1 S-1	1	6. 21	0.000	0. 00	1	6. 21	0. 000	0. 00	6. 21	6. 21	0	0.00
	S-2	1	5. 22	0.000	0. 00	1	5. 22	0. 000	0. 00	5. 22	5. 22	0	0.00
	S-3	1	3. 72	0.000	0. 00	1	3. 72	0. 000	0. 00	3. 72	3. 72	0	0.00
183 FE(0)	1 S-1	2	92. 0	2. 83	3. 07	2	92. 0	2. 83	3. 07	90. 0	94. 0	0	0. 00
	S-2	2	112. 0	0. 00	0. 00	2	112. 0	0. 00	0. 00	112. 0	112. 0	0	0. 00
	S-3	2	142. 8	0. 28	0. 20	2	142. 8	0. 28	0. 20	142. 6	143. 0	0	0. 00
184 CA(0)	1 S-1	3	7. 13	0. 076	1. 06	3	7. 13	0. 076	1. 06	7. 08	7. 22	0	0.00
	S-2	3	8. 23	0. 026	0. 32	3	8. 23	0. 026	0. 32	8. 20	8. 25	0	0.00
	S-3	3	9. 62	0. 015	0. 16	3	9. 62	0. 015	0. 16	9. 60	9. 63	0	0.00

U. KU 15/1/2	.) )) >>()	120			( . 🗸	5 /							
# 項目 分	類 試料		全デー	タ統計		3	SD 除去	データ統	計 	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S.D.	C. V.	N	平均	S.D.	C. V.			N	%
185 MG(0)	1 S-1	1	4. 50	0.000	0.00	1	4.50	0.000	0.00	4.50	4. 50	0	0.00
	S-2 S-3	1 1	3. 60 2. 20	0.000 0.000	0.00 0.00	1 1	3. 60 2. 20	0.000 0.000	0. 00 0. 00	3. 60 2. 20	3. 60 2. 20	0	0.00 0.00
186 NA(0)	1 S-1		126.8	0. 52	0.41		126. 8	0. 52	0. 41	126. 0	127. 1	0	0.00
180 NA(U)	S-2	4 4	134. 2	0.89	0.66	4	134. 2	0. 52	0.66	133. 0	135.0	0	0.00
	S-3	4	144.8	0. 52	0.36	4	144.8	0. 52	0.36	144. 0	145. 1	0	0.00
187 K(0)	1 S-1	4	3. 61	0.015	0.42	4	3. 61	0.015	0. 42	3.60	3. 63	0	0.00
	S-2 S-3	4 4	4. 31 5. 48	0.020 0.050	0. 46 0. 91	4	4. 31 5. 48	0. 020 0. 050	0. 46 0. 91	4. 30 5. 40	4. 34 5. 50	0	0.00 0.00
188 CL(0)	1 S-1	4	90. 5	0. 53	0.58	4	90. 5	0. 53	0. 58	90. 0	91.0	0	0.00
100 CL(0)	S-2	4	95.6	0.48	0.50	4	95.6	0.48	0.50	95.0	96.0	0	0.00
	S-3	4	103. 5	0. 58	0.56	4	103. 5	0.58	0. 56	103. 0	104.0	0	0.00
189 TP(0)	1 S-1	4	6.00	0.045	0.75	4	6.00	0.045	0.75	5. 94	6.05	0	0.00
	S-2 S-3	4 4	7. 02 8. 51	0. 024 0. 061	0. 34 0. 71	$\frac{4}{4}$	7. 02 8. 51	0. 024 0. 061	0. 34 0. 71	7. 00 8. 46	7. 05 8. 60	0	0.00 0.00
190 ALB(0)	1 S-1	4	3. 46	0.070	2.04	4	3. 46	0. 070	2.04	3. 39	3, 53	0	0.00
130 1111 (0)	S-2	4	4. 11	0.042	1.03	4	4. 11	0.042	1.03	4.07	4. 17	0	0.00
	S-3	4	5. 68	1.510	26.61	4	5. 68	1. 510	26. 61	4. 90	7. 94	0	0.00
191 T-CHO(0)	1 S-1 S-2	4	127. 0 151. 5	0. 82 1. 29	0.64 0.85	4	127. 0	0.82 1.29	0. 64 0. 85	126. 0 150. 0	128. 0 153. 0	0	0.00 0.00
	S-2 S-3	4	192. 3	1. 71	0.89	$\frac{4}{4}$	151. 5 192. 3	1. 71	0.89	190.0	194.0	0	0.00
192 HDL(0)	1 S-1	3	42.6	1. 44	3. 39	3	42. 6	1. 44	3. 39	41. 0	43.8	0	0.00
(-/	S-2	3	51.9	0.90	1.74	3	51.9	0.90	1.74	51.0	52.8	0	0.00
	S-3	3	66. 0	2.05	3. 10	3	66. 0	2.05	3. 10	64. 0	68. 1	0	0.00
194 TG(0)	1 S-1 S-2	4	76. 8 95. 0	0. 50 1. 15	0.65 1.22	4	76. 8 95. 0	0. 50 1. 15	0.65 1.22	76. 0 94. 0	77. 0 96. 0	0	0.00 0.00
	S-3	4	121. 1	0. 94	0.78	4	121. 1	0. 94	0. 78	120. 0	122. 3	0	0.00
195 ALP(0)	1 S-1	4	352. 5	13. 08	3.71	4	352. 5	13. 08	3. 71	333. 0	361.0	0	0.00
	S-2 S-3	4	301. 5 224. 0	10. 63 6. 53	3. 53 2. 92	4	301. 5 224. 0	10. 63 6. 53	3. 53 2. 92	286. 0 216. 0	310. 0 232. 0	0	0.00 0.00
		4				4			2. 92	210.0		U	
197 AST (0)	1 S-1 S-2	4	118. 8 87. 3	0. 96 12. 53	0.81 14.36	4	118. 8 87. 3	0. 96 12. 53	0. 81 14. 36	118. 0 80. 0	120. 0 106. 0	0	0.00 0.00
	S-3	4	28.8	4. 19	14. 59	4	28.8	4. 19	14. 59	26.0	35.0	0	0.00
198 ALT (0)	1 S-1	4	132. 3	10. 37	7.84	4	132. 3	10.37	7.84	119.0	141.0	0	0.00
	S-2 S-3	4	87. 0 19. 3	4. 55 4. 72	5. 23 24. 50	4	87. 0 19. 3	4. 55 4. 72	5. 23 24. 50	81. 0 15. 0	92. 0 26. 0	0	0.00 0.00
100 (71 (0)													
199 CK(0)	1 S-1 S-2	4 4	370. 8 287. 8	11. 67 13. 18	3. 15 4. 58	4	370. 8 287. 8	11. 67 13. 18	3. 15 4. 58	355. 0 270. 0	383. 0 300. 0	0	0.00 0.00
	S-3	4	163. 5	9. 57	5.86	4	163. 5	9. 57	5.86	151.0	171.0	0	0.00
200 AMY (0)	1 S-1	5	207.6	11. 78	5.68	5	207. 6	11.78	5. 68	199.0	221.0	0	0.00
	S-2 S-3	5 5	162. 6 86. 6	9. 71 4. 67	5. 97 5. 39	5 5	162. 6 86. 6	9. 71 4. 67	5. 97 5. 39	154. 0 80. 0	175. 0 92. 0	0	0.00 0.00
201 17(0)												0	
201 LD(0)	1 S-1 S-2	4 4	341. 8 289. 8	4. 57 4. 50	1. 34 1. 55	4	341. 8 289. 8	4. 57 4. 50	1. 34 1. 55	337. 0 284. 0	348. 0 295. 0	0	0.00 0.00
	S-3	4	219. 5	1. 91	0.87	4	219. 5	1. 91	0.87	218.0	222.0	0	0.00
202 CHE (0)	1 S-1	4	239. 0	3. 74	1.57	4	239. 0	3.74	1. 57	235. 0	244. 0	0	0.00
	S-2 S-3	4 4	284. 0 354. 8	3. 74 5. 74	1. 32 1. 62	4	284. 0 354. 8	3. 74 5. 74	1. 32 1. 62	280. 0 350. 0	289. 0 363. 0	0	0.00 0.00
203 CRP(0)	1 S-12	3	0. 50	0.000	0.00	3	0. 50	0.000	0.00	0.50	0. 50	0	0.00
200 Oiu (0)	S-13	3	5.62	0.111	1.98	3	5.62	0. 111	1. 98	5.50	5.72	0	0.00
	S-14	3	9.00	0.000	0.00	3	9.00	0.000	0.00	9.00	9.00	0	0.00

# 項目別総括統計表(原理別)

各項目・試料別 分類統計表

(ペッ 1)

# 項目	分類 試料		全デー	タ統計		3	SD 除去	データ統語	H	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
1 GLU	1 S-1	4	188. 8	2. 75	1. 46	4	188. 8	2. 75	1. 46	186. 0	192. 0	0	0.00
	S-2	4	148. 3	2. 63	1. 77	4	148. 3	2. 63	1. 77	146. 0	152. 0	0	0.00
	S-3	4	85. 8	0. 96	1. 12	4	85. 8	0. 96	1. 12	85. 0	87. 0	0	0.00
1 GLU	2 S-1	30	191. 5	1. 97	1. 03	30	191. 5	1. 97	1. 03	187. 0	196. 0	0	0. 00
	S-2	30	149. 3	1. 57	1. 05	30	149. 3	1. 57	1. 05	145. 0	152. 0	0	0. 00
	S-3	30	85. 5	1. 28	1. 50	30	85. 5	1. 28	1. 50	83. 0	88. 0	0	0. 00
1 GLU	3 S-1	174	191. 8	3. 39	1. 77	169	191. 9	2. 38	1. 24	169. 0	207. 0	5	2. 87
	S-2	174	149. 9	3. 51	2. 34	168	150. 0	1. 85	1. 23	115. 0	161. 0	6	3. 45
	S-3	174	86. 7	1. 70	1. 96	167	86. 6	1. 15	1. 33	81. 0	96. 0	7	4. 02
1 GLU	4 S-1	10	192. 0	3. 06	1. 59	10	192. 0	3. 06	1. 59	189. 0	198. 0	0	0. 00
	S-2	10	149. 8	2. 57	1. 72	10	149. 8	2. 57	1. 72	147. 0	155. 0	0	0. 00
	S-3	10	86. 1	1. 79	2. 08	10	86. 1	1. 79	2. 08	83. 0	89. 0	0	0. 00
1 GLU	9 S-1	2	187. 5	2. 12	1. 13	2	187. 5	2. 12	1. 13	186. 0	189. 0	0	0. 00
	S-2	2	146. 0	1. 41	0. 97	2	146. 0	1. 41	0. 97	145. 0	147. 0	0	0. 00
	S-3	2	85. 0	2. 83	3. 33	2	85. 0	2. 83	3. 33	83. 0	87. 0	0	0. 00
2 CRTN	3 S-1	216	3. 38	0. 059	1. 75	212	3. 38	0. 047	1. 39	3. 10	3. 76	4	1. 85
	S-2	216	2. 34	0. 054	2. 29	210	2. 34	0. 035	1. 51	1. 90	2. 62	6	2. 78
	S-3	216	0. 79	0. 029	3. 70	210	0. 79	0. 025	3. 14	0. 69	0. 90	6	2. 78
2 CRTN	9 S-1	1	3. 40	0.000	0. 00	1	3. 40	0.000	0.00	3. 40	3. 40	0	0. 00
	S-2	1	2. 40	0.000	0. 00	1	2. 40	0.000	0.00	2. 40	2. 40	0	0. 00
	S-3	1	1. 20	0.000	0. 00	1	1. 20	0.000	0.00	1. 20	1. 20	0	0. 00
2 CRTN	77 S-1	2	3. 28	0. 028	0. 86	2	3. 28	0. 028	0. 86	3. 26	3. 30	0	0. 00
	S-2	2	2. 32	0. 035	1. 53	2	2. 32	0. 035	1. 53	2. 29	2. 34	0	0. 00
	S-3	2	0. 80	0. 007	0. 89	2	0. 80	0. 007	0. 89	0. 79	0. 80	0	0. 00
3 UA	1 S-1	9	3. 98	0. 075	1. 88	9	3. 98	0. 075	1. 88	3. 86	4. 10	0	0. 00
	S-2	9	5. 36	0. 046	0. 86	9	5. 36	0. 046	0. 86	5. 30	5. 40	0	0. 00
	S-3	9	7. 50	0. 058	0. 78	9	7. 50	0. 058	0. 78	7. 40	7. 60	0	0. 00
3 UA	2 S-1	204	3. 83	0. 071	1. 85	202	3. 84	0. 067	1. 75	3. 60	4. 00	2	0. 98
	S-2	204	5. 31	0. 106	1. 99	201	5. 31	0. 073	1. 37	4. 30	5. 60	3	1. 47
	S-3	204	7. 56	0. 095	1. 25	203	7. 56	0. 092	1. 21	7. 30	7. 90	1	0. 49
3 UA	9 S-1	1	3. 20	0.000	0. 00	1	3. 20	0. 000	0. 00	3. 20	3. 20	0	0. 00
	S-2	1	4. 60	0.000	0. 00	1	4. 60	0. 000	0. 00	4. 60	4. 60	0	0. 00
	S-3	1	6. 40	0.000	0. 00	1	6. 40	0. 000	0. 00	6. 40	6. 40	0	0. 00
4 BUN	1 S-1	32	44. 2	0. 92	2. 09	32	44. 2	0. 92	2. 09	42. 7	46. 1	0	0. 00
	S-2	32	32. 2	0. 82	2. 55	31	32. 2	0. 69	2. 13	30. 9	34. 8	1	3. 13
	S-3	32	13. 9	0. 58	4. 16	31	13. 9	0. 41	2. 99	13. 0	16. 2	1	3. 13
4 BUN	2 S-1	71	43. 5	0. 89	2. 05	69	43. 6	0. 70	1. 61	39. 5	46. 0	2	2. 82
	S-2	71	31. 7	0. 93	2. 95	70	31. 8	0. 53	1. 68	25. 3	33. 0	1	1. 41
	S-3	71	13. 6	0. 35	2. 55	71	13. 6	0. 35	2. 55	13. 0	14. 6	0	0. 00
4 BUN	3 S-1	88	43. 5	0. 64	1. 48	87	43. 5	0. 61	1. 40	42. 0	45. 5	1	1. 14
	S-2	88	31. 6	0. 48	1. 53	88	31. 6	0. 48	1. 53	30. 9	33. 0	0	0. 00
	S-3	88	13. 6	0. 31	2. 28	88	13. 6	0. 31	2. 28	13. 0	14. 5	0	0. 00
4 BUN	4 S-1	27	43. 7	0. 48	1. 10	27	43. 7	0. 48	1. 10	42. 4	44. 5	0	0. 00
	S-2	27	31. 7	0. 37	1. 18	27	31. 7	0. 37	1. 18	30. 9	32. 3	0	0. 00
	S-3	27	13. 5	0. 27	1. 97	27	13. 5	0. 27	1. 97	12. 9	14. 0	0	0. 00
4 BUN	9 S-1	2	41. 7	2. 40	5. 77	2	41. 7	2. 40	5. 77	40. 0	43. 4	0	0. 00
	S-2	2	29. 9	2. 69	8. 99	2	29. 9	2. 69	8. 99	28. 0	31. 8	0	0. 00
	S-3	2	13. 3	0. 42	3. 19	2	13. 3	0. 42	3. 19	13. 0	13. 6	0	0. 00

台頃日· PM	叶列 万颗板	河 衣			(1/ -5	۷)							
# 項目	分類 試料		全デー	タ統計		3	SD 除去	データ統	計	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
5 T-BIL	3 S-1	96	3.85	0. 125	3. 25	93	3.85	0. 100	2.60	3. 30	4. 20	3	3. 13
	S-2	96	2.58	0.100	3.87	95	2.59	0.080	3. 10	2.00	2.80	1	1.04
	S-3	96	0.74	0.047	6.31	96	0.74	0.047	6. 31	0.60	0.87	0	0.00
5 T-BIL	7 S-1	1	3.80	0.000	0.00	1	3.80	0.000	0.00	3.80	3.80	0	0.00
	S-2	1	2.50	0.000	0.00	1	2.50	0.000	0.00	2.50	2.50	0	0.00
	S-3	1	0.90	0.000	0.00	1	0.90	0.000	0.00	0.90	0.90	0	0.00
6 D-BIL	3 S-1	40	1.43	0. 122	8.58	40	1.43	0.122	8.58	1. 21	1. 79	0	0.00
	S-2	40	0. 92	0.059	6. 41	39	0. 91	0.051	5. 55	0. 78	1. 11	1	2.50
	S-3	40	0. 11	0. 127	116.89	38	0.09	0.018	20. 41	0.05	0.88	2	5. 00
6 D-BIL	4 S-1	31	1. 75	0. 119	6.81	31	1. 75	0. 119	6.81	1.60	2.00	0	0.00
	S-2	31	1.07	0.081	7. 60	31	1.07	0.081	7.60	0. 90	1.30	0	0.00
	S-3	31	0. 15	0. 044	29. 71	31	0. 15	0. 044	29. 71	0.09	0. 20	0	0.00
6 D-BIL	5 S-1	97	1. 74	0.066	3.80	96	1. 75	0.056	3. 22	1. 40	1.89	1	1.03
	S-2	97	1. 10	0.044	3. 95	96	1. 10	0.039	3. 50	0. 90	1. 21	1	1.03
	S-3	97	0. 20	0.017	8. 41	92	0. 20	0.008	3.85	0. 10	0. 28	5	5. 15
7 IP	1 S-1	36	6.05	0. 246	4.06	35	6.08	0.086	1. 41	4. 70	6. 30	1	2. 78
	S-2 S-3	36 36	5. 01 3. 40	0. 077 0. 067	1. 54 1. 97	36 36	5. 01 3. 40	0. 077 0. 067	1. 54 1. 97	4. 90	5. 20 3. 60	0	0.00
	ა-ა	30	<b>3.</b> 40	0.007	1.97	30	<b>3.</b> 40	0.007		3. 30	5.00	0	0.00
7 IP	2 S-1	127	6.09	0.104	1.71	126	6.09	0.099	1.62	5. 70	6. 30	1	0.79
	S-2	127	5. 03	0.081	1.61	127	5. 03	0.081	1.61	4. 80	5. 20	0	0.00
	S-3	127	3. 44	0.074	2. 15	125	3. 44	0.067	1. 96	3. 20	3. 70	2	1. 57
8 FE	3 S-1	23	91.6	1. 90	2.08	23	91.6	1. 90	2.08	88.0	95.0	0	0.00
	S-2 S-3	23 23	104. 4 123. 0	2. 64	2. 53 2. 37	23 23	104. 4 123. 0	2. 64	2. 53 2. 37	101. 0	109. 0 129. 0	0	0.00 0.00
		23	123.0	2. 92		23		2. 92		118. 0		0	
8 FE	4 S-1	149	92.0	2. 14	2. 32	149	92.0	2. 14	2. 32	86.0	97.0	0	0.00
	S-2 S-3	149 149	105. 3 125. 2	2. 41 2. 90	2. 29 2. 31	149 149	105. 3 125. 2	2. 41 2. 90	2. 29 2. 31	100. 0 118. 0	111. 0 133. 0	0	0.00 0.00
	5 5	143	120.2	2. 30	2. 51	143	120. 2	2. 90	2. 01	110.0	155.0	U	0.00
8 FE	5 S-1	7	89. 7	1.60	1.79	7	89. 7	1.60	1. 79	88.0	91.0	0	0.00
	S-2 S-3	7 7	102. 9 123. 7	1. 68 2. 21	1. 63 1. 79	7 7	102. 9 123. 7	1. 68 2. 21	1. 63 1. 79	101. 0 121. 0	106. 0 128. 0	0	0. 00 0. 00
									1. 13			V	
9 CA	1 S-1	21	7. 19	0. 176	2. 45	21	7. 19	0. 176	2. 45	6. 80	7. 50	0	0.00
	S-2 S-3	21 21	8. 12 9. 41	0. 166 0. 134	2. 04 1. 43	21 20	8. 12 9. 44	0. 166 0. 093	2. 04 0. 98	7. 78 8. 98	8. 50 9. 60	0	0. 00 4. 76
9 CA	2 S-1	20	7. 25	0. 143	1. 98	20	7. 25	0. 143	1. 98	7. 00	7. 60	0	0.00
	S-2 S-3	20 20	8. 14 9. 48	0. 153 0. 151	1. 88 1. 59	20 19	8. 14 9. 45	0. 153 0. 092	1. 88 0. 97	7. 90 9. 30	8. 60 10. 00	0 1	0.00 5.00
9 CA	3 S-1 S-2	62 62	7. 25	0. 107	1. 48 1. 26	62 62	7. 25 8. 21	0. 107	1. 48 1. 26	7. 00	7. 50	0	0.00
	S-2 S-3	62	8. 21 9. 62	0. 104 0. 120	1. 24	62	9. 62	0. 104 0. 120	1. 20	8. 00 9. 40	8. 40 9. 90	0	0. 00 0. 00
0. 04		01								C 00		0	
9 CA	4 S-1 S-2	81 81	7. 24 8. 16	0. 118 0. 119	1. 63 1. 45	81 80	7. 24 8. 16	0. 118 0. 112	1. 63 1. 37	6. 90 7. 80	7. 50 8. 40	0	0. 00 1. 23
	S-3	81	9. 56	0. 130	1. 36	81	9. 56	0. 130	1. 36	9. 20	9.81	0	0.00
9 CA	5 S-1	14	7. 45	0.098	1. 32	14	7. 45	0.098	1. 32	7. 30	7. 60	0	0.00
<i>5</i> OH	S-2	14	8. 36	0. 138	1.65	14	8. 36	0. 138	1. 65	8. 10	8. 60	0	0.00
	S-3	14	9. 71	0.090	0. 93	14	9.71	0.090	0.93	9. 51	9.80	0	0.00
9 CA	9 S-1	1	7. 50	0.000	0.00	1	7. 50	0.000	0.00	7. 50	7. 50	0	0.00
	S-2	1	8.30	0.000	0.00	1	8.30	0.000	0.00	8.30	8.30	0	0.00
	S-3	1	9.60	0.000	0.00	1	9.60	0.000	0.00	9.60	9.60	0	0.00
10 MG	1 S-1	18	4. 52	0.077	1.69	18	4. 52	0.077	1.69	4. 39	4.60	0	0.00
	S-2	18	3.69	0.076	2.07	18	3.69	0.076	2.07	3. 56	3. 80	0	0.00
	S-3	18	2. 36	0.096	4. 07	18	2. 36	0.096	4. 07	2. 20	2. 50	0	0.00

台垻日· PM	斗別 刀領隊	山区			(1/ -2	<i>3 )</i>							
# 項目	分類 試料		全デー	タ統計		3	SD 除去	データ統語	+	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
10 MG	2 S-1	68	4. 52	0. 092	2. 03	67	4. 51	0. 079	1. 76	4. 40	4. 90	1	1. 47
	S-2	68	3. 69	0. 093	2. 53	67	3. 68	0. 069	1. 87	3. 59	4. 20	1	1. 47
	S-3	68	2. 28	0. 092	4. 03	65	2. 27	0. 063	2. 79	2. 00	2. 70	3	4. 41
10 MG	9 S-1	2	4. 60	0. 000	0. 00	2	4. 60	0. 000	0. 00	4. 60	4. 60	0	0. 00
	S-2	2	3. 80	0. 000	0. 00	2	3. 80	0. 000	0. 00	3. 80	3. 80	0	0. 00
	S-3	2	2. 28	0. 024	1. 03	2	2. 28	0. 024	1. 03	2. 27	2. 30	0	0. 00
11 NA	2 S-1	22	127. 2	1. 78	1. 40	22	127. 2	1. 78	1. 40	124. 4	130. 7	0	0. 00
	S-2	22	126. 5	27. 51	21. 74	21	132. 4	1. 51	1. 14	3. 5	135. 8	1	4. 55
	S-3	22	138. 8	11. 36	8. 18	21	141. 2	1. 55	1. 10	88. 4	143. 6	1	4. 55
11 NA	3 S-1	185	127. 4	0. 85	0. 67	182	127. 5	0. 77	0. 61	124. 0	130. 0	3	1. 62
	S-2	185	132. 2	8. 85	6. 69	184	132. 9	0. 85	0. 64	13. 1	135. 1	1	0. 54
	S-3	185	141. 4	0. 94	0. 66	185	141. 4	0. 94	0. 66	138. 6	143. 7	0	0. 00
12 K	2 S-1	22	9. 45	27. 752	293. 67	21	3. 53	0. 068	1. 92	3. 45	133. 70	1	4. 55
	S-2	22	4. 16	0. 070	1. 67	22	4. 16	0. 070	1. 67	4. 07	4. 32	0	0. 00
	S-3	22	9. 27	19. 104	206. 14	21	5. 19	0. 090	1. 74	5. 01	94. 80	1	4. 55
12 K	3 S-1	185	3. 55	0. 048	1. 35	184	3. 55	0. 044	1. 24	3. 50	3. 80	1	0. 54
	S-2	185	4. 21	0. 031	0. 74	126	4. 20	0. 000	0. 00	4. 10	4. 30	59	31. 89
	S-3	185	5. 25	0. 057	1. 08	183	5. 25	0. 046	0. 87	4. 82	5. 31	2	1. 08
13 CL	1 S-1	7	90. 5	1. 26	1. 39	7	90. 5	1. 26	1. 39	89. 0	92. 0	0	0. 00
	S-2	7	95. 5	1. 26	1. 32	7	95. 5	1. 26	1. 32	93. 0	97. 0	0	0. 00
	S-3	7	102. 9	0. 90	0. 87	7	102. 9	0. 90	0. 87	101. 0	104. 0	0	0. 00
13 CL	2 S-1	34	91. 4	9. 29	10. 16	33	89. 9	1. 93	2. 15	86. 0	142. 9	1	2. 94
	S-2	34	92. 3	15. 50	16. 79	33	95. 0	1. 81	1. 90	5. 2	100. 0	1	2. 94
	S-3	34	102. 9	1. 56	1. 51	33	102. 7	1. 29	1. 25	100. 0	108. 0	1	2. 94
13 CL	3 S-1	169	91. 0	1. 01	1. 11	169	91. 0	1. 01	1. 11	88. 7	93. 8	0	0. 00
	S-2	169	95. 5	0. 97	1. 01	168	95. 4	0. 93	0. 98	93. 8	99. 0	1	0. 59
	S-3	169	102. 7	0. 98	0. 96	168	102. 7	0. 95	0. 93	100. 0	106. 0	1	0. 59
14 TP	1 S-1	217	5. 96	0. 082	1. 38	211	5. 96	0. 067	1. 13	5. 50	6. 21	6	2. 76
	S-2	217	6. 85	0. 087	1. 27	210	6. 84	0. 071	1. 04	6. 40	7. 10	7	3. 23
	S-3	216	8. 19	0. 104	1. 27	210	8. 19	0. 087	1. 06	7. 90	8. 60	6	2. 78
14 TP	9 S-1	1	5. 90	0.000	0. 00	1	5. 90	0.000	0. 00	5. 90	5. 90	0	0. 00
	S-2	1	6. 90	0.000	0. 00	1	6. 90	0.000	0. 00	6. 90	6. 90	0	0. 00
	S-3	1	8. 40	0.000	0. 00	1	8. 40	0.000	0. 00	8. 40	8. 40	0	0. 00
15 ALB	1 S-1	54	3. 78	0. 091	2. 41	52	3. 78	0. 071	1. 89	3. 50	4. 10	2	3. 70
	S-2	54	4. 28	0. 098	2. 30	53	4. 29	0. 083	1. 94	3. 90	4. 50	1	1. 85
	S-3	53	5. 06	0. 121	2. 39	53	5. 06	0. 121	2. 39	4. 70	5. 30	0	0. 00
15 ALB	2 S-1	8	3. 81	0. 078	2. 04	8	3. 81	0. 078	2. 04	3. 70	3. 90	0	0. 00
	S-2	8	4. 30	0. 075	1. 73	8	4. 30	0. 075	1. 73	4. 20	4. 40	0	0. 00
	S-3	8	5. 06	0. 050	0. 98	8	5. 06	0. 050	0. 98	5. 00	5. 10	0	0. 00
15 ALB	3 S-1	153	3. 75	0. 067	1. 79	152	3. 75	0. 064	1. 72	3. 52	3. 93	1	0. 65
	S-2	153	4. 28	0. 074	1. 74	153	4. 28	0. 074	1. 74	4. 10	4. 50	0	0. 00
	S-3	153	5. 09	0. 102	2. 01	151	5. 08	0. 086	1. 69	4. 84	5. 70	2	1. 31
16 T-CHO	1 S-1	205	133. 3	2. 38	1. 79	203	133. 4	2. 18	1. 63	122. 0	139. 0	2	0. 98
	S-2	205	160. 2	3. 74	2. 33	204	160. 4	2. 68	1. 67	123. 0	168. 0	1	0. 49
	S-3	205	201. 7	3. 13	1. 55	204	201. 8	3. 06	1. 52	192. 0	210. 0	1	0. 49
17 HDL	1 S-1	80	43. 1	0. 77	1. 79	80	43. 1	0. 77	1. 79	41. 0	45. 0	0	0. 00
	S-2	80	49. 9	0. 95	1. 91	78	49. 9	0. 84	1. 68	47. 0	53. 0	2	2. 50
	S-3	80	60. 0	1. 14	1. 90	80	60. 0	1. 14	1. 90	57. 0	63. 0	0	0. 00
17 HDL	6 S-1	6	39. 0	2. 10	5. 38	6	39. 0	2. 10	5. 38	35. 0	41. 0	0	0. 00
	S-2	6	46. 5	1. 87	4. 02	6	46. 5	1. 87	4. 02	43. 0	48. 0	0	0. 00
	S-3	6	57. 0	2. 68	4. 71	6	57. 0	2. 68	4. 71	52. 0	60. 0	0	0. 00

各項目・試	料別 分類統	計表			(^° ¬`)`	4)							
# 項目	分類 試料		全デー	タ統計		3	SD 除去	データ統語	+	最小値	最大値	3SD	パル値
	NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
18 LDL	1 S-1	75	73. 6	1. 30	1. 77	74	73. 5	1. 20	1. 63	70. 7	78. 0	1	1. 33
	S-2	75	89. 4	1. 46	1. 63	74	89. 3	1. 31	1. 46	86. 0	95. 0	1	1. 33
	S-3	75	113. 3	1. 86	1. 64	73	113. 1	1. 52	1. 35	110. 0	121. 0	2	2. 67
18 LDL	3 S-1	22	80. 2	1. 34	1. 67	22	80. 2	1. 34	1. 67	77. 8	83. 0	0	0.00
	S-2	22	97. 9	2. 18	2. 23	22	97. 9	2. 18	2. 23	96. 0	104. 0	0	0.00
	S-3	22	123. 0	1. 98	1. 61	22	123. 0	1. 98	1. 61	120. 0	128. 0	0	0.00
18 LDL	4 S-1	5	78. 4	0. 89	1. 14	5	78. 4	0. 89	1. 14	77. 0	79. 0	0	0. 00
	S-2	5	97. 8	1. 30	1. 33	5	97. 8	1. 30	1. 33	97. 0	100. 0	0	0. 00
	S-3	5	126. 0	1. 41	1. 12	5	126. 0	1. 41	1. 12	124. 0	128. 0	0	0. 00
18 LDL	9 S-1	14	75. 6	1. 87	2. 47	14	75. 6	1. 87	2. 47	73. 0	81. 0	0	0. 00
	S-2	14	91. 5	1. 84	2. 01	14	91. 5	1. 84	2. 01	89. 0	95. 0	0	0. 00
	S-3	14	116. 9	2. 30	1. 96	14	116. 9	2. 30	1. 96	114. 0	122. 0	0	0. 00
21 TG	1 S-1	3	65. 9	0. 81	1. 23	3	65. 9	0. 81	1. 23	65. 0	66. 6	0	0. 00
	S-2	3	79. 8	0. 72	0. 90	3	79. 8	0. 72	0. 90	79. 0	80. 4	0	0. 00
	S-3	3	101. 5	0. 50	0. 50	3	101. 5	0. 50	0. 50	101. 0	102. 0	0	0. 00
21 TG	2 S-1	209	65. 2	1. 41	2. 17	206	65. 3	1. 22	1. 87	58. 0	68. 0	3	1. 44
	S-2	209	79. 2	1. 90	2. 40	205	79. 4	1. 41	1. 77	63. 0	83. 0	4	1. 91
	S-3	209	100. 8	1. 75	1. 74	205	100. 9	1. 56	1. 55	94. 0	105. 0	4	1. 91
22 ALP	1 S-1	213	386. 5	25. 29	6. 54	204	387. 9	5. 89	1. 52	36. 1	415. 0	9	4. 23
	S-2	213	327. 1	10. 72	3. 28	207	328. 0	5. 62	1. 71	226. 0	346. 0	6	2. 82
	S-3	213	235. 4	5. 05	2. 14	212	235. 4	4. 95	2. 10	220. 0	250. 0	1	0. 47
22 ALP	9 S-1	1	106. 0	0. 00	0.00	1	106. 0	0. 00	0.00	106. 0	106. 0	0	0. 00
	S-2	1	83. 0	0. 00	0.00	1	83. 0	0. 00	0.00	83. 0	83. 0	0	0. 00
	S-3	1	65. 0	0. 00	0.00	1	65. 0	0. 00	0.00	65. 0	65. 0	0	0. 00
23 R-GT	1 S-1	214	156. 7	12. 04	7. 68	209	155. 8	2. 10	1. 35	141. 0	328. 0	5	2. 34
	S-2	214	108. 9	2. 49	2. 29	210	109. 0	1. 51	1. 38	82. 0	117. 0	4	1. 87
	S-3	214	37. 8	1. 08	2. 85	208	37. 8	0. 84	2. 23	31. 0	41. 0	6	2. 80
23 R-GT	7 S-1	4	153. 8	0. 50	0. 33	4	153. 8	0. 50	0. 33	153. 0	154. 0	0	0. 00
	S-2	4	105. 5	0. 58	0. 55	4	105. 5	0. 58	0. 55	105. 0	106. 0	0	0. 00
	S-3	4	34. 3	0. 96	2. 80	4	34. 3	0. 96	2. 80	33. 0	35. 0	0	0. 00
23 R-GT	9 S-1	1	140. 0	0. 00	0. 00	1	140. 0	0. 00	0.00	140. 0	140. 0	0	0. 00
	S-2	1	97. 0	0. 00	0. 00	1	97. 0	0. 00	0.00	97. 0	97. 0	0	0. 00
	S-3	1	34. 0	0. 00	0. 00	1	34. 0	0. 00	0.00	34. 0	34. 0	0	0. 00
24 AST	1 S-1	215	116. 5	2. 58	2. 21	208	116. 7	1. 95	1. 67	101. 0	123. 1	7	3. 26
	S-2	215	80. 7	2. 23	2. 76	210	80. 9	1. 32	1. 64	57. 0	86. 0	5	2. 33
	S-3	215	26. 4	0. 88	3. 34	215	26. 4	0. 88	3. 34	24. 0	29. 0	0	0. 00
24 AST	9 S-1	1	118. 0	0. 00	0. 00	1	118. 0	0. 00	0.00	118. 0	118. 0	0	0. 00
	S-2	1	84. 0	0. 00	0. 00	1	84. 0	0. 00	0.00	84. 0	84. 0	0	0. 00
	S-3	1	32. 0	0. 00	0. 00	1	32. 0	0. 00	0.00	32. 0	32. 0	0	0. 00
25 ALT	1 S-1	215	136. 5	3. 89	2. 85	203	137. 1	2. 71	1. 98	117. 0	145. 0	12	5. 58
	S-2	215	91. 4	3. 10	3. 40	211	91. 6	2. 29	2. 50	65. 0	97. 2	4	1. 86
	S-3	215	23. 7	1. 07	4. 51	209	23. 7	0. 84	3. 55	18. 0	28. 0	6	2. 79
25 ALT	9 S-1	1	136. 0	0. 00	0.00	1	136. 0	0. 00	0. 00	136. 0	136. 0	0	0. 00
	S-2	1	90. 0	0. 00	0.00	1	90. 0	0. 00	0. 00	90. 0	90. 0	0	0. 00
	S-3	1	31. 0	0. 00	0.00	1	31. 0	0. 00	0. 00	31. 0	31. 0	0	0. 00
26 CK	1 S-1	212	357. 6	6. 04	1. 69	207	357. 9	4. 95	1. 38	319. 0	376. 0	5	2. 36
	S-2	212	281. 7	6. 80	2. 41	208	282. 1	4. 11	1. 46	207. 0	295. 0	4	1. 89
	S-3	212	167. 3	4. 55	2. 72	206	167. 1	2. 71	1. 62	156. 0	216. 0	6	2. 83
27 AMY	1 S-1	16	229. 1	4. 44	1. 94	16	229. 1	4. 44	1. 94	224. 0	241. 5	0	0. 00
	S-2	16	172. 9	2. 77	1. 60	16	172. 9	2. 77	1. 60	170. 0	179. 9	0	0. 00
	S-3	16	89. 2	2. 15	2. 41	16	89. 2	2. 15	2. 41	86. 0	94. 7	0	0. 00

台供日· MY	7万月 万美丽	山区			(*, ->	<i>3 )</i>							
# 項目	分類 試料		全デー	タ統計		3	SD 除去	データ統語	計 	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
27 AMY	6 S-1	59	229.4	4.71	2.05	58	229.8	3. 98	1.73	210.0	240.0	1	1.69
	S-2 S-3	59 59	172. 2	5. 67	3. 29 1. 33	58 59	172. 9	2. 57	1.49	134. 0	179. 0 90. 0	1 0	1.69
	ა-ა	59	87.8	1. 17	1. 55	99	87.8	1. 17	1. 33	85. 0	90.0	U	0.00
27 AMY	10 S-1	96	232. 4	4. 36	1.87	96	232. 4	4. 36	1.87	224. 0	242. 0	0	0.00
	S-2 S-3	96 96	175. 9 90. 1	3. 68 1. 98	2. 09 2. 20	96 96	175. 9 90. 1	3. 68 1. 98	2. 09 2. 20	168. 0 86. 0	184. 0 95. 0	0	0. 00 0. 00
27 AMY	11 S-1 S-2	19 19	226. 5 171. 7	3. 69 2. 77	1. 63 1. 61	19 19	226. 5 171. 7	3. 69 2. 77	1. 63 1. 61	217. 0 165. 0	233. 0 176. 0	0	0.00 0.00
	S-3	19	88. 4	1. 57	1. 78	19	88. 4	1. 57	1. 78	85. 0	91. 0	0	0.00
97 AMV	13 S-1	10	220 5	2 69	1 57	10	220 =	3. 62	1 57	224. 0	236. 0	0	0.00
27 AMY	15 S-1 S-2	18 18	230. 5 174. 2	3. 62 2. 98	1. 57 1. 71	18 18	230. 5 174. 2	2. 98	1. 57 1. 71	170. 0	230. 0 179. 0	0	0.00
	S-3	18	88. 7	1.64	1.85	18	88.7	1.64	1.85	86.0	91.0	0	0.00
27 AMY	19 S-1	1	162. 0	0.00	0.00	1	162. 0	0.00	0.00	162.0	162. 0	0	0.00
2. 11.11	S-2	1	126.0	0.00	0.00	1	126.0	0.00	0.00	126.0	126.0	0	0.00
	S-3	1	67. 0	0.00	0.00	1	67. 0	0.00	0.00	67. 0	67. 0	0	0.00
28 LD	2 S-1	215	350. 2	5.87	1.68	213	350. 3	5. 17	1.48	318.0	376. 0	2	0.93
	S-2	215	298. 2	6. 92	2. 32	213	298. 5	4. 38	1. 47	221.0	313. 0	2	0.93
	S-3	215	220. 4	3. 49	1. 58	215	220. 4	3. 49	1.58	211.0	230.0	0	0.00
30 CHE	3 S-1	16	223.7	32.88	14. 70	15	231. 9	3. 36	1.45	101. 0	238.0	1	6. 25
	S-2 S-3	16 16	269. 2 338. 3	39. 68 49. 34	14. 74 14. 59	15 15	279. 1 350. 5	3. 77 4. 69	1. 35 1. 34	121. 0 154. 0	285. 0 359. 0	1 1	6. 25 6. 25
		10		15. 61		10		1. 00	1.01			1	
30 CHE	5 S-1	8	236. 9 284. 4	3. 18 3. 25	1.34	8	236. 9 284. 4	3. 18 3. 25	1. 34	234. 0 280. 0	243. 0 289. 0	0	0. 00 0. 00
	S-2 S-3	8 8	356.6	3. 23 4. 17	1. 14 1. 17	8	356. 6	3. 23 4. 17	1. 14 1. 17	350. 0	362. 0	0	0.00
oo are		1.7				1.7	000.0					0	
30 CHE	7 S-1 S-2	17 17	236. 2 284. 4	4. 26 4. 92	1. 80 1. 73	17 17	236. 2 284. 4	4. 26 4. 92	1. 80 1. 73	227. 0 274. 0	242. 0 292. 0	0	0. 00 0. 00
	S-3	17	357. 7	6. 39	1. 79	17	357. 7	6. 39	1. 79	345. 0	367. 0	0	0.00
30 CHE	9 S-1	141	233. 0	3. 30	1. 42	141	233. 0	3. 30	1. 42	225.0	242. 0	0	0.00
OU CILL	S-2	141	280.3	3. 95	1. 41	139	280.3	3. 64	1. 30	266. 0	293.0	2	1.42
	S-3	141	352. 7	4. 72	1. 34	141	352. 7	4. 72	1. 34	342. 0	366.0	0	0.00
31 HDL(S)	2 S-1	66	46.6	1.05	2. 25	63	46.6	0.80	1.72	43.0	50.0	3	4. 55
	S-2	66	54. 3	1. 79	3. 30	63	54. 5	0. 94	1. 73	43. 0	58. 0	3	4. 55
	S-3	66	66. 5	1. 41	2. 11	65	66. 5	1. 30	1.96	63.0	71. 0	1	1. 52
32 HDL(W)	3 S-1	29	42.0	0.63	1. 51	29	42.0	0.63	1. 51	41.0	43.0	0	0.00
	S-2 S-3	29 29	48. 9 59. 3	0. 71 0. 90	1. 45 1. 51	29 29	48. 9 59. 3	0. 71 0. 90	1. 45 1. 51	48. 0 58. 0	51. 0 61. 0	0	0. 00 0. 00
33 LDL(S)	2 S-1 S-2	65 65	76. 2 92. 5	1. 79 3. 23	2. 35 3. 49	63 63	76. 4 92. 9	1. 49 1. 76	1. 96 1. 89	70. 0 72. 0	80. 0 97. 0	2 2	3. 08 3. 08
	S-3	65	118. 0	2. 15	1. 82	62	118. 1	1. 69	1. 43	111. 0	124. 0	3	4. 62
24 1DI (W)	201	E	70. 2	0.01	0.70	E	70. 2	0.01	9.70	76.0	99.0	0	0.00
34 LDL(W)	3 S-1 S-2	5 5	79. 3 96. 9	2. 21 2. 74	2. 78 2. 83	5 5	79. 3 96. 9	2. 21 2. 74	2. 78 2. 83	76. 0 93. 0	82. 0 100. 0	0	0. 00 0. 00
	S-3	5	122. 2	2.95	2.42	5	122. 2	2. 95	2.42	117.0	124.0	0	0.00
35 T-BIL(V)	5 S-1	118	3.66	0.066	1.81	118	3. 66	0.066	1. 81	3. 50	3. 82	0	0.00
(.,	S-2	118	2. 44	0.058	2.39	118	2.44	0.058	2.39	2.30	2.60	0	0.00
	S-3	118	0.64	0.046	7. 08	118	0.64	0.046	7.08	0.58	0.74	0	0.00
36 Alb	1 S-1	4	<b>66.</b> 3	0.85	1. 29	4	<b>66.</b> 3	0.85	1. 29	65.0	66.8	0	0.00
	S-6	4	54.8	0.83	1. 51	4	54.8	0.83	1. 51	53.9	55.8	0	0.00
36 Alb	5 S-1	1	66.0	0.00	0.00	1	66.0	0.00	0.00	66.0	66.0	0	0.00
	S-6	1	53. 0	0.00	0.00	1	53. 0	0.00	0.00	53. 0	53. 0	0	0.00

# 項目	分類 試料		全デー	タ統計		3	SD 除去	データ紡	計	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
36 Alb	6 S-1 S-6	12 12	66. 0 53. 8	1. 18 0. 90	1. 78 1. 67	12 12	66. 0 53. 8	1. 18 0. 90	1. 78 1. 67	63. 9 52. 2	68. 2 55. 4	0	0. 00 0. 00
36 Alb	7 S-1 S-6	6 6	61. 3 47. 9	1. 18 0. 85	1. 92 1. 77	6 6	61. 3 47. 9	1. 18 0. 85	1. 92 1. 77	59. 5 46. 7	63. 1 49. 3	0	0.00 0.00
36 Alb	9 S-1 S-6	4	59. 7 48. 8	1. 91 0. 93	3. 19 1. 91	4	59. 7 48. 8	1. 91 0. 93	3. 19 1. 91	56. 9 47. 6	61. 1 49. 8	0	0. 00 0. 00
37 α1−G	1 S-1 S-6	4 4	2. 48 3. 68	0. 457 0. 222	18. 48 6. 03	4	2. 48 3. 68	0. 457 0. 222	18. 48 6. 03	2. 00 3. 40	3. 10 3. 90	0	0.00 0.00
37 α1-G	5 S-1 S-6	1 1	2. 40 3. 90	0.000 0.000	0.00 0.00	1 1	2. 40 3. 90	0.000 0.000	0.00 0.00	2. 40 3. 90	2. 40 3. 90	0	0.00 0.00
37 α1-G	6 S-1 S-6	12 12	2. 35 3. 71	0. 162 0. 162	6. 91 4. 37	12 12	2. 35 3. 71	0. 162 0. 162	6. 91 4. 37	2. 00 3. 40	2.60 4.00	0	0.00 0.00
37 α1-G	7 S-1 S-6	6 6	3. 70 5. 07	0. 141 0. 151	3.82 2.97	6 6	3. 70 5. 07	0. 141 0. 151	3.82 2.97	3. 50 4. 80	3. 90 5. 20	0	0.00 0.00
37 α1-G	9 S-1 S-6	4	3. 03 4. 05	0. 854 0. 619	28. 23 15. 29	4 4	3. 03 4. 05	0.854 0.619	28. 23 15. 29	2. 30 3. 50	4. 20 4. 90	0	0.00 0.00
38 a2-G	1 S-1 S-6	4	7. 25 9. 30	0. 806 0. 748	11. 12 8. 05	4 4	7. 25 9. 30	0. 806 0. 748	11. 12 8. 05	6. 60 8. 50	8. 40 10. 30	0	0.00 0.00
38 α2-G	5 S-1 S-6	1 1	7. 90 11. 60	0.000 0.000	0.00 0.00	1 1	7. 90 11. 60	0.000 0.000	0.00 0.00	7. 90 11. 60	7. 90 11. 60	0	0.00 0.00
38 α2-G	6 S-1 S-6	12 12	7. 90 10. 33	0. 534 0. 680	6. 76 6. 58	12 12	7. 90 10. 33	0. 534 0. 680	6. 76 6. 58	6. 70 9. 30	8. 50 11. 30	0	0.00 0.00
38 α2-G	7 S-1 S-6	6 6	7. 80 10. 88	0. 415 0. 313	5. 32 2. 87	6 6	7. 80 10. 88	0. 415 0. 313	5. 32 2. 87	7. 10 10. 30	8. 30 11. 20	0	0.00 0.00
38 α2-G	9 S-1 S-6	4 4	6. 45 8. 48	0. 370 0. 885	5. 73 10. 44	44	6. 45 8. 48	0.370 0.885	5. 73 10. 44	6. 10 7. 30	6. 90 9. 40	0	0.00 0.00
39 β-G	1 S-1 S-6	4 4	8. 90 19. 30	0. 726 0. 913	8. 15 4. 73	4	8. 90 19. 30	0. 726 0. 913	8. 15 4. 73	8. 10 18. 20	9.80 20.40	0	0.00 0.00
39 β-G	5 S-1 S-6	1 1	8. 00 17. 50	0.000 0.000	0.00 0.00	1 1	8. 00 17. 50	0.000 0.000	0.00 0.00	8. 00 17. 50	8. 00 17. 50	0	0.00 0.00
39 β-G	6 S-1 S-6	12 12	7. 65 18. 02	0. 491 1. 034	6. 42 5. 74	12 12	7. 65 18. 02	0. 491 1. 034	6. 42 5. 74	6. 90 16. 50	8. 60 19. 40	0	0.00 0.00
39 β-G	7 S-1 S-6	6 6	10.88 22.20	0. 417 0. 352	3. 83 1. 59	6 6	10.88 22.20	0. 417 0. 352	3. 83 1. 59	10. 20 21. 80	11.30 22.70	0	0.00 0.00
39 β-G	9 S-1 S-6	4 4	11. 10 22. 08	0. 707 0. 885	6. 37 4. 01	4 4	11. 10 22. 08	0. 707 0. 885	6. 37 4. 01	10. 30 21. 20	12. 00 23. 30	0	0.00 0.00
40 y=G	1 S-1 S-6	4 4	15. 70 13. 23	0. 616 0. 150	3. 93 1. 13	44	15. 70 13. 23	0.616 0.150	3. 93 1. 13	15. 20 13. 00	16.60 13.30	0	0.00 0.00
40 y=G	5 S-1 S-6	1 1	15. 70 14. 00	0.000 0.000	0.00 0.00	1 1	15. 70 14. 00	0.000 0.000	0.00 0.00	15. 70 14. 00	15. 70 14. 00	0 0	0.00 0.00
40 y=G	6 S-1 S-6	12 12	16. 13 14. 17	1. 074 0. 882	6. 66 6. 23	12 12	16. 13 14. 17	1. 074 0. 882	6. 66 6. 23	14. 40 13. 00	17. 90 16. 00	0	0.00 0.00
40 y=G	7 S-1 S-6	6 6	16. 33 14. 00	0. 528 0. 303	3. 23 2. 17	6 6	16. 33 14. 00	0. 528 0. 303	3. 23 2. 17	16. 00 13. 60	17. 40 14. 40	0	0.00 0.00
40 y=G	9 S-1 S-6	4 4	19. 75 16. 65	0. 387 0. 794	1. 96 4. 77	4 4	19. 75 16. 65	0. 387 0. 794	1. 96 4. 77	19. 40 15. 50	20. 30 17. 30	0	0.00 0.00

各項目・試	料別 分類級	計表			(^° →シ`	7)							
# 項目	分類 試料		全デー	タ統計			B SD 除去	データ統	計	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
41 CRP	1 S-12 S-13 S-14	2 2 2	0. 52 5. 97 11. 57	0. 028 0. 523 1. 089	5. 44 8. 76 9. 41	2 2 2	0. 52 5. 97 11. 57	0. 028 0. 523 1. 089	5. 44 8. 76 9. 41	0. 50 5. 60 10. 80	0. 54 6. 34 12. 34	0 0 0	0. 00 0. 00 0. 00
41 CRP	S-13	228 228 228	0. 48 6. 02 11. 44	0. 073 0. 441 0. 506	15. 26 7. 33 4. 42	216 225 225	0. 47 6. 05 11. 43	0. 018 0. 210 0. 460	3. 72 3. 46 4. 02	0. 37 0. 26 9. 80	1. 48 6. 60 13. 50	12 3 3	5. 26 1. 32 1. 32
41 CRP	4 S-12 S-13 S-14	3 3 3	0. 48 6. 04 11. 43	0. 010 0. 128 0. 201	2. 08 2. 11 1. 76	3 3 3	0. 48 6. 04 11. 43	0. 010 0. 128 0. 201	2. 08 2. 11 1. 76	0. 47 5. 96 11. 29	0. 49 6. 19 11. 66	0 0 0	0. 00 0. 00 0. 00
42 IgG	2 S-12 S-13 S-14	65 65 65	1296. 5 1315. 8 1338. 4	23. 06 25. 78 25. 81	1. 78 1. 96 1. 93	65 64 64	1296. 5 1314. 4 1337. 0	23. 06 23. 26 23. 63	1. 78 1. 77 1. 77	1229. 5 1250. 0 1273. 0	1355. 0 1407. 0 1424. 0	0 1 1	0. 00 1. 54 1. 54
43 IgA	2 S-12 S-13 S-14	65 65 65	277. 4 305. 1 332. 6	5. 82 6. 33 6. 75	2. 10 2. 08 2. 03	65 65 65	277. 4 305. 1 332. 6	5. 82 6. 33 6. 75	2. 10 2. 08 2. 03	265. 0 291. 2 318. 0	292. 0 321. 0 349. 0	0 0 0	0. 00 0. 00 0. 00
44 IgM	2 S-12 S-13 S-14	65 65 65	86. 8 90. 2 94. 2	1. 70 1. 93 2. 00	1. 96 2. 14 2. 12	64 65 64	86. 7 90. 2 94. 3	1. 58 1. 93 1. 85	1. 83 2. 14 1. 96	82. 8 85. 7 87. 9	92. 0 95. 0 99. 0	1 0 1	1. 54 0. 00 1. 54
45 C3	2 S-12 S-13 S-14	41 41 41	130. 5 137. 3 143. 4	2. 27 2. 44 2. 39	1. 74 1. 78 1. 66	41 41 41	130. 5 137. 3 143. 4	2. 27 2. 44 2. 39	1. 74 1. 78 1. 66	124. 0 130. 8 138. 0	135. 0 141. 7 149. 5	0 0 0	0. 00 0. 00 0. 00
45 C3	7 S-12 S-13 S-14	1 1 1	125. 0 132. 0 141. 0	0. 00 0. 00 0. 00	0. 00 0. 00 0. 00	1 1 1	125. 0 132. 0 141. 0	0. 00 0. 00 0. 00	0. 00 0. 00 0. 00	125. 0 132. 0 141. 0	125. 0 132. 0 141. 0	0 0 0	0. 00 0. 00 0. 00
46 C4	2 S-12 S-13 S-14	41 41 41	27. 4 28. 8 30. 2	0. 73 0. 66 0. 55	2. 66 2. 29 1. 81	41 40 41	27. 4 28. 8 30. 2	0. 73 0. 59 0. 55	2. 66 2. 04 1. 81	26. 0 27. 9 29. 0	29. 0 30. 8 31. 4	0 1 0	0. 00 2. 44 0. 00
46 C4	7 S-12 S-13 S-14	1 1 1	29. 0 32. 0 34. 0	0. 00 0. 00 0. 00	0. 00 0. 00 0. 00	1 1 1	29. 0 32. 0 34. 0	0. 00 0. 00 0. 00	0. 00 0. 00 0. 00	29. 0 32. 0 34. 0	29. 0 32. 0 34. 0	0 0 0	0. 00 0. 00 0. 00
48 Hb	1 S-8	48	12. 26	0. 294	2. 40	46	12.30	0. 191	1. 55	11. 00	12.80	2	4. 17
48 Hb	3 S-8	149	12. 27	0.409	3. 33	146	12. 26	0. 129	1.05	10.60	16. 50	3	2.01
48 Hb	4 S-8	9	12. 52	0. 186	1.48	9	12. 52	0.186	1. 48	12. 20	12.80	0	0.00
48 Hb	5 S-8	10	12. 42	0.312	2. 51	10	12. 42	0.312	2. 51	11. 90	13.00	0	0.00
48 Hb	9 S-8	22	12. 28	0. 238	1. 94	22	12. 28	0. 238	1. 94	11. 60	12.70	0	0.00
48 Hb	18 S-8	1	12.80	0.000	0.00	1	12.80	0.000	0.00	12. 80	12.80	0	0.00
49 HbA1c	1 S-5 S-8	57 57	8. 17 5. 12	0. 170 0. 086	2. 08 1. 68	55 56	8. 18 5. 12	0. 125 0. 078	1. 52 1. 53	7. 40 4. 90	8. 60 5. 40	2	3. 51 1. 75
49 HbA1c	2 S-5 S-8	63 62	8. 10 5. 03	0. 118 0. 083	1. 46 1. 64	61 62	8. 09 5. 03	0. 093 0. 083	1. 15 1. 64	7. 90 4. 80	8. 60 5. 20	2	3. 17 0. 00
49 HbA1c	4 S-5 S-8	1	8. 00 5. 10	0.000	0.00	1	8. 00 5. 10	0. 000 0. 000	0.00	8. 00 5. 10	8. 00 5. 10	0	0.00
49 HbA1c	5 S-5 S-8	15 15	8. 27 5. 06	0. 238 0. 124	2. 88 2. 45	15 15	8. 27 5. 06	0. 238 0. 124	2. 88 2. 45	8. 00 4. 70	8. 90 5. 20	0	0.00
49 HbA1c	6 S-5 S-8	8	8. 06 4. 98	0. 074 0. 104	0. 92 2. 08	8	8. 06 4. 98	0. 074 0. 104	0. 92 2. 08	8. 00 4. 80	8. 20 5. 10	0	0. 00 0. 00

台埠日 · M	イルリー ノノ 天貝形し	山区			(*\ _>	0 )							
# 項目	分類 試料		全デー	タ統計		3	SD 除去	データ統	計	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
49 HbA1c	7 S-5 S-8	5 5	8. 08 4. 88	0. 045 0. 130	0. 55 2. 67	5 5	8. 08 4. 88	0. 045 0. 130	0. 55 2. 67	8. 00 4. 80	8. 10 5. 10	0 0	0. 00 0. 00
49 HbA1c	8 S-5 S-8	11 11	8. 33 5. 02	0. 409 0. 139	4. 91 2. 76	11 11	8. 33 5. 02	0. 409 0. 139	4. 91 2. 76	7. 90 4. 80	8. 91 5. 22	0	0. 00 0. 00
49 HbA1c	10 S-5 S-8	5 5	8. 13 5. 15	0. 097 0. 100	1. 20 1. 94	5 5	8. 13 5. 15	0. 097 0. 100	1. 20 1. 94	8. 00 5. 05	8. 25 5. 30	0	0. 00 0. 00
49 HbA1c	11 S-5 S-8	18 17	8. 12 5. 04	0. 203 0. 129	2. 50 2. 57	18 17	8. 12 5. 04	0. 203 0. 129	2. 50 2. 57	7. 80 4. 80	8. 40 5. 36	0	0. 00 0. 00
49 HbA1c	12 S-5 S-8	19 19	8. 19 5. 06	0. 283 0. 167	3. 46 3. 30	19 19	8. 19 5. 06	0. 283 0. 167	3. 46 3. 30	7. 70 4. 60	8. 70 5. 30	0	0. 00 0. 00
50 PT(秒)	2 S-31 S-32	39 39	11. 3 26. 8	1. 11 9. 39	9. 83 35. 06	39 39	11. 3 26. 8	1. 11 9. 39	9. 83 35. 06	10. 2 18. 3	14. 1 44. 9	0	0. 00 0. 00
50 PT(秒)	3 S-31 S-32	107 107	11. 9 41. 9	0. 50 2. 36	4. 19 5. 63	107 106	11. 9 41. 8	0. 50 2. 17	4. 19 5. 20	11. 0 36. 2	13. 2 51. 6	0 1	0. 00 0. 93
50 PT(秒)	4 S-31 S-32	7 7	11. 6 35. 1	0. 77 4. 91	6. 64 13. 99	7 7	11. 6 35. 1	0. 77 4. 91	6. 64 13. 99	10. 6 26. 5	12. 3 40. 0	0	0. 00 0. 00
51 PT(%)	1 S-31 S-32	4 4	97. 8 16. 0	10. 59 2. 06	10. 82 12. 88	4	97. 8 16. 0	10. 59 2. 06	10. 82 12. 88	85. 4 14. 3	110. 9 18. 7	0	0. 00 0. 00
51 PT(%)	2 S-31 S-32	39 39	102. 4 25. 5	11. 43 7. 71	11. 16 30. 20	35 39	100. 5 25. 5	5. 46 7. 71	5. 43 30. 20	76. 2 13. 9	146. 3 35. 4	4	10. 26 0. 00
51 PT(%)	3 S-31 S-32	103 103	97. 5 14. 8	5. 71 2. 16	5. 85 14. 61	100 102	97. 3 14. 7	4. 90 2. 03	5. 04 13. 82	80. 8 9. 8	118. 0 22. 4	3 1	2. 91 0. 97
51 PT(%)	4 S-31 S-32	7 7	100. 2 18. 4	4. 48 2. 66	4. 47 14. 43	7 7	100. 2 18. 4	4. 48 2. 66	4. 47 14. 43	96. 0 13. 9	109. 0 23. 0	0	0.00 0.00
52 PT (INR)	1 S-31 S-32	4 4	0. 98 3. 50	0. 042 0. 119	4. 33 3. 39	4	0. 98 3. 50	0. 042 0. 119	4. 33 3. 39	0. 94 3. 33	1. 03 3. 61	0	0. 00 0. 00
52 PT (INR)	2 S-31 S-32	39 39	0. 96 2. 97	0. 060 0. 460	6. 22 15. 48	38 39	0. 96 2. 97	0. 052 0. 460	5. 44 15. 48	0. 87 2. 40	1. 15 3. 95	1 0	2. 56 0. 00
52 PT (INR)	3 S-31 S-32	103 103	1. 01 3. 98	0. 031 3. 384	3. 10 84. 99	99 99	1. 01 3. 63	0. 024 0. 210	2. 41 5. 79	0. 89 3. 12	1. 12 37. 90	4	3. 88 3. 88
52 PT(INR)	4 S-31 S-32	7 7	1. 00 2. 99	0. 028 0. 283	2. 76 9. 47	7 7	1. 00 2. 99	0. 028 0. 283	2. 76 9. 47	0. 94 2. 50	1. 02 3. 39	0	0. 00 0. 00
53 APTT(秒	S-31 S-32	118 118	28. 3 48. 5	1. 65 6. 70	5. 84 13. 82	117 118	28. 3 48. 5	1. 53 6. 70	5. 40 13. 82	21. 4 30. 2	31. 7 63. 8	1 0	0. 85 0. 00
53 APTT(秒	2 S-31 S-32	8	29. 1 41. 8	2. 67 4. 94	9. 20 11. 80	8	29. 1 41. 8	2. 67 4. 94	9. 20 11. 80	22. 6 30. 3	30. 8 47. 0	0	0. 00 0. 00
53 APTT(秒	3 S-31 S-32	9 9	22. 3 31. 1	2. 32 6. 32	10. 39 20. 33	9 9	22. 3 31. 1	2. 32 6. 32	10. 39 20. 33	20. 3 27. 0	26. 9 44. 9	0	0. 00 0. 00
53 APTT(秒	9 S-31 S-32	3	27. 8 43. 1	4. 53 11. 26	16. 29 26. 13	3	27. 8 43. 1	4. 53 11. 26	16. 29 26. 13	22. 8 30. 1	31. 6 49. 8	0	0. 00 0. 00
54 Fib(mg/	'dL) 1 S-31 S-32	105 105	290. 2 231. 8	25. 52 22. 58	8. 79 9. 74	104 104	291. 7 233. 1	20. 25 18. 77	6. 94 8. 05	131. 3 103. 2	352. 0 284. 0	1 1	0. 95 0. 95
54 Fib(mg/	'dL) 3 S-31 S-32	2 2	301. 2 243. 1	28. 07 35. 21	9. 32 14. 49	2 2	301. 2 243. 1	28. 07 35. 21	9. 32 14. 49	281. 3 218. 2	321. 0 268. 0	0	0. 00 0. 00

谷頃目・試料	川 分類統	計表			(\( \sigma \sigma \)	9)							
# 項目 夕	)類 試料		全デー	タ統計		3	SD 除去	データ統	計	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
54 Fib(mg/dL	9 S-31 S-32	2 2	330. 9 251. 7	0. 14 8. 91	0. 04 3. 54	2 2	330. 9 251. 7	0. 14 8. 91	0. 04 3. 54	330. 8 245. 4	331. 0 258. 0	0 0	0.00 0.00
55 HDL(Ot)	4 S-1	6	41. 4	0. 50	1. 20	6	41. 4	0. 50	1. 20	41. 0	42. 0	0	0.00
	S-2	6	49. 6	0. 49	0. 99	6	49. 6	0. 49	0. 99	49. 0	50. 0	0	0.00
	S-3	6	62. 4	0. 80	1. 28	6	62. 4	0. 80	1. 28	61. 0	63. 0	0	0.00
55 HDL(Ot)	5 S-1	2	46. 9	1. 27	2. 71	2	46. 9	1. 27	2. 71	46. 0	47. 8	0	0. 00
	S-2	2	54. 4	1. 91	3. 51	2	54. 4	1. 91	3. 51	53. 0	55. 7	0	0. 00
	S-3	2	65. 7	2. 19	3. 34	2	65. 7	2. 19	3. 34	64. 1	67. 2	0	0. 00
55 HDL(Ot)	9 S-1	21	45. 1	1. 89	4. 19	21	45. 1	1. 89	4. 19	42. 0	49. 0	0	0. 00
	S-2	21	52. 4	2. 57	4. 90	21	52. 4	2. 57	4. 90	48. 0	58. 0	0	0. 00
	S-3	21	63. 2	3. 51	5. 55	21	63. 2	3. 51	5. 55	58. 8	73. 0	0	0. 00
56 LDL(Ot)	4 S-1	3	79. 0	1. 00	1. 27	3	79. 0	1. 00	1. 27	78. 0	80. 0	0	0. 00
	S-2	3	97. 5	0. 50	0. 52	3	97. 5	0. 50	0. 52	97. 0	98. 0	0	0. 00
	S-3	3	126. 2	0. 72	0. 57	3	126. 2	0. 72	0. 57	125. 6	127. 0	0	0. 00
56 LDL(Ot)	9 S-1	5	76. 1	2. 13	2. 80	5	76. 1	2. 13	2. 80	74. 0	79. 0	0	0. 00
	S-2	5	93. 3	4. 38	4. 70	5	93. 3	4. 38	4. 70	89. 0	99. 0	0	0. 00
	S-3	5	118. 6	5. 61	4. 73	5	118. 6	5. 61	4. 73	113. 0	126. 4	0	0. 00
63 RF	2 S-12	7	7. 6	1. 75	22. 99	7	7. 6	1. 75	22. 99	5. 0	10. 3	0	0. 00
	S-13	7	54. 6	3. 02	5. 54	7	54. 6	3. 02	5. 54	49. 8	58. 0	0	0. 00
	S-14	7	121. 5	4. 42	3. 64	7	121. 5	4. 42	3. 64	114. 8	127. 0	0	0. 00
63 RF	3 S-12	1	10. 0	0. 00	0. 00	1	10. 0	0. 00	0. 00	10. 0	10. 0	0	0. 00
	S-13	1	55. 0	0. 00	0. 00	1	55. 0	0. 00	0. 00	55. 0	55. 0	0	0. 00
	S-14	1	122. 0	0. 00	0. 00	1	122. 0	0. 00	0. 00	122. 0	122. 0	0	0. 00
63 RF	4 S-12	72	13. 3	2. 09	15. 66	72	13. 3	2. 09	15. 66	9. 0	17. 3	0	0. 00
	S-13	72	71. 0	6. 79	9. 56	72	71. 0	6. 79	9. 56	61. 0	89. 1	0	0. 00
	S-14	72	133. 9	13. 33	9. 95	72	133. 9	13. 33	9. 95	118. 7	171. 0	0	0. 00
81 GLU(F)	5 S-1	21	188. 6	4. 73	2. 51	21	188. 6	4. 73	2. 51	177. 0	199. 0	0	0. 00
	S-2	21	149. 5	3. 25	2. 17	21	149. 5	3. 25	2. 17	143. 0	157. 0	0	0. 00
	S-3	21	88. 2	2. 06	2. 34	21	88. 2	2. 06	2. 34	85. 0	93. 0	0	0. 00
82 CRTN(F)	4 S-1	28	3. 23	0. 111	3. 44	28	3. 23	0. 111	3. 44	3. 00	3. 50	0	0. 00
	S-2	28	2. 26	0. 078	3. 44	28	2. 26	0. 078	3. 44	2. 10	2. 40	0	0. 00
	S-3	28	0. 75	0. 058	7. 70	28	0. 75	0. 058	7. 70	0. 60	0. 80	0	0. 00
83 UA(F)	3 S-1	17	3. 93	0. 092	2. 34	17	3. 93	0. 092	2. 34	3. 80	4. 10	0	0. 00
	S-2	17	5. 36	0. 100	1. 86	17	5. 36	0. 100	1. 86	5. 20	5. 60	0	0. 00
	S-3	17	7. 57	0. 140	1. 85	17	7. 57	0. 140	1. 85	7. 40	7. 90	0	0. 00
84 BUN(F)	5 S-1	25	43. 9	1. 23	2. 80	24	44. 0	0. 95	2. 16	40. 0	45. 4	1	4. 00
	S-2	25	32. 1	0. 73	2. 26	25	32. 1	0. 73	2. 26	30. 0	33. 2	0	0. 00
	S-3	25	13. 8	0. 36	2. 63	25	13. 8	0. 36	2. 63	13. 0	14. 4	0	0. 00
85 T-BIL(F)	7 S-1	24	3. 40	0. 100	2. 93	23	3. 42	0. 078	2. 28	3. 10	3. 60	1	4. 17
	S-2	24	2. 29	0. 085	3. 72	24	2. 29	0. 085	3. 72	2. 10	2. 40	0	0. 00
	S-3	24	0. 63	0. 086	13. 65	24	0. 63	0. 086	13. 65	0. 40	0. 80	0	0. 00
86 D-BIL(F)	7 S-1	4	2. 03	0. 050	2. 47	4	2. 03	0. 050	2. 47	2. 00	2. 10	0	0. 00
	S-2	4	1. 38	0. 050	3. 64	4	1. 38	0. 050	3. 64	1. 30	1. 40	0	0. 00
	S-3	4	0. 28	0. 050	18. 18	4	0. 28	0. 050	18. 18	0. 20	0. 30	0	0. 00
87 IP(F)	3 S-1	3	6. 47	0. 153	2. 36	3	6. 47	0. 153	2. 36	6. 30	6. 60	0	0.00
	S-2	3	5. 20	0. 100	1. 92	3	5. 20	0. 100	1. 92	5. 10	5. 30	0	0.00
	S-3	3	3. 63	0. 058	1. 59	3	3. 63	0. 058	1. 59	3. 60	3. 70	0	0.00
89 CA(F)	6 S-1	19	6. 77	0. 264	3. 90	19	6. 77	0. 264	3. 90	6. 30	7. 20	0	0. 00
	S-2	19	7. 68	0. 272	3. 54	19	7. 68	0. 272	3. 54	7. 10	8. 10	0	0. 00
	S-3	19	9. 28	0. 322	3. 48	19	9. 28	0. 322	3. 48	8. 70	9. 80	0	0. 00

台項目· 政府	<b>列 汀溪縣</b>	口衣			(1/ -3	10 )							
# 項目 ;	分類 試料		全デー	タ統計		3	SD 除去	データ統	<del> </del>	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S.D.	C. V.	N	平均	S.D.	C. V.			N	%
90 MG(F)	3 S-1	1	4. 50	0.000	0. 00	1	4. 50	0.000	0. 00	4. 50	4. 50	0	0.00
	S-2	1	3. 80	0.000	0. 00	1	3. 80	0.000	0. 00	3. 80	3. 80	0	0.00
	S-3	1	2. 40	0.000	0. 00	1	2. 40	0.000	0. 00	2. 40	2. 40	0	0.00
91 NA(F)	5 S-1	26	129. 1	0. 74	0. 58	25	129. 0	0. 45	0. 35	128. 0	132. 0	1	3. 85
	S-2	26	134. 9	0. 56	0. 42	26	134. 9	0. 56	0. 42	134. 0	136. 0	0	0. 00
	S-3	26	143. 9	0. 63	0. 44	26	143. 9	0. 63	0. 44	143. 0	145. 0	0	0. 00
92 K(F)	5 S-1	26	3. 48	0. 049	1. 41	26	3. 48	0. 049	1. 41	3. 40	3. 60	0	0. 00
	S-2	26	4. 18	0. 049	1. 18	26	4. 18	0. 049	1. 18	4. 10	4. 30	0	0. 00
	S-3	26	5. 30	0. 034	0. 65	23	5. 30	0. 000	0. 00	5. 20	5. 40	3	11. 54
93 CL(F)	5 S-1	27	88. 8	1. 26	1. 42	27	88. 8	1. 26	1. 42	87. 0	91. 0	0	0. 00
	S-2	27	94. 3	1. 71	1. 81	27	94. 3	1. 71	1. 81	92. 0	98. 0	0	0. 00
	S-3	27	102. 1	2. 03	1. 99	27	102. 1	2. 03	1. 99	99. 0	108. 0	0	0. 00
94 TP(F)	3 S-1	23	5. 90	0. 107	1. 80	23	5. 90	0. 107	1. 80	5. 80	6. 20	0	0. 00
	S-2	23	6. 83	0. 107	1. 57	23	6. 83	0. 107	1. 57	6. 60	7. 10	0	0. 00
	S-3	23	8. 21	0. 135	1. 64	23	8. 21	0. 135	1. 64	8. 00	8. 60	0	0. 00
95 ALB(F)	4 S-1	16	4. 07	0. 149	3. 67	16	4. 07	0. 149	3. 67	3. 80	4. 30	0	0. 00
	S-2	16	4. 61	0. 157	3. 41	16	4. 61	0. 157	3. 41	4. 30	4. 80	0	0. 00
	S-3	16	5. 28	0. 144	2. 73	16	5. 28	0. 144	2. 73	4. 90	5. 40	0	0. 00
96 T-CHO(F)	2 S-1	14	126. 5	5. 03	3. 98	14	126. 5	5. 03	3. 98	121. 0	137. 0	0	0. 00
	S-2	14	156. 0	6. 39	4. 09	14	156. 0	6. 39	4. 09	142. 0	168. 0	0	0. 00
	S-3	14	203. 4	8. 52	4. 19	14	203. 4	8. 52	4. 19	186. 0	219. 0	0	0. 00
99 TG(F)	3 S-1	14	71. 4	4. 18	5. 86	14	71. 4	4. 18	5. 86	60. 0	75. 0	0	0. 00
	S-2	14	87. 2	4. 87	5. 58	14	87. 2	4. 87	5. 58	74. 0	92. 0	0	0. 00
	S-3	14	111. 4	5. 56	4. 99	14	111. 4	5. 56	4. 99	96. 0	117. 0	0	0. 00
100 ALP(F)	6 S-1	19	364. 0	14. 79	4. 06	19	364. 0	14. 79	4. 06	329. 0	392. 0	0	0. 00
	S-2	19	301. 1	13. 70	4. 55	19	301. 1	13. 70	4. 55	277. 0	326. 0	0	0. 00
	S-3	19	198. 8	8. 60	4. 33	19	198. 8	8. 60	4. 33	182. 0	215. 0	0	0. 00
101 R-GT (F)	7 S-1	22	172. 6	7. 47	4. 33	22	172. 6	7. 47	4. 33	156. 0	187. 0	0	0. 00
	S-2	22	115. 7	4. 28	3. 70	22	115. 7	4. 28	3. 70	105. 0	121. 0	0	0. 00
	S-3	22	35. 6	2. 19	6. 16	21	36. 0	1. 66	4. 61	29. 0	39. 0	1	4. 55
102 AST (F)	2 S-1	28	107. 5	5. 02	4. 67	28	107. 5	5. 02	4. 67	96. 0	122. 0	0	0. 00
	S-2	28	76. 1	3. 75	4. 93	28	76. 1	3. 75	4. 93	65. 0	85. 0	0	0. 00
	S-3	28	28. 6	0. 92	3. 22	28	28. 6	0. 92	3. 22	26. 0	31. 0	0	0. 00
103 ALT (F)	2 S-1	28	130. 4	4. 95	3. 80	28	130. 4	4. 95	3. 80	118. 0	139. 0	0	0. 00
	S-2	28	89. 3	3. 56	3. 99	28	89. 3	3. 56	3. 99	82. 0	96. 0	0	0. 00
	S-3	28	26. 4	1. 53	5. 77	28	26. 4	1. 53	5. 77	23. 0	31. 0	0	0. 00
104 CK(F)	2 S-1	26	383. 9	11. 10	2. 89	26	383. 9	11. 10	2. 89	362. 0	417. 0	0	0. 00
	S-2	26	292. 5	7. 58	2. 59	26	292. 5	7. 58	2. 59	277. 0	313. 0	0	0. 00
	S-3	26	156. 6	4. 82	3. 08	26	156. 6	4. 82	3. 08	145. 0	166. 0	0	0. 00
105 AMY (F)	14 S-1	26	217. 3	26. 31	12. 10	26	217. 3	26. 31	12. 10	140. 0	236. 0	0	0. 00
	S-2	26	164. 4	19. 02	11. 57	26	164. 4	19. 02	11. 57	111. 0	179. 0	0	0. 00
	S-3	26	85. 2	6. 87	8. 06	25	86. 1	5. 44	6. 32	64. 0	92. 0	1	3. 85
106 LD(F)	3 S-1	18	349. 4	9. 56	2. 74	18	349. 4	9. 56	2. 74	331. 0	362. 0	0	0. 00
	S-2	18	303. 4	9. 46	3. 12	18	303. 4	9. 46	3. 12	288. 0	322. 0	0	0. 00
	S-3	18	224. 8	6. 43	2. 86	18	224. 8	6. 43	2. 86	215. 0	236. 0	0	0. 00
107 CHE(F)	10 S-1	5	226. 6	5. 94	2. 62	5	226. 6	5. 94	2. 62	218. 0	232. 0	0	0. 00
	S-2	5	274. 6	5. 46	1. 99	5	274. 6	5. 46	1. 99	268. 0	281. 0	0	0. 00
	S-3	5	349. 0	9. 77	2. 80	5	349. 0	9. 77	2. 80	335. 0	359. 0	0	0. 00
108 CRP(F)	6 S-12	12	0. 59	0. 067	11. 30	12	0. 59	0. 067	11. 30	0. 50	0. 70	0	0. 00
	S-13	12	6. 23	0. 235	3. 77	12	6. 23	0. 235	3. 77	5. 90	6. 60	0	0. 00
	S-14	12	10. 72	2. 795	26. 08	12	10. 72	2. 795	26. 08	7. 00	13. 50	0	0. 00

T. KT PALID.	) )) XXVIVUI	1120			( . •	11 /							
# 項目 分	類 試料		全デー	タ統計		3	SD 除去	データ統語	\ 	最小値	最大値	3SD	ハズレ値
	NO.	N	平均	S.D.	C. V.	N	平均	S. D.	C. V.			N	%
116 GLU(A1)	5 S-1	4	207.0	8. 76	4. 23	4	207. 0	8. 76	4. 23	196.0	215. 0	0	0.00
	S-2	4	161.5	4.80	2.97	4	161.5	4.80	2.97	157.0	168.0	0	0.00
	S-3	4	90.8	0.96	1.06	4	90.8	0. 96	1.06	90.0	92.0	0	0.00
117 CRTN(A1)	4 S-1	3	3.40	0.265	7. 78	3	3.40	0.265	7. 78	3. 10	3.60	0	0.00
	S-2	3	2. 37	0.058	2. 44	3	2. 37	0.058	2. 44	2. 30	2.40	0	0.00
	S-3	3	0.77	0.058	7. 53	3	0.77	0.058	7. 53	0.70	0.80	0	0.00
118 UA(A1)	3 S-1	1	3.60	0.000	0.00	1	3.60	0.000	0.00	3.60	3.60	0	0.00
	S-2	1	5. 40	0.000	0.00	1	5. 40	0.000	0.00	5. 40	5. 40	0	0.00
	S-3	1	8.00	0.000	0.00	1	8.00	0.000	0.00	8. 00	8.00	0	0.00
119 BUN(A1)	5 S-1	4	44. 5	3. 32	7.45	4	44. 5	3. 32	7.45	41.0	49.0	0	0.00
	S-2	4	31. 0	1. 63	5. 27	4	31. 0	1. 63	5. 27	29.0	33. 0	0	0.00
	S-3	4	13. 5	0. 58	4. 28	4	13. 5	0. 58	4. 28	13. 0	14. 0	0	0.00
120 T-BIL(A1)	7 S-1	3	3. 73	0.058	1.55	3	3. 73	0.058	1.55	3.70	3.80	0	0.00
	S-2	3	2. 37	0.058	2. 44	3	2. 37	0.058	2. 44	2. 30	2.40	0	0.00
	S-3	3	0.63	0.058	9. 12	3	0.63	0.058	9. 12	0. 60	0.70	0	0.00
122 IP(A1)	3 S-1	1	5.80	0.000	0.00	1	5.80	0.000	0.00	5.80	5.80	0	0.00
	S-2	1	4. 90	0.000	0.00	1	4. 90	0.000	0.00	4. 90	4. 90	0	0.00
	S-3	1	3. 20	0.000	0.00	1	3. 20	0.000	0.00	3. 20	3. 20	0	0.00
124 CA(A1)	6 S-1	3	6.60	0.265	4.01	3	6.60	0.265	4.01	6.40	6.90	0	0.00
	S-2	3	7. 07	0.513	7. 26	3	7. 07	0.513	7. 26	6. 50	7. 50	0	0.00
	S-3	3	7. 50	0.346	4. 62	3	7.50	0.346	4. 62	7. 30	7. 90	0	0.00
125 MG(A1)	3 S-1	1	4.70	0.000	0.00	1	4.70	0.000	0.00	4.70	4.70	0	0.00
	S-2	1	3. 70	0.000	0.00	1	3. 70	0.000	0.00	3. 70	3. 70	0	0.00
	S-3	1	2. 30	0.000	0.00	1	2. 30	0.000	0.00	2. 30	2. 30	0	0.00
126 NA(A1)	5 S-1	4	127.5	1. 29	1.01	4	127. 5	1. 29	1.01	126.0	129.0	0	0.00
	S-2	4	133. 5	1.00	0. 75	4	133. 5	1.00	0.75	133. 0	135. 0	0	0.00
	S-3	4	142.3	2. 75	1. 94	4	142. 3	2. 75	1. 94	139. 0	145.0	0	0.00
127 K(A1)	5 S-1	4	3.70	0.082	2. 21	4	3.70	0.082	2. 21	3.60	3.80	0	0.00
	S-2	4	4. 33	0.096	2. 21	4	4. 33	0.096	2. 21	4. 20	4. 40	0	0.00
	S-3	4	5. 38	0. 126	2. 34	4	5. 38	0. 126	2. 34	5. 20	5. 50	0	0.00
128 CL(A1)	5 S-1	1	87.0	0.00	0.00	1	87. 0	0.00	0.00	87.0	87.0	0	0.00
	S-2	1	92.0	0.00	0.00	1	92. 0	0.00	0.00	92.0	92. 0	0	0.00
	S-3	1	102.0	0.00	0.00	1	102. 0	0.00	0.00	102.0	102. 0	0	0.00
129 TP(A1)	3 S-1	3	5.63	0.115	2.05	3	5.63	0.115	2.05	5. 50	5.70	0	0.00
	S-2 S-3	3	6. 57	0. 115	1. 76	3	6. 57	0. 115	1. 76	6. 50	6. 70	0	0.00
	2-3	3	8. 10	0.361	4. 45	3	8. 10	0. 361	4. 45	7. 80	8. 50	0	0.00
130 ALB(A1)	4 S-1	2	3.40	0. 141	4. 16	2	3.40	0. 141	4. 16	3.30	3.50	0	0.00
	S-2 S-3	2	3. 90	0. 141	3.63	2	3. 90	0. 141	3. 63	3. 80	4.00	0	0.00
	2-3	2	4. 65	0.071	1. 52	2	4.65	0.071	1. 52	4. 60	4. 70	0	0.00
131 T-CHO(A1)	2 S-1	3	137.7	0.58	0.42	3	137.7	0.58	0.42	137.0	138.0	0	0.00
	S-2	3	167. 0	4. 58	2. 74	3	167. 0	4. 58	2. 74	162. 0	171. 0	0	0.00
	S-3	3	212.0	12. 12	5. 72	3	212. 0	12. 12	5. 72	201.0	225. 0	0	0.00
132 HDL(A1)	6 S-1	1	36.0	0.00	0.00	1	36.0	0.00	0.00	36.0	36.0	0	0.00
	S-2	1	45. 0	0.00	0.00	1	45. 0	0.00	0.00	45. 0	45. 0	0	0.00
	S-3	1	56. 0	0.00	0.00	1	56. 0	0.00	0.00	56. 0	56. 0	0	0.00
134 TG(A1)	3 S-1	1	59. 0	0.00	0.00	1	59. 0	0.00	0.00	59.0	59. 0	0	0.00
	S-2 S-3	1	76. 0	0.00	0.00	1	76. 0	0. 00 0. 00	0.00	76. 0	76. 0 98. 0	0	0.00
	ა–ა	1	98. 0	0.00	0.00	1	98. 0	0.00	0.00	98. 0	90. U	0	0.00
135 ALP(A1)	6 S-1	1	489.0	0.00	0.00	1	489.0	0.00	0.00	489.0	489. 0	0	0.00
	S-2 S-3	1 1	406. 0 311. 0	0. 00 0. 00	0. 00 0. 00	1 1	406. 0 311. 0	0. 00 0. 00	0. 00 0. 00	406. 0 311. 0	406. 0 311. 0	0	0. 00 0. 00
	SS	1	011.0	0.00	0.00	1	511. U	0.00	0.00	511.0	511. U	U	0.00

	) )) >>()	120			( . •	12 /							
# 項目 分	類試料		全デー	タ統計		3	SD 除去	データ統	計 	最小値	最大値	3SD	ハス`レ値 
	NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
136 R-GT (A1)	7 S-1	3	185.3	15.04	8. 12	3	185. 3	15.04	8. 12	168.0	195.0	0	0.00
	S-2	3	133.7	7. 77	5.81	3	133. 7	7. 77	5.81	125.0	140.0	0	0.00
	S-3	3	51.0	1. 00	1.96	3	51.0	1. 00	1.96	50.0	52.0	0	0.00
137 AST (A1)	2 S-1	4	102.8	8.30	8.08	4	102.8	8. 30	8.08	92.0	112.0	0	0.00
	S-2	4	72.8	6.60	9.07	4	72.8	6.60	9.07	64.0	80.0	0	0.00
	S-3	4	30. 5	2. 08	6.83	4	30. 5	2. 08	6.83	28.0	33. 0	0	0.00
138 ALT(A1)	2 S-1	4	133.5	4. 93	3.70	4	133. 5	4. 93	3.70	127.0	139.0	0	0.00
	S-2	4	88. 3	3. 10	3. 51	4	88. 3	3. 10	3. 51	84.0	91.0	0	0.00
	S-3	4	30.0	2. 16	7. 20	4	30.0	2. 16	7. 20	27. 0	32. 0	0	0.00
139 CK(A1)	2 S-1	3	439. 3	9. 02	2.05	3	439. 3	9. 02	2.05	430.0	448.0	0	0.00
	S-2 S-3	3	324. 7	10. 79	3. 32	3	324. 7	10. 79	3. 32	317. 0	337. 0	0	0.00
	5-3	3	157. 3	4. 93	3. 14	3	157. 3	4. 93	3. 14	154. 0	163. 0	0	0.00
141 LD(A1)	3 S-1	3	326. 0	32. 60	10.00	3	326. 0	32. 60	10.00	295. 0	360.0	0	0.00
	S-2 S-3	3	269. 7	21. 73	8. 06 7. 61	3 3	269. 7	21. 73	8.06	250.0	293. 0 205. 0	0	0. 00 0. 00
	3-3	3	191. 0	14. 53	7.01	3	191. 0	14. 53	7. 61	176. 0	200.0	0	0.00
146 GLU(A2)	5 S-1	1	174.0	0.00	0.00	1	174. 0	0.00	0.00	174. 0	174. 0	0	0.00
	S-2 S-3	1	138. 0	0.00	0.00	1	138. 0	0.00	0.00	138. 0	138. 0 84. 0	0	0.00
	5-3	1	84. 0	0.00	0.00	1	84. 0	0.00	0.00	84. 0	84.0	0	0.00
147 CRTN (A2)	4 S-1	1	3. 30	0.000	0.00	1	3. 30	0.000	0.00	3. 30	3. 30	0	0.00
	S-2 S-3	1	2.30	0.000	0.00	1	2.30	0.000	0.00	2. 30	2. 30	0	0.00
	3-3	1	0.80	0.000	0.00	1	0.80	0.000	0.00	0.80	0.80	0	0.00
148 UA(A2)	3 S-1	1	3. 80	0.000	0.00	1	3.80	0.000	0.00	3. 80	3.80	0	0.00
	S-2 S-3	1 1	5. 50	0.000 0.000	0. 00 0. 00	1 1	5. 50	0.000 0.000	0. 00 0. 00	5. 50	5. 50	0	0. 00 0. 00
	3-3	1	8. 10	0.000		1	8. 10	0.000		8. 10	8. 10	0	
149 BUN (A2)	5 S-1	1	41.0	0.00	0.00	1	41.0	0.00	0.00	41.0	41.0	0	0.00
	S-2 S-3	1	28. 0	0.00	0.00	1	28. 0	0.00	0.00	28. 0	28. 0	0	0.00
	5-3	1	12. 0	0.00	0.00	1	12. 0	0.00	0.00	12. 0	12. 0	0	0.00
150 T-BIL(A2)	7 S-1	1	3. 70	0.000	0.00	1	3. 70	0.000	0.00	3. 70	3. 70	0	0.00
	S-2	1	2.30	0.000	0.00	1	2.30	0.000	0.00	2. 30	2.30	0	0.00
	S-3	1	0. 70	0.000	0.00	1	0.70	0.000	0.00	0. 70	0.70	0	0.00
154 CA (A2)	6 S-1	1	7.60	0.000	0.00	1	7.60	0.000	0.00	7.60	7.60	0	0.00
	S-2	1	9.00	0.000	0.00	1	9.00	0.000	0.00	9.00	9.00	0	0.00
	S-3	1	9. 90	0.000	0.00	1	9. 90	0.000	0.00	9. 90	9. 90	0	0.00
156 NA (A2)	5 S-1	1	127. 0	0.00	0.00	1	127. 0	0.00	0.00	127. 0	127. 0	0	0.00
	S-2 S-3	1	134. 0	0. 00 0. 00	0. 00 0. 00	1	134. 0	0.00	0. 00 0. 00	134. 0	134. 0	0	0.00
	3 3	1	144. 0	0.00	0.00	1	144. 0	0.00	0.00	144. 0	144. 0	U	0.00
157 K(A2)	5 S-1	1	3. 70	0.000	0.00	1	3. 70	0.000	0.00	3. 70	3. 70	0	0.00
	S-2 S-3	1	4. 40	0.000	0.00	1	4. 40 5. 70	0.000	0.00	4. 40 5. 70	4. 40 5. 70	0	0. 00 0. 00
		1	5. 70	0.000	0.00	1	5. 70	0.000	0.00	5. 70	5. 70	0	0.00
159 TP (A2)	3 S-1	1	5. 90	0.000	0.00	1	5. 90	0.000	0.00	5. 90	5. 90	0	0.00
	S-2 S-3	1 1	7. 10 9. 10	0.000 0.000	0.00 0.00	1 1	7. 10 9. 10	0.000 0.000	0. 00 0. 00	7. 10 9. 10	7. 10 9. 10	0	0. 00 0. 00
	3 3	1	9. 10	0.000	0.00	1	9. 10	0.000	0.00	9. 10	9. 10	U	0.00
160 ALB (A2)	4 S-1	1	4. 20	0.000	0.00	1	4. 20	0.000	0.00	4. 20	4. 20	0	0.00
	S-2 S-3	1 1	5. 00 5. 80	0.000	0. 00 0. 00	1	5.00	0.000 0.000	0. 00 0. 00	5. 00	5. 00 5. 80	0	0. 00 0. 00
		1		0.000	0.00	1	5. 80	0.000		5. 80		0	
161 T-CHO(A2)	2 S-1	1	144.0	0.00	0.00	1	144.0	0.00	0.00	144. 0	144.0	0	0.00
	S-2 S-3	1 1	168. 0 209. 0	0. 00 0. 00	0.00 0.00	1 1	168. 0 209. 0	0. 00 0. 00	0.00 0.00	168. 0 209. 0	168. 0 209. 0	0	0. 00 0. 00
		1				1							
162 HDL (A2)	6 S-1	1	34.0	0.00	0.00	1	34.0	0.00	0.00	34. 0	34.0	0	0.00
	S-2 S-3	1 1	38. 0 54. 0	0. 00 0. 00	0. 00 0. 00	1 1	38. 0 54. 0	0. 00 0. 00	0. 00 0. 00	38. 0 54. 0	38. 0 54. 0	0	0. 00 0. 00
	0 0	1	0 <b>1.</b> 0	0.00	0.00	1	0 <b>1.</b> 0	0.00	0.00	0 <b>7.</b> 0	υ <b>τ.</b>	U	0.00

台項目· 部份	1 万铁矿	口衣			(1/ -)	13 )							
# 項目 夕	類 試料		全デー	タ統計		3	SD 除去	データ統語	<del> </del>	最小値	最大値	3SD	パンを
	NO.	N	平均	S. D.	C. V.	N	平均	S. D.	C. V.			N	%
164 TG(A2)	3 S-1	1	73.0	0.00	0.00	1	73.0	0.00	0.00	73.0	73.0	0	0.00
	S-2	1	87.0	0.00	0.00	1	87.0	0.00	0.00	87.0	87. 0	0	0.00
	S-3	1	109.0	0.00	0.00	1	109.0	0.00	0.00	109.0	109. 0	0	0.00
165 ALP (A2)	6 S-1	1	317.0	0.00	0.00	1	317.0	0.00	0.00	317.0	317.0	0	0.00
	S-2	1	301.0	0.00	0.00	1	301.0	0.00	0.00	301.0	301.0	0	0.00
	S-3	1	210.0	0.00	0.00	1	210.0	0.00	0.00	210.0	210.0	0	0.00
166 R-GT (A2)	7 S-1	1	184.0	0.00	0.00	1	184.0	0.00	0.00	184.0	184.0	0	0.00
	S-2 S-3	1 1	132. 0 47. 0	0. 00 0. 00	0. 00 0. 00	1 1	132. 0 47. 0	0. 00 0. 00	0.00 0.00	132. 0 47. 0	132. 0 47. 0	0	0. 00 0. 00
		1				1						U	
167 AST (A2)	2 S-1	1	112.0	0.00	0.00	1	112. 0	0.00	0.00	112. 0	112. 0	0	0.00
	S-2 S-3	1 1	75. 0 27. 0	0. 00 0. 00	0. 00 0. 00	1 1	75. 0 27. 0	0. 00 0. 00	0. 00 0. 00	75. 0 27. 0	75. 0 27. 0	0	0. 00 0. 00
100 1177(10)												0	
168 ALT (A2)	2 S-1 S-2	1 1	127. 0 82. 0	0. 00 0. 00	0. 00 0. 00	1 1	127. 0 82. 0	0. 00 0. 00	0. 00 0. 00	127. 0 82. 0	127. 0 82. 0	0	0. 00 0. 00
	S-3	1	25. 0	0.00	0.00	1	25. 0	0.00	0.00	25. 0	25. 0	0	0.00
100 (17(10)											000.0	0	
169 CK (A2)	2 S-1 S-2	1 1	382. 0 285. 0	0. 00 0. 00	0. 00 0. 00	1 1	382. 0 285. 0	0. 00 0. 00	0. 00 0. 00	382. 0 285. 0	382. 0 285. 0	0	0. 00 0. 00
	S-3	1	148. 0	0.00	0.00	1	148. 0	0.00	0.00	148. 0	148. 0	0	0.00
170 AMY (A2)	14 S-1	1	301. 0	0.00	0.00	1	301. 0	0.00	0.00	301. 0	301. 0	0	0.00
110 /WII (112)	S-2	1	218. 0	0.00	0.00	1	218. 0	0.00	0.00	218. 0	218. 0	0	0.00
	S-3	1	118.0	0.00	0.00	1	118.0	0.00	0.00	118.0	118.0	0	0.00
171 LD(A2)	3 S-1	1	317.0	0.00	0.00	1	317. 0	0.00	0.00	317.0	317. 0	0	0.00
	S-2	1	261.0	0.00	0.00	1	261.0	0.00	0.00	261.0	261.0	0	0.00
	S-3	1	166.0	0.00	0.00	1	166.0	0.00	0.00	166. 0	166.0	0	0.00
176 GLU(0)	5 S-1	4	184. 2	3. 42	1.86	4	184. 2	3. 42	1.86	181.0	189. 0	0	0.00
	S-2 S-3	4 4	146. 0 89. 2	3. 48 1. 92	2. 39 2. 15	4	146. 0 89. 2	3. 48 1. 92	2. 39 2. 15	143. 0 88. 0	151. 0 92. 0	0	0. 00 0. 00
177 CRTN (0)	4 S-1 S-2	2 2	3. 35 2. 35	0. 071 0. 071	2. 11 3. 01	2 2	3. 35 2. 35	0. 071 0. 071	2. 11 3. 01	3. 30 2. 30	3. 40 2. 40	0	0. 00 0. 00
	S-3	2	0.80	0.000	0.00	2	0.80	0.000	0.00	0.80	0.80	0	0.00
178 UA(0)	3 S-1	4	3. 81	0.020	0. 52	4	3. 81	0.020	0. 52	3. 80	3. 84	0	0.00
178 UA(0)	S-2	4	5. 30	0.020	0. 02	4	5. 30	0.020	0. 02	5. 30	5. 31	0	0.00
	S-3	4	7.48	0.096	1.28	4	7.48	0.096	1.28	7. 40	7.60	0	0.00
179 BUN(0)	5 S-1	4	46. 3	0.83	1. 79	4	46. 3	0.83	1. 79	45.6	47. 5	0	0.00
	S-2	4	33. 5	0.85	2.55	4	33. 5	0.85	2.55	33.0	34.8	0	0.00
	S-3	4	14. 4	0. 54	3.80	4	14. 4	0. 54	3. 80	13. 9	15. 1	0	0.00
180 T-BIL(0)	7 S-1	4	4. 16	0.049	1. 18	4	4. 16	0.049	1. 18	4. 10	4. 20	0	0.00
	S-2 S-3	4 4	2. 71 0. 75	0. 083 0. 053	3. 07 7. 06	$\frac{4}{4}$	2. 71 0. 75	0. 083 0. 053	3. 07 7. 06	2. 60 0. 70	2. 80 0. 80	0	0. 00 0. 00
						4						U	
181 D-BIL(0)	7 S-1	1	0.68	0.000	0.00	1	0.68	0.000	0.00	0. 68	0.68	0	0.00
	S-2 S-3	1 1	0. 17 0. 00	0.000 0.000	0. 00 0. 00	1 1	0. 17 0. 00	0.000 0.000	0. 00 0. 00	0. 17 0. 00	0. 17 0. 00	0	0. 00 0. 00
100 TD(0)													
182 IP(0)	3 S-1 S-2	1 1	6. 21 5. 22	0.000 0.000	0. 00 0. 00	1 1	6. 21 5. 22	0.000 0.000	0. 00 0. 00	6. 21 5. 22	6. 21 5. 22	0	0. 00 0. 00
	S-3	1	3. 72	0.000	0.00	1	3. 72	0.000	0.00	3. 72	3. 72	0	0.00
183 FE(0)	7 S-1	2	92. 0	2. 83	3. 07	2	92. 0	2. 83	3. 07	90.0	94. 0	0	0.00
100 11 (0)	S-2	2	112.0	0.00	0.00	2	112. 0	0. 00	0.00	112. 0	112. 0	0	0.00
	S-3	2	142.8	0. 28	0.20	2	142.8	0. 28	0.20	142.6	143.0	0	0.00
184 CA(0)	6 S-1	3	7. 13	0.076	1.06	3	7. 13	0.076	1.06	7. 08	7. 22	0	0.00
	S-2	3	8.23	0.026	0.32	3	8. 23	0.026	0.32	8. 20	8. 25	0	0.00
	S-3	3	9.62	0.015	0. 16	3	9.62	0.015	0. 16	9. 60	9.63	0	0.00

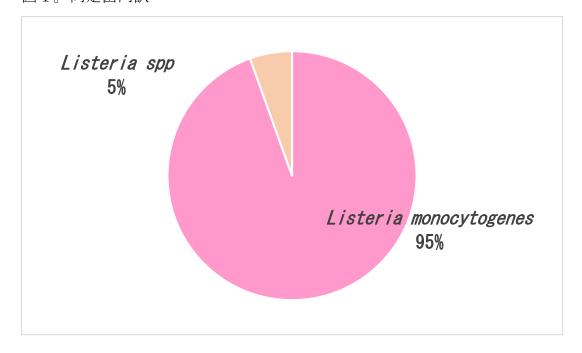
T.ST PAL	77 77 75 75 75 75 75 75 75 75 75 75 75 7	1120			( , ,	11 /							
# 項目	分類 試料		全デー	タ統計		3	SD 除去	データ統	計 	最小値	最大値	3SD	ハス`レ値 
	NO.	N	平均	S.D.	C. V.	N	平均	S.D.	C. V.			N	%
185 MG(0)	3 S-1	1	4.50	0.000	0.00	1	4.50	0.000	0.00	4. 50	4. 50	0	0.00
	S-2	1	3.60	0.000	0.00	1	3.60	0.000	0.00	3. 60	3.60	0	0.00
	S-3	1	2. 20	0.000	0.00	1	2. 20	0.000	0.00	2. 20	2. 20	0	0.00
186 NA(0)	5 S-1	4	126.8	0.52	0.41	4	126.8	0. 52	0.41	126.0	127. 1	0	0.00
	S-2	4	134. 2	0.89	0.66	4	134. 2	0.89	0.66	133.0	135.0	0	0.00
	S-3	4	144.8	0. 52	0.36	4	144.8	0. 52	0.36	144. 0	145. 1	0	0.00
187 K(0)	5 S-1	4	3.61	0.015	0.42	4	3. 61	0.015	0.42	3.60	3. 63	0	0.00
	S-2	$\overline{4}$	4. 31	0.020	0.46	$\overline{4}$	4. 31	0.020	0.46	4. 30	4. 34	0	0.00
	S-3	4	5. 48	0.050	0.91	4	5. 48	0.050	0.91	5. 40	5. 50	0	0.00
188 CL(0)	5 S-1	4	90. 5	0.53	0.58	4	90. 5	0. 53	0.58	90.0	91.0	0	0.00
100 02 (0)	S-2	4	95. 6	0.48	0.50	4	95. 6	0. 48	0.50	95. 0	96. 0	0	0.00
	S-3	4	103.5	0.58	0.56	4	103.5	0.58	0.56	103.0	104. 0	0	0.00
189 TP(0)	3 S-1	4	6.00	0.045	0.75	4	6.00	0.045	0.75	5. 94	6.05	0	0.00
103 11 (0)	S-2	4	7. 02	0.024	0. 34	4	7. 02	0. 024	0. 34	7. 00	7. 05	0	0.00
	S-3	4	8.51	0.061	0.71	4	8.51	0.061	0.71	8.46	8.60	0	0.00
190 ALB(0)	4 S-1	4	3. 46	0.070	2.04	4	3. 46	0.070	2.04	3. 39	3, 53	0	0.00
190 ALD(0)	4 S-1 S-2	4	3. 40 4. 11	0.042	1. 03	4	3. 40 4. 11	0.042	1. 03	3. 39 4. 07	3. 53 4. 17	0	0.00
	S-3	4	5. 68	1. 510	26. 61	4	5. 68	1. 510	26. 61	4. 90	7. 94	0	0.00
101 T (10(0)	0.0.1	4	107.0	0.00	0.64	4	107.0	0.00	0.64	100.0	100.0	0	0.00
191 T-CHO(0)	2 S-1 S-2	4	127. 0 151. 5	0. 82 1. 29	0. 64 0. 85	$\frac{4}{4}$	127. 0 151. 5	0. 82 1. 29	0. 64 0. 85	126. 0 150. 0	128. 0 153. 0	0	0. 00 0. 00
	S-3	4	192. 3	1. 71	0.89	4	192. 3	1. 71	0.89	190. 0	194. 0	0	0.00
100 III (0)	0.0.1		40.0	1 44	0.00	0	40.0	1 44	0.00	41 0	40.0	0	0.00
192 HDL(0)	6 S-1 S-2	3 3	42. 6 51. 9	1. 44 0. 90	3. 39 1. 74	3	42. 6 51. 9	1. 44 0. 90	3. 39 1. 74	41. 0 51. 0	43. 8 52. 8	0	0.00 0.00
	S-3	3	66. 0	2. 05	3. 10	3	66. 0	2. 05	3. 10	64. 0	68. 1	0	0.00
104 (0)	0.0.1	,	70.0	0.50	0.05		<b>50</b> 0	0.50	0.05	<i>50.</i> 0	<i>55</i> 0	0	0.00
194 TG(0)	3 S-1 S-2	4	76. 8 95. 0	0. 50 1. 15	0. 65 1. 22	$\frac{4}{4}$	76. 8 95. 0	0. 50 1. 15	0. 65 1. 22	76. 0 94. 0	77. 0 96. 0	0	0. 00 0. 00
	S-3	4	121. 1	0. 94	0. 78	4	121. 1	0. 94	0. 78	120. 0	122. 3	0	0.00
195 ALP (0)	6 S-1 S-2	4	352. 5 301. 5	13. 08 10. 63	3. 71 3. 53	$\frac{4}{4}$	352. 5 301. 5	13. 08 10. 63	3. 71 3. 53	333. 0 286. 0	361. 0 310. 0	0	0. 00 0. 00
	S-3	4	224. 0	6. 53	2. 92	4	224. 0	6. 53	2. 92	216. 0	232. 0	0	0.00
197 AST (0)	2 S-1 S-2	4	118. 8 87. 3	0.96	0.81	4	118. 8 87. 3	0. 96 12. 53	0.81	118. 0	120. 0 106. 0	0	0.00 0.00
	S-2 S-3	4	28.8	12. 53 4. 19	14. 36 14. 59	$\frac{4}{4}$	28.8	4. 19	14. 36 14. 59	80. 0 26. 0	35. 0	0	0.00
198 ALT (0)	2 S-1	4	132. 3	10. 37	7. 84	4	132. 3	10. 37	7. 84	119. 0	141. 0	0	0.00
	S-2 S-3	4	87. 0 19. 3	4. 55 4. 72	5. 23 24. 50	$\frac{4}{4}$	87. 0 19. 3	4. 55 4. 72	5. 23 24. 50	81. 0 15. 0	92. 0 26. 0	0	0. 00 0. 00
199 CK(0)	2 S-1	4	370.8	11. 67	3. 15	4	370.8	11. 67	3. 15	355. 0	383. 0	0	0.00
	S-2 S-3	4	287. 8 163. 5	13. 18 9. 57	4. 58 5. 86	$\frac{4}{4}$	287. 8 163. 5	13. 18 9. 57	4. 58 5. 86	270. 0 151. 0	300. 0 171. 0	0	0. 00 0. 00
		•	100.0	0.01		•	100.0	0.0.	0.00	101.0		Ŭ	
200 AMY (0)	14 S-1	5	207. 6	11. 78	5. 68	5	207. 6	11. 78	5. 68	199. 0	221. 0	0	0.00
	S-2 S-3	5 5	162. 6 86. 6	9. 71 4. 67	5. 97 5. 39	5 5	162. 6 86. 6	9. 71 4. 67	5. 97 5. 39	154. 0 80. 0	175. 0 92. 0	0	0. 00 0. 00
			00.0	1. 01	0.00	O	00.0	1.01	0.00	00.0		Ů	0.00
201 LD(0)	3 S-1	4	341.8	4. 57	1. 34	4	341.8	4. 57	1. 34	337. 0	348.0	0	0.00
	S-2 S-3	4	289. 8 219. 5	4. 50 1. 91	1. 55 0. 87	$\frac{4}{4}$	289. 8 219. 5	4. 50 1. 91	1. 55 0. 87	284. 0 218. 0	295. 0 222. 0	0	0. 00 0. 00
	5 5	4	210.0	1. 91	0.01	4	210.0	1. 91	0.01	210.0	222. V	U	V. VV
202 CHE(0)	10 S-1	4	239. 0	3. 74	1.57	4	239. 0	3. 74	1. 57	235. 0	244.0	0	0.00
	S-2 S-3	4	284. 0 354. 8	3. 74 5. 74	1. 32 1. 62	$\frac{4}{4}$	284. 0 354. 8	3. 74 5. 74	1. 32 1. 62	280. 0 350. 0	289. 0 363. 0	0	0.00 0.00
	5 5	4	007.0	0.14	1.02	4	007.0	0. 14	1.02	000 <b>.</b> 0	000 <b>.</b> 0	U	V. VV
203 CRP(0)	6 S-12	3	0.50	0.000	0.00	3	0.50	0.000	0.00	0. 50	0.50	0	0.00
	S-13 S-14	3 3	5. 62 9. 00	0. 111 0. 000	1. 98 0. 00	3 3	5. 62 9. 00	0. 111 0. 000	1. 98 0. 00	5. 50 9. 00	5. 72 9. 00	0	0. 00 0. 00
	S 14	J	<i>9</i> . 00	0.000	0.00	J	<i>9</i> . 00	0.000	0.00	<i>9</i> . 00	<i>9</i> . 00	U	0.00

# [微生物項目]

項目別解析

# 【試料 25】

国立病院機構九州医療センター 伊藤 有紀


#### 【はじめに】

症例は日齢 0、男児。母親は妊娠 30 週 0 日、悪寒、頭痛、発熱を認めた為受診。 来院時 39℃の発熱、血液検査結果は WBC25、000/μ1、CRP5。2 mg/dl、早産兆候 を認め入院後急速に分娩に至った。羊水は混濁を認め子宮内感染が疑われ、児は 娩出時仮死状態であった。児の血液培養、鼻腔培養、母体からの羊水が細菌検査 へと提出、全ての検体から同じ菌が検出されたと言う事で、男児の血液培養(疑 似検体)から検出された菌の同定を求めた。

試料 25 に用いた菌は、グラム陽性無芽胞桿菌の Listeria monocytogenes で、本菌は人畜共通感染症の一つであるリステリア症の原因菌である。羊、牛、豚等多くの動物に自然感染を起こし、ヒトにおけるリステリア症は髄膜炎が最も多く、次いで脳炎、敗血症と続く。妊婦の子宮内感染は胎児敗血症、流産、新生児死亡の原因となる。

### 【同定成績】

参加した 73 設中、Listeria monocytogenes と回答した施設は 69 施設 (95%)、Listeria spp と回答した施設は 4 施設 (5%) であった。 図 1 。同定菌内訳



### 【使用培地】

症例の内容とグラム染色所見から、血液寒天培地が全施設で使用されていた。 主な使用培地としては、血液寒天培地系では羊血液寒天培地が多く、チョコレート寒天培地も47施設が使用していた。腸内細菌用ではBTB(ドリガルスキー) 寒天培地が多く使用され、嫌気性菌用培地では、非選択性のブルセラ寒天培地や、アネロコロンビアウサギ血液寒天培地、GAM寒天培地が主に使用されていた。 その他の培地では、ブドウ球菌用の培地などが使用されていた。

分離培養に用いられた培地数は、血液寒天培地1種類の施設から5種類使用 している施設と様々であった。

表 1. 使用培地と回答

血液寒天培地系	回答数
羊血液寒天培地	62
馬血液寒天培地	1
羊血液寒天 / チョコレート寒天培地	12
羊血液寒天 / ドリガルスキー寒天培地	5
チョコレート寒天培地	35
腸内細菌用	回答数
BTB (ドリガルスキー) 寒天培地	30
DHL 寒天培地	3
CLED 寒天培地	2
マッコンキー寒天培地	1
嫌気性菌用培地	回答数
ブルセラ寒天培地	10
アネロコロンビアウサギ血液寒天培地	4
GAM 寒天培地	3
その他嫌気性菌用培地	3
ABHK 寒天培地	1
その他	回答数
ブドウ球菌/MRSA 用培地	8
増菌用	2
真菌用培地	1
その他	3

### 【グラム染色】

グラム染色所見は、グラム陽性桿菌と回答した施設が72施設(99%)、グラム陽性球菌と回答した施設が1施設(1%)であった。グラム陽性球菌と回答した施設は、同定は自動機

表 2. グラム染色

グラム染色	施設数
グラム陽性桿菌	72
グラム陽性球菌	1

器 Walk-away を使用し Listeria monocytogenes と同定していた。

## 【溶血性】

溶血性は、β溶血と回答した施設が 72 施設 (99%)、溶血なしと回答した施設が 1 施設 (1%)であった。溶血なしと回答した施設はグラム染色でグラム陽性球菌と回答し、同

表 3. 溶血性

溶血性	施設数
β溶血	72
溶血なし	1

定は自動機器 Walk-away を使用し Listeria monocytogenes と同定した施設であった。

#### 【使用機器】

菌種同定に機器を使用していた施設は73施設中53施設(73%)であった。自動機器を使用している施設中、質量分析を使用している施設は14施設(26%)であった。同定に機器を使用している施設は全施設で Listeria monocytogenes と同定されていた。

表 4. 使用機器

使用機器	施設数
VITEK II	27
Walk-Away	9
MALDI Biotyper	8
VITEK MS	6
フェニックス	3

#### 【同定キット】

菌種同定にキットを使用していた施設は 73 施設中 29 施設 (40%) であった。

使用されていたキットで、API 20 STREP は Listeria spp までの同定に留まる。また、ブドウ糖非発酵菌用の ID テスト・NF-18 と ID テスト・EB-20 を使用している施設は同一施設で、理由としては、一部の生化学性状の確認の為と言う事であった。

表 5. 同定キット

使用試薬	施設数
クリスタル	18
API CORYNE	6
API 20 STREP	2
Rap ID CB Plus	1
IDテスト・NF-18	1
ID テスト・EB-20	1

#### 【追加試験】

追加試験は、症例とグラム染色所見等から *Listeria monocytogenes* を推定しての追加試験が多く実施されていた。

#### 【まとめ】

今回、Listeria monocytogenes と回答した施設は73 施設中69 施設(95%)と多く、良好な結果であった。Listeria spp と回答した4施設の内訳は、同定可能菌種がListeria spp までであるAPI 20 STREP 使用施設が2施設、API CORYNE 使用施設が1施設、使

表 6. 追加試験

追加試験	回答
カタラーゼ試験	32
運動性試験	12
CAMP 試験	12
オキシダーゼ試験	6
4℃発育	6
傘状発育	5
馬尿酸加水分解試験	4
VP 試験	3
PYR 試験	1

用自動機器及びキットの記載の無い施設が1施設であった。4施設全てグラム染色所見はグラム陽性桿菌、溶血性は $\beta$ 溶血ありと回答していた。

グラム染色所見と $\beta$ 溶血性の回答では、73 施設中72 施設がグラム陽性桿菌、 $\beta$ 溶血ありと回答し、結果は良好であった。グラム染色でグラム陽性球菌と回答した施設は溶血性なしと回答していたが、同定は自動機器 Walk-away を使用し同定菌種は Listeria monocytogenes との回答であった。同定菌種は正解しているが、グラム染色所見、 $\beta$ 溶血性の回答に矛盾が生じている。

今回提示した症例は母子感染を起こしたリステリア症で、グラム染色所見から菌種の推定が可能である。リステリア症は人畜共通感染症の一つで、リステリア属の中でヒトに感染を起こす重要なものは今回試料に用いた Listeria monocytogenes のみである。Listeria monocytogenes は河川の水や羊や牛など多くの動物の腸管内に広く分布する細菌で、食中毒の原因菌として挙げられ、海外では集団発生事例がいくつか起こっている。リステリア症において最も多いのは髄膜炎で、次いで脳炎、敗血症などである。妊婦の子宮内感染による胎児敗血症、流産、新生児死亡の原因となる。

Listeria monocytogenes はグラム陽性無芽胞の小桿菌で、通性嫌気性ないし微好気性。血液寒天培地上で弱い $\beta$ 溶血を示し、運動性が有り4℃での発育可能で、これらの点で Corynebacterium、Bacillus、Lactobacillus、Clostridium 等の菌と鑑別される。また、自動機器や多くのキットで同定が可能な菌種である。

髄液や血液培養でグラム陽性小桿菌が見られた場合は、*Listeria monocytogenes* を疑って検査を進める事が重要であり、本菌の培地上の特徴や生化学的性状、使用機器、キットの性能等も理解しておくことが望ましい。

# 【試料 26】

独立行政法人労働者健康安全機構 熊本労災病院 森口 美琴

## 【はじめに】

試料 26 に用いた菌株は、グラム陽性連鎖球菌である Streptococcus gallolyticus subsp. pasteurianus である。本菌は 2003 年に Streptococcus bovis biotype II-2 から菌名変更された菌種であり、消化管や生殖器、呼吸器において常在菌とされるものの尿路感染症や感染性心内膜炎、髄膜炎、敗血症が報告されている。

症例は 69 歳男性。6 月上旬、朝より屋外での仕事を行い帰宅後、夜に 37  $\mathbb{C}$  の発熱および倦怠感、意識障害を認め救急搬送された患者の血液培養より検出されたものである。 受診時所見は  $WBC10,300/\mu\ell$ 、CRP2.17 mg/dl と炎症所見を示した。基礎疾患として Vater 乳頭部癌(術後)、鼠径ヘルニアがあった。また、糖尿病もありインスリンでのコントロールを行っていた。

以上の患者情報のみでは血液培養から検出された原因菌の推定は困難であり、グラム染色をはじめとする検査方法での同定検査が必要となる。一方、本菌は S. bovis biotype II-2 より菌名変更に伴い、3 亜種に分類されることとなった。近年、その亜種名により推察するべき病態が異なることが報告されており、亜種名を含めた詳細同定を行うことで患者の病態早期発見に寄与できる可能性を有するため、正しい同定を行える必要性があり精度管理調査菌株に選定した。

#### 【同定成績】

正解答(A)を S. gallolyticus subsp. pasteurianus および S. bovis biotype  $\Pi$ -2 とした。同定キットなどの問題点も考慮し、S. gallolyticus subsp. gallolyticus および S. gallolyticus、S. bovis も (A)、その他のStreptococcus 属名を(C)、その他(Enterococcus 属名)を(D)と判定した。参加 72 施設において S.

表1.回答された菌名

同定菌名	回答数
Streptococcus gallolyticus subsp. pasteurianus	44
Streptococcus bovis biotype II -2	2
Streptococcus gallolyticus subsp. gallolyticus	2
Streptococcus gallolyticus	6
Streptococcus bovis	15
Streptococcus salivarius	1
Enterococcus avium	1
Enterococcus faecalis	1
合計	72

gallolyticus subsp. pasteurianus および S. bovis biotype Ⅱ-2 の解答があったのは 46 施設、S. gallolyticus subsp. gallolyticus 、S. gallolyticus 、 S. bovis 解答が 23 施設となった。Streptococcus salivarius (1)、Enterococcus avium (1)、Enterococcus faecalis (1)となっている。本菌は Lancefield D 群が陽性となるため注意が必要と なる。(表 1.)

### 【分離培養について】

分離培養に用いられた培地の種類は 1~5 種類であった。延べ使用数であるが血液寒天培地類の使用が91 解答と最多であった。次いで腸内細菌属用の培地使用が38 解答得られた。黄色ブドウ球菌 (MRSA) 用が9 解答、偏性嫌気性菌用で17 解答得られた。その他の使用培地については表2.に示す。

### 【自動機器・キット】

自動機器使用数は延べ 61 解答あり、今後も使用件数 が増えるであろう質量分析 装置での同定が 15 施設 (25%)で行われており、質量

表2. 使用された培地

4. % do 14.14. kg	
血液寒天培地類	回答数
血液寒天培地(ヒツジ)	41
血液寒天培地(ウマ)	2
チョコレート寒天培地	30
羊血液寒天/チョコレート寒天培地	14
羊血液寒天/ドリガルスキー寒天培地	4
腸内細菌用	回答数
BTB寒天培地(ドリガルスキー)	32
DHL寒天培地	4
マッコンキー寒天培地	2
黄色ブドウ球菌(MRSA)用培地	回答数
マンニット寒天培地	7
MRSA選択分離培地	2
嫌気培養用培地	回答数
嫌気培養用培地 ブルセラ培地	<b>回答数</b> 13
ブルセラ培地	13
ブルセラ培地 アネロウサギ寒天培地	13 4 回答数
ブルセラ培地 アネロウサギ寒天培地 <b>その他</b>	13
ブルセラ培地 アネロウサギ寒天培地 <b>その他</b> BGAM半流動高層培地	13 4 回答数
ブルセラ培地         アネロウサギ寒天培地         その他         BGAM半流動高層培地         カンジダ用選択分離培地	13 4 回答数
ブルセラ培地         アネロウサギ寒天培地         その他         BGAM半流動高層培地         カンジダ用選択分離培地         EF寒天基礎培地	13 4 回答数
ブルセラ培地         アネロウサギ寒天培地         その他         BGAM半流動高層培地         カンジダ用選択分離培地         EF寒天基礎培地         胆汁エスクリン培地	13 4 回答数
ブルセラ培地       アネロウサギ寒天培地       その他       BGAM半流動高層培地       カンジダ用選択分離培地       EF寒天基礎培地       胆汁エスクリン培地       クロモアカー ストレップ B	13 4 <b>回答数</b> 各2
ブルセラ培地 アネロウサギ寒天培地 その他 BGAM半流動高層培地 カンジダ用選択分離培地 EF寒天基礎培地 胆汁エスクリン培地 クロモアカー ストレップ B CLED培地	13 4 <b>回答数</b> 各2

分析装置での同定は昨年報告した本研究会とほぼ同数の解答が得られている。 自動同定感受性装置では VITEK II が 30 施設、Walk-Away が 11 施設、Phoenix 3 施設、RAISUS 2 施設であった。自動機器の使用状況は表 3.に示すとおりである。

同定キットの使用については、RAPID ID 32 STREP が 11 施設、API 20 STREP が 10 施設であり、上記 2 キットにおいては最新バージョンであれば、亜種レベルでの同定が可能である。現在は web を利用し菌コード検索すると思うが、従来の冊子を用いている場合はバージョンの確認が必要となる。一方、CRYSTAL 使用が 13 施設あったが、同定のライブラリーに本菌が含まれておらず、Streptococcus bovis と同定されてしまうため他法での確認が必要となる。(表 4.)

菌種同定の追加試験では、菌種確認のための必須検査であると思われるグラム染色の記載がなされていた施設は 10 であった。グラム陽性球菌の分類で用いられるカタラーゼ試験が 19 施設において実施されていた。Lancefield 分類および PYR 試験が 7 施設で解答されていた。その他の少数解答については表.5 に示す。(表 5.)

表3.使用機器(複数使用施設あり)

使用機器・同定キット	施設数
MALDI-biotyper	8
VITEK-MS	7
VITEK II	30
Walk-Away	11
Phoenix	3
RAISUS	2
合計	61

表4. 同定キット(複数使用施設あり)

同定キット	施設数
CRYSTAL	13
RAPID ID32 STREP	11
API 20 STREP	10
IDテスト EB-20 (補助的使用)	1
IDテスト NF-18 (補助的使用)	1
合計	36

表5.菌種同定の追加試験(複数使用施設あり)

テスト	施設数
カタラーゼ試験:陰性(-)	19
塗抹検査(グラム染色):GPC	10
PYR試験:陰性(-)	7
Lancefield 試験	7
胆汁溶解試験:陽性(+)	5
溶血性: α溶血	3
マンニット分解性確認:非分解	2
運動性確認:陰性(-)	2
オプトヒン感受性、SF培地:陰性(-)、ABPC:(S)、β-グルクロニダーゼ: (+)	各1
合計	59

#### 【まとめ】

今回は参加 72 施設であり、同定成績は表 1.に示すよう正解答(A)を S. gallolyticus subsp. pasteurianus 、S. bovis biotype II-2 、S. gallolyticus subsp. gallolyticus 、S. gallolyticus および S. bovis とした。 Streptococcus 属菌名である S. salivarius を C 判定、Enterococcus avium 、Enterococcus faecalis を D 判定とした。

S. gallolyticus subsp. pasteurianus および S. bovis biotype II-2 の解答が 46 施設、S. gallolyticus subsp. gallolyticus 、S. gallolyticus 、S. bovis 解答が 23 施設となり、この正解答範囲での正解率は 95.8%と良好であった。しかしながら、亜種レベルでの同定が可能となっている今日、分離同定された菌種により関連する疾患が異なる旨の論文報告や学会発表が多数なされているため、S. gallolyticus subsp. pasteurianus 、S. bovis biotype II-2 、S. gallolyticus subsp. gallolyticus および S. bovis の 5 菌種については詳細分類できることが望ましいと考える。

同定検査に用いられた自動機器使用数は延べ 61 解答あり、質量分析装置での同定は昨年報告した本研究会とほぼ同数の 15 施設(25%)となっており、今後、質量分析装置での同定件数の増加が考えられる。しかしながら、今回、質量分析装置を用いている 4 施設において S. gallolyticus での解答がなされていた。自動同定感受性装および同定キットの使用では VITEK II が 30 施設、

Walk-Away が 11 施設、Phoenix 3 施設、RAISUS 2 施設となり、RAPID ID 32

STREP が 11 施設、API 20 STREP が 10 施設となった。自動機器や同定キットによっては S. gallolyticus グループを詳細同定できないものも存在するため、注意が必要となる。各施設で使用中の自動機器や同定キットに S. gallolyticus グループの詳細同定ライブラリーが含まれているか確認してほしい。同定キットでは前者 2 キットにおいては最新バージョンであれば、亜種レベルでの同定が可能である。現在は web を利用し菌コード検索すると思うが、従来の冊子を用いている場合はバージョンの確認が必要となる。一方、CRYSTAL 使用が 13 施設あったが、同定のライブラリーに本菌が含まれておらず、Streptococcus bovis と同定されてしまうため他法での確認が必要となる。

菌種同定の追加試験では、グラム陽性連鎖球菌であり、カタラーゼテスト陰性、PYR 試験陰性、胆汁溶解試験陽性などより、Enterococcus 属菌を疑うような性状を示す。さらに Lancefield D 群が陽性となる Streptococcus 属菌であるため十分な注意が必要となる。Enterococcus 属菌との鑑別点としては、セフェム系抗菌薬に感受性を示す点が両者の鑑別に役立つと考えられる。

S. gallolyticus subsp. pasteurianus はかつて S. bovis biotype II-2 とよばれており、さらに以前は S.bovis グループ とされていた。連鎖球菌と呼ばれる Streptococcus 属菌は溶血性に基づく分類や Lancefield による血清型分類、さらに生化学的性状による分類など様々な方法で分類されていたため、判断に苦慮することが多かった。その後、16SrDNA の配列により pyogenic、mitis、anginosus、mutans、bovis、salivarius の 6 グループに分類されることとなった。本菌の属する S. bovis グループは Lancefield D 群の抗原性を示すが 6.5%NaCl 下では発育できない性質を有するため、Enterococcus 属には移籍されることがなかった。さらにこの S. bovis グループは DNA の相同性より 6 つのグループに分けられ、S. gallolyticus はグループ 2 に属することとなった。1996 年に S. gallolyticus が発表され、その後、2002 年に S. marcedomicus 、2003 年に S. pasteurianus が別菌種として発表されたものの、これらの 3 菌種は亜種レベルの関係であることが明らかになり、S. gallolyticus は 3 亜種から構成されるもののとなった。

近年、国内外において新生児期の Strreptococcus agalactiae や Streptcoccus pneumoniae だけでは無く S. bovis グループによる敗血症、髄膜炎症例が多数報告されている。一方、成人の敗血症、髄膜炎で S. bovis グループ細菌が検出された場合、感染性心内膜炎と大腸癌の病態を想定してほしい。S. bovis グループ細菌は感染性心内膜炎の約 10%を占めるとされる。また、S. gallolyticus グループ細菌による感染性心内膜炎罹患患者の  $15\sim62\%$ で大腸癌が合併していたとの報告も存在する。これらのことより、S. gallolyticus グループ細菌による心内膜炎があれば大腸をはじめとする消化管内に癌などの発生がないか確認するよう臨

床側に提案する必要性があるのではないだろうか。ただし、S. gallolyticus グループ細菌の 3 亜種と病態の関連性が解明されつつあり、感染性心内膜炎や大腸癌を引き起こすものは S. gallolyticus subsp. gallolyticus が優位にハイリスクとなる報告がある。また、S. gallolyticus subsp. pasteurianus においては、新生児や高齢者において髄膜炎に関連することが報告される一方、一般的には大腸癌との関連性はないとされるものの少数の症例報告も存在する。

S. gallolyticus subsp. pasteurianus においては菌名の改名、移籍、合併など複雑な分類体系からなっており、さらに Enterococcus 属菌と類似するような生化学的性状を示す同定が困難な菌種である。複雑な分類体系のため、正しく同定できない同定キットが存在することも知っておいてほしい。本菌の正しい菌種同定が、関連する病態のメカニズム解明のみならず、感染症診療において貢献できるものであると考える。

# 【試料 27】

国立病院機構 熊本再春荘病院 川上 洋子

#### 【症例 1】

症例は 57 歳男性。びまん性大細胞型 B 細胞性リンパ腫 (diffuse large B-cell lymphoma; stage II) の診断で、R-CHOP 療法 (rituximab、cyclophosphamide、doxorubicin、vincristine、prednisolone) 6 コースが開始していた。 化学療法施行 3 コース終了後に発熱  $(39.5^{\circ}C)$  を認め、CFPM が 投与された。 発熱時の血液検査の結果は、WBC 1,030/ $\mu$ 1、CRP 13.60mg/dl であった。 培養 2 日目に発熱時に採取された血液培養好気・嫌気両ボトルが陽性となった。 写真 1-A は血液 培養陽性液、写真 1-B は発育してきたコロニーのグラム染色像である。 写真 1-C はチョコレート寒天培地で 35 $^{\circ}C$ 48 時間炭酸ガス培養したコロニー所見である。この症例において、菌種名の回答を求めた。

写真 1-A、1-B から、本菌はグラム陰性桿菌、両端が尖り、やや細く長い繊維状の形態である。 グラム陰性桿菌で両端がやや尖ったニードル状の形態より、偏性嫌気性菌である Fusobacterium nucleatum か、通性嫌気性菌である Capnocytophaga 属が推測される。培養では、好気・嫌気 両培養ボトルが陽性となったため、Capnocytophaga 属が推測される。写真 1-C に示したコロニー 所見では培地上を拡散して広がっている。以上の所見から症例1で提示した菌は Capnocytophaga species である。

推定病原体名の回答成績を表 1 に示す。参加 72 施設中 59 施設 (81.9%) が Capnocytophaga species と回答していた。その他の回答菌名は、Eikenella corrodens と回答した施設が 6 施設 (8.3%)、Helicobacter species 2 施設 (2.8%)、Pseudomonas aeruginosa 1 施設 (1.4%)、Cryptococcus neoformans 1 施設 (1.4%)、同定不可 1 施設 (1.4%)、回答なし 2 施設 (2.8%)と続いた。C. neoformans との回答が 1 施設で認められたが、症例 3 の転記ミスと考えられた。

表 1 推定病原体名の回答一覧(症例 1)

推定病原体名	回答施設数	%
Capnocytophaga species	59	81.9
Eikenella corrodens	6	8.3
Helicobacter species	2	2.8
Pseudomonas aeruginosa	1	1.4
Cryptococcus neoformans	1	1.4
同定不可	1	1.4
回答なし	2	2.8
合計	72	100

Capnocytophaga 属は 1979 年に新しい属として確立し、現在 9 種類(Capnocytophaga canimorsus、Capnocytophaga canis、Capnocytophaga cynodegmi、Capnocytophaga gingivalis、Capnocytophaga granulosa、Capnocytophaga haemolytica、Capnocytophaga leadbetteri、Capnocytophaga ochracea、Capnocytophaga sputigena)が報告されている。C. canimorsus、C. canis、C. cynodegmi はイヌやネコの口腔内常在菌で咬傷・掻傷によって引き起こされる血流感染が報告されている。一方、他の菌種はヒトの上気道や口腔内常在菌であり、血液培養からの検出例では血液疾患や悪性腫瘍患者がほとんどを占める。

菌体の両端がシャープであり、細長いグラム陰性桿菌として観察される。炭酸ガス要求性菌である。ヒト由来菌である C. ochracea、C. sputigena は血液寒天培地上で、コロニーの表面が培地表面に不規則に広がる gliding colony (滑走性発育)を示す。一方、C. canimorsus は S 型でやや隆起した無~半透明のコロニーを形成、gliding colony は明瞭に観察されないことが多い。なお、E. corrodens はグラム陰性のまっすぐでやや細めの桿菌として観察され、血液寒天培地でpitting colony (培地に食い込んだ二重集落)を形成するのが特徴である。

グラム染色所見やコロニーの特徴から本菌属を推定することは可能である。また、ヒト由来の *Capnocytophaga* 属はオキシダーゼ、カタラーゼは陰性であるという点が動物由来の *Capnocytophaga* 属と異なる。

#### 【症例 2】

症例は 68 歳女性。4 日前より右下腹部痛、3 日前より食欲不振と発熱を認めた。精査目的で救急外来に紹介受診された。受診時の体温は 37.8℃で、腹部、回盲部に圧痛、軽度膨満を認めた。胸腹部 CT 所見上、回腸末端浮腫と回盲部周囲の腸間膜リンパ節の腫大、腸管リンパ節周囲脂肪組織濃度上昇を認めた。

便培養が施行された。写真 2-A は 35^{$\circ$}C48 時間好気培養した培地所見である。写真 2-B は本菌の試験管培地の所見である。この症例において、菌種名の回答を求めた。

写真 2-A から、ドリガルスキー寒天培地上では無色透明で乳糖非分解、微小のコロニーを形成している。DHL 寒天培地では硫化水素産生は認めず、赤色コロニーを形成しており、ドリガルスキー寒天培地の結果から白糖分解菌であることが推定される。写真 2-B では 35  $\mathbb{C}18$  時間好気培養を行った性状確認培地を示した。それぞれ①TSI 寒天培地:A/A、ガス非産生、硫化水素陰性、②SIM 寒天培地:インドールピルビン酸陰性、インドール陽性、運動性 35  $\mathbb{C}$  培養条件で陰性、25  $\mathbb{C}$  培養条件下で陽性、③VP 半流動培地:35  $\mathbb{C}$  培養条件下で VP 陰性、25  $\mathbb{C}$  培養条件下で VP 陽性、 $\mathbb{C}$   $\mathbb{C}$ 

推定病原体名の回答成績を表 2 に示す。参加 72 施設中 71 施設 (98.6%) が Y enterocolitica と回答していた。回答なしが 1 施設 (1.4%) であり、推定病原体名を回答した全施設が正しく回答していた。

表 2 推定病原体名の回答一覧(症例2)

推定病原体名	回答施設数	%
Yersinia enterocolitica	71	98.6
回答なし	1	1.4
合計	72	100

腸内細菌科 Yersinia 属に属する通性嫌気性グラム陰性桿菌である Y. enterocolitica は、代表的な細菌性の食中毒ならびに人獣共通感染症の原因菌として知られている。1939 年に上の腸炎患者から世界で初めて分離された。ブタなどの家畜や、イヌ、ネコ、ノネズミなどの哺乳動物が保有し、本菌に対し不顕性感染する。本菌に汚染された食品を介した経口感染が主たる感染経路であるが、東北地方で散発している感染事例では、ノネズミなどの野生動物の糞便などにより本菌に汚染された沢水、またはこれらの沢水から二次的に汚染された食品などを介した水系感染の事例やイヌ、ネコとの接触による感染事例も報告されている。

Yersinia 属でヒトに腸炎・食中毒などの病原性を示すのは Y. enterocolitica と Yersinia pseudotuberculosis の 2 菌種である。Y. enterocolitica 感染症における一般的な臨床症状は 2~5 日間の潜伏期を経て、発熱、腹痛、嘔吐、下痢などを主症状とする胃腸炎である。腸管外感染事例として咽頭炎、心筋炎、髄膜炎、肝膿瘍、敗血症などを引き起こす。至適発育温度が 27~30°Cで、低温域での発育性が良いため、本菌による輸血製剤の汚染事例の報告もある。Yersinia 属が疑われる場合は、22~26°Cで 48 時間培養、あるいは 35~37°Cで 24 時間培養後、1 日室温放置などを行う必要がある。運動性や生化学鑑別性状の多くは培養温度に依存するため、通常 25°Cで同定検査を実施する。また、25°Cと 37℃培養を平行し比較することも同定の一助となる。

Y. enterocolitica と Y. pseudotuberculosis は、TSI 培地(Y. enterocolitica は A/A、Y. pseudotuberculosis は-/A)、VP 反応(Y. enterocolitica は 25  $^{\circ}$   $^{$ 

#### 【症例 3】

症例は 70 歳女性。元々の ADL は自宅内歩行器歩行、軽度の物忘れがある程度であった。 受診 3 週間前、デイサービス帰宅後よりコミュニケーションがいつものようにとれず、翌 日には起立困難となった。発熱と意識障害を認め、救急搬送された。受診時の体温は  $37.3^{\circ}$  C、 HR 78/min、BP 148/72mmHg、意識レベルは JCS:30 であった。項部硬直あり。頭部 CT では明らかな出血は認めなかったが、両側側脳室拡大を認めた。

髄液検査が施行され、細胞数  $122/\mu$ l (多核球  $5/\mu$ l、単核球  $117/\mu$ l)、糖 91mg/dl、蛋白 335mg/dl、外観は微淡黄色であった。写真 3-A は髄液のフックス・ローゼンタール計算盤、

写真 3-B はギムザ染色、写真 3-C はグラム染色像である。写真 3-D は 35^C72 時間好気培養した培地所見である。また、本菌はウレアーゼ陽性であった。この症例において、菌種名の回答を求めた。

写真 3-A、3-B、3-C に髄液の塗抹所見を示した。大小不同で、球形~亜球形、菌体周囲に厚い膜を確認することができる。写真 3-D に示した  $35^{\circ}$ C、72 時間培養後のコロニー所見ではヒツジ血液寒天培地、サブロー寒天培地で白色、クロモアガーCandida 培地では薄いピンク色のムコイド状コロニーを形成した。以上の所見から症例 3 で提示した菌は Cryptococcus neoformans である。

推定病原体名の回答成績を表 3 に示す。参加 72 施設中 62 施設 (86.1%) が *C. neoformans*、7 施設 (9.7%) が *Cryptococcus* species と回答していた。その他の回答菌名は、*Candida glabrata* と回答した施設が 1 施設 (1.4%)、*Helicobacter* species 1 施設 (1.4%)、回答なし 1 施設 (1.4%)と続いた。*Helicobacter* species との回答が 1 施設で認められたが、症例1の転記ミスと考えられた。

表 3 推定病原体名の回答一覧(症例3)

推定病原体名	回答施設数	%
Cryptococcus neoformans	62	86.1
Cryptococcus species	7	9.7
Candida glabrata	1	1.4
Helicobacter species	1	1.4
回答なし	1	1.4
合計	72	100

2014 年、感染症予防法の一部改正があり、播種性クリプトコッカス症が 5 類感染症に追加された。その病原体であるクリプトコッカスは正しく分離、同定する必要がある。クリプトコッカス髄膜炎は C. neoformans による真菌性髄膜炎で、基礎疾患を有する免疫不全患者に発症することが多いが、健常人にも発症する。本菌は土壌やハトの糞中に存在し、主に肺や皮膚から感染して病巣を形成する。中枢神経親和性が高いため、初感染巣より血管内に侵入し、血行性に髄膜炎を発症する。髄液検査では髄液圧の上昇、糖の低下や蛋白増加、髄液中の細胞数増加(一般にリンパ球主体)などを認める。患者が免疫不全を伴う場合、大型の菌体が著しく増生し、細胞増多は乏しく、リンパ球・単球が散見される。一方、免疫不全を伴わない場合、リンパ球主体の中等度の細胞増多が見られ、菌体は小型でフックス・ローゼンタール計算盤での確認は困難となる。C. neoformans の菌体は大きさが  $2\times10\,\mu$  m で球形~亜球形を示す。髄液中に出現する小型リンパ球の大きさは  $8\sim10\,\mu$  m、核はほぼ円形、細胞質は狭く核周囲にリング状でサムソン液に淡く染まり、C. neoformans と似た形態を示すため、間違えないよう注意が必要である。クリプトコッカス髄膜炎の早期確定診断は髄液の墨汁染色による莢膜の確認をはじめ、PAS

および HE 染色などの染色法で球形あるいは分芽した菌体の確認であるが、その検出頻度 は約 50~60%であるとされるため、ラテックス凝集反応によるクリプトコッカス抗原検査 などを加える必要がある。

2~3 日培養で、ポテト・デキストロース培地やサブロー寒天培地では白色からクリーム色、扁平かまたはやや盛り上がり、真珠様光沢があり、辺縁は滑らかで粘稠性を示す。クロモアガーCandida 培地では白から次第にピンク色、バードシード培地では暗褐色のコロニーを形成する。臨床検体から検出される酵母様真菌中で *Cryptococcus* 属以外にウレアーゼ陽性を示すのは *Rhodotorala* 属、*Malassezia* 属、*Trichosporon* 属である。*Candida* 属では *Candida lipolytica* が陽性、*Candida krusei* が菌株によって陽性となる。

クリプトコックス症の原因真菌として、C. neoformans の他に Cryptococcus gattii があげられる。C. neoformans と C. gattii 以外の Cryptococcus 属菌種は通常非病原性と考えられ、まれに重度の免疫不全患者に侵襲性感染症を引き起こす。発生地域としては、C. neoformans が世界中に認められるのに対し、C. gattii は熱帯や亜熱帯地域、特にオーストラリアやパプアニューギニアなどに限定的に認められていた。しかし近年、米国の北西太平洋沿岸地域において C. gattii で多く報告されている。わが国においても限定的であるものの C. gattii によるクリプトコックス症例が報告されている。C. neoformans と C. gattii は生化学的性状による同定は困難で、遺伝子学的検査が有用である。

# 【試料 28、29、30】

大分大学医学部附属病院臨床検査部 上野 民生

#### 【はじめに】

試料 28 (Klebsiella pneumoniae A1 株)、試料 29 (Escherichia coli A2 株)、試料 30 (Pseudomonas aeruginosa A3 株)の菌株を対象に実施された、Imipenem(IPM)、Meropenem(MEPM)、Cefmetazole(CMZ)、Cefepime(CFPM)、Ceftazidime (CAZ)の薬剤感受性試験の報告値を解析した。解析基準には Clinical and Laboratory Standards Institute (CLSI) 2017 年版の勧告 (M100-S27) およびそれぞれの薬剤感受性試験方法の使用説明書を用いた。

### I. 試験条件

1. CLSI 基準

CLSI 基準による *K. pneumoniae* 、*E. coli* 、*P. aeruginosa* の薬剤感受性測定条件を以下に示した。

1) ディスク拡散法

培地: Mueller-Hinton agar

接種方法: コロニーから直接釣菌し、McFarland 0.5 濁度に調整 培養: 35±2℃、通常大気、16~18 時間

2) 微量液体希釈法

培地: Mueller-Hinton broth

接種方法: コロニーから直接釣菌し、McFarland 0.5 濁度に調整

培養: 35±2℃、通常大気、16~20 時間

2. 試験方法の分類

薬剤感受性試験の方法は、ディスク拡散法と微量液体希釈法に分類した。

3. 試料菌株

試料 28 は National Collection of Type Cultures の菌株 NCTC13442 (OXA-48 産 生株) 、試料 29 は AmpC 産生の臨床株、試料 30 は American Type Culture Collection の菌株 ATCC 27853 を用いた。試料 30 のディスク拡散法と微量液体 希釈法での測定値許容範囲とカテゴリー判定区分を表 1-1、1-2 に示した。

#### II. 解析

A.施設単位の解析

- 1. 解析方法 1)
- 1) 報告値の分類

ディスク拡散法は阻止円直径を報告値として解析した。微量液体希釈法は MIC 値を報告値として解析した。各施設の報告値を、試料および薬剤ごとの許容範

囲と比較して、感性側に逸脱、許容範囲内、耐性側に逸脱に分類した。微量液体希釈法の報告値は単独の数値によって示される点報告値(例えば $\leq 2\mu g/ml$ )と不等号記号( $\leq$ 、>)を付記して示される区間報告値(例えば $\leq 2\mu g/ml$ )がある。点報告値はディスク法と同様に許容範囲との比較が可能であるが、区間報告値ではそのまま比較できない。例えば、試料 30: P. aeruginosa ATCC 27853 のCeftazidime が $\leq 4\mu g/ml$  と報告された場合、許容範囲は  $1\sim 4\mu g/ml$  であるので許容範囲に収まっている可能性と許容範囲を感性側に逸脱している可能性がある。今回は同 Ceftazidime が $> 4\mu g/ml$  と報告された場合のように許容範囲から明確に逸脱した結果のみを「逸脱」とした。

#### 2) 誤差が認められる施設の抽出

CLSI は逸脱率の限度を 20 回に 1 回あるいは 30 回に 3 回以内としている。今回は 20 回に 1 回の頻度を逸脱率基準として採用した。

- (1) 施設ごとの総報告値数と逸脱報告値数、逸脱率を算出した。
- (2) 二項検定を用い、各施設の逸脱率と逸脱率基準を有意水準 5%で比較した。
- (3) 逸脱率基準に比較して有意に大きい逸脱率を示す施設を抽出した。

#### 3) 昨年との比較

試料30は昨年と同一株を用いた。同一の試料に対し昨年と今年の逸脱傾向を 比較した。

#### 2. 解析結果

#### 1) ディスク拡散法

ディスク拡散法は 6 施設から報告があった。ディスク拡散法の報告値を表 1-1 の許容範囲と比較した結果、2 施設で MEPM の値が耐性側へ逸脱した。同施設は逸脱が認められたが 1.2) の逸脱基準以内であったため評価「B」とした。他の 4 施設は全ての結果が許容範囲内であったため評価「A」とした。

#### 2)微量液体希釈法

微量液体希釈法には 67 施設が参加した。微量液体希釈法の報告値を表 1-2 の許容範囲と比較した結果、全ての結果が許容範囲内であったため 67 施設とも評価「A」とした。

#### 3) 昨年との比較

昨年「B」もしくは「D」の評価であった 6 施設のうち 5 施設は、すべて許容範囲に収まり改善が認められた。昨年「B」評価であったディスク拡散法の 1 施設は、一昨年、昨年、今年と同一の逸脱が認められ P. aeruginosa ATCC 27853 に対し MEPM が耐性側に逸脱した。

B. Carbapenem-resistant *Enterobacteriaceae* (CRE)、Carbapenemase-producing *Enterobacteriaceae* (CPE) の検出

#### 1.方法

試料 28 の OXA-48 型カルバペネマーゼを産生する *K. pneumoniae* 株、試料 29 の AmpC を産生する *E. coli* 株に対し、カルバペネマーゼ検出試験結果と CPE に該当する否か、IPM、MEPM、CMZ の感受性結果と CRE に該当するか否かの判定について解析した。

### 2.解析結果

### 1)カルバペネマーゼ検出試験

カルバペネマーゼ検出結果を表 1-3 に示す。試料 28 はカルバペネマーゼ陽性である。74 施設中、Modified Carbapenem Inactivation Method (mCIM) を実施した 56 施設のうち 53 施設はカルバペネマーゼ陽性と回答し、3 施設はカルバペネマーゼ陰性と回答した。試料 29 はカルバペネマーゼ陰性である。mCIM を実施した 56 施設は全てカルバペネマーゼ陰性と報告した。

### 2)CRE と非 CRE の鑑別

CRE と非 CRE の鑑別結果を表 1-4 に示す。試料 28 について、CRE か否かの判定を記載した 71 施設のうち、感受性結果が CRE に該当し、試料 28 を CRE と判定した施設は 26 施設であり、非 CRE と判定した施設は 5 施設であった。感受性結果が非 CRE に該当し、試料 28 を CRE と判定した施設が 5 施設であり、非 CRE と判定した施設は 35 施設認められた。試料 29 について、CRE の判定を記載した 71 施設のうち、感受性結果が CRE に該当し、試料 29 を CRE と判定した施設は 65 施設であり、非 CRE と判定した施設は 2 施設であった。感受性結果が非 CRE に該当し、試料 29 を CRE と判定した施設は 3 施設であった。感受性結果が非 CRE に該当し、試料 29 を CRE と判定した施設は 2 施設であった。感受性結果が非 CRE に該当し、試料 29 を CRE と判定した施設は認められず、非 CRE と判定した施設は 4 施設であった。

#### 3) 耐性機構判別

耐性機構結果を表 1-5 に示す。試料 28 について耐性機構を回答した 43 施設の うち OXA 単独とした施設は 32 施設であった。OXA+GES が 1 施設、OXA+KPC が 1 施設、KPC 単独が 8 施設、IMP 単独が 1 施設であった。試料 29 では耐性機構を回答した 50 施設のうち、AmpC 単独が 42 施設、AmpC+ESBL が 2 施設、ESBL 単独が 3 施設、OXA、KPC、IMP 単独がそれぞれ 1 施設であった。

### C. CLSI の示すブレイクポイント

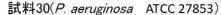
#### 1.方法

CLSI(M100-S27)ではブレイクポイントは抗菌薬ごとに処方が限定されている。 ブレイクポイントと抗菌薬処方の種類について解析した。

### 2解析結果

IPM、MEPM、CFPM、CAZ の処方とブレイクポイントを表 1-6 に示す。74 施設のうち、試料  $28\sim30$  の全抗菌薬にについて正しく処方を回答したのは 4 施設であった。表 1-7 に CFPM の回答ごとの施設数を示す。Enterobacteriaceae の CFPMは 1g を 8 時間ごと、1g を 12 時間ごと、2g を 8 時間ごと、2g を 12 時間ごとの

ブレイクポイントが設定されている。4種の処方を回答したのは4施設であった。 また、*P. aeruginosa* は 1g を 8 時間ごと、2g を 12 時間ごとの設定が示されている。2種の処方を回答したのは 44 施設であった。

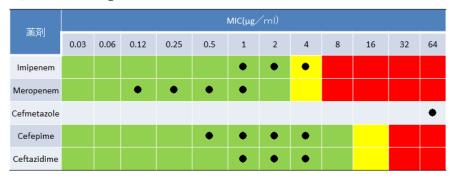

### 【まとめ】

試料30は標準株である。ディスク法の2施設が「B」評価であったが他の72施設は許容範囲に収まっていた。ただ、「B」評価となった施設で一昨年、昨年、今年と同様の逸脱を繰り返す施設が1施設認められた。カルバペネマーゼ検出法である mCIMを施行した施設は74施設中56施設であった。CRE、CPEに対応するにはmCIMを含む何らかの検出法を自施設で準備する必要がある。mCIMを施行した施設のうち、試料28でカルバペネマーゼ陰性とした施設が3施設あり、mCIMの内部精度管理が必要と思われた。試料28、29において感受性結果からCREと非CREを適切に判別できなかった11施設は厚生労働省の基準の再確認が必要と思われた。CRE、CPEの耐性機構判別は院内感染対策、および診療科への報告に是非必要である。判別方法の準備と内部精度管理が必要と思われる。CLSIの示すブレイクポイントにおいては、診療科へ処方を添付した感受性結果を報告することは現時点では困難である。しかし、抗菌薬、ブレイクポイントごとに限定された処方を確認し、診療科へ説明できる準備をしておくことが必要と思われた。

### 文献

1) 上野民生,松田淳一,山根誠久. 外部精度管理調査における薬剤感受性試験の許容範囲からの逸脱頻度と正確度の統計学的評価に向けた試み. 臨床病理 2013; 61:237-41.

## 表1-1 ディスク拡散法での許容範囲






■:感性 -:中間 =:耐性 ●:許容範囲

## 表1-2 微量液体希釈法での許容範囲

試料30(P. aeruginosa ATCC 27853)



■:感性 -:中間 =:耐性 ●:許容範囲

# 表1-3 カルバペネマーゼ検出

総施設数:74施設

	カルバペネマーゼ試験(施設数)				
試料	陽性	非実施			
28	53	3	18		
29	0	56	18		

■:誤判定

## 表1-4 CREと非CREの鑑別

総施設数:74施設

試料	感受性	判定結果(施設数)				
<b></b>	結果	CRE	非CRE	非回答		
28	CRE	26	5	2		
	非CRE	5	35	1		
29	CRE	65	2	2		
	非CRE	0	4	1		

■:誤判定

## 表1-5 耐性機構

総施設数:74施設

	耐性機構(施設数)								
試料	OXA	OXA+ GES	OXA+ KPC	KPC	IMP	AmpC	AmpC +ESBL	ESBL	非回答
28	32	1	1	8	1				31
29	1			1	1	42	2	3	24

■:誤判定

# 表1-6 ブレイクポイントの処方

試料	抗菌薬	500mgを6 時間ごと	1gを6時 間ごと	1gを8時 間ごと	1gを12時 間ごと	2gを8時 間ごと	<b>2gを12</b> 時 間ごと
	Imipenem	•		•			
28、29	Meropenem			•			
	Cefepime			•	•	•	•
	Ceftazidime			•			
	Imipenem	•		•			
30	Meropenem			•			
	Cefepime			•			•
	Ceftazidime		•			•	

●: CLSI(M100-S27)の示す処方

表1-7 Cefepimeの処方回答施設数

	処方						斗(施設数	<b>b</b> )
500mgを6 時間ごと	1gを6時 間ごと	1gを8時 間ごと	1gを12 時間ごと	2gを8時 間ごと	2gを12 時間ごと	28	29	30
		•	•	•	•	4	4	
		•			•	6	6	44
			•		•	1	1	1
			•			36	28	
		•				2	2	3
				•			3	
•			•					1
					•			3
		回答	なし			25	30	22

●: CLSI(M100-S27)の示す処方

	查部門 同定試料25施設報告値
施設番号 1001	同定菌名 Listeria sp
1002	Listeria monocytogenes
1004	Listeria monocytogenes
1006 1010	Listeria monocytogenes Listeria monocytogenes
1012	Listeria monocytogenes
1015 1018	Listeria monocytogenes Listeria monocytogenes
1018	Listeria monocytogenes Listeria monocytogenes
1035	Listeria monocytogenes
1038	Listeria monocytogenes Listeria monocytogenes
1040	Listeria monocytogenes
1046	Listeria monocytogenes
1051 1054	Listeria monocytogenes Listeria monocytogenes
1062	Listeria monocytogenes
1072 1073	Listeria monocytogenes
10/3	Listeria monocytogenes Listeria monocytogenes
1094	Listeria monocytogenes
1102 1300	Listeria monocytogenes Listeria monocytogenes
1301	Listeria monocytogenes Listeria monocytogenes
1302	Listeria sp
1308 1313	Listeria monocytogenes Listeria monocytogenes
1315	Listeria monocytogenes
1316	Listeria monocytogenes
1325 1329	Listeria monocytogenes Listeria monocytogenes
1330	Listeria monocytogenes
1337	Listeria monocytogenes
1343 1355	Listeria monocytogenes Listeria monocytogenes
1356	Listeria monocytogenes
1357	Listeria monocytogenes
1362 1391	Listeria monocytogenes Listeria monocytogenes
1404	Listeria monocytogenes
1505 1506	Listeria monocytogenes Listeria monocytogenes
1511	Listeria monocytogenes Listeria monocytogenes
1513	Listeria monocytogenes
1529 1532	Listeria monocytogenes Listeria monocytogenes
1901	Listeria monocytogenes
1902	Listeria monocytogenes
1903 1909	Listeria monocytogenes Listeria monocytogenes
1911	Listeria monocytogenes
2002	Listeria monocytogenes
2006 2008	Listeria monocytogenes Listeria monocytogenes
3001	Listeria monocytogenes
3022	Listeria monocytogenes
3048 3055	Listeria monocytogenes Listeria monocytogenes
3056	Listeria monocytogenes
3907 4002	Listeria monocytogenes Listeria monocytogenes
4902	Listeria monocytogenes Listeria sp
5005	Listeria monocytogenes
5006 6008	Listeria monocytogenes Listeria monocytogenes
6015	Listeria monocytogenes Listeria monocytogenes
6016	Listeria monocytogenes
7001 7002	Listeria monocytogenes Listeria monocytogenes
7007	Listeria sp
7011	Listeria monocytogenes
7901 8004	Listeria monocytogenes Listeria monocytogenes
J007	zassoria monocytogones

	食査部門 同定試料26施設報告値
<u>施設番号</u> 1001	同定菌名 Streptococcus gallolyticus subsp. pasteurianus
1002	Streptococcus bovis
1004	Streptococcus gallolyticus subsp. pasteurianus
1006	Streptococcus gallolyticus subsp. pasteurianus
1010	Streptococcus gallolyticus subsp. pasteurianus
1012	Streptococcus gallolyticus subsp. pasteurianus
1015 1018	Streptococcus gallolyticus subsp. pasteurianus Streptococcus gallolyticus subsp. pasteurianus
1031	Streptococcus gallolyticus subsp. pasteurianus
1035	Streptococcus gallolyticus subsp. pasteurianus
1038	Streptococcus gallolyticus subsp. pasteurianus
1039	Streptococcus gallolyticus subsp. pasteurianus
1040 1046	Streptococcus bovis Streptococcus gallolyticus subsp. pasteurianus
1040	Enterococcus faecalis
1054	Streptococcus gallolyticus subsp. pasteurianus
1062	Streptococcus gallolyticus subsp. pasteurianus
1072	Streptococcus bovis
1073	Streptococcus gallolyticus subsp. pasteurianus
1081	Streptococcus bovis
1094 1102	Streptococcus gallolyticus subsp. pasteurianus Streptococcus bovis biotype II/2
1300	Streptococcus gallolyticus
1301	Streptococcus bovis biotype II/2
1302	Streptococcus bovis
1308	Enterococcus avium
1313	Streptococcus gallolyticus
1315 1316	Streptococcus gallolyticus subsp. pasteurianus Streptococcus gallolyticus subsp. pasteurianus
1325	Streptococcus gallolyticus subsp. pasteurianus
1329	Streptococcus gallolyticus subsp. pasteurianus
1330	Streptococcus bovis
1337	Streptococcus gallolyticus subsp. pasteurianus
1343	Streptococcus gallolyticus subsp. pasteurianus
1355 1356	Streptococcus bovis Streptococcus bovis
1357	Streptococcus gallolyticus subsp. pasteurianus
1362	Streptococcus gallolyticus subsp. pasteurianus
1391	Streptococcus gallolyticus subsp. pasteurianus
1404	Streptococcus gallolyticus subsp. pasteurianus
1505 1506	Streptococcus gallolyticus subsp. pasteurianus
1511	Streptococcus bovis Streptococcus gallolyticus subsp. pasteurianus
1513	Streptococcus bovis
1529	Streptococcus gallolyticus subsp. pasteurianus
1532	Streptococcus gallolyticus subsp. pasteurianus
1901	Streptococcus gallolyticus
1902	Streptococcus bovis Streptococcus bovis
1903 1909	Streptococcus gallolyticus subsp. pasteurianus
1911	Streptococcus gallolyticus subsp. pasteurianus
2002	Streptococcus gallolyticus subsp. pasteurianus
2006	Streptococcus gallolyticus subsp. pasteurianus
2008	Streptococcus gallolyticus subsp. pasteurianus
3001 3022	Streptococcus gallolyticus Streptococcus gallolyticus subsp. gallolyticus
3048	Streptococcus bovis
3055	Streptococcus bovis
3056	Streptococcus gallolyticus subsp. pasteurianus
3907	Streptococcus gallolyticus
4002 4902	Streptococcus gallolyticus Streptococcus salivarius
5005	Streptococcus gallolyticus subsp. pasteurianus
5006	Streptococcus gallolyticus subsp. gallolyticus
6008	Streptococcus gallolyticus subsp. pasteurianus
6015	Streptococcus bovis
6016	Streptococcus gallolyticus subsp. pasteurianus
7001 7002	Streptococcus bovis
/1111/	Streptococcus gallolyticus subsp. pasteurianus
	IStreptococcus bovis
7007 7011	Streptococcus bovis Streptococcus gallolyticus subsp. pasteurianus
7007	Streptococcus bovis Streptococcus gallolyticus subsp. pasteurianus Streptococcus gallolyticus subsp. pasteurianus

微生物検査部門 同定試料27施設報告値

施設番号	設問No	微生物検査部門 同定菌名
心以117	1	Capnocytophaga sp
1001	Ž	Yersinia enterocolitica
	3	Cryptococcus sp
	Ō	Capnocytophaga sp
1002	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	<b>①</b>	Capnocytophaga sp
1004	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
1005	<u> </u>	Capnocytophaga sp
1006	<b>2</b> 3	Yersinia enterocolitica
	1	Cryptococcus neoformans Capnocytophaga sp
1010	2	Yersinia enterocolitica
1010	3	Cryptococcus neoformans
	Ũ	Capnocytophaga sp
1012	Ž	Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Capnocytophaga sp
1015	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
1010	1	Capnocytophaga sp
1018	2	Yersinia enterocolitica
	<u>3</u>	Cryptococcus neoformans
1031	2	Capnocytophaga sp Yersinia enterocolitica
1031	3	Cryptococcus sp
<b>—</b>	1	Capnocytophaga sp
1035	Ž	Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Capnocytophaga sp
1038	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Capnocytophaga sp
1039	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
1010	<u> </u>	Capnocytophaga sp
1040	2	Yersinia enterocolitica
	<u>3</u>	Cryptococcus neoformans
1046	2	Capnocytophaga sp Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Capnocytophaga sp
1051	Ž	Yersinia enterocolitica
	3	Cryptococcus neoformans
	①	Helicobacter sp
1054	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Capnocytophaga sp
1062	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
1072	1	Capnocytophaga sp
1072	3	Yersinia enterocolitica Cryptococcus neoformans
	1	Capnocytophaga sp
1073	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Capnocytophaga sp
1081	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Capnocytophaga sp
1094	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
1100	1	Capnocytophaga sp
1102	2	Yersinia enterocolitica
	<u>3</u>	Cryptococcus neoformans Cappacytophaga sp
1300	2	Capnocytophaga sp Yersinia enterocolitica
1300	3	Cryptococcus neoformans
	1	Capnocytophaga sp
1301	2	Yersinia enterocolitica
	3	Cryptococcus sp
	1	Capnocytophaga sp
1302	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Capnocytophaga sp
1308	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
1212	1	Capnocytophaga sp
1313	2	Yersinia enterocolitica
I	3	Cryptococcus neoformans

試料27施設報		
施設番号	設問No	同定菌名
	1	Capnocytophaga sp
1315	<b>2</b>	Yersinia enterocolitica
1010	<u>3</u>	Cryptococcus neoformans
	<u> </u>	Capnocytophaga sp
1316	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Capnocytophaga sp
1325	Ž	Yersinia enterocolitica
1323	3	
		Cryptococcus neoformans
	1	Capnocytophaga sp
1329	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	Ű)	Capnocytophaga sp
1330	2	
1330		Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Capnocytophaga sp
1337	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	Ű	Capnocytophaga sp
1242		
1343	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Eikenella corrodens
1355	Ž	Yersinia enterocolitica
1555	3	Candida glabrata
		Canaida giabraia
	<u> </u>	=======================================
1356	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	Ō	Capnocytophaga sp
1357	Ž	Yersinia enterocolitica
1337		
	3	Cryptococcus neoformans
	1	Helicobacter sp
1391	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	Ű	Capnocytophaga sp
1404	2	
1404		Yersinia enterocolitica
	3	Cryptococcus neoformans
	1 1	Capnocytophaga sp
1505	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	<u> </u>	
		Capnocytophaga sp
1506	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Eikenella corrodens
1511	Ž	Yersinia enterocolitica
1011	3	Cryptococcus neoformans
		<u> </u>
	<u> </u>	Capnocytophaga sp
1513	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	(1)	Capnocytophaga sp
1529	Ž	Yersinia enterocolitica
1329		
	3	Cryptococcus neoformans
	1	Pseudomonas aeruginosa
1532	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	Ű	Capnocytophaga sp
1001	2	
1901		Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Eikenella corrodens
1902	2	Yersinia enterocolitica
	3	Cryptococcus sp
	1	Capnocytophaga sp
1003		
1903	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Eikenella corrodens
1909	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	0	•
1011		Capnocytophaga sp
1911	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	1	Capnocytophaga sp
2002	Ž	Yersinia enterocolitica
	3	Cryptococcus sp
• • • •	1	Capnocytophaga sp
2006	2	Yersinia enterocolitica
	3	Cryptococcus neoformans
	(Ī)	Capnocytophaga sp
2008	<b>2</b>	Yersinia enterocolitica
2000	<u> </u>	
	3	Cryptococcus neoformans
Ī	<u> </u>	Capnocytophaga sp
3001	2	Yersinia enterocolitica
Ī	3	Cryptococcus neoformans
1		1- Jr
		-

### 上物検査部門 同定試料27施設報告値

施設番号 設問No 同定菌名  ① Capnocytophaga sp 3022 ② Yersinia enterocolitica ③ Cryptococcus neoformans ① Capnocytophaga sp	
3022	
Cryptococcus neoformans     Capnocytophaga sp	
(1) Capnocytophaga sp	
① Capnocytophaga sp	
2040	
3048 ② Yersinia enterocolitica	
3 Cryptococcus neoformans	
③ Cryptococcus neoformans ① 同定不能菌種	
3055	
3 Cryptococcus neoformans	
① Capnocytophaga sp	
3056 ② Yersinia enterocolitica	
3055	
① Capnocytophaga sp	
3907 ② Yersinia enterocolitica	
3 Cryptococcus neoformans	
① Capnocytophaga sp	
4002	
<u> </u>	
5005 Capnocytophaga sp Yersinia enterocolitica	
3 Cryptococcus neoformans	
① Capnocytophaga sp	
5006 Q Yersinia enterocolitica	
3 Cryptococcus neoformans	
(1) Capnocytophaga sp	
6008 2 Yersinia enterocolitica	
6008	
① Cryptococcus neoformans	
6015 ② Yersinia enterocolitica ③ Helicobacter sp	
3 Helicobacter sp	
① Capnocytophaga sp	
6016 Versinia enterocolitica	
③ Cryptococcus sp ① Capnocytophaga sp	
7001 Capnocytophaga sp Yersinia enterocolitica	
7001 ② Yersinia enterocolitica ③ Cryptococcus neoformans	
① Capnocytophaga sp	
Capnocytophaga sp 7002	
3 Cryptococcus neoformans	
① Eikenella sp	
7007 (2) Yersinia enterocolitica	
<ul> <li>Cryptococcus neoformans</li> <li>Capnocytophaga sp</li> </ul>	
(1) Capnocytophaga sp	
7011 (2) Versinia enterocolitica	-
© Cryptococcus neoformans	
<u>Eikenella corrodens</u>	
7901	
3 Cryptococcus neoformans	
8004	
3 Cryptococcus sp	

微 生 物 部 門教 育 講 演

### 耐性菌検出に関する迅速診断技術の進歩と今後の方向性

東邦大学医学部微生物·感染症学講座 石井良和

新たな耐性因子の出現と蔓延が世界的な問題となっている。耐性菌の中でもカルバペネム分解酵素を産生する大腸菌や肺炎桿菌、緑膿菌、アシネトバクター属菌などのカルバペネマーゼ産生グラム陰性菌の検出法の構築が求められている。その理由として、カルバペネマーゼ産生腸内細菌科細菌をスクリーニングすることが容易ではなく、迅速診断の対象菌株の選別が困難なことが挙げられる。カルバペネム分解酵素産生菌の中には、カルバペネム系薬に感性を示す菌株が少なくないことが挙げられる。したがって、カルバペネム系薬以外の抗菌薬でカルバペネム分解酵素産生株を検出することが求められる。

最近の迅速診断技術の進歩により、検体を採取して30分以内で抗菌薬を処方する前に診断できる技術が普及してきた。肺炎球菌やレジオネラの尿中抗原検査に加えてマイコプラズマを対象としたイムノクロマトグラフィー法が臨床応用されている。次世代の診断技術として、病原体の核酸増幅技術を応用して30分以内に複数の病原体や耐性遺伝子を対象として検出する技術も開発され、臨床応用されはじめている。また、検体中に含まれる病原体由来の遺伝子を網羅的に解析する技術も開発されつつある。この技術は魅力的ではあるが、現時点において臨床検査の一環として利用できるには至っていない。従来の感染症の検査法では、検体採取から診断まで1週間程度要するため、経験的な抗菌薬投与が余儀なくされている。そのため、適切な抗菌薬投与の遅れや、治癒の遅れあるいは耐性菌の拡散に繋がったことが否定できない。今後は、外来の待ち時間に、感染症の原因微生物の特定と耐性遺伝子の存在を把握することにより、Specific 且つ Definitive な抗菌薬治療が行える検査技術が開発されることが期待される。

本発表では、カルバペネム分解酵素産生菌と基質特異性拡張型 β ラクタマー ゼ産生菌に焦点を当て、その最新情報を提供するとともに、現在利用できる検査 技術を解説するとともに今後の方向性について考察する。

# 特 別 講 演

### 遺伝子変異や遺伝子欠損を背景とする造血器腫瘍の発症メカニズム

熊本大学 大学院生命科学研究部 臨床病態解析学分野 松井啓隆

急性骨髄性白血病や骨髄異形成症候群が、遺伝子の体細胞変異や染色体転座ないし数の 増減によって発症する疾患であることはいうまでもないが、こうした染色体異常のなかで 最も予後不良であることを示唆するのが、7番染色体の欠損である。厳密には、2本ある7 番染色体の片方を完全に失うモノソミー7(-7)と、7番染色体長腕のみを欠失する del(7q) に分けられ、前者は細胞分裂時の染色体不分離に起因し、後者はゲノムの再構成を伴い出現 するという機序の違いはあるにせよ、いずれも7番染色体長腕を片アレル失う形となる。

こうしたことから、7番染色体長腕上に造血器腫瘍の発症に係る腫瘍抑制遺伝子が存在することが長い間推測され、責任遺伝子の単離が試みられてきた。1990年代には、当時確立された FISH 法や RFLP 法などを用いて、複数の症例で共通に欠失する領域を狭めていくことで責任遺伝子にたどり着こうとする試みがなされ、近位側 7q22 およびテロメア側の7q34-36が有力な候補であるとのコンセンサスが得られた。しかしながら、この2領域を合わせるとまだおよそ400もの遺伝子がここに存在することから、ピンポイントで責任遺伝子を単離するには至らなかった。

こうしたなかわれわれは、独自に設計・作成した合計 235 個のプローブを用い、アレイ CGH 法によって、7q22 近傍に焦点を当てた責任遺伝子探索を実施した。見かけ上 7 番染色体に異常の見られない造血器腫瘍症例を対象とすることで、これまでの方法では見つけられないような微小欠失を検出し、これによって責任遺伝子にたどり着こうとする試みである。その結果、7q21.3 に共通微小欠失領域があることを見出し、ここから HEPACAM2 (MIKI)、SAMD9, SAMD9L の 3 遺伝子を有力な候補遺伝子として単離することに成功した。

このうち *MIKI*遺伝子は、細胞分裂期の中心体および紡錘糸に局在するタンパク質(MIKI)をコードする。 MIKI の発現を抑制すると、分裂期特異的な中心体の成熟化が大きく妨げられ、染色体の赤道面への配列が損なわれる結果、細胞分裂を完遂できなくなることを見出すとともに、造血細胞では MIKI の欠損が核形態の異常に関わることを示してきた。

一方、SAMD9と SAMD9Lは、Tミノ酸レベルで約 60%の相同性を有する関連タンパク質をコードする。これまでの解析により、両者は初期エンドソーム分画に局在し、細胞表面から細胞内に取り込まれるサイトカイン受容体の分解を促進することで、サイトカインシグナルを負に制御する分子であることを見出した。ごく最近、SAMD9もしくは SAMD9L遺伝子に点突然変異を有し、造血障害と造血器悪性腫瘍を発症する家系例が相次いで報告され、これらの遺伝子が-7/del(7q)の責任遺伝子であることが裏付けられたとともに、造血器腫瘍を発症するメカニズムが注目を集めている。

本講演では、こうしたわれわれの研究成果を概説するとともに、残された課題を論じたい。

## 九州臨床検査精度管理研究会解析委員連絡先

### 〈生化学部門〉

			1	
氏	名	施設名	住所	電話
酒本	 美由紀	九州大学医学部附属病院	〒812-0054 福岡市東区馬出 3-1-1	092-641-1151
渡邊	久美子	九州大学医学部附属病院	〒812-0054 福岡市東区馬出 3-1-1	092-641-1151
川満	紀子	九州大学医学部附属病院	〒812-0054 福岡市東区馬出 3-1-1	092-641-1151
山下	孝明	福岡大学医学部附属病院	〒814-0133 福岡市城南区七隈 7-45-1	092-801-1011
生田	幹博	福岡大学医学部附属病院	〒814-0133 福岡市城南区七隈 7-45-1	092-801-1011
光井	健	福岡大学医学部附属病院	〒814-0133 福岡市城南区七隈 7-45-1	092-801-1011
早原	千恵	産業医科大学医学部附属病院	〒807-0804 北九州市八幡西区医生ヶ丘1-1	093-603-1611
比嘉	幸枝	産業医科大学医学部附属病院	〒807-0804 北九州市八幡西区医生ヶ丘1-1	093-603-1611
吉田	真紀	飯塚病院	〒820-0018 飯塚市芳雄町 3-83	0948-22-3800
井上	賢一	久留米大学医学部附属病院	〒830-0011 久留米市旭町 67	0942-35-3311
新開	幸夫	佐賀県医療センター好生館	〒840-8571 佐賀市嘉瀬町大字中原 400	0952-24-2171
南	惣一郎	長崎大学医学部附属病院	〒852-8102 長崎市坂本 1-7-1	0958-49-7406
今里	和義	健康保険諫早総合病院	〒854-8501 諫早市永昌東町 24-1	0957-22-1380
池田	勝義	熊本大学医学部付属病院	〒860-8556 熊本市本荘 1-1-1	096-373-5706
山内	露子	熊本大学医学部付属病院	〒860-8556 熊本市本荘 1-1-1	096-373-5706
濱野	貴磨	長門記念病院	〒876-0857 佐伯市鶴岡町 1-11-59	0972-24-3000
緒方	良一	宮崎大学医学部付属病院	〒889-1692 宮崎郡清武町大字木原5200	0985-85-1870
山内	恵	琉球大学医学部附属病院	〒903-0125 中頭郡西原町上原 207	098-895-3331

### 〈免疫血清部門〉

楢原 真二	熊本保健科学大学	〒861-5598 熊本市和泉町325	096-275-2111
江頭 弘一	久留米大学医学部附属病院	〒830-0011 久留米市旭町 67	0942-35-3311
坂本 徳隆	福岡市民病院	〒812-0046 福岡市博多区吉塚本町13-1	092-631-1111
吉本 千尋	国立九州がんセンター	〒811-1395 福岡市南区野多目 3-1-1	092-541-3231
宮内 恵美	鹿児島大学医学部附属病院	〒890-0075 鹿児島市桜ヶ丘 8-35-1	099-275-5111

### 〈微生物部門〉

松田	淳一	長崎大学医学部附属病院	〒852-8102 長崎市坂本 1-7-1	0958-49-7406
川上	洋子	国立熊本医療センター	〒860-0008 熊本市中央区二の丸 1-5	096-353-6501
伊藤	有紀	国立九州医療センター	〒810-8563 福岡市中央区地行浜1丁目8-1	092-852-0700
森口	美琴	熊本労災病院	〒866-0826 八代市竹原町1670	0965-33-4151
上野	民生	大分大学医学部附属病院	〒879-5593 大分郡挾間町医大ヶ丘 1-1	097-549-4411

共催:九州臨床検査精度管理研究会 日水製薬株式会社